" SECOND EDITION

Exam Ref 70 532

_ =

Exam Ref 70-532 Developing

Microsoft Azure Solutions
2nd Edition

Zoiner Tejada
Michele Leroux Bustamante
Ike Ellis

e Microsoft

Exam Ref 70-532 Developing Microsoft Azure Solutions, 2nd Edition

Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2018 by Pearson Education

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions,
request forms, and the appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit
www.pearsoned.com/permissions/. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

ISBN-13: 978-1-5093-0459-2
ISBN-10: 1-5093-0459-X

Library of Congress Control Number: 2017953300
118

Trademarks

Microsoft and the trademarks listed at https:/www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies. All
other marks are property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an
“as is” basis. The authors, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this book or programs
accompanying it.

Special Sales

http://www.pearsoned.com/permissions/
https://www.microsoft.com

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief
Greg Wiegand

Acquisitions Editor
Laura Norman

Development Editor
Troy Mott

Managing Editor
Sandra Schroeder

Senior Project Editor
Tracey Croom

Editorial Production
Backstop Media

Copy Editor
Liv Bainbridge

Indexer
Julie Grady

Proofreader
Christina Rudloff

Technical Editor
Jason Haley

Cover Designer
Twist Creative, Seattle

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Contents at a glance

Introduction

Preparing for the exam

CHAPTER 1 Create and manage virtual machines
CHAPTER 2 Design and implement a storage and data strategy

CHAPTER 3 Manage identity, application and network services

CHAPTER 4 Design and implement Azure PaaS compute and web and mobile
services

Index

Contents

Introduction

Organization of this book
Microsoft certifications

Acknowledgments

Microsoft Virtual Academy

Quick access to online references
Errata, updates, & book support

We want to hear from you

Stay in touch

Preparing for the exam

Chapter 1 Create and manage virtual machines
Skill 1.1: Deploy workloads on Azure ARM virtual machines
Identify supported workloads
Create a Windows Server VM
Create a Linux VM
Create a SQL Server VM

Skill 1.2: Perform configuration management

Automate configuration management by using PowerShell Desired
State Configuration (DSC) and the VM Agent (using custom script

extensions)

Configure VMs with Custom Script Extension
Use PowerShell DSC

Configure VMs with DSC

Enable remote debugging

Skill 1.3: Scale ARM VMs

Scale up and scale down VM sizes

Deploy ARM VM Scale Sets (VMSS)

Configure Autoscale

Skill 1.4: Design and implement ARM VM storage
Plan for storage capacity

Configure storage pools

Configure disk caching

Configure geo-replication

Configure shared storage using Azure File storage
Implement ARM VMs with Standard and Premium Storage

Implement Azure Disk Encryption for Windows and Linux ARM
VMs

Skill 1.5: Monitor VMs
Configure monitoring and diagnostics for a new VM

Configure monitoring and diagnostics for an existing VM
Configure alerts

Monitor metrics

Skill 1.6: Manage ARM VM Availability

Configure availability sets

Combine the Load Balancer with availability sets

Skill 1.7: Design and implement DevTest [.abs
Create a lab
Add a VM to a lab

Create and manage custom images and formulas

Configure a lab to include policies and procedures

Configure cost management

Secure access to labs

Use environments in a lab

Thought experiment

Thought experiment answer

Chapter summary

Chapter 2 Design and implement a storage and data strategy

Skill 2.1: Implement Azure Storage blobs and Azure files

Azure Storage blobs
Create a blob storage account
Read and change data

Set metadata on a container

Setting user-defined metadata

Reading user-defined metadata

Store data using block and page blobs
Stream data using blobs

Access blobs securely

Implement Async blob copy
Configure a Content Delivery Network with Azure Blob Storage

Design blob hierarchies

Configure custom domains
Scale blob storage

Azure files
Implement blob leasing

Create connections to files from on-premises or cloudbased
Windows or, Linux machines

Shard large datasets

Skill 2.2: Implement Azure Storage tables, queues, and Azure Cosmos
DB Table API

Azure Table Storage

Using basic CRUD operations
Querying using ODATA
Designing, managing, and scaling table partitions

Azure Storage Queues

Adding messages to a queue

Processing messages
Retrieving a batch of messages

Scaling queues

Choose between Azure Storage Tables and Azure Cosmos DB
Table API

Skill 2.3: Manage access and monitor storage

Generate shared access signatures

Create stored access policies

Regenerate storage account keys

Configure and use Cross-Origin Resource Sharing

Analyze logs
Skill 2.4: Implement Azure SQL. databases
Choosing the appropriate database tier and performance level

Configuring and performing point in time recovery
Enabling geo-replication

Creating an offline secondary database

Creating an online secondary database

Creating an online secondary database
Import and export schema and data

Scale Azure SQL. databases
Managed elastic pools, including DTUs and eDTUs

Implement Azure SQL Data Sync

Implement graph database functionality in Azure SQL Database

Skill 2.5: Implement Azure Cosmos DB DocumentDB
Choose the Cosmos DB API surface
Create Cosmos DB API Database and Collections
Query documents

Run Cosmos DB queries
Create Graph API databases
Execute GraphDB queries

Implement MongoDB database

Manage scaling of Cosmos DB, including managing partitioning,
consistency, and RUs

Manage multiple regions

Implement stored procedures
Access Cosmos DB from REST interface

Manage Cosmos DB security

Skill 2.6: Implement Redis caching
Choose a cache tier

Implement data persistence

Implement security and network isolation

Tune cluster performance

Integrate Redis caching with ASP.NET session and cache providers

Skill 2.7: Implement Azure Search
Create a service index
Add data

Search an index

Handle Search results

Thought experiment

Thought experiment answers
Chapter summary

Chapter 3 Manage identity, application and network services
Skill 3.1: Integrate an app with Azure AD

Preparing to integrate an app with Azure AD

Develop apps that use WS-Federation, SAML-P, OpenID Connect
and OAuth endpoints

Query the directory using Microsoft Graph API, MFA and MFA
API

Skill 3.2: Develop apps that use Azure AD B2C and Azure AD B2B
Design and implement apps that leverage social identity provider

authentication

Leverage Azure AD B2B to design and implement applications that
support partner-managed identities and enforce multi-factor
authentication

Skill 3.3: Manage Secrets using Azure Key Vault

Configure Azure Key Vault

Manage access, including tenants
Implement HSM protected keys

Implement logging
Implement key rotation
Skill 3.4: Design and implement a messaging strategy

Develop and scale messaging solutions using Service Bus queues,
topics, relays and Notification Hubs

Scale and monitor messaging

Determine when to use Event Hubs, Service Bus, IoT Hub, Stream
Analvtics and Notification Hubs

Thought experiment

Thought experiment answers
Chapter summary

Chapter 4 Design and implement Azure PaaS compute and web and mobile

services
Skill 4.1: Design Azure App Service Web Apps

Define and manage App Service plans
Configure Web App settings

Configure Web App certificates and custom domains

Manage Web Apps by using the API, Azure PowerShell, and
Xplat-CLI
Implement diagnostics, monitoring, and analytics

Design and configure Web Apps for scale and resilience

Skill 4.2: Design Azure App Service API Apps

Create and deploy API Apps
Automate API discovery by using Swashbuckle

Use Swagger API metadata to generate client code for an API app

Monitor API Apps
Skill 4.3: Develop Azure App Service Logic Apps

Create a L.ogic App connecting SaaS services

Create a Logic App with B2B capabilities

Create a LLogic App with XML capabilities
Trigger a L.ogic App from another app

Create custom and long-running actions
Monitor Logic Apps
Skill 4.4: Develop Azure App Service Mobile Apps

Create a mobile app
Add authentication to a mobile app

Add offline sync to a mobile app

Add push notifications to a mobile app
Skill 4.5: Implement API Management
Create managed APIs

Configure API Management policies
Protect APIs with rate limits

Add caching to improve performance
Monitor APIs
Customize the developer portal

Skill 4.6: Implement Azure Functions and WebJobs

Create Azure Functions

Implement a Webhook function

Create an event processing function

Implement an Azure-connected function

Integrate a function with storage

Design and implement a custom binding

Debug a Function
Implement and configure proxies
Integrate with App Service Plan

Skill 4.7: Design and Implement Azure Service Fabric apps
Create a Service Fabric application

Add a web front end to a Service Fabric application

Build an Actors-based service

Monitor and diagnose services

Deploy an application to a container

Migrate apps from cloud services

Scale a Service Fabric app

Create, secure, upgrade, and scale Service Fabric Cluster in Azure

Skill 4.8: Design and implement third-party Platform as a Service
(PaaS)

Implement Cloud Foundry

Implement OpenShift

Provision applications by using Azure Quickstart Templates

Build applications that leverage Azure Marketplace solutions and
services

Skill 4.9: Design and implement DevOps

Instrument an application with telemetry
Discover application performance issues by using Application
Insights

Deploy Visual Studio Team Services with continuous integration
(CI) and continuous development (CD)

Deploy CI/CD with third-party platform tools (Jenkins, GitHub,
Chef, Puppet, TeamCity)

Thought experiment

Thought experiment answers

Chapter summary

Index

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually
improve our books and learning resources for you. To participate in a brief
online survey, please visit:

https://aka.ms/tellpress

https://aka.ms/tellpress

Introduction

The 70-532 exam focuses the skills necessary to develop software on the
Microsoft Azure Cloud. It covers Infrastructure-as-a-Service (IaaS) offerings
like Azure VMs and Platform-as-a-Service (PaaS) offerings like Azure Storage,
Azure CosmosDB, Azure Active Directory, Azure Service Bus, Azure Event
Hub, Azure App Services, Azure Service Fabric, Azure Functions and other
relevant marketplace applications. This book will help get started with these and
other features of Azure so that you can begin developing and deploying Azure
applications.

This book is geared toward cloud application developers who focus on Azure
as the target host environment. It covers choosing from Azure compute options
for IaaS and Paas, incorporating storage and data platforms. It will help you
choose when to use features such as Web Apps, API Apps, API Management,
Logic Apps and Mobile Apps. It will explain your data storage options between
Azure CosmosDB, Azure Redis Cache, Azure Search, and Azure SQL Database.
It also covers how to secure applications with Azure Active Directory using B2C
and B2B features for single sign-on based on OpenID Connect, OAuth2 and
SAML-P protocols, and how to use Azure Vault to protect secrets.

This book covers every major topic area found on the exam, but it does not
cover every exam question. Only the Microsoft exam team has access to the
exam questions, and Microsoft regularly adds new questions to the exam,
making it impossible to cover specific questions. You should consider this book
a supplement to your relevant real-world experience and other study materials. If
you encounter a topic in this book that you do not feel completely comfortable
with, use the “Need more review?” links you’ll find in the text to find more
information and take the time to research and study the topic. Great information
is available on MSDN, TechNet, and in blogs and forums.

Organization of this book

This book is organized by the “Skills measured” list published for the exam. The
“Skills measured” list is available for each exam on the Microsoft Learning
website: https://aka.ms/examlist. Each chapter in this book corresponds to a
major topic area in the list, and the technical tasks in each topic area determine a
chapter’s organization. If an exam covers six major topic areas, for example, the

https://aka.ms/examlist

book will contain six chapters.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set
of skills and experience with current Microsoft products and technologies. The
exams and corresponding certifications are developed to validate your mastery
of critical competencies as you design and develop, or implement and support,
solutions with Microsoft products and technologies both on-premises and in the
cloud. Certification brings a variety of benefits to the individual and to
employers and organizations.

More Info All Microsoft Certifications

For information about Microsoft certifications, including a full list
of available certifications, go to https:/www.microsoft.com/learning.

Acknowledgments

Zoiner Tejada A book of this scope takes a village, and I’'m honored to have
received the support of one in making this second edition happen. My deepest
thanks to the team at Solliance who helped make this possible: my co-authors
Michele Leroux Bustamante and Ike Ellis and the hidden heroes, and Joel Hulen
and Kyle Bunting helped us with research and coverage on critical topics as the
scope of the book grew with the fast pace of Azure. Laura Norman, our editor,
thank you for helping us navigate the path to completion with structure and
compassion. To my wife Ashley Tejada, my eternal thanks for supporting me in
this effort, the little things count and they don’t go unnoticed.

Michele Leroux Bustamante I want to thank Joel Hulen, Virgilio Esteves and
Khaled Hikmat — who have been part of key Solliance projects in Azure,
including this book — and this work and experience reflects in the guidance
shared in the book. Thank you for being part of this journey! Thank you also to,
Laura Norman, our editor — who was very supporting during challenging
deadlines. A level head keeps us all sane. To my husband and son — thank you
for tolerating the writing schedule — again. I owe you - again. Much love.

Ike Ellis First and foremost, I’d like to thank my wife, Margo Sloan, for her
support in taking care of all the necessities of life while I wrote. Our editor,

https://www.microsoft.com/learning

Laura Norman, had her hands full in wrangling three busy co-authors, and I’m
very grateful for her diligence. I’'m very grateful to my co-authors, Zoiner and
Michele. It’s a joy to work with them on all of our combined projects.

Microsoft Virtual Academy

Build your knowledge of Microsoft technologies with free expert-led online
training from Microsoft Virtual Academy (MVA). MVA offers a comprehensive
library of videos, live events, and more to help you learn the latest technologies
and prepare for certification exams. You’ll find what you need here:

https://www.microsoftvirtualacademy.com

Quick access to online references

Throughout this book are addresses to webpages that the author has
recommended you visit for more information. Some of these addresses (also
known as URLSs) can be painstaking to type into a web browser, so we’ve
compiled all of them into a single list that readers of the print edition can refer to
while they read.

Download the list at https://aka.ms/examref5322E/downloads.

The URLs are organized by chapter and heading. Every time you come across
a URL in the book, find the hyperlink in the list to go directly to the webpage.

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion
content. You can access updates to this book—in the form of a list of submitted
errata and their related corrections—at:

https://aka.ms/examref5322E/errata

If you discover an error that is not already listed, please submit it to us at the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not
offered through the previous addresses. For help with Microsoft software or
hardware, go to https://support.microsoft.com.

https://www.microsoftvirtualacademy.com
https://aka.ms/examref5322E/downloads
https://aka.ms/examref5322E/errata
mailto:mspinput@microsoft.com
https://support.microsoft.com

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our
most valuable asset. Please tell us what you think of this book at:

https://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your
answers go directly to the editors at Microsoft Press. (No personal information
will be requested.) Thanks in advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter:
http://twitter.com/MicrosoftPress.

https://aka.ms/tellpress
http://twitter.com/MicrosoftPress

Preparing for the exam

Microsoft certification exams are a great way to build your resume and let the
world know about your level of expertise. Certification exams validate your on-
the-job experience and product knowledge. Although there is no substitute for
on-the-job experience, preparation through study and hands-on practice can help
you prepare for the exam. We recommend that you augment your exam
preparation plan by using a combination of available study materials and
courses. For example, you might use the Exam ref and another study guide for
your “at home” preparation, and take a Microsoft Official Curriculum course for
the classroom experience. Choose the combination that you think works best for
you.

Note that this Exam Ref is based on publicly available information about the
exam and the author’s experience. To safeguard the integrity of the exam,
authors do not have access to the live exam.

Create and manage virtual machines

Virtual machines (VMs) are part of the Microsoft Azure Infrastructure-as-a-
Service (IaaS) offering. With VMs, you can deploy Windows Server and Linux-
based workloads and have greater control over the infrastructure, your
deployment topology, and configuration as compared to Platform-as-a-Service
(PaaS) offerings such as Web Apps and API Apps. That means you can more
easily migrate existing applications and VMs without modifying code or
configuration settings, but still benefit from Azure features such as management
through a centralized web-based portal, monitoring, and scaling.

It contains valuable information regarding the skills you need to pass the
exam.

Skills in this chapter:
m Skill 1.1: Deploy workloads on Azure ARM virtual machines

m Skill 1.2: Perform configuration management

m Skill 1.3: Scale ARM VMs

m Skill 1.4: Design and implement ARM VM storage
m Skill 1.5: Monitor ARM VMs

m Skill 1.6: Manage ARM VM availability

m Skill 1.7: Design and implement DevTest L.abs

Skill 1.1: Deploy workloads on Azure ARM virtual machines

Microsoft Azure ARM VMs can run more than just Windows and .NET
applications. They provide support for running many forms of applications using
various operating systems. This section describes where and how to analyze
what is supported and how to deploy three different forms of VMs.

This skill covers how to:
m [dentify supported workloads

m Create a Windows Server VM
m Create a Linux VM
m Create a SQL Server VM

Identify supported workloads

A workload describes the nature of a solution, including consideration such as:
whether it is an application that runs on a single machine or it requires a
complex topology that prescribes the operating system used, the additional
software installed, the performance requirements, and the networking
environment. Azure enables you to deploy a wide variety of VM workloads,
including:

m “Bare bones” VM workloads that run various versions of Windows Client,

Windows Server and Linux (such as Debian, Red Hat, SUSE and Ubuntu)

m Web servers (such as Apache Tomcat and Jetty)

m Data science, database and big-data workloads (such as Microsoft SQL
Server, Data Science Virtual Machine, IBM DB2, Teradata, Couchbase,
Cloudera, and Hortonworks Data Platform)

m Complete application infrastructures (for example, those requiring server
farms or clusters like DC/OS, SharePoint, SQL Server AlwaysOn, and SAP)

m Workloads that provide security and protection (such as antivirus, intrusion
detection systems, firewalls, data encryption, and key management)

m Workloads that support developer productivity (such as the Windows 10
client operating system, Visual Studio, or the Java Development Kit)

There are two approaches to identifying supported Azure workloads. The first
is to determine whether the workload is already explicitly supported and offered
through the Azure Marketplace, which provides a large collection of free and
for-pay solutions from Microsoft and third parties that deploy to VMs. The
Marketplace also offers access to the VM Depot, which provides a large
collection of community provided and maintained VMs. The VM configuration
and all of the required software it contains on the disk (or disks) is called a VM
image. The topology that deploys the VM and any supporting infrastructure is
described in an Azure Resource Manager (ARM) template that is used by the
Marketplace to provision and configure the required resources.

The second approach is to compare the requirements of the workload you
want to deploy directly to the published capabilities of Azure VMs or, in some
cases, to perform proof of concept deployments to measure whether the

requireménts can be met. The foilowihg isa representative, though not
exhaustive, list of the requirements you typically need to take into consideration:

m CPU and RAM memory requirements

m Disk storage capacity requirements, in gigabytes (GBs)

m Disk performance requirements, usually in terms of input/output operations

per second (IOPS) and data throughput (typically in megabytes per second)

m Operating system compatibility

m Networking requirements

m Availability requirements

m Security and compliance requirements

This section covers what is required to deploy the “bare bones” VM (that is,
one that has the operating system and minimal features installed) that can serve
as the basis for your more complex workloads, and describes the options for
deploying a pre-built workload from the Marketplace.

Create a Windows Server VM

Fundamentally, there are two approaches to creating a new VM. You can upload
a VM that you have built on-premises, or you can instantiate one from the pre-
built images available in the Marketplace. This section focuses on the latter and
defers coverage of the upload scenario until the next section.

To create a bare bones Windows Server VM in the portal, complete the
following steps:

1.

Navigate to the portal accessed via https://manage.windowsazure.com.

2. Select New on the command bar.
3.
4. On the Compute blade, select the image for the version of Windows Server

Within the Marketplace list, select the Compute option.

you want for your VM (such as Windows Server 2016 VM).

On the Basics blade, provide a name for your VM, the Disk Type, a User
Name and Password, and choose the Subscription, Resource Group and
Location into which you want to deploy (Figure 1-1).

https://manage.windowsazure.com

Create virtual machine 3 asics

* Mame

Basics b ,
: : . | windowsenservm W,
Configure basic settings

VM disk type @
55D v

* UUser name

| zoinertejada »”I
3 5 * Password

* Confirm password

Subscription

Solliance MVE MSDM W

* Resocurce group

Create new Use existing

examref-vms v
* Location

South Central US A
Save money

Save up to 40% with a license you already own.

* Already have a Windows Server license? @

Yes No .

FIGURE 1-1 The Basics blade

6. Select OK.

7. On the Choose A Size Blade, select the desired tier and size for your VM
(Figure 1-2).

Browse the available sizes and their features

Prices presented are estimates in your local currency that include only Azure infrastructure costs and
any discounts for the subscription and location. The prices don't include any applicable software
costs. Recommended sizes are determined by the publisher of the selected image based on
hardware and software requirements.
Supported disk type Minimum wCPUs Minimum memory (GiB)
S50 b D 1 D I 0
% Recommended | View all
DS1.V2 Standard DS2 V2 Standard DS3_V2 Standard
E 1 vCPU : 2 vCPUs 4 vCPUs
L} L)
255 | e 7 e 14 s
i @ 2 i a» 4 = 3
1 &= Data disks 1 &= Datadisks &= Data disks
P w3200 ' m 6400 73 12800
' Max [OPS N Max [OPS ; Max IOPS
: B 7GB 1 14 GB — 28 GB
. Local 55D - ‘l Local 55D E' Local 55D
E £ Premium disk support E S8 Premium disk support L% Premium disk support
E @ Load balancing E (:;}) Load balancing (:Eb Leoad balancing
E USD/MONTH (ESTIMATED) E USD/MONTH (ESTIMATED) UsSD/MONTH (ESTIMATED)
e P
DS4 V2 Standard DS5 V2 Standard DS11 V2 Standard
8 vCPUs 16 vCPUs 2 VvCPUs
28 GB 56 GB 14 G8
& 16 & 32 == 4
= Data disks === Data disks == Data disks
@ 25600 3y 51200 73 6400
_-) Max IOP5 _) Max IOPS :) Max I0PS
= 56 GB = 112 GB = 28 GB
m Local 55D] Local 55D] Lecal 550
2% Premium disk support S8 Premium disk support L0 Premium disk support +

9.
10.

FIGURE 1-2 The Choose A Size blade

Choose Select.
On the Settings blade, leave the settings at their defaults and select OK.

On the Purchase blade, review the summary and select Purchase to deploy
the VM.

Create a Linux VM
To create a bare bones Linux VM in the portal, complete the following steps:

1.

Navigate to the portal accessed via https://portal.azure.com.

2. Select New on the command bar.
3.
4. On the Compute blade, select the image for the version of Ubuntu Server

Within the Marketplace list, select the Compute option.

(Figure 1-3) you want for your VM (such as Ubuntu Server 16.04 LTS).

Ubuntu Server

@ Ubuntu Server 14.04 LTS
Canonical
@ Ubuntu Server 16.04 LTS
Canonical
@ Ubuntu Server 17.04
Canonical

FIGURE 1-3 The Ubuntu Server option

Select Create.

On the Basics blade, provide a name for your VM, the Disk Type, a User
Name and Password (or SSH public key if preferred), and choose the
Subscription, Resource Group and Location into which you want to deploy.

Select OK.
On the Choose a size blade, select the desired tier and size for your VM.
Choose select.

https://portal.azure.com

10. On the Settings blade, leave the settings at their defaults and select OK.

11. On the Purchase blade, review the summary and select Purchase to deploy
the VM.

More Info: SSH Key Generation

To create the SSH public key that you need to provision your
Linux VM, run ssh-keygen on a Mac OSX or Linux terminal, or, if
you are running Windows, use PuTTYgen. A good reference, if you
are not familiar with using SSH from Windows, is available at:
https://docs.microsoft.com/azure/virtual-machines/linux/ssh-from-
windows.

Create a SQL Server VM

The steps for creating a VM that has SQL Server installed on top of Windows
Server are identical to those described earlier for provisioning a Windows Server
VM using the portal. The primary differences surface in the fourth step: instead
of selecting a Windows Server from the Marketplace list, select a SQL Server
option (such as SQL Server 2016 SP1 Enterprise) and follow the prompts to
complete the configuration (such as the storage configuration, patching schedule
and enablement of features like SQL Authentication and R Services) of the VM
with SQL Server and to deploy the VM.

Skill 1.2: Perform configuration management

A number of configuration management tools are available for provisioning,
configuring, and managing your VMs. In this section, you learn how to use
Windows PowerShell Desired State Configuration (DSC) and the VM Agent
(via custom script extensions) to perform configuration management tasks,
including automating the process of provisioning VMs, deploying applications to
those VMs, and automating configuration of those applications based on the
environment, such as development, test, or production.

This skill covers how to:

m Automate configuration management by using PowerShell Desired
State Configuration (DSC) and the VM Agent (using custom script
extensions)

m Configure VMs with Custom Script Extension

https://docs.microsoft.com/azure/virtual-machines/linux/ssh-from-windows

m Use PowerShell DSC
m Configure VMs with DSC
m Enable remote debugging

Automate configuration management by using PowerShell
Desired State Configuration (DSC) and the VM Agent (using
custom script extensions)

Before describing the details of using PowerShell DSC and the Custom Script
Extension, this section provides some background on the relationship between
these tools and the relevance of the Azure Virtual Machine Agent (VM Agent)
and Azure virtual machine extensions (VM extensions).

When you create a new VM in the portal, the VM Agent is installed by
default. The VM Agent is a lightweight process used for bootstrapping
additional tools on the VM by way of installing, configuring, and managing VM
extensions. VM extensions can be added through the portal, but they are also
commonly installed with Windows PowerShell cmdlets or through the Azure
Cross Platform Command Line Interface (Azure CLI).

More Info: Azure CLI

Azure CLI is an open source project providing the same
functionality as the portal via the command line. It is written in
JavaScript and requires Node.js and enables management of Azure
resources in a cross-platform fashion (from macOS, Windows and
Linux). For more details, see
https://docs.microsoft.com/cli/azure/overview.

With the VM Agent installed, you can add VM extensions. Popular VM
extensions include the following:

m PowerShell Desired State Configuration (for Windows VMs)
m Custom Script Extension (for Windows or Linux)

m Team Services Agent (for Windows or Linux VMs)

m Microsoft Antimalware Agent (for Windows VMs)

m Network Watcher Agent (for Windows or Linux VMs)

m Octopus Deploy Tentacle Agent (for Windows VMs)

https://docs.microsoft.com/cli/azure/overview

m Docker extension (for Linux VMs)
= Puppet Agent (for Windows VMs)
m Chef extension (for Windows or Linux)

You can add VM extensions as you create the VM through the portal, as well
as run them using the Azure CLI, PowerShell and Azure Resource Manager
templates.

More Info: Additional Extensions

There are additional extensions for deployment, debugging,
security, and more. For more details, see
https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/extensions-features#common-vim-extensions-

ret erence.

Configure VMs with Custom Script Extension

Custom Script Extension makes it possible to automatically download files from
Azure Storage and run Windows PowerShell (on Windows VMs) or Shell scripts
(on Linux VMs) to copy files and otherwise configure the VM. This can be done
when the VM is being created or when it is already running. You can do this
from the portal or from a Windows PowerShell command line interface, the
Azure CLI, or by using ARM templates.

Configuring a new VM with Custom Script Extension

Create a Windows Server VM following the steps presented in the earlier
section, “Creating a Windows Server VM.” After creating the VM, complete the
following steps to set up the Custom Script Extension:

1. Navigate to the blade for your VM in the portal accessed via
https://portal.azure.com.

2. From the menu, scroll down to the Settings section, and select Extensions
(Figure 1-4).

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/extensions-features#common-vm-extensions-reference
https://portal.azure.com

basicwinvm - Extensions

Virtual machine

O Search (Ctrl+/)

SETTINGS “-
Metworking

& Disks

o Size

Extensions

@ Availability set

Configuration

Properties

8 Locks

&4 Automation script

FIGURE 1-4 The Extensions option

. On the Extensions blade, select Add on the command bar.

. From the New Resource blade, select Custom Script Extension (Figure 1-
5).

New resource

PowerShell Desired State
ﬂ Configuration
Microsoft Corp.

Octopus Deploy Tentacle Agent
Octopus Deploy Pty. Ltd.

Puppet Agent (preview)
Puppet

FIGURE 1-5 The New Resource blade

. On the Custom Script blade, select Create.

. On the Install Extension blade (Figure 1-6), select the Folder button and
choose the .ps1 file containing the script you want to run when the VM
starts. Optionally, provide arguments. The Version of DSC is required, for
example 2.21.

Install extension

* Configuration Modules or Script @
Select a file E

* Madule-qualified Name of Configuration @
Configuration Arguments @

Configuration Data PSD1 File @
&=

WMF Version @

latest W

Data Collection @

Enable W

* Version @

Auto Upgrade Minor Version @

Yes Mo

FIGURE 1-6 The Install Extenson blade

7. Select OK.

More Info: Configuring the Custom Script Extension

You can also configure the Custom Script Extension using the Set-
AzureRmVMCustomScriptExtension Windows PowerShell cmdlet
(see https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/extensions-customscript#powershell-deployment)
or via the “az vin extension set” Azure CLI command (see
https://docs.microsoft.com/en-us/azure/virtual-
machines/linux/extensions-customscript#azure-cli).

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/extensions-customscript#powershell-deployment
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/extensions-customscript#azure-cli

Use PowerShell DSC

PowerShell Desired State Configuration (DSC) is a management platform
introduced with Windows PowerShell 4.0, available as a Windows feature on
Windows Server 2012 R2. PowerShell DSC is implemented using Windows
PowerShell. You can use it to configure a set of servers (or nodes) declaratively,
providing a description of the desired state for each node in the system topology.
You can describe which application resources to add, remove, or update based
on the current state of a server node. The easy, declarative syntax simplifies
configuration management tasks.

With PowerShell DSC, you can instruct a VM to self-provision to a desired
state on first deployment and then have it automatically update if there is
“configuration drift.” Configuration drift happens when the desired state of the
node no longer matches what is described by DSC.

DSC resources

Resources are core building blocks for DSC. A script can describe the target
state of one or more resources, such as a Windows feature, the Registry, the file
system, and other services. For example, a DSC script can describe the following
intentions:

= Manage server roles and Windows features
m Manage registry keys

m Copy files and folders

m Deploy software

m Run Windows PowerShell scripts

More Info: DSC Built-in Resources

For a more extensive list of DSC resources for both Windows and
Linux, see: https://msdn.microsoft.com/en-
us/powershell/dsc/resources.

Configuration keyword

DSC extends Windows PowerShell 4.0 with a Configuration keyword used to
express the desired state of one or more target nodes. For example, the following
configuration indicates that a server should have IIS enabled during
provisioning:

https://msdn.microsoft.com/en-us/powershell/dsc/resources

Click here to view code image

Configuration EnableIIS

{
Node WebServer
{
WindowsFeature IIS {
Ensure = "Present",
Name = "WebServer"
}
}
}

The Configuration keyword can wrap one or more Node elements, each
describing the desired configuration state of one or more resources on the node.
In the preceding example, the server node is named WebServer, the contents of
which indicate that the Windows Feature “IIS” should be configured, and that

the WebServer component of IIS should be confirmed present or installed if
absent.

)

Exam Tip

After the DSC runs, a Managed Object Format (MOF) file is
created, which is a standard endorsed by the Distributed
Management Task Force (DTMF). See:
http://www.dmtf.org/education/mof.

Custom resources

Many resources are predefined and exposed to DSC; however, you may also
require extended capabilities that warrant creating a custom resource for DSC
configuration. You can implement custom resources by creating a Windows

PowerShell module. The module includes a MOF schema, a script module, and a
module manifest.

More Info: Custom DSC Resources

For more information on building custom DSC resources, see
https://msdn.microsoft.com/en-us/powershell/dsc/authoringResource.

http://www.dmtf.org/education/mof
https://msdn.microsoft.com/en-us/powershell/dsc/authoringResource

More Info: DSC Resources in the Powershell Gallery

The Windows PowerShell team released a number of DSC
resources to simplify working with Active Directory, SQL Server,
and IIS. See the PowerShell Gallery at
http://www.powershellgallery.com/items and search for items in the
DSC Resource category.

Local Configuration Manager

Local Configuration Manager is the engine of DSC, which runs on all target
nodes and enables the following scenarios for DSC:

m Pushing configurations to bootstrap a target node

m Pulling configuration from a specified location to bootstrap or update a target
node

m Applying the configuration defined in the MOF file to the target node, either
during the bootstrapping stage or to repair configuration drift

Local Configuration Manager runs invoke the configuration specified by your
DSC configuration file. You can optionally configure Local Configuration
Manager to apply new configurations only, to report differences resulting from
configuration drift, or to automatically correct configuration drift.

More Info: Local Configuration Manager

For additional details on the configuration settings available for
Local Configuration Manager, see https://msdn.microsoft.com/en-

us/powershell/dsc/metaConfig.

Configure VMs with DSC

To configure a VM using DSC, first create a Windows PowerShell script that
describes the desired configuration state. As discussed earlier, this involves
selecting resources to configure and providing the appropriate settings. When
you have a configuration script, you can use one of a number of methods to
initialize a VM to run the script on startup.

Creating a configuration script

Use any text editor to create a Windows PowerShell file. Include a collection of
resources to configure, for one or more nodes, in the file. If you are copying files

http://www.powershellgallery.com/items
https://msdn.microsoft.com/en-us/powershell/dsc/metaConfig

as part ot the node contiguration, they should be available in the specitied source
path, and a target path should also be specified. For example, the following
script ensures IIS is enabled and copies a single file to the default website:

Click here to view code image
configuration DeployWebPage

{
node ('"localhost")
{
WindowsFeature IIS
{
Ensure = "Present"
Name = "WebServer"
}
File WebPage
{
Ensure = "Present"
DestinationPath = "C:\inetpub\wwwroot\index.html"
Force = $true
Type = "File"
Contents = '<html><body><hl1>Hello Web Page!</h1></body>
</html>"
}
}
}

Deploying a DSC configuration package

After creating your configuration script and allocating any resources it requires,
you need to produce a compressed zip file containing the configuration script in
the root, along with any resources needed by the script. You create the zip and
copy it up to Azure Storage in one command using Publish-
AzureRMVmDscConfiguration using Windows PowerShell and then apply the
configuration with SetAzureRmVmDscExtension.

Assume you have the following configuration script in the file iisInstall.ps1 on
your local machine:

Click here to view code image

configuration IISInstall

{

node "localhost"

{

WindowsFeature IIS

{

Ensure = "Present"
Name = "WebServer"

}

You would then run the following PowerShell cmdlets to upload and apply the
configuration:

Click here to view code image

#Load the Azure PowerShell cmdlets
Import-Module Azure
#Login to your Azure Account and select your subscription (if your
account has multiple
subscriptions)
Login-AzureRmAccount
Set-AzureRmContext -SubscriptionId <YourSubscriptionId>

$resourceGroup = "dscdemogroup"
$vmName = "myVM"
$storageName = "demostorage"

#Publish the configuration script into Azure storage
Publish-AzureRmvMDscConfiguration -ConfigurationPath .\iisInstall.ps1
-ResourceGroupName $resourceGroup -StorageAccountName $storageName
-force
#Configure the VM to run the DSC configuration
SetAzureRmVmDscExtension -Version 2.21
-ResourceGroupName $resourceGroup -VMName $vmName
-ArchiveStorageAccountName $storageName
-ArchiveBlobName iisInstall.psl.zip -AutoUpdate:$true -
ConfigurationName
"IISInstall"

Configuring an existing VM using the Azure Portal

Before configuring an existing VM using the Azure Portal, you will need to
create a ZIP package around your PowerShell script. To do so, run the Publish-
AzureVMDscConfiguration cmdlet providing the path to your PowerShell script
and the name of that destination zip file to create, for example:

Click here to view code image

Publish-AzurevVMDscConfiguration .\iisInstall.psl -
ConfigurationArchivePath .\iisInstall.
psl.zip

Then you can proceed in the Azure Portal. To configure an existing VM in the
portal, complete the following steps:

1. Navigate to the blade for your VM in the portal accessed via

https://portal.azure.com.

. From the menu, scroll down to the Settings section, and select Extensions.
. On the Extensions blade, select Add on the command bar.

. From the New Resource blade, select PowerShell Desired State
Configuration.

. On the PowerShell Desired State Configuration blade, select Create.

. On the Install Extension blade, select the folder button and choose the zip
file containing the DSC configuration.

. Provide the module-qualified name of the configuration in your .ps1 that
you want to apply. This value is constructed from the name of your .ps1
file including the extension, a slash (\) and the name of the configuration as
it appears within the .ps1 file. For example, if your file is iisInstall.ps1 and
you have a configuration named IISInstall, you would set this to
“lisInstall.ps1\[ISInstall”.

. Optionally provide any Data PSD1 file and configuration arguments
required by your script.

. Specify the version of the DSC extension (Figure 1-7) you want to install
(e.g., 2.21).

https://portal.azure.com

Install extension

* Configuration Modules or Script @
“iisInstall.ps1.zip" E

* Module-qualified Mame of Configuration @

lisinstall.ps 1WISinstall \/|

Configuration Arguments @

Configuration Data PSD1 File @

WHMF Version @

latest W

Data Collection @

Enabile w
*= Version @
2.21 W

Auto Upgrade Minor Version @

fes Mo

FIGURE 1-7 Using the Install Extension

10. Select OK.

Enable remote debugging

Vo ran nea romnto dahnaaginag tn dahna annliratinne mimning nn vninir Windanwurc

4 UL LUl UL 1ul1iuvLe uLUu66l116 v uuuu& Lll.ll.lllhutlulld 1u11111115 vl juul YY 111U VYV O

VMs. Server Explorer in Visual Studio shows your VMs in a list, and from there
you can enable remote debugging and attach to a process following these steps:

1.
2.

In Visual Studio, open Cloud Explorer.

Expand the node of the subscription containing your VM, and then expand
the Virtual Machines node.

Right-click the VM you want to debug and select Enable Debugging. Click
Yes in the dialog box to confirm.

This installs a remote debugging extension to the VM so that you can
debug remotely. The progress will be shown in the Microsoft Azure
Activity Log. After the debugging extension is installed, you can continue.

Right-click the virtual machine again and select Attach Debugger. This
presents a list of processes in the Attach To Process dialog box.

Select the processes you want to debug on the VM and click Attach. To
debug a web application, select w3wp.exe, for example.

More Info: Debugging Processes in Visual Studio

For additional information about debugging processes in Visual
Studio, see this reference: https://docs.microsoft.com/en-
us/visualstudio/debugger/debug-multiple-processes.

Skill 1.3: Scale ARM VMs

Similar to Azure Web Apps, Azure Virtual Machines provides the capability to
scale in terms of both instance size and instance count and supports autoscale on
the instance count. However, unlike Websites that can automatically provision
new instances as a part of scale out, Virtual Machines on their own must be pre-
provisioned in order for autoscale to turn instances on or off during a scaling
operation. To achieve scale-out without having to perform any pre-provisioning
of VM resources, Virtual Machine Scale Sets should be deployed.

This skill covers how to:

m Scale up and scale down VM sizes

= Deploy ARM VM Scale Sets (VMSS)

m Configure autoscale on ARM VM Scale Sets

https://docs.microsoft.com/en-us/visualstudio/debugger/debug-multiple-processes

Scale up and scale down VM sizes

Using the portal or Windows PowerShell, you can scale VM sizes up or down to
alter the capacity of the VM, which collectively adjusts:

m The number of data disks that can be attached and the total IOPS capacity
m The size of the local temp disk

m The number of CPU cores

m The amount of RAM memory available

m The network performance

m The quantity of network interface cards (NICs) supported

More Info: Limits by VM Size

To view the detailed listing of limits by VM size, see
https://docs.microsoft.com/azure/virtual-machines/windows/sizes.

Scaling up and scaling down VM size using the Portal
To scale a VM up or down in the portal, complete these steps:

1. Navigate to the blade of your VM in the portal accessed via
https://portal.azure.com.

2. From the menu, select Size.

3. On the Choose a size blade, select the new size you would like for the VM.
4. Choose Select to apply the new size.

Scaling up and scaling down VM size using Windows PowerShell

The instance size can also be adjusted using the following Windows PowerShell
script:

Click here to view code image

$ResourceGroupName = "examref"
$VMName = "vmname"
$NewVMSize = "Standard_A5"

$vm = Get-AzureRmVM -ResourceGroupName $ResourceGroupName -Name $VMName
$vm.HardwareProfile.vmSize = $NewVMSize

Update-AzureRmvM -ResourceGroupName $ResourceGroupName -VM $vm

In the previous script, you specify the name of the Resource Group containing
your VM, the name of the VM you want to scale, and the label of the size (for

axamnle “Standard AG”) tn which van want tn erale it

https://docs.microsoft.com/azure/virtual-machines/windows/sizes
https://portal.azure.com

R et A I U A AR A R e A A AR L A)

You can get the list of VM sizes available in each Azure region by running the
following PowerShell (supplying the Location value desired):

Click here to view code image

Get-AzureRmVmSize -Location "East US" | Sort-Object Name |
ft Name, NumberOfCores, MemoryInMB, MaxDataDiskCount -AutoSize

Deploy ARM VM Scale Sets (VMSS)

Virtual Machine Scale Sets enable you to automate the scaling process. During a
scale-out event, a VM Scale Set deploys additional, identical copies of ARM
VMs. During a scale-in it simply removes deployed instances. No VM in the
Scale Set is allowed to have any unique configuration, and can contain only one
size and tier of VM, in other words each VM in the Scale Set will also have the
same size and tier as all the others in the Scale Set.

VM Scale Sets support VMs running either Windows or Linux. A great way
to understand Scale Sets is to compare them to the features of standalone Virtual
Machines:

m In a Scale Set, each Virtual Machine must be identical to the other, as
opposed to stand alone Virtual Machines where you can customize each VM
individually.

® You adjust the capacity of Scale Set simply by adjusting the capacity
property, and this in turn deploys more VMs in parallel. In contrast, scaling
out stand alone VMs would mean writing a script to orchestrate the
deployment of many individual VMs.

m Scale Sets support overprovisioning during a scale out event, meaning that
the Scale Set will actually deploy more VMs than you asked for, and then
when the requested number of VMs are successfully provisioned the extra
VMs are deleted (you are not charged for the extra VMs and they do not
count against your quota limits). This approach improves the provisioning
success rate and reduces deployment time. For standalone VMs, this adds
extra requirements and complexity to any script orchestrating the
deployment. Moreover, you would be charged for the extra standalone VM’s
and they would count against your quota limits.

m Scale Set can roll out upgrades using an upgrade policy across the VMs in
your Scale Set. With standalone VMs you would have to orchestrate this
update process yourself.

m Azure Autoscale can be used to automatically scale a Scale Set, but cannot

be used against standalone VMs.

m The Networking of Scale Sets is similar to standalone VMs deployed in a
Virtual Network. Scale Sets deploy the VMs they manage into a single
subnet of a Virtual Network. To access any particular Scale Set VM you
either use an Azure Load Balancer with NAT rules (e.g. where each external
port can map to a Scale Set instance VM) or you deploy a publicly accessible
“jumpbox” VM in the same Virtual Network subnet as the Scale Set VMs,
and access the Scale Set VMs via the jumpbox (to which you are either RDP
or SSH connected).

The maximum number of VMs to which a VM Scale Set can scale, referred to
as the capacity, depends on three factors:

m Support for multiple placement groups
m The use of managed disks

m If the VM’s use an image from the Marketplace or are created from a user
supplied image

Placement groups are a Scale Set specific concept that is similar to
Availability Sets, where a Placement group is implicitly an Availability Set with
five fault domains and five update domains, and supports up to 100 VM’s. When
you deploy a Scale Set you can restrict to only allow a single placement group,
which will effectively limit your Scale Set capacity to 100 VM’s. However, if
you allow multiple placement groups during deployment, then your Scale Set
may support up to 1,000 VM’s, depending on the other two factors (managed
disks and image source).

During Scale Set deployment, you can also choose whether to use unmanaged
(for example, the traditional disks in an Azure Storage Account you control) or
managed disks (where the disk itself is the resource you manage, and the Storage
Account is no longer a concern of yours). If you choose unmanaged storage, you
will also need to be limited to using a single placement group, and therefore the
capacity of your Scale Set limited to 100 VMs. However, if you opt to use
managed disks then your Scale Set may support up to 1,000 VMs subject only to
our last factor (the image source).

The final factor affecting your Scale Set’s maximum capacity is the source of
the image used when the Scale Set provisions the VMs it manages. If the image
source is a Marketplace image (like any of the baseline images for Windows
Server or Linux) then your Scale Set supports up to 1,000 VMs. However, if
your VMs will be based off of a custom image you supply then your Scale Set
will have a capacity of 100 VMs.

Deploy ARM VM Scale Sets using the Portal

To deploy a Scale Set using the Azure Portal, you deploy a Scale Set and as a
part of that process select the Marketplace image to use for the VMs it will
manage. You cannot select a VM Marketplace image and then choose to include
it in a Scale Set (as you might when selecting a Resource Group). To deploy a
Scale Set in the portal, complete these steps (Figure 1-8):

1.
2.

S U W

Navigate to the portal accessed via https://portal.azure.com.

Select + New and in the Search the Marketplace box, enter “scale sets” and
select the “Virtual machine scale set” item that appears.

On the Virtual machine scale set blade, select Create.
In the Basics property group, provide a name for the scale set.
Select the OS type (Window or Linux).

Choose your Subscription, Resource group and Location. Note that the
Resource group you select for the Scale Set must either be empty or be
created new with Scale Set.

Enter a user name and password (for Windows), an SSH user name and
password (for Linux) or an SSH public key (for Linux).

https://portal.azure.com

10.

11.

BASICS

* Virtual machine scale set name

myvmss v

* Operating system disk image @

Windows Server 2016 Datacenter W

* Subscription

Solliance MVP MSDN W

* Resource group

Create new (@ Use existing

examref “
* Location
South Central US ~

* User name @

zoinertejada v

* Password

LA L L L AL LR \/

* Confirm password

FIGURE 1-8 The Basics properties for the VM Scale Set

In the Instances and Load Balancer property group, set the instance count
to the desired number of instances to deploy initially.

Select the virtual machine instance size for all machines in the Scale Set.

Choose whether to limit to a single placement group or not by selecting the
option to Enable scaling beyond 100 instances. A selection of “No” will
limit your deployment to a single placement group.

Select to use managed or unmanaged disks. If you chose to sue multiple

12.

13.

placement groups, then managed disks are the only option and will be
automatically selected for you.

If you chose to use a single placement group, configure the public IP
address name you can use to access VMs via a Load Balancer. If you
allowed multiple placement groups, then this option is unavailable.

Similarly, if you chose to use a single placement group, configure the
public IP allocation mode (which can be Dynamic or Static) and provide a
label for your domain name. If you allowed multiple placement groups,
then this option is unavailable (Figure 1-9).

INSTANCES AND LOAD BALANCER

& You have enabled scaling beyond 100 instances. This requires disk type to be
Managed and that there be no Azure Load Balancer on the scale set.

* |nstance count @

2 v

* Instance size (View full pricing details) @

D1_v2 (1 vCPU, 3.5 GB) v

Enable scaling beyond 100 instances @

Mo Yes

Use managed disks @

Mo Yes ‘

* Public IP address name @

mymvss-pip

Public IP allocation method

L_D_}_,!rmmic I iL_‘

* Domain name label @

I‘I"l'j,-'\-"l‘.'":'i:u-i?“.'fr'l mref

southcentralus.cloudapp.azure.com

FIGURE 1-9 The Instances And Load Balancer properties for a VM
Scale Set

14. In the Autoscale property group, leave Autoscale set to Disabled.
15. Select Create.

More Info: Deploying a Scale set Using Powershell or Azure CLI

You can also deploy a Scale Set using PowerShell or the Azure

CLI. For the detailed step by step instructions, see
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-
machine-scale-sets-create.

Deploying a Scale Set using a Custom Image
To deploy a Scale Set where the VMs are created from custom or user-supplied
image you must perform the following;:

1. Generalize and capture an unmanaged VM disk from a standalone VM.
The disk is saved in an Azure Storage Account you provide.

More Info: Creating a Generalized VM Disk

To generalize and capture a VM from a VM you have already
deployed in Azure, see https://docs.microsoft.com/azure/virtual-
machines/windows/sa-copy-generalized.

2. Create an ARM Template that at minimum:

A. Creates a managed image based on the generalized unmanaged disk
available in Azure Storage. Your template needs to define a resource
of type “Microsoft. Compute/images” that references the VHD image
by its URI. Alternately, you can pre-create the managed image (which
allows you to specify the VHDs for the OS Disk and any Data Disks),
for example by creating an image using the Portal, and omit this
section in your template.

B. Configures the Scale Set to use the managed image. Your template
needs to defines a resource of type
“Microsoft. Compute/virtualMachineScaleSets” that, in its
“storageProfile” contains a reference to the image you defined
previously.

3. Deploy the ARM template. Deploy the ARM template using the approach
of your choice (for example, Portal, PowerShell or by using the Azure
CLI).

More Info: Deploying ARM Templates

For instructions on deploying an ARM template, see
https://docs.microsoft.com/azure/azure-resource-manager/resource-

https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-create
https://docs.microsoft.com/azure/virtual-machines/windows/sa-copy-generalized
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-template-deploy-portal#deploy-resources-from-custom-template

group-template-deploy-portal#deploy-resources-from-custom-
template.

The following code snippet shows an example of a complete ARM template
for deploying a VM Scale Set that uses Linux VMs, where the authentication for
the VM’s is username and password based, and the VHD source is a generalized,
unmanaged VHD disk stored in an Azure Storage Account. When the template is
deployed, the user needs to specify the admin username and password to
establish on all VMs in the Scale Set, as well as the URI to the source VHD in
Azure Storage blobs.

Click here to view code image

{
"$schema": "http://schema.management.azure.com/schemas/
2015-01-01/deploymentTemplate.json",
"contentVersion": "1.0.0.0",
"parameters": {
"adminUsername": {
Iltypell: Ilstringll
Iy
"adminPassword": {
"type": "securestring"
Iy
"sourceImagevhdUri": {
Iltypell: "String",
"metadata": {
"description": "The source of the generalized blob containing
the custom image"

}
}
iy

"variables": {3},
"resources": [
{
"type": "Microsoft.Compute/images",
"apiVersion": "2016-04-30-preview",
"name": "myCustomImage",
"location": "[resourceGroup().location]",
"properties": {
"storageProfile": {

"osDisk": {
"osType": "Linux",
"osState": "Generalized",
"blobUri": "[parameters('sourceImageVhduri')]",

"storageAccountType": "Standard_LRS"
}

"type": "Microsoft.Network/virtualNetworks",
"name": "myVnet",
"location": "[resourceGroup().location]",
"apiVersion": "2016-12-01",
"properties": {

"addressSpace": {

"addressPrefixes": [
"10.0.0.0/16"

]
3
"subnets": [
{
"name": "mySubnet",
"properties": {
"addressPrefix": "10.0.0.0/16"
}
}
]
}

"type": "Microsoft.Compute/virtualMachineScaleSets",
"name": "myScaleSet",
"location": "[resourceGroup().location]",
"apiVersion": "2016-04-30-preview",
"dependson": [

"Microsoft.Network/virtualNetworks/myVnet",

"Microsoft.Compute/images/myCustomImage"
1
"SkU": {

"name": "Standard_A1",

"capacity": 2
I
"properties": {

"upgradePolicy": {

"mode": "Manual"
3
"virtualMachineProfile": {
"storageProfile": {
"imageReference": {
"id": "[resourceId('Microsoft.Compute/images’,
'myCustomImage')]"

}
i

"osProfile": {

"computerNamePrefix": "vm",
"adminUsername": "[parameters('adminUsername')]",
"adminPassword": "[parameters('adminPassword')]"
I
"networkProfile": {
"networkInterfaceConfigurations": [

{
"name": "myNic",
"properties": {
"primary": "true",
"ipConfigurations": [
{
"name": "myIpConfig",
"properties": {
"subnet": {
Ilidll : n

[concat(resourceId('Microsoft.Network/virtualNetworks',
"'myVnet'), 'subnetsmySubnet')]"

More Info: Template Source

You can download the ARM template shown from:
https://github.com/gatneil/mvss/blob/customimage/azuredeploy.json.

Configure Autoscale

Autoscale is a feature of the Azure Monitor service in Microsoft Azure that
enables you to automatically scale resources based on rules evaluated against
metrics provided by those resources. Autoscale can be used with Virtual
Machine Scale Sets to adjust the capacity according to metrics like CPU
utilization, network utilization and memory utilization across the VMs in the
Scale Set. Additionally, Autoscale can be configured to adjust the capacity of the
Scale Set according to metrics from other services, such as the number of

https://github.com/gatneil/mvss/blob/custom-image/azuredeploy.json

messages in an Azure Queue or Service Bus queue.

Configuring Autoscale when provisioning VM Scale Set using the Portal

You can configure a Scale Set to autoscale when provisioning a new Scale Set in
the Azure Portal. When configuring it during provisioning, the only metric you
can scale against is CPU utilization. To provision a Scale Set with CPU based
autoscale, complete the following steps:

1. Navigate to the portal accessed via https://portal.azure.com.

2. Select + New and in the Search the Marketplace box, enter “scale sets” and
select the “Virtual machine scale set” item that appears.

On the Virtual machine scale set blade, select Create.
In the Basics property group, provide a name for the scale set.
Select the OS type (Window or Linux).

Choose your Subscription, Resource group and Location. Note that the
Resource group you select for the Scale Set must either be empty or be
created new with Scale Set.

S U W

7. Enter a user name and password (for Windows), an SSH user name and
password (for Linux) or an SSH public key (for Linux).

8. In the Instances and Load Balancer property group, set the instance count
to the desired number of instances to deploy initially.

9. Select the virtual machine instance size for all machines in the Scale Set.

10. Choose whether to limit to a single placement group or not by selecting the
option to Enable scaling beyond 100 instances. A selection of “No” will
limit your deployment to a single placement group.

11. Select to use managed or unmanaged disks. If you chose to sue multiple
placement groups, then managed disks are the only option and will be
automatically selected for you.

12. If you chose to use a single placement group, configure the public IP
address name you can use to access VMs via a Load Balancer. If you
allowed multiple placement groups, then this option is unavailable.

13. Similarly, if you chose to use a single placement group, configure the
public IP allocation mode (which can be Dynamic or Static) and provide a
label for your domain name. If you allowed multiple placement groups,
then this option is unavailable.

14. In the Autoscale property group, chose to enable autoscale. If you enable

https://portal.azure.com

autoscale, provide the desired VM instance count ranges, the scale out or
scale in CPU thresholds and instance counts to scale out or scale in by

(Figure 1-10).

AUTOSCALE

Autoscale @

Disabled | Enabled

* Minimum number of VMs @

1

* Maximum number of VMs @

10

Scale out

* CPU threshold (%) @
75

* Number of VMs to increase by @
1

Scale in

* CPU threshold (%) @
25

* Number of VMs to decrease by @
1

|:| Pin to dashboard

Automation options

FIGURE 1-10 The Autoscale settings for a VM Scale Set

15. Select Create.

Configuring Autoscale on an existing VM Scale Set using the Portal

You can configure a Scale Set to Autoscale after it is deployed using the Portal.
When configuring this way, you can scale according to any of the available
metrics. To further configure Autoscale on an existing Scale Set with Autoscale
already enabled, complete the following steps:

1. Navigate to the portal accessed via https://portal.azure.com.

2. Navigate to your Virtual machine scale set in the Portal.
3. From the menu, under Settings, select Scaling.

4. Select Add Default Scale Condition or Add A Scale Condition. The default
scale condition (Figure 1-11) will run when none of the other scale
conditions match.

5. For the scale condition, choose the scale mode. You can scale based on a
metric or scale to a specific instance count.

Default Profilel & i

Scale made & Scale based on a metric Scale to a specific instance count

Scale out

When myvmss [Average) Percentage CPL > 75 Increase instance count by 1

Scale in

When MywWmss [Average) Percentage CPU < 25 Decrease instance count by 1
=+ Add a rule

inimum @ Maximum & Default @

Instance limits
10

Schedule This scale condition is executed when none of the other scale condition(s) match

FIGURE 1-11 The Default scale condition

6. When choosing to scale based on a metric (Figure 1-12):

m Select Add rule to define the metric source (e.g., the Scale Set itself or
another Azure resource), the Criteria (e.g., the metric name, time grain
and value range), and the Action (e.g., to scale out or scale in).

https://portal.azure.com

Scale rule

Resource type

Virtual machine scale sets v
Resource
‘ MYyVmss W
Criteria

* Time aggregation @

Average v

* Metric name

Percentage CPU v

1 minute time grain
* Time grain statistic @

Average W

* Operator

Greater than v

* Threshold

75 v
%
* Duration (in minutes) @
10
Action

* Dperation

Increase count by v

* |nstance count

1

* Cool down (minutes) @

5

FIGURE 1-12 Adding a Scale Rule

7. When choosing to scale to a specific instance count:

m For the default scale condition, you can only specify the target instance
count to which the Scale Set capacity will reset.

m For non-default scale conditions, you specify the desired instance count
and a time based schedule during which that instance count will apply.
Specify the time by using a start and end dates or according to a recurring
schedule that repeats during a time range on selected days of the week

(Figure 1-13).

Auto created scale condition &7 [i]

Scale mede Scale based on a metric (@ Scale to a specific instance count

Instance count | 10

Schedule ® Specify start/end dates Repeat specific days

Timezone (UTC-05:00) Eastern Time (US & Canada) v

Start date 2007-11-06 12:00:00 AM

End date 2007-11-10 | 11:58:00 B

FIGURE 1-13 Adding a Scale Condition

8. Select Save in the command bar to apply your Autoscale settings.

More Info: VM Scale set and Autoscale Deployment with
Powershell

For an end-to-end example walking thru of the steps to create a
VM Scale Set configured with Autoscale showing how to deploy
with PowerShell, see: https://docs.microsoft.com/azure/virtual-

machine-scale-sets/virtual-machine-scale-sets-windows-autoscale.

Skill 1.4: Design and implement ARM VM storage

There is more to managing your VM storage than attaching data disks. In this
skill, you explore multiple considerations that are critical to your VM storage
strategy.

This skill covers how to:

https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-windows-autoscale

= Plan for storage capacity

m Configure storage pools

m Configure disk caching

m Configure geo-replication

m Configure shared storage using Azure File storage

m Implement ARM VMs with Standard and Premium Storage

m Implement Azure Disk Encryption for Windows and Linux ARM VMs

Plan for storage capacity

VMs leverage a local disk provided by the host machine for the temp drive (D:
on Windows and devsdb1 on Linux) and Azure Storage for the operating system
and data disks (collectively referred to as virtual machine disks), wherein each
disk is a VHD stored as a blob in Blob storage. The temp drive, however, uses a
local disk provided by the host machine. The physical disk underlying this temp
drive may be shared among all the VMs running on the host and, therefore, may
be subject to a noisy neighbor that competes with your VM instance for
read/write IOPS and bandwidth.

For the operating system and data disks, use of Azure Storage blobs means
that the storage capacity of your VM in terms of both performance (for example,
IOPS and read/write throughput MB/s) and size (such as in GBs) is governed by
the capacity of a single blob in Blob storage.

When it comes to storage performance and capacity of your disks there are
two big factors:

1. Is the disk standard or premium?
2. Is the disk unmanaged or managed?

When you provision a VM (either in the portal or via PowerShell or the Azure
CLI), it will ask for the disk type, which is either HDD (backed by magnetic
disks with physical spindles) or SSD (backed by solid state drives). Standard
disks are stored in a standard Azure Storage Account backed by the HDD disk
type. Premium disks are stored in a premium Azure Storage Account backed by
the SSD disk type.

When provisioning a VM, you will also need to choose between using
unmanaged disks or managed disks. Unmanaged disks require the creation of an
Azure Storage Account in your subscription that will be used to store all of the
disks required by the VM. Managed disks simplify the disk management because

they manage the associated Storage Account for you, and you are only
responsible for managing the disk resource. In other words, you only need to
specify the size and type of disk and Azure takes care of the rest for you. The
primary benefit to using managed disks over unmanaged disks is that you are no
longer limited by Storage Account limits. In particular, the limit of 20,000 IOPS
per Storage Account means that you would need to carefully manage the
creation of unmanaged disks in Azure Storage, limiting the number of disks
typically to 20-40 disks per Storage Account. When you need more disks, you
need to create additional Storage Accounts to support the next batch of 20-40
disks.

The following summarizes the differences between standard and premium
disks in both unmanaged and managed scenarios, shown in Table 1-1.

TABLE 1-1 Comparing Standard and Premium disks

Feature Standard STANDARD Premium PREMI
(unmanaged) | (MANAGED) | (UNMANGED) | (MANA

Max IOPS | 20k IOPS N/A 60k -127.5k N/A

for storage IOPS

account

Max N/A N/A 50 Gbps N/A

bandwidth

for storage

account

Max 500 TB N/A 35TB N/A

storage

capacity

per

storage

account

Max IOPS | Depends on Depends on Depends on VM | Depend:s

per VM VM Size VM Size Size VM Siz

Max Depends on Depends on Depends on VM | Depend:s

throughput | VM Size VM Size Size VM Siz

per VM

Max disk 4TB 32GB - 4TB 32GB - 4TB 32GB -
size

Max 8 KB | 300 - 500 500 IOPS 500 - 7,500 120- 7,
IOPS per IOPS IOPS IOPS
disk

Max 60 MB/s 60 MB/s 100 MB/s - 250 25 MBJ/:
throughput MB/s MB/s
per disk

More Info: IOPS

An IOPS is a unit of measure counting the number of input/output
operations per second and serves as a useful measure for the
number of read, write, or read/write operations that can be
completed in a period of time for data sets of a certain size (usually
8 KB). To learn more, you can read about IOPS at
http://en.wikipedia.org/wiki/IOPS.

Given the scalability targets, how can you configure a VM that has an IOPS
capacity greater than 500 IOPS or 60 MB/s throughput, or provides more than
one terabyte of storage? One approach is to use multiple blobs, which means
using multiple disks striped into a single volume (in Windows Server 2012 and
later VMs, the approach is to use Storage Spaces and create a storage pool across
all of the disks). Another option is to use premium disks at the P20 size or
higher.

More Info: Storage Scalability Targets

For a detailed breakdown of the capabilities by storage type, disk
type and size, see: https://docs.microsoft.com/azure/storage/storage-
scalability-targets.

For Azure VMs, the general rule governing the number of disks you can
attach is twice the number of CPU cores. For example, an A4-sized VM instance
has 8 cores and can mount 16 disks. Currently, there are only a few exceptions to
this rule such as the A9 instances, which map on one times the number of cores
(so an A9 has 16 cores and can mount 16 disks). Expect such exceptions to

http://en.wikipedia.org/wiki/IOPS
https://docs.microsoft.com/azure/storage/storage-scalability-targets

change over time as the VM contigurations evolve. Also, the maximum number
of disks that can currently be mounted to a VM is 64 and the maximum IOPS is
80,000 IOPS (when using a Standard GS5).

More Info: How Many Disks can you Mount?

As the list of VM sizes grows and changes over time, you should
review the following web page that details the number of disks you
can mount by VM size and tier:

http://msdn.microsoft.convlibrary/azure/dn197896.aspx.

Configure storage pools

Storage Spaces enables you to group together a set of disks and then create a
volume from the available aggregate capacity. Assuming you have created your
VM and attached all of the empty disks you want to it, the following steps
explain how to create a storage pool from those disks. You next create a storage
space in that pool, and from that storage space, mount a volume you can access
with a drive letter.

1. Launch Remote Desktop and connect to the VM on which you want to
configure the storage space.

2. If Server Manager (Figure 1-14) does not appear by default, run it from the
Start screen.

3. Click the File And Storage Services tile near the middle of the window.

http://msdn.microsoft.com/library/azure/dn197896.aspx

s Server Manager

Server Manager * Dashboard

WELCOME TO SERVER MANAGER

Dashboard
i Local Server
B Al Servers
- _ o Con
BE File and Storage Services
o s QUICK START
) £
3 4
WHAT'S NEW 1
5 (
LEARN MORE

FIGURE 1-14 The Server Manager

4. In the navigation pane, click Storage Pools (Figure 1-15).

B Server Manager

122 Servers [l
| Volumes
2 Filter
| [Disks

3
® 4 Wit

FIGURE 1-15 Storage Pools in the Server Manager

5. In the Storage Pools area, click the Tasks dropdown list and select New
Storage Pool (Figure 1-16).

) STORAGE POOLS

—~

| Al storage pools | 1 total -

Mew Storage Pool...

Filter e f_E:r gt ':ﬁ:l e
- Rescan Storage
Refresh
é, Mame Type Managed by Available to e

4 Windows Storage (1)

Primardial Available Disks basicwinvm basicwinym basiowinvm

Last refreshed on 11/6/2017 12:46:33 AM

FIGURE 1-16 New Storage Pools in Server Manager

6. In the New Storage Pool Wizard, click Next on the first page.
7. Provide a name for the new storage pool, and click Next.

8. Select all the disks you want to include in your storage pool, and click Next
(Figure 1-17).

Py Naw Storage Pool Wizard = [m] b4

Select physical disks for the storage pool

Befare You Begin On select storage subsystems you can additionally allocate disks as het spares that can replace failed disks.

Storane Poaol MName Physical disks:
EEET Siot Name Capacity Bus RPM Model Allocation Chassis
Confirmation st Virtual Di.. 1,023 GB SAS Virtual Disk JENGLIENTSRN Integrated : Adapter 3 : Port 0 : Target

Msft Virtual Di., 023 GB SAS Wirtual Disk Integrated : Adapter 3 : Port 0 : Target

Total selected capacity: 200 TB
0 Selecting these disks will create a local poal.

[<Previous | [Mext > Create Cancel
FIGURE 1-17 Select Physical Disks For The Storage Pool

9. Click Create, and then click Close to create the storage pool.

After you create a storage pool, create a new virtual disk that uses it by
completing the following steps:

1. In Server Manager, in the Storage Pools dialog box, right-click your newly
created storage pool and select New Virtual Disk (Figure 1-18).

] STORAGE POOLS

Sarvers] Al storage pools | 1 tota [Tasks -
Volumes Filter 2 FE; - :H; - (v
Disks
Storage Pools i Mame Type Managed by Available ta Read-Writ

4 Windows Storage (1)

basicwinvm basicwinvm basicwinw

Mew Storage Pool.

New Virtual Disk... |

Add Physical Disk... Q‘
Upgrade Storage Pool Version

Delete Storage Pool

Properties 572017 12-58:48 AM

FIGURE 1-18 Create a New Virtual Disk in Storage Pools

2. Select your storage pool, and select OK (Figure 1-19).

f; Select the storage pool — 0 >

Starage pool:

Pool Name Managed by Available to Capacity Free Space Subsystem

pool0l basicwinvm basicwinvm 2.00 TB 2.00TE Windows Storage

oK || Cancel |

FIGURE 1-19 The Select The Storage Pool dialog

3. Click Next on the first page of the wizard.
4. Provide a name for the new virtual disk, and click Next.
5. On the Specify enclosure resiliency page, click Next.

6. Select the simple storage layout (because your VHDs are already triple

replicated by Azure Storage, you do not need additional redundancy), and
click Next (Figure 1-20).

s Mew Wirtual Disk Wizard

Select the storage layout

Before You Begin Layout: Description:
Virtual Disk Narm Simple Data is striped across physical disks, maximizing capacity and
Wirtual LA alme l

Mirrar increasing throughput, but decreasing reliability. This storage
Enclosure Awareness

; layout requires at least one disk and does not protect you from
Parity a disk failure.

Storage Layoul

Provisionin g

| < Previous | | Mext = | Create

FIGURE 1-20 The New Virtual Disk Wizard with the Select The Storage
Layout page

7. For the provisioning type, leave the selection as Fixed. Click Next (Figure
1-21).

B New Virtual Digk Wizard - | "

Specify the provisioning type

Before You Begin Provisianing type:

Wirtual Disk Mame (O Thin

=L The volume uses space from the storage pool as needed, up to the volume size.
Enclosure Awareness

(®) Fixed

The valume uses space from the starage pool equal to the velume size.

Storage Layout

| < Previous | | Mext > I Create Cancel

FIGURE 1-21 Specify The Provisioning Type page in the New Virtual
Disk Wizard

8. For the size of the volume, select Maximum (Figure 1-22) so that the new
virtual disk uses the complete capacity of the storage pool. Click Next.

E, MNew Virtual Disk Wizard

Specify the size of the virtual disk

Before You Begin Free space in this storage pocl: 2.00 TB

Wirtual Disk Mame O Specify size:

Enclosure Awareness 1044 GB

Storage Layout

Prowisioning (® Maximum size
I

Confirmatior

“ The wirtual disk min:jhl take additianal space o create a write-back cache,

| = Previous] | Mext> |

FIGURE 1-22 The Specify The Size Of The Virtual Disk page in the

New Virtual Disk Wizard

9. On the Summary page, click Create.

10. Click Close when the process completes.

When the New Virtual Disk Wizard closes, the New Volume Wizard appears.

Follow these steps to create a volume:

1. Click Next to skip past the first page of the wizard.
2. On the Server And Disk Selection page, select the disk you just created

(Figure 1-23). Click Next.

B MNew Volume Wizard - O X

Select the server and disk

Before You Begin Server:

Provision to Status Cluster Role Destination

Server and Disk

basicwinvm Online Not Clustered Local

Size

| Refresh || Rescan
Disk:
Disk Virtual Disk Capacity Free Space Subsystem
Disk 4 biggerdisk 2,00 TE 200TB Windows Storage

| < Previous | | Next > | Create

FIGURE 1-23 The Select The Server And Disk page in the New Volume
Wizard

3. Leave the volume size set to the maximum value and click Next (Figure 1-
24).

B Mew Velumae Wizard - o X

Specify the size of the volume

Bafore You Beqin Available Capacity: 200 TB

server and Lisk Minimum size: B.00 MB

E ... T

Drive Letter or Folder

| < Previous | [.’."‘.Ei}.’] Create | [Cancel |

FIGURE 1-24 The Specify The Size Of The Volume page in the New
Volume Wizard

4. Leave Assign A Drive Letter selected and select a drive letter to use for
your new drive. Click Next (Figure 1-25).

B New valume Wizard - O *

Assign to a drive letter or folder

Select whether to assign the volume to a drive letter or a folder. When you assign a volume to a
falder, the volume appears as a folder within a drive, such as D\UserData.

Bafore You Bagin

Server and Disk

Siza Assign to:

Drive Letter or Folder ® Drive letter: | F ot
File System Setlings) The following falder:

Browse...

) Domn't assign to a drive letter or folder.

| <Previous | | New> | create | [Caneel |

FIGURE 1-25 The Assign To A Drive Letter Or Folder in the New
Volume Wizard

Provide a name for the new volume, and click Next (Figure 1-26).

B MNew Volume Wizard . O b

Select file system settings

¥y

Before You Begin File system: MTFS v
e Jisk :
Allocation unit size: Default el
iz
0 Valume label: Mew Volurme

[] Generate short file names (not recommended)

nfirrmatior Short file narmes (B8 characters with 3-character extensions) are required for some 16-bit
applications running on client computers, but make file operations slower,

< Previous | Next = | Craa Cancel

FIGURE 1-26 The Select File System Settings in the New Volume
Wizard

6. Click Create.

7. When the process completes, click Close.

8. Open Windows Explorer to see your new drive listed.

Applications running within your VM can use the new drive and benefit from

the increased IOPS and total storage capacity that results from having multiple
blobs backing your multiple VHDs grouping in a storage pool.

More Info: Configuring Striped Logical Volumes in Linux VMS

Linux Virtual Machines can use the Logical Volume Manager
(LVM) to create volumes that span multiple attached data disks,
for step by step instructions on doing this for Linux VMs in Azure,
see: https://docs.microsoft.com/en-us/azure/virtual-

machines/linux/configure-lvm.

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/configure-lvm

Configure disk caching

Each disk you attach to a VM has a host cache preference setting for managing a
local cache used for read or read/write operations that can improve performance
(and even reduce storage transaction costs) in certain situations by averting a
read or write to Azure Storage. This local cache does not live within your VM
instance; it is external to the VM and resides on the machine hosting your VM.
The local cache uses a combination of memory and disk on the host (outside of
your control). There are three cache options:

m None No caching is performed.

= Read Only Assuming an empty cache or the desired data is not found in the
local cache, reads read from Azure Storage and are then cached in local
cache. Writes go directly to Azure Storage.

m Read/Write Assuming an empty cache or the desired data is not found in the
local cache, reads read from Azure Storage and are then cached in local
cache. Writes go to the local cache and at some later point (determined by
algorithms of the local cache) to Azure Storage.

When you create a new VM, the default is set to Read/Write for operating
system disks and Read-only for data disks. Operating system disks are limited to
read only or read/write, data disks can disable caching using the None option.
The reasoning for this is that Azure Storage can provide a higher rate of random
I/Os than the local disk used for caching. For predominantly random I/O
workloads, therefore, it is best to set the cache to None and let Azure Storage
handle the load directly. Because most applications will have predominantly
random I/O workloads, the host cache preference is set to None by default for
the data disks that would be supporting the applications.

For sequential I/O workloads, however, the local cache will provide some
performance improvement and also minimize transaction costs (because the
request to storage is averted). Operating system startup sequences are great
examples of highly sequential I/O workloads and why the host cache preference
is enabled for the operating system disks.

You can configure the host cache preference when you create and attach an
empty disk to a VM or change it after the fact.

Configuring disk caching
To configure disk caching using the portal, complete the following steps:

1. Navigate to the blade for your VM in the portal accessed via

https://portal.azure.com.
2. From the menu, select Disks (Figure 1-27).

SETTINGS

22 Networking
S Disks

ol Size

[=} Extensions

@ Availability set

FIGURE 1-27 The Disks option from the VM menu

3. On the Disks blade, select Edit from the command bar.

4. Select the Host Caching drop down for the row representing the disk whose
setting you want to alter and select the new value (Figure 1-28).

H K Discard
05 disk
MNAME SIZE STORAGE ACCOUNT TYPE ENCRYPTION HOST CACHING
baslewinwm_0OsDisk_1_{8267d470aa041a287d0936ec 043824 126 GIB Pramium_LRS Not enabled Readfwrite il
Data disks
LLIM MAME SIZE STORAGE ACCOUNT TYPE ENCRYPTION HOST CACHING
basicwinmy(i 1023 GiE Premium_LRS Mot enabled Read-anky v Ll
basicwinm(2 1023 Gik Premium_LRS Mot enablad _R_F_a"‘:'_\ _____________ M
Maorse
+ Add data disk Read-only -
Read farite

FIGURE 1-28 Data disk dropdown
5. Select Save in the command bar to apply your changes.

Configure geo-replication

With Azure Storage, you can leverage geo-replication for blobs to maintain

https://portal.azure.com

replicated copies of your VHD blobs in multiple regions around the world in
addition to three copies that are maintained within the datacenter. Note that geo-
replication is not synchronized across blob files and, therefore, VHD disks. This
means writes for a file that is spread across multiple disks, as happens when you
use storage pools in Windows VMs or striped logical volumes in Linux VMs,
could be replicated out of order. As a result, if you mount the replicated copies
to a VM, the disks will almost certainly be corrupt. To avoid this problem,
configure the disks to use locally redundant replication, which does not add any
additional availability and reduces costs (since geo-replicated storage is more
expensive).

Configure shared storage using Azure File storage

If you have ever used a local network on-premises to access files on a remote
machine through a Universal Naming Convention (UNC) path like
\\server\share, or if you have mapped a drive letter to a network share, you will
find Azure File storage familiar.

Azure File storage enables your VMs to access files using a share located
within the same region as your VMs. It does not matter if your VMs’ data disks
are located in a different storage account or even if your share uses a storage
account that is within a different Azure subscription than your VMs. As long as
your shares are created within the same region as your VMs, those VMs will
have access.

Azure File storage provides support for most of the Server Message Block
(SMB) 2.1 and 3.0 protocols, which means it supports the common scenarios
you might encounter accessing files across the network:

m Supporting applications that rely on file shares for access to data
m Providing access to shared application settings
m Centralizing storage of logs, metrics, and crash dumps

m Storing common tools and utilities needed for development, administration,
or setup

Azure File storage is built upon the same underlying infrastructure as Azure
Storage, inheriting the same availability, durability, and scalability
characteristics.

More Info: Unsupported SMB Features

Azure File storage supports a subset of SMB. Depending on your

application needs, some features may preclude your usage of Azure
File storage. Notable unsupported features include named pipes
and short file names (in the legacy 8.3 alias format, like
myfilen~1.txt).

For the complete list of features not supported by Azure File
storage, see: http://msdn.microsoft.com/en-
us/library/azure/dn744326.aspx.

Azure File storage requires an Azure Storage account. Access is controlled
with the storage account name and key; therefore, as long as your VMs are in the
same region, they can access the share using your storage credentials. Also,
while Azure Storage provides support for read-only secondary access to your
blobs, this does not enable you to access your shares from the secondary region.

More Info: Naming Requirements

Interestingly, while Blob storage is case sensitive, share, directory,
and file names are case insensitive but will preserve the case you
use. For more information, see: http://msdn.microsoft.com/en-
us/library/azure/dn167011.aspx.

Within each Azure Storage account, you can define one or more shares. Each
share is an SMB file share. All directories and files must be created within this
share, and it can contain an unlimited number of files and directories (limited in
depth by the length of the path name and a maximum depth of 250
subdirectories). Note that you cannot create a share below another share. Within
the share or any directory below it, each file can be up to one terabyte (the
maximum size of a single file in Blob storage), and the maximum capacity of a
share is five terabytes. In terms of performance, a share has a maximum of 1,000
IOPS (when measured using 8-KB operations and a throughput of 60 MB/s).

A unique feature of Azure File storage is that you can manage shares, such as
to create or delete shares, list shares, get share ETag and LastModified
properties, get or set user-defined share metadata key and value pairs. You can
get share content, for example list directories and files, create directories and
files, get a file, delete a file, get file properties, get or set user-defined metadata,
and get or set ranges of bytes within a file. This is accomplished using REST
APIs available through endpoints named
https://<accountName>.file.core.windows.net/<shareName> and through the

http://msdn.microsoft.com/en-us/library/azure/dn744326.aspx
http://msdn.microsoft.com/en-us/library/azure/dn167011.aspx

SMB protocol. In contrast to Azure Storage, Azure File storage only allows you
to use a REST API to manage the files. This can prove beneficial to certain
application scenarios. For example, it can be helpful if you have a web
application (perhaps running in an Azure website) receiving uploads from the
browser. Your web application can upload the files through the REST API to the
share, but your backend applications running on a VM can process those files by
accessing them using a network share. In situations like this, the REST API will
respect any file locks placed on files by clients using the SMB protocol.

More Info: File Lock Interaction Between SMB and Rest

If you are curious about how file locking is managed between SMB
and REST endpoints for clients interacting with the same file at the
same time, the following is a good resource for more information:

https://docs.microsoft.com/en-us/rest/api/storageservices/Managing-

File-Locks.

Creating a file share
The following cmdlet first creates an Azure Storage context, which encapsulates

your Storage account name and key, and then uses that context to create the
share with the name of your choosing:

Click here to view code image

$ctx = New-AzureStorageContext <StorageAccountName> <StorageAccountKey>
New-AzureStorageShare <ShareName> -Context $ctx

With a share in place, you can access it from any VM that is in the same
region as your share.

Mounting the share

To access the share within a VM, you mount it to your VM. You can mount a
share to a VM so that it will remain available indefinitely to the VM, regardless
of restarts. The following steps show you how to accomplish this, assuming you
are using a Windows Server guest operating system within your VM.

1. Launch Remote Desktop to connect to the VM where you want to mount
the share.

2. Open a Windows PowerShell prompt or the command prompt within the
VM.

https://docs.microsoft.com/en-us/rest/api/storageservices/Managing-File-Locks

3. So they are available across restarts, add your Azure Storage account
credentials to the Windows Credentials Manager using the following
command:

Click here to view code image

cmdkey add:<StorageAccountName>.file.core.windows.net user:
<Storage-
AccountName> /pass:<StorageAccountKey>

4. Mount the file share using the stored credentials by using the following
command (which you can issue from the Windows PowerShell prompt or a
command prompt). Note that you can use any available drive letter (drive Z
is typically used).

Click here to view code image

net use z: \\<StorageAccountName>.file.core.windows.net\<ShareName>

5. The previous command mounts the share to drive Z, but if the VM is
restarted, this share may disappear if net use was not configured for
persistent connections (it is enabled for persistent connection by default,
but that can be changed). To ensure a persistent share that will survive a
restart, use the following command that adds the persistent switch with a
value of yes.

Click here to view code image

net use z: \\<StorageAccountName>.file.core.windows.net\<ShareName>
/Persistent: YES

6. To verify that your network share was added (or continues to exist) at any
time, run the following command:

net use

After you mount the share, you can work with its contents as you would work
with the contents of any other network drive. Drive Z will show a five-terabyte
drive mounted in Windows Explorer.

Accessing files within the share

With a share mounted within a VM, you may next consider how to get your files
and folders into that share. There are multiple approaches to this, and you should
choose the approach that makes the most sense in your scenario.

= Remote Desktop (RDP) If you are running a Windows guest operating

system, you can remote desktop into a VM that has access to the share. As a
part of configuring your RDP session, you can mount the drives from your
local machine so that they are visible using Windows Explorer in the remote
session. Then you can copy and paste files between the drives using
Windows Explorer in the remote desktop session. Alternately, you can copy
files using Windows Explorer on your local machine and then paste them
into the share within Windows Explorer running in the RDP session.

m AZCopy Using AZCopy, you can recursively upload directories and files to
a share from your local machine to the remote share, as well as download
from the share to your local machine. For examples of how to do this, see:
http://blogs.msdn.com/b/windowsazurestorage/archive/2014/05/12/introducin
microsoft-azure-file-service.aspx.

m Azure PowerShell You can use the Azure PowerShell cmdlets to upload or
download a single file at a time. You use Set-AzureStorageFileContent
(https://docs.microsoft.com/powershell/module/azure.storage/set-
azurestoragefilecontent) and Get-AzureStorageFileContent
(https://docs.microsoft.com/powershell/module/azure.storage/get-
azurestoragefilecontent) to upload and download, respectively.

= Storage Client Library If you are writing an application in .NET, you can
use the Azure Storage Client Library, which provides a convenience layer
atop the REST APIs. You will find all the classes you need below the
Microsoft. WindowsAzure.Storage.File namespace, primarily using the
CloudFileDirectory and CloudFile classes to access directories and file
content within the share. For an example of using these classes see
https://docs.microsoft.com/azure/storage/storage-dotnet-how-to-use-files.

m REST APIs If you prefer to communicate directly using any client that can
perform REST style requests, you can use REST API. The reference
documentation for REST APIs is available at https://docs.microsoft.com/en-
us/rest/api/storageservices/File-Service-REST-API.

Implement ARM VMs with Standard and Premium Storage

As previously introduced, you can create ARM VMs that use either Standard or
Premium Storage.

Implement ARM VMs with Standard and Premium Storage using the
Portal

The following steps describe how to create a Windows Server based Virtual
Machine using the Portal and configure it to use either Standard or Premium

http://blogs.msdn.com/b/windowsazurestorage/archive/2014/05/12/introducing-microsoft-azure-file-service.aspx
https://docs.microsoft.com/powershell/module/azure.storage/set-azurestoragefilecontent
https://docs.microsoft.com/powershell/module/azure.storage/get-azurestoragefilecontent
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.storage.file.aspx
https://docs.microsoft.com/azure/storage/storage-dotnet-how-to-use-files
https://docs.microsoft.com/en-us/rest/api/storageservices/File-Service-REST-API

disks (the stel;s are similar for a Linux based VM):

1. Navigate to the portal accessed via https://manage.windowsazure.com.

2. Select New on the command bar.
3. Within the Marketplace list, select the Compute option.
4

. On the Compute blade, select the image for the version of Windows Server
you want for your VM (such as Windows Server 2016).

o

On the Basics blade, provide a name for your VM.

Select the VM disk type-a VM disk type of SSD will use Premium Storage
and a type of HDD will use Standard Storage.

&

7. Provide a user name and password, and choose the subscription, resource
group and location into which you want to deploy.

8. Select OK.

9. On the Choose a size blade, select the desired tier and size for your VM.
10. Choose select.
11. On the Settings blade, leave the settings at their defaults and select OK.

12. On the Purchase blade, review the summary and select Purchase to deploy
the VM.

Implement Azure Disk Encryption for Windows and Linux ARM
VMs

Azure supports two different kinds of encryption that can be applied to the disks
attached to a Windows or Linux VM. The first kind of encryption is Azure
Storage Service Encryption (SSE) which transparently encrypts data on write to
Azure Storage, and decrypts data on read from Azure Storage. The storage
service itself performs the encryption/decryption using keys that are managed by
Microsoft. The second kind of encryption is Azure Disk Encryption (ADE).
With ADE, Windows drives are encrypted with using BitLocker and Linux
drives are encrypted with DM-Crypt. The primary benefit of ADE is that the
keys used for encryption are under your control, and managed by an instance of
Azure Key Vault that only you have access to.

Implement Azure Disk Encryption for Windows and Linux ARM VMs
using PowerShell

Currently, the only way to enable Azure Disk Encryption is by using PowerShell
and targeting your deployed VM. To enable ADE on your Windows or Linux

ATMNAXTIANA L 110 -t i f oAb~

https://manage.windowsazure.com

ARIVL VIVL, 10110W Ulese Steps.

1.

Deploy an instance of Azure Key Vault, if you do not have one already.
Key Vault must be deployed in the same region as the VMs you will
encrypt. For instructions on deploying and configuring your Key Vault,
see: https://docs.microsoft.com/azure/key-vault/key-vault-get-started.

Create an Azure Active Directory application that has permissions to write
secrets to the Key Vault, and acquire the Client ID and Client Secret for
that application. For detailed instructions on this, see:
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-get-
started#register.

With your VM deployed, Key Vault deployed and Client ID and Secret in

hand, you are ready to encrypt your VM by running the following
PowerShell.

Click here to view code image

Login to your subscription
Login-AzureRmAccount

Select the subscription to work within
Select-AzureRmSubscription -SubscriptionName '"<subscription name>"

Identify the VM you want to encrypt by name and resource group
name

$rgName
$vmName

= '<resourceGroupName>"';

= '<vmname>';

Provide the Client ID and Client Secret
$aadClientID = <aad-client-id>;
$aadClientSecret = <aad-client-secret>;

Get a reference to your Key Vault and capture its URL and
Resource ID

$KeyVaultName = '<keyVaultName>';

$KeyVault = Get-AzureRmKeyVault -VaultName $KeyVaultName -
ResourceGroupName

$rgname;

$diskEncryptionKeyVaultUrl = $KeyVault.VaultUri;
$KeyVaultResourceId = $KeyVault.ResourceIld;

Enable Azure to access the secrets in your Key Vault to boot the
encrypted VM.

Set-AzureRmKeyVaultAccessPolicy -VaultName $KeyVaultName -
ResourceGroupName

$rgname -

EnabledForDiskEncryption

https://docs.microsoft.com/azure/key-vault/key-vault-get-started
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-get-started#register

Encrypt the VM

Set-AzureRmVMDiskEncryptionExtension -ResourceGroupName $rgname -
VMName $vmName -

AadClientID $aadClientID -AadClientSecret $aadClientSecret -
DiskEncryptionKeyVaultUrl

$diskEncryptionKeyVaultUrl -DiskEncryptionKeyVaultId
$KeyVaultResourceld;

You can later verify the encryption status by running:

Click here to view code image

Get-AzureRmVmDiskEncryptionStatus -ResourceGroupName $rgname -VMName
$vmName

The output “OsVolumeEncrypted: True” means the OS disk was encrypted
and “DataVolumesEncrypted: True” means the data disks were encrypted.

More Info: Enabling Encryption with the Azure CLI

For a step by step guide on enabling encryption using the Azure
CLI https://docs.microsoft.com/azure/security/azure-security-disk-
encryption#disk-encryption-deployment-scenarios-and-user-

experiences.

Skill 1.5: Monitor VMs

Monitoring an Azure VM involves collecting and analyzing metrics as well as
collecting log data from system log files and from applications running within
the VM. You can configure an email alert to an administrator that’s triggered
when certain criteria involving these metrics is met. With monitoring, you gain
insight into the status of your VMs, their resource utilization, their operational
health, and diagnostic details that can help you troubleshoot problems.

This skill covers how to:

m Configure monitoring and diagnostics for a new VM

m Configure monitoring and diagnostics for an existing VM
m Configure alerts

= Monitor metrics

When you provision a VM, by default you install the Azure Virtual Machine

https://docs.microsoft.com/azure/security/azure-security-disk-encryption#disk-encryption-deployment-scenarios-and-user-experiences

Agent, which installs and manages extensions running within your VM. Both
Windows and Linux VMs collect the following metrics at the host level. In other
words, no extension needs to be installed to collect them out of the box:

m Disk read, disk write (in terms of KB/s or MB/s)
m CPU percentage
m Network in, network out (in terms of KB/s or MB/s)

Another set of metrics is collected from within the guest operating system by
an Azure Diagnostics extension. On Windows guest operating system VMs, the
Azure Virtual Machine Agent installs the laaSDiagnostics extension for
collecting monitoring and diagnostic data. On Linux VMs, the
Microsoft.Insights.VMDiagnosticsSettings extension provides the same
capabilities.

You can enable diagnostics, and when you do, the appropriate diagnostic
extension is installed and used to collect additional metrics.

The metrics collected differs for Windows and Linux VMS. For Linux VMs,
the metrics data collection includes data from the following groups of
performance counter data:

n CPU

m Disk

= Memory
m Network
m Packets
m Page

= Swap

For Windows VMs, the metrics data collection includes data from the
following groups of performance counter data:

m CPU

m Disk

= Memory

m Network

m ASP.NET
m SQL Server

The metrics are stored in Azure Storage Tables, which you can view using the
Azure Storage tool of your choice, or visualize the data in chart form using the

A =22~ NAawtknl Der Aafrale A1l Af kA "khAcra mntrimn Arna AAllAaArAAd AcrAarer maimaatba An A

ALULEC rulLldl. Dy Uuclidull, dil UL UIC dDUVE LLICLILS dIE Lulliceicu CVCly Huiue do d
new row in the table.

For Windows VMs, metric data is written to the
WADPerformanceCountersTable, with aggregates of these performance counter
metrics aggregated to the minute or to the hour written to tables that start with
the name WADMetricsPT1M for by minute and WADMetricsPT1H for by hour.

In addition to metrics, system logs are also collected. For Linux VM’s, the
Syslog is collected into the LinuxsyslogVer2v0 table. For Windows VMs, all
event log entries for the three event logs (application, security and system logs)
are written to the WADWindowsEventLogsTable, where the log is indicated by
the Channels column in the table, which will have the value System, Security, or
Application to indicate the log source.

Windows VMs can collect other types of logs. Diagnostic infrastructure logs
(events generated by the Azure Diagnostic Agent, such as issues collecting
metrics) are written to the WADDiagnosticInfrastructureL.ogsTable, and
application logs (the trace output from your .NET application running in the
VM) are stored in the WADLogsTable. Windows VMs can also collect Event
Tracing for Windows Events. These events are collected into the
WADETWEventTable.

The Table 1-2 summarizes the Azure Storage tables used for Linux and
Windows VMs.

TABLE 1-2 Storage Tables used for VM logs and diagnostics.

Linux Windows
LinuxCpuVer2v(WADMetricsPT1M*
LinuxDiskVer2v0 WADMetricsPT1H*

LinuxMemoryVer2v0 | WADPerformanceCountersTable
LinuxsyslogVer2v0 WADWindowsEventLogsTable
WADDiagnosticInfrastructureL.ogsTable
WADLogsTable

WADETWEventTable

*If 1IS is installed within the VM, IIS logs can also be collected. The IIS logs (requests and failed request

traces) are different from the others in that they are written as blobs to Azure Storage under the wad-iis-
logfiles container.

*Windows VMs can be enabled to collect minidumps or full crash dumps for a configured process. The
dump file is stored in an Azure Storage container whose name you specify.

One final form of diagnostics that is supported by both Windows and Linux
VMs is boot diagnostics. Boot diagnostics captures the serial console output (for
Linux VMs) and screenshots (for both Windows and Linux VMs) of the machine
running on a host to help diagnose startup issues. The log file and bitmap
(*.bmp) screenshots for a VM with the name vmname are stored in Azure
Storage container named with the prefix bootdiagnostics-vmname.

Configure monitoring and diagnostics for a new VM

You can enable monitoring and diagnostics when deploying a VM. To configure
monitoring diagnostics using the portal, complete the following steps:

1. Navigate to the portal accessed via https://manage.windowsazure.com.

2. Select New on the command bar.
3. Within the Marketplace list, select the Compute option.
4

. On the Compute blade, select the image for the version of Windows Server
or Linux you want for your VM

o1

On the Basics blade, provide a name for your VM.

Select the VM disk type, which is either a VM disk type of SSD that will
use Premium Storage or a type of HDD that will use Standard Storage.

&

7. Provide a user name and password (or SSH public key), and choose the
subscription, resource group, and location into which you want to deploy.

8. Select OK.
9. On the Choose a size blade, select the desired tier and size for your VM.
10. Choose select.

11. On the Settings blade, under the Monitoring header, enable Boot
diagnostics by setting the toggle to Enabled.

12. Similarly, enable diagnostics by setting the Guest OS diagnostics toggle to
Enabled.

13. Optionally, configure the name of the new Storage Account to use to store
the diagnostics or choose an existing Storage Account (Figure 1-29).

https://manage.windowsazure.com

Monitoring
Boot diagnostics @

Disabled | Enabled

Guest OS diagnostics @

Disabled | Enabled

* Diagnostics storage account @ 5

examrefdiag369

FIGURE 1-29 Monitoring are of the Settings blade

14. Select OK.

15. On the Purchase blade, review the summary and select Purchase to deploy
the VM.

Configure monitoring and diagnostics for an existing VM

To enable and configure monitoring and diagnostics for an existing VM,
complete the following steps:

1. Navigate to the blade for your VM in the Azure Portal.

2. From the menu, scroll down to the Monitoring section (Figure 1-30) and
select Diagnostic settings.

MOMITORING

ﬁi Metrics

Alert rules
]
. BH Diagnostics settings

% Advisor recommendations

FIGURE 1-30 The Monitoring section

3. For Linux VMs, enable diagnostics by setting the Status toggle to On and

selecting Save in the command bar (Figure 1-31).

H: X

Status

Off On |

FIGURE 1-31 Linux VM toggling enable diagnostics

4. For Windows VMs, you have more granular options:

A. On the Overview tab, select Enable guest-level monitoring (Figure 1-

32).

H 3

COwerview Performance counters Logs Crash dumps Sinks Agent

&
To get started now, click the button below:

add ar remove data types to collect at any time.
¥F ¥

additional software. For more insight into this virtwal machine, you can collect guest-level metrics, logs, and other

the Azure Diagnostics agent. You can also send diagnostic data to other services like Application Insights. Learr
9 F 9

Azure Monitaring collects host-level metrics - like CPU utifization, disk and network usage - for all virtual machines withaut any

agnostic data using

Enable guest-laval monitoring
Already know what you're doing? You can customize the diagnostic data you want to collect by visiting each of the tabs above, You can

FIGURE 1-32 Selecting the Enable Guest-Level Monitoring button

B. To adjust the Performance Counters collected, select the Performance
Counters tab, then select either Basic (to view a summarized list of
counters) or Custom (to view the complete list of available counters).
When using the Custom view, you can also set the sample rate, which
defaults to every minute. Select the desired counters by checking the

box next to each (Figure 1-33).

Owerview | Performance counters - Logs

Chaose Basie to enable

MNone Basic Custom

PERFORMAMNCE COUNTER

CIRREY

]
=
i

<

Metwork

0

ASP.NET

SOL Server

L

You are (u.‘.'l."l‘.ﬂ:r' using the latest version

the collection of performance

Crash dumps Sinks Agent

wers, Choose Custom if you want more control over which performance counters are collected.

SAMPLE RATE (SECOMNDS)

of gur predefined basic performance counters.

FIGURE 1-33 Performance Counters

. To adjust the collected Event Logs, IIS Logs, and Application Logs,
select the Logs tab. For Event Logs, select the Basic toggle to collect
the default set of Event Logs or select Custom to specify specific
event logs and levels to collect. For IIS Logs, select the desired logs
and specify the path the Azure Storage container name in which to
store them. For Application Logs, select the Enabled toggle and then
select the desired Log level. For Event Tracing for Windows events,
set the toggle to Enabled and configure the desired event sources by
entering a provider class and log level. Configure the event manifests
by entering the manifest GUID and log level (Figure 1-34).

Overview Performance counters | Logs | Crash dumps Sinks Agent

—_—
Event logs

Choose Basic to enable collection of event logs, Choose Custom if you want more control over which event logs are collected.
Maone LBasic Custom
Configure the event logs and levels to collect:

APPLICATION - s - =
|i| Critical |—i| Error E Warning || Information |—_ Verbose

SECURITY .
|_J Audit success |lf_.| Audit failure

SUSIEM == . e .._
|\/| Critical |J| Error [v] Warning | Information [] verbose

Directories

Choose the 115 logs to collect and the log directories to monitor.

115 logs @
* Storage container name: @

|_| Failed request logs @

* Storage container name: @

FIGURE 1-34 Configuring Logs for VM

To enable a collection of crash dumps, select the Crash Dumps tab
and then set the toggle to Enabled. Enter the name of the process to
monitor and select Add. Enter the name of the Azure Storage
container to use in storing the dump, and select whether to capture a
full dump or a minidump (Figure 1-35).

E:l save M Discard

Overview Performance counters Logs Crash dumps Sinks Agent

Collect memory dumps when a process crashes.

Disabled WEEIEIEL]

Configure the processes to monitor:

PROCESS

| wiwp.exe

* Storage container name;

[w3wp

Crash dumps type:

Mini w

FIGURE 1-35 Configuring crash dumps for the w3wp.exe process

E. To enable the collection diagnostic infrastructure logs, select the
Agent tab. Under the Diagnostic infrastructure logs, set the toggle to
Enabled and set the desired log level (Figure 1-36).

'_:I save I Discard

Overview Performance counters Logs Crash dumps Sinks Agent

Configure additional options for the Azure Diagnostics agent.

* Storage account @

b
examrefdiag526
Disk quota (MB): @
5120 v

Diagnostic infrastructure logs: @

Disabled | Enabled I

Log level: @&

| Warning w

FIGURE 1-36 Changing log levels using the Agent tab

5. Select Save in the command bar to apply the new settings.

Configure alerts

After your VM is configured to collect metrics, you can configure alert rules that
can send an email, invoke a Webhook, run an Azure Automation runbook, or run
a Logic App when certain conditions relative to a metric are met. Additionally,
you can configure alert rules on logs that can trigger an email, an SMS message,
or a Webhook when a particular log event is encountered.

Configuring alerts
To configure alerts using the portal, complete the following steps:

1. Navigate to the blade for your VM in the Azure Portal.
2. In the Menu, scroll down to the Monitoring group and select Alert rules.

3. On the Alert Rules blade, select Add metric alert to specify an alert rule
that triggers based upon a metric. Provide a name for the rule, select the
metric source, specify the condition, and then select the desired action to
take when the condition is met.

4. Select Add Activity Log Alert to specify an alert rule that triggers based
upon an event appearing in the activity log. Provide a name for the rule,
specify the criteria that described the desired event, provide an action group
name and short name, and then select the desired action to take when the
event is matched.

5. Click OK to create the new rule.

Monitor metrics

You can assess the status and health of your VM by viewing its metrics in the
portal, by querying table storage for diagnostic logs, or by downloading IIS logs
from Azure Storage.

Monitoring metrics
Using the portal you can drill into charts and change the metrics displayed in
detail by completing the following steps:

1. Navigate to the blade for your VM in the Portal.

2. From the menu, scroll down to the Monitoring group and select Metrics.

3. Select from the desired metrics from the list of available host and guest OS
metrics.

4. The charts will update to display the desired metrics (Figure 1-37).

Chart type Time ra e
& Line b4 Past 24 hours # f Pin to dashboard

You can only select metrics of the
sama unit {bytas)

45K READ BYTES DASK WRITE BYTES

311.18 me 854.46 me

Ma alerts configured for this resource. Click to add an alert.

FIGURE 1-37 Selecting Disk Read Bytes and Disk Write Bytes metrics

5. Use the Chart type drop down to change the visualization used and the
Time range drop down to adjust the time period over which the metric is

displayed (Figure 1-38).

Chart type Time range
Line v | Past24 hours v M Pin to dashboard

FIGURE 1-38 The Line Chart Type

Viewing event logs, diagnostic infrastructure logs, and application logs

You can view Windows event logs, the diagnostic infrastructure logs, and
application logs by querying their respective tables
(WADWindowsEventLogsTable, WADDiagnosticInfrastructureLogsTable,
WADLogsTable) in Table storage using the tool of your choice. The following
steps demonstrate how to do this using Visual Studio.

1. Launch Visual Studio.
2. On the View menu, click Server Explorer.

NSk

Expand the node labeled Azure. If prompted to do so, log in with your
organizational account or the Microsoft account that is associated with the
website you want to manage.

Expand Storage.
Expand the storage account containing the logs.
Expand Tables.

Right-click the table you want to query and select View Table to display its
contents.

Viewing IIS logs

I1S logs can be retrieved from Blob storage using the tool of your choice. The
following steps show how to do this using Visual Studio.

1.
2.
3.

Launch Visual Studio.

On the View menu, click Server Explorer.

Expand the node labeled Azure. If prompted to do so, log in with your
organizational account or the Microsoft account that is associated with the
website you want to manage.

Expand Storage.

Expand Blobs.

Right-click wad-iis-logs and select View Blob Container to display its
contents. Each log is listed, so double-click a log to download and open it.

Viewing boot diagnostics

The collected boot diagnostic logs or screenshot can be viewed using the Azure
Portal.

1.
2.

3.

Navigate to the blade for your VM in the Azure Portal.

From the menu, scroll down to then Support + Troubleshooting section and
select Boot diagnostics.

For Linux VM’s the log will be displayed by default. From the command
bar, use the Log button to download the log file or the Screenshot button to
download the latest screenshot bitmap. For Windows VM’s, the latest
screenshot will be displayed. Use the Screenshot button in the command
bar to download a copy of the screenshot.

Skill 1.6: Manage ARM VM Availability

For an application running in Azure to remain highly available, it should run
across multiple identical Virtual Machines so that the overall availability of the
application is not affected when a small subset of the Virtual Machines are
unavailable due to events like updates, networking failures and power failures.
The actual approach to achieving this requires the proper configuration of
availability sets and may require the use of the Azure Load Balancer.

This skill covers how to:
m Configure availability sets
m Combine the Load Balancer with availability sets

Configure availability sets

Availability sets enable you to improve the availability of VMs deployed to your
cloud service by identifying to Azure a group of VMs that should never be
brought down simultaneously during updates and that should be physically
separated (that is, connected to a separate power source and network switch) so
that the failure of a host does not cause all of the VMs in that group to fail. In
other words, an availability set does what it says, it describes a set of VMs that
Azure will respect to ensure that the service provided by the VMs remains
available because at no point in time should all VMs in the set be offline.

By defining an availability set, you constrain how Azure locates your VM in
update and fault domains.

Update domains

An update domain constrains how Azure performs updates to the underlying
host machine that is running your VM. VMs located in separate update domains
will never experience an update (or a restart of the host machine) at the same
time. Azure uses five update domains by default in which it places your VMs in
a round-robin process. When you add VMs to an availability set, Azure places
the first five VMs in separate update domains, then continues to distribute
additional VMs across update domains in a round-robin fashion, assigning the
sixth VM to the first update domain, the seventh VM to the second update
domain, and so on until all VMs have been assigned to one of the five update
domains. The constraint on update domains is that Azure will never bring down
more than one update domain at a time, effectively ensuring that when Azure
updates the host machines, never more than 50 percent of your VMs will be
affected (assuming you have two VMs) or, if you are filling all update domains,

[a¥a xTm & N\

ZU percent (assuming you nave 1ive or more VIVIS).

Fault domains

Whereas update domains apply to the roll out of host machine updates, fault
domains consider isolation in terms of power and network. When two VMs are
placed in separate fault domains, they will never be located such that they share
the power source or network switch, which basically means that they will not be
on the same host machine or even on the same server rack as one another. When
you add VMs to an availability set, they are distributed between by default
between two fault domains in round-robin fashion.

In short, the strategic placement of your VMs across update and fault domains
is controlled simply by their membership in an availability set.

Availability sets and application tiers

For multi-tier applications (such as those having separate front-end, middle, and
backend tiers), it is a best practice to place all the VMs belonging to a single tier
in a single availability set and to have separate availability sets for each
application tier. This helps ensure that at no point are all instances for a
particular tier in the solution down and, therefore, that the complete solution
across all tiers is available.

Configuring availability sets

There are multiples ways to define an availability set and to configure the VMs
that belong to it. When you are creating a new VM, you can create a new
availability set and add the VM to it, or you can specify an existing availability
set and add the new VM to it. The same options exist if you have an existing
VM.

Configuring an availability set for a new ARM VM

To create a new VM and associate it with an availability group, complete the
following steps:

1. Navigate to the portal accessed via https://manage.windowsazure.com.
2. Select New on the command bar.

3. Within the Marketplace list, select the Compute option.

4

. On the Compute blade, select the image for the version of Windows Server
or Linux you want for your VM.

5. On the Basics blade, provide a name for your VM.

https://manage.windowsazure.com

10.
11.

12.

Select the VM disk type: a VM disk type of SSD will use Premium Storage
and a type of HDD will use Standard Storage.

Provide a user name and password (or SSH public key), and choose the
subscription, resource group and location into which you want to deploy.

Select OK.
On the Choose a size blade, select the desired tier and size for your VM.
Choose select.

On the Settings blade, under the High availability header, select
Availability set (Figure 1-39).

High availability

* Availability set @

- None

FIGURE 1-39 High Availability Set

Choose an existing Availability Set (Figure 1-40), or select the Create new
option to define a new availability set. When defining a new availability
set, provide a name for the availability set, the desired number of fault
domains (between 1 and 3), the number of update domains (between 1 and
20).

Change availability set Create new
- * N :
4 Create new =
| avset01
= None Fault domains @
. _J 2

Update domains @

IIII_ 5

Use managed disks @

FIGURE 1-40 Create New option

13. Select OK.
14. Select OK once more.

15. On the Purchase blade, review the summary and select Purchase to deploy
the VM.

Configuring an availability set for an existing ARM VM

Once a VM has been deployed, you cannot alter the availability set to which it
belongs. The availability set can only be configured when creating a virtual
machine. You must recreate the virtual machine to move it in or out of an
availability set.

Configuring an availability set using Windows PowerShell

An availability set can be created using Windows PowerShell only during the
process of creating a new VM:

Click here to view code image

New-AzureRmAvailabilitySet -ResourceGroupName '"<ResourceGroupName>"
-Name "<AvailabilitySetName>" -Location "<Location>"
$AvailabilitySet = Get-AzureRmAvailabilitySet -ResourceGroupName "
<ResourceGroupName>"
-Name "<AvailabilitySetName>"
$VirtualMachine = New-AzureRmVMConfig -VMName "<VirtualMachineName>"
-VMSize "<VM_Size>" -AvailabilitySetID $AvailabilitySet.Id

After the preceding command, use the following cmdlet to provision and start
the VM:

Click here to view code image

Start-AzureRmVM -ResourceGroupName "<ResourceGroupName>"
-Name "<VirtualMachineName>"

Combine the Load Balancer with availability sets

The Azure Load Balancer enables you to distribute traffic entering from either a
public IP address or from an internal IP to the collection of VMs in an
availability set in a round robin manner. It can also automatically remove non-
responsive VMs from rotation so that they are not routed traffic when they are
unavailable.

Configuring a Load Balancer for VMs in an Availability Set

Once you have deployed your VMs in an availability set, you can perform load
balancing between them by performing the following steps:

S e wWN

In the Azure Portal, select New and search for Load Balancer and select the
Load Balancer entry.

On the Load Balancer select Create.

On the Create a Load Balancer, provide a name for the new load balancer.
If you want to load balance traffic from the public Internet:

For the type, select Public.

Select Public IP address and select an existing Public IP or create a new
one. If you create a new Public IP, provide a name for the Public IP and
select if it should have a dynamically assigned IP or a statically assigned IP
by setting the Assignment toggle to Dynamic or Static respectively (Figure
1-41).

10.
11.

Create load balancer M X

* Name

loadbalancer01 v

* Type @

Internal ® Public

* Public IP address
(new) examrefvmsip

D Add a public IPv6 address @

* Subscription

Solliance MVP M5DN v

* Resource group

Create new (@ Use existing
examref v

* Location

South Central US v

FIGURE 1-41 Create Load Balancer

If you want to load balance traffic only within your Virtual Network:
For the type, select Internal.

Select Virtual network and choose an existing Virtual Network.
Select Subnet and choose a subnet within the Virtual Network.

Select if the Load Balancer (Figure 1-42) should have a dynamically
assigned IP or a statically assigned IP by setting the IP address assignment

toggle to Dynamic or Static respectively.

Create load balancer

* Name

loadbalancer01 W
* Type @

® Internal Public
* Virtual network S

examref-vnet

:’" Subnet
. default (172.16.0.0/24)

N

* |P address assignment

Static (@ Dynamic

* Subscription

Solliance MVP MSDN v

* Resource group

Create new (@ Use existing
examref v

* Location

South Central US v

FIGURE 1-42 [.oad Balancer within a Virtual Network

12. Select the Subscription, Resource Group and Location as appropriate. Your
VMs should exist in the same Location as you select for the Load Balancer.

13.
14.
15.

16.

17.

18.

19.
20.
21.
22.

23.

Select create to deploy the Load Balancer.
When your Load Balancer is deployed, navigate to it in the Azure Portal.

From the menu, under the Settings header, select Backend Pools (Figure 1-
43).
Select +Add.

:‘ii b1 - Backend pools

==4 Load balancer

+ Add

VIRTUAL MACHIME STATUS HETWORK IMTERFACE FRIVATE IF ADDRESS

¥ BackendPooll (2 virtual machines)

’ Tags

X Diagnose and sohee problems

EETTINGS

i?IGURE 1-43 Bacl;"énd Pools

On the Add backend pool blade, provide a name for the new Backend pool,
and in the Associated to dropdown list, select Availability Set.

In the dropdown that appears, select the Availability Set that contains your
VMs to load balance.

For each VM that you want to add to backend pool, perform the following:
Select +Add target network IP configuration.

Select the VM from the Target virtual machine dropdown.

Select the IP configuration for the VM from the Network IP configuration
dropdown.

Select OK (Figure 1-44).

24.
25.
26.
27.
28.
29.

30.
31.

Add backend pool

Ib1

* Mame

tier02 ~.f|

IP version @
1P
Associated to

avset (availability set)

Target network IP configurations

Only VMs within the current availability set can be chosen. Once a VM is chosen, you can select a
network IP configuration related to it.

* Target virtual machine @ m
BackendVMO &
size: Standard_D1, network interfaces: 1

* Metwork IP configuration @
ipconfig1 (10.0.2.5) w

+ Add a target network IP configuration

FIGURE 1-44 Add Backend Pool

From the menu, under the Setting header, select Health probes.

Select +Add.

Provide a name for the health probe (Figure 1-45).

Choose protocol (either HTTP or TCP).

Provide the Port that the probe will use in testing the VMs availability.

If you chose the HTTP protocol, also specify the path on the HTTP
endpoint to use when probing the VMs availability.

Specify an interval in seconds between probe attempts in the Interval field.

In the Unhealthy threshold, specify the number of consecutive probe
failures that must occur before the VM is considered unhealthy.

32.
33.
34.
35.
36.
37.
38.
39.
40.

Add health probe

Ib1

* Name

| tcp-probe v

P version

[P

Protocol

HTTP | Tep

* Port

| 443 J

* Interval @
5

seconds
* Unhealthy threshold @

2
consecutive failures

FIGURE 1-45 Add Health Probe

Select OK.

From the menu, under the Setting header, select Load balancing rules.
Select +Add.

On the Add load balancing rule, provide a name.

Set the protocol to TCP or UDP as desired.

Specify the Port for incoming traffic.

Specify the Backend port used when communicating with the VMs.
From the Backend pool dropdown, select the pool your previously created.

From the Health probe dropdown, select the health probe you previously
created (Figure 1-46).

Add load balancing rule

b1

* Mame

| |bruled v |

* P Version
o |Pvd [P

* Frontend IP address @

10.0.2.6 (LoadBalancerFrontend) w
Protocol

e TCP LIDF
* Port
| 8099 \/|

* Backend port @

| 8099 v/
Backend pool @

BackendPooll (2 virtual machines) e
Health probe @

|bprobe (TCP:B0) A4
Session persistence @

Mone w

|dle timeout (minutes) @
|_| 4
Floating IP (direct server return) @

Disabled | Enabled

FIGURE 1-46 Add Load Balancing Rule

41. Select OK to apply load balancing rule.

More Info: Configuring a Load Balanced Deployment with
Powershell

For a step by step guide on performing the previous steps using
PowerShell, see: https://docs.microsoft.com/en-us/azure/virtual-

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/tutorial-load-balancer

machines/windows/tutorial-load-balancer.

Skill 1.7: Design and implement DevTest Labs

Azure DevTest Labs is a service designed to help developers and testers quickly
spin up virtual machines (VMs) or complete environments in Azure, enabling
rapid deployment and testing of applications. This allows you to easily spin up
and tear down development and test resources, minimizing waste and providing
better control cost. You can test the latest version of your application by quickly
provisioning environments using reusable templates and artifacts, integrate it
with your deployment pipeline, or create pre-provisioned environments for
training and demos.

This skill covers how to:

m Create and manage custom images and formulas

m Configure a lab to include policies and procedures
= Configure cost management

m Secure access to labs

m Use environments in a lab

Create a lab

To get started, complete the following steps to create a lab:

1. Navigate to the Azure portal, accessed via https://portal.azure.com.

2. From the main menu on the left side, select More services (at the bottom of
the list), and then select DevTest Labs (Figure 1-47) from the list of
available services.

https://portal.azure.com

x

Shift+Space to toggle favarites

- New P
] By category -
| Dashboard i App Service Lertmcates =
All resources
CEVELOPER TOOLS
Resource groups ":_!_I Team Services accounts PREVIEW
a App Services 'Qj Team prajects PREVIEW T
Function Apps) pevTest Labs)
DevTest Labs
SQL databases @ Application Insights *
4&F Azure Cosmos DB # APl Management services *
Virtual machines
MONITORING + MANAGEMENT
Load balancers 4 wonitor g
Storage accounts @ Application Insights *
Virtual networks D Log Analytics *
Azure Active Directory d-4 Automation Accounts *
Monitor &} Recovery Services vaults *
Advisor & Backup vaults (classic) *
Security Center &' Site recovery vaults (classic) *
Cost Management + Billing (] scheduler Job Collections *
L] . i
pa Help + support !E_l!‘ Traffic Manager profiles
A DevTest Labs & Advisor T
More services G2 Intune *

FIGURE 1-47 The DevTest Labs

3. Inthe DevTest Labs blade, select +Add (Figure 1-48).

DevTest Labs

=& Columns

== Add

@ Assign Tags {) Refresh

FIGURE 1-48 Add a new DevTest Labs

4. On the Create a DevTest Lab blade:

A.

Enter a Lab Name for the new lab.

B. Select the Subscription to associate with the lab.
C.
D. Select Auto-shutdown to specify if you want to enable, and define

Select a Location in which to store the lab.

parameters for, the automatic shutting down of all of the lab’s VMs.
The auto-shutdown feature is mainly a cost-saving feature whereby
you can specify when you want the VMs to automatically be shut
down. You can change auto-shutdown settings after creating the lab
by following the steps outlined in the Auto-shutdown section below.

Enter NAME and VALUE information for Tags if you want to create
custom tagging that is added to every resource you will create in the
lab. Tags are useful to help you manage and organize lab resources by
category.

Select Create (Figure 1-49).

Create a DevTest Lab =

* Lab name

| Contosolab W ‘

* Subscription

Solliance MVP MSDN v
* Location
West US v
Auto-shutdown >
Enabled
Tags
NAME VALUE
{ Environment v’J LDev \/J

0 Tags applied to the lab will be added to each resource created by the lab. Click for more [£
information.

D Pin to dashboard

Automation options

FIGURE 1-49 The Create A DevTest Lab blade

The deployment of a DevTest lab creates a new resource group. Within that
resource group, you will find the following resources:

m The DevTest Lab instance
= A Key vault instance

m A Storage account

m A Virtual network

Add a VM to a lab

I S L e T W o L P [S I S5 SR

UPOLL Hudiy dCeessillg your peviest L.do, you willl wdllt L0 credie your 1irst
VM. This can be accomplished using a custom image or formula, or by using a
pre-loaded base Marketplace image. This section focuses on the latter, and
defers coverage of using custom images and formulas to the Create and manage
custom images and formulas section.

1. Navigate to the blade for your DevTest Lab in the Azure portal.
2. On the lab’s Overview blade, select +Add (Figure 1-50).

ContosolLab
A DevTest Lab

| D [search (Ctri+f) | U) Refresh = add |] Claimany [Delete [g@ MSDM forum WP Feedback

FIGURE 1-50 A New VM to DevTest Lab

3. On the Choose a base blade, select a base image for the VM.
4. On the Virtual Machine blade:

A.
B.
C.

Enter a name for the new VM in the Virtual Machine Name text box.
Enter a User Name that is granted administrator privileges on the VM.

Enter a password in the text field labeled Type a value. We will cover
the Use a saved secret check box in the Secure access to your lab
section below.

The Virtual machine disk type determines which storage disk type is
allowed for the VMs in the lab. Select Hard Drive Disks (HDD) or
Solid-State Drives (SSD).

Select Virtual machine size, and select one of the predefined items
that specify the processor cores, RAM size, and the hard drive size of
the VM to create.

Select Artifacts and, from the list of artifacts, select and configure the
artifacts that you want to add to the base image.

Select Advanced settings to configure the VM’s Network options,
expiration policy, and Claim options. Set Make this machine
claimable to Yes if you want the machine to be claimable by lab users.

Select Create to add the new VM to the lab (Figure 1-51).

Virtual machine Advanced

Configura settings Advanced settings
* Virtual machine name Network options
| Ws2017EntBase \/J' e e e Rl 2w T B]
v Virtual network @ }
* User name | DtiContosolab 5
| devadmin \/} '
Subnet @ S
Password DtiContosoLabSubnet
D Use a saved secret @
* Type a value IP address configuration @
AR \’JI Public | Private | Shared |
Disk and size
Virtual machine disk type © Configures your virtual machine to use a
0 private IP address and adds a NAT route
HOD SsD to enable Internet connection via Remote
Desktop.
Virtual machine size . .
Standard DS1 v2 2 Automatic delete options
Expiration date @
More o p‘tl ons Wil not expire himm:ss A
EST
Artifacts 3 Claim options
1 artifact(s) selected Make this machine claimable @

Advanced settings @ 5
Number of instances @
1
* Image a
Wienal Studim Entararica 2017 flat

Eoca|

FIGURE 1-51 Virtual Maching and Advanced settings

When a VM is created, ownership is assigned to either you (the creator), or it
can be made claimable. Claimable VMs are unassigned, and can be claimed by
lab user. To make a VM claimable you can select Yes under Make this machine
claimable on the Advanced settings blade during the VM creation process. It is
also possible to make a VM you own claimable, by selecting Unclaim from the
VM’s overview blade (Figure 1-52).

W> Connect P Start (¥ Restart M Stop [Delete E.' Apply artifacts L] Claim machine |_1:J Unclaim

FIGURE 1-52 Unclaiming a VM

Unclaiming a VM will result in it being moved from your My Virtual
Machines section to the Claimable Virtual Machines section on the lab’s blade.

Create and manage custom images and formulas

Custom images and formulas facilitate the rapid deployment of preconfigured
VMs. The key difference between custom images and formulas is that a custom
image is simply an image based on a VHD, while a formula is an image based
on a VHD in addition to preconfigured settings, such as VM size, virtual
network, subnet, and artifacts. These preconfigured settings are set up with
default values that can be overridden at the time of VM creation. Both custom
images and formulas can be used as bases for creating new VMs.

Creating custom images

Custom images provide a static, immutable way to create VMs from a desired
configuration. They allow you to pre-install all the software that you need in a
Virtual Hard Disk (VHD) file, and then use that VHD file to create a VM.
Because the software is already installed, the VM creation time is much quicker.
In addition, custom images can be used to clone VMs by creating a custom
image from a VM, and then creating VMs based on that custom image.

Pros of using custom images:

m VM provisioning is fast as nothing changes after the VM is spun up
from the image.

m VMs created from a single custom image are identical.

Cons of using custom images:

m If you need to update any aspect of the custom image, the image must
be recreated.

There are several ways to create a custom image in Azure DevTest Labs. You
can create an image from an existing VM, or create on from a VHD, using either
the Azure portal or PowerShell. Before creating a custom image from a VHD,

the VHD needs to be uploaded to the storage account associated with the lab in
which von are creating the enistom image

A Y A e © Mt A e o ey

Create a custom image from a provisioned virtual machine
To create a custom image from a provisioned VM, following these steps:

1. Navigate to the blade of your DevTest Labs instance.
2. On your lab’s blade, select All virtual machines (Figure 1-53).

MY LAB

My virtual machines

" =y
ol

Y] Claimable virtual machines
42 All virtual machines

& My data disks

Ili Formulas (reusable bases)

& My secrets

FIGURE 1-53 List of VMs in the Lab

3. On the All virtual machines blade, select the VM from which you want to
create the custom image.

4. On the VM’s blade, select Create custom image (Figure 1-54).

GEMNERAL

B Auditlogs

&% Virtual machine diagnostics
Ll Create custom image

i Create formula (reusable base)
S8 Disks

Artifacts

Auto-shutdown

(® Auto-start

FIGURE 1-54 Custom image from a VM

5. On the Custom image blade (Figure 1-55), enter a name and description for
your custom image. This information is displayed in the list of bases when
you create a VM.

Custom image 8 X

Create custom image

Name
Vszm?EntE!aseJ

Description

* | have run sysprep on the virtual machine.

Yes Mo

* Run sysprep on virtual machine.

Yes Mo

FIGURE 1-55 Custom Image

6. Select whether sysprep was run on the VM. If the sysprep was not run on
the VM, specify whether you want sysprep run when a VM is created from
this custom image.

7. Select OK when finished to create the custom image.

Create a custom image from a VHD using the Azure Portal
To create a custom image from a VHD using the Azure portal, complete the
following steps:

1. Navigate to the blade of your DevTest Labs instance.

2. From your lab’s Configuration and policies blade, select Custom images
(Figure 1-56).

VIRTUAL MACHINE BASES
Py Marketplace images
L1 Custom images

1 Formulas (reusable bases)

FIGURE 1-56 Custom images in the Lab

. On the Custom images blade, select +Add (Figure 1-57).

== Add

FIGURE 1-57 New Custom image

. Enter the name of the custom image. This will be displayed in the list of
base images when creating a VM.

. Enter a description for the custom image. This will be displayed in the list
base images.

. Select an OS Type — Windows or Linux.

. If Windows is selected as the OS Type, select whether sysprep has been
run on the VHD image.

. Select a VHD image.
. Select OK to create the custom image (Figure 1-58).

Custom image [X

Add custom image

Mame

Description

* 05 type
Ii.l‘.ﬁndnrws. Linux

| have run sysprep on the virtual machine.

[]

* VHD

Upload a VHD using PowerShell

FIGURE 1-58 Custom VHD image

Create a custom image from a VHD using PowerShell
To create a custom image from a VHD using PowerShell, complete these steps:
1. Ata PowerShell prompt, log into your Azure account with the following
call to the Login-AzureRmA ccount cmdlet.

Login-AzureRmAccount

2. Select the desired Azure subscription by calling the Select-
AzureRmSubscription cmdlet. Replace the placeholder for $subscriptionId
variable with a valid Azure subscription ID.

Click here to view code image

$subscriptionId = '<Specify your subscription ID here>'
Select-AzureRmSubscription -SubscriptionId $subscriptionId

3.

Get the lab object by calling the Get-AzureRmResource cmdlet. Replace
the following placeholders for the $labRg and $labName variables with the
appropriate values for your environment.

Click here to view code image

$labRg = '<Specify your lab resource group name here>'

$labName = '<Specify your lab name here>'

$lab = Get-AzureRmResource -ResourceId ('subscriptions' +
$subscriptionId +

'resourceGroups' + $labRg + 'providersMicrosoft.DevTestLab/labs/"' +
$labName)

Get the lab storage account and lab storage account key values from the lab
object.

Click here to view code image

$labStorageAccount = Get-AzureRmResource -Resourceld
$lab.Properties.defaultStorageAccount
$labStorageAccountKey = (Get-AzureRmStorageAccountKey -
ResourceGroupName

$labStorageAccount.ResourceGroupName -Name
$labStorageAccount.ResourceName)[0].Value

Replace the following placeholder for the $vhdUri variable with the URI to
your uploaded VHD file. You can get the VHD file’s URI from the storage
account’s blob blade in the Azure portal.

Click here to view code image

$vhdUri = '<Specify the VHD URI here>'

Create the custom image using the New-
AzureRmResourceGroupDeployment cmdlet. Replace the following
placeholders for the $customImageName and $customImageDescription
variables to meaningful names for your environment.

Click here to view code image

$customImageName = '<Specify the custom image name>'
$customImageDescription = '<Specify the custom image description>'

$parameters = @{existingLabName="$($lab.Name)";
existingvhdUri=$vhduUri;

imageOsType="'windows'; isVhdSysPrepped=$false;
imageName=$customImageName;
imageDescription=$customImageDescription}

New-AzureRmResourceGroupDeployment -ResourceGroupName
$lab.ResourceGroupName

-Name CreateCustomImage -TemplateUri
'https://raw.githubusercontent.com/
Azure/azure-devtestlab/master/Samples/201-dtl-create-customimage-
from

-vhd/azuredeploy.json' -TemplateParameterObject $parameters

Delete a custom image

You may find that there are times when an image is no longer needed, and
should be removed from your lab. To delete a custom image, complete the
following steps:

1. Navigate to the blade of your DevTest Labs instance.
2. On the lab’s Overview blade, select Custom images.

3. On the Custom images blade, select the ellipsis to the right of the custom
image you wish to delete, then select Delete on the context menu (Figure 1-
59).

HAME PUBLESHER 0 STATUS GIPER STATUS DESCRIFTI L] IMAGE CREATION DA DATA DS, Lt

E VEZMTEmBaseimage Iylei@uolliance net Succeeded Base image for VM., We

FIGURE 1-59 Deleting an image
4. Select Yes to the deletion confirmation dialog.

Creating formulas

Formulas are lists of default property values, providing a dynamic way to create
VMs from a desired configuration. When creating a VM from a formula, the
default values can be used as-is, or modified. Like custom and Marketplace
images, formulas provide a mechanism for fast VM provisioning. Like custom
images, they enable you to create a base image from a VHD file. The base image
can then be used to provision a new VM.

Pros of using formulas

m Changes in the environment can be captured on the fly via artifacts.
For example, if you want a VM installed with the latest bits from your
release pipeline, you can specify an artifact that deploys the latest bits
or enlists the latest code in the formula together with a target base
image. Whenever this formula is used to create VMs, the latest

bits/code are deployed/enlisted to the VM.

m Formulas can define default settings that custom images cannot
provide.

m The settings saved in a formula are default values, and can be modified
when the VM is created.

Cons of using formulas

m Creating a VM from a formula can take more time than creating a VM
from a custom image.

Anyone in the DevTest Labs User role can create VMs using a formula as a
base. There are two ways to create formulas:

m From a base (custom image, Marketplace image, or another formula)—Use
when you want to define all the characteristics of the formula.

® From an existing lab VM—Use when you want to create a formula based on
the settings of an existing VM.

Create a formula from a base
The following steps outline the process of creating a formula for a custom
image, Marketplace image, or another formula.

1. Navigate to the blade of your DevTest Labs instance.

2. From your lab’s blade, select Configuration and policies (Figure 1-60).

3. On the Configuration and policies blade, select Formulas (reusable bases).

VIRTUAL MACHINE BASES
P9 Marketplace images
[1 Custom images

Il{ Formulas (reusable bases)

FIGURE 1-60 Navigating to formulas

4. Select +Add on the Configuration and policies — Formulas (reusable bases)

blade (Figure 1-61).

= Add | W Feedback

FIGURE 1-61 Add new formula

5. On the Choose a base blade, select an image to use for the formula.
6. On the Create formula blade:

A.

B.

=

Enter a name for the formula into the Formula name text box. This
value is displayed in the list of base images when you create a VM.

Enter a description for the formula. This value is available from the
formula’s context menu when you create a VM.

Enter a User name, which will have administrative privileges on the
VM.

Enter a password.

Specify either HDD (hard-disk drive) or SSD (solid-state drive) to
indicate which storage disk type is allowed for the virtual machines
provisioned using this base image.

Select one of the predefined items that specify the processor cores,
RAM size, and the hard drive size of the VM to create.

Select to open the Add artifacts blade, in which you select and
configure the artifacts that you want to add to the base image.

Select to open the Advanced blade where you configure the following
settings:

m Virtual network - Specify the desired virtual network.

m Subnet - Specify the desired subnet.

m [P address configuration - Specify if you want the Public, Private, or
Shared IP addresses. For more information about shared IP
addresses, see Understand shared IP addresses in Azure DevTest
Labs.

m Make this machine claimable - Making a machine “claimable”
means that it will not be assigned ownership at the time of creation.
Instead lab users will be able to take ownership (“claim”) the
machine in the lab’s blade.

Select Create to create the formula (Figure 1-62).

Choose a base Create formula (reusable ba.. O X

Configure settings

E 561 Server 2012 SP4 Web on Windows ... Microsoft Windows Gallery image .., = Formuls mame
| 5ql20n 7-Contoso-Formusla +|
E SQL Server 2014 5P2 Enterprise on Win... Microsoft Windows Gallery image
Description
SQL Server 2014 SP2 Express on Winda.., Micrasoft Windews Gallery image ., $q] Server 2017 Web on Windows for Contosa
Lab,
E SQL Server 2014 5P2 Standard on Wind... Microsoft Windows Gallery image ..,
E SQL Server 2014 5P2 Web on Windows ... Microsoft Windows Gallery image
E SQL Server 2016 SP1 Enterprise on Win.., Microsoft Windows Gallery image
L
[E]l sou server 2016 5P1 Standard on Wind... Microsoft Windows Gallery image ., nsloiatlsd
devadmin
SQL Server 2016 5P1 Web on Windows ... Microsoft Windows Gallery image .,
Password
Bl sa server 2017 Enterprise on Red Hat ... Microsoft Linux Galleryimage ... | | DewmPassword v
E SQL Server 2017 Emterprise en SUSE Lin... Microsoft Linux Gallery image ., Disk and size
Virtual machine disk type @
E SQL Server 2017 Enterprise on Ubuntu ... Microsoft Lirnux Gallery image ,,, |
HOD 55D
E SQL Server 2017 Enterprise Windows 5. Microsoft Windews Gallery image
Virtual machine size
E SOL Server 2017 Standard on Red Hat E... Microsoft Linux Gallery image . Standard D8s v3 p
E SOL Server 2017 Standard on SUSE Lin... Microsoft Linux Gallery image ,,,
More options
E SQL Server 2017 Standard on Ubuntu 5., Microsoft Linux Gallery image
Artifacts 5
E SQL Server 2017 Standard on Windows ... Microsoft Windows Gallery image .., 0 artifact(s) selected
E SQL Server 2017 Web on Red Hat Enter... Microsoft Linux Gallery image .,. Advanced settings @ 3
SQL Server 2017 Web on SUSE Linux En... Microsoft Linux Gallery image
E SQL Server 2017 Web on Ubuntu Serve.., Microsoft Linux Gallery image ... Imaga fa)
SQL Server 2017 Web on Windo...
E SQL Server 2017 Web on Windows Serv... Microsoft Windows Gallery image .

| Ccrese |
FIGURE 1-62 Choose a base

Create a formula from a VM
To create a formula based on an existing VM, complete the following steps:

1. Navigate to the blade of your DevTest Labs instance.

2. From your lab’s Overview blade, select the VM from which you wish to
create the formula (Figure 1-63).

laimable virtual machines

HAKE STATUS AUTORSTART AUTTHSH DO BASE

'g;i W0 17 EniBase @ Available B No @ No Yisual Studic Entenprise 2017 (latest release) on Windows Server 2016 (x54)

FIGURE 1-63 Claimable Virtual Machines

3. On the VM'’s blade (Figure 1-64), select Create formula (reusable base).

GEMERAL
B Audit logs
ES Virtual machine diagnostics
L1 Create custom image
Ili Create formula (reusable base)
= Disks
Artifacts
& Auto-shutdown

& Auto-start

FIGURE 1-64 Custom image fora VM

4. On the Create formula blade, enter a Name and Description for your new
formula (Figure 1-65).

Create formula (reusable bas... B X

+y Create a formula to capture the settings
used to create this virtual machine.

MName

V5-2017-Enterprise-Formula W

Description

Contoso Lab Visual Studio 2017 Enterprise
formula, including Chrome, Git, Slack, and
Motepad+ +.

FIGURE 1-65 Create a new formula (reusable base)
5. Select OK to create the formula.

Modify a formula
After creating a formula, it is possible to modify the properties of that formula.
To modify an existing formula, follow these steps:

1. Navigate to the blade of your DevTest Labs instance.

2. On your lab’s Overview blade (Figure 1-66), select Formulas (reusable
bases).

)

L4
)

—

p =

[l
=

MY LAB

My virtual machines
Claimable virtual machines
All virtual machines

My data disks

Formulas (reusable bases)

My secrets

FIGURE 1-66 Navigating Formulas

3. On the Lab formulas blade, select the formula you wish to modify (Figure

1-67).

= ndd WP Feedback

|')-"j Search to filter items.,

NAME
i'i Vs2017-Enterprizse-Form...
]j UbuntuServerBase

]] V5-2017-Enterprise-For...

STATUS
Ready
Ready

Ready

DESCRIPTION
Custom formula
Ubuntu Server 17.04 - Contoso base formula

Contoso Lab Visual Studio 2017 Enterprise formula, including Chrome, Git, Slack, and Notepad++.

FIGURE 1-67 Modify the list of available formulas in Lab

4. On the Update formula blade, make the desired edits, and select Update

(Figure 1-68).

Update formula

Configure settings

* Formula name

V5-2017-Enterprise-Formula |

Description

Contoso Lab Visual Studio 2017 Enterprise
formula, including Chrome, Git, Slack, and
Notepad++.

User name

devadmin

Password

Disk and size
Virtual machine disk type @

HOD | SSD |

Virtual machine size 3

Standard_DS1_v2

More options

Artifacts >:
4 artifact(s) selected

Advanced settings @

Image

Visual Studio Enterprise 2017 (lat...

FIGURE 1-68 Update Formula

Delete a formula
To delete a formula, complete the steps below:

1. Navigate to the blade of your DevTest Labs instance.

2. On your lab’s Overview blade, select Formulas (reusable bases).

3. On the Lab formulas blade, select the ellipsis to the right of the formula
you wish to delete, then select Delete on the context menu (Figure 1-69).

Pin to dashboard -

il Ubunn, sAmrver fme Eearly Ubunba Server 1704 - Contosa base formuls Delete

i vs-zo7-Enterprise-For.. Ready Contoso Lab Visual Studio 2017 Enterprise Tormula, indkasing Chyome, Git, Slack, and Motepad' +.

FIGURE 1-69 Deleting from the context menu

4. Select Yes to the deletion confirmation dialog.

Configure a lab to include policies and procedures

In Azure DevTest Labs, a lab is defined as the infrastructure that encompasses a
group of resources, such as VMs. Labs enable you to better manage those
resources by specifying limits and quotas. For each lab you create, you can
control cost and minimize waste by managing policies (settings).

Configure allowed virtual machine sizes policy

The policy for setting the allowed VM sizes helps to minimize lab waste by
enabling you to specify which VM sizes are allowed in the lab. If this policy is
activated, only VM sizes from this list can be used to create VMs, allowing you
to be very specific about what size VMs can be deployed into your lab
environment. To configure the virtual machine sizes allowed in your lab,
complete the following steps:

1. Navigate to the blade of your DevTest Labs instance.

2. On your lab’s Overview blade, select Configuration and policies, under
Settings (Figure 1-70).

L2 Search (Ctri+/)

@ Overview

di Getting started

MY LAB
51 My virtual machines

Claimable virtual machines

| | €

All virtual machines

¢

My data disks

[—=}
=

Formulas (reusable bases)

My secrets

SETTINGS

{3+ Configuration and policies

FIGURE 1-70 The Configuration and Policies blade

3. Select Allowed virtual machine sizes under Settings, on the Configuration
and policies blade (Figure 1-71).

SETTINGS
i- Allowed virtual machine sizes
{3 Virtual machines per user

% Virtual machines per lab

o Lab settings

FIGURE 1-71 Allowed Virtual Machine Sizes

4. Select On to enable this policy, and Off to disable it (Figure 1-72).

BHsvw X osad W Feedbac

Enabled

KN o
(W] ase oS MEMBAY i 88
Standaed 051 v2 1 1%
v Sendeed D52 v2 2 7
Sandaed D53 v2 4 14
Standaed_[44 w2 L] 28
wauﬁsta s a— E ... 55 ..

Sandard 05171 w2 2

Sandard_DS12w2 4 28

Stancdaed D132 w3]

FIGURE 1-72 The allowed VM sizes policy

5. If enabled, select one or more VM sizes that you want to be allowed the
creation of in your lab.

6. Select Save.

Configure virtual machines per user policy

The Virtual machines per user policy allows you to specify the maximum
number of VMs that can be created or claimed by an individual user. You can
also specify limits on the number of VMs using premium OS disks. Should a
user attempt to create or claim a VM when their user limit has been met, an error
message indicating that the VM cannot be created/claimed will be displayed. To
manage the virtual machines per user policy, follow the steps below:

1. Navigate to the blade of your DevTest Labs instance.

2. On your lab’s blade, select Configuration and policies.

3. On the Configuration and policies blade, select Virtual machines per user
(Figure 1-73).

SETTINGS
i= Allowed virtual machine sizes
{3 Virtual machines per user

{# Virtual machines per lab

Jf Lab settings

FIGURE 1-73 Virtual Machines Per User

4. Select Yes to enable limiting the number of virtual machines per user, and
No to disable limits.

5. If yes is selected, enter a numeric value indicating the maximum number of
VMs that can be created or claimed by a user (Figure 1-74).

Hosave X Discard W Feedback

Virtual machines per user

Limit the number of virtual machines?
o

What is the limit?

3

Limit the number of virtual machines using premium OF disks {S5D)7 @

Yes Mo

What is the limit?

FIGURE 1-74 The VMs per user policy

6. Select Yes to enable limiting the number of VMs using premium OS disks
(SSD), and No to remove limits on premium disk utilization.

7. If Yes is selected, enter a numeric value to specify the limit of VMs that
can be created using SSDs.

8. Select Save to save your policy settings.

Configure virtual machines per lab policy

The policy for Virtual machines per lab allows you to specify the maximum
number of VMs that can be created for the current lab, setting a limitation on the
overall lab itself. Like the Virtual machines per user policy, you can also set
limitations on the use of premium OS disks. If any user attempts to create a VM
when the lab limit has been met, an error message indicates that the VM cannot
be created. The virtual machines per lab policy can be configured by completing
the following steps:

1. Navigate to the blade of your DevTest Labs instance.
2. On the lab’s blade, select Configuration and policies.

3. On the Configuration and policies menu, select Virtual machines per user
(Figure 1-75).

SETTINGS
i~ Allowed virtual machine sizes
£ Virtual machines per user

£+ Virtual machines per lab

& Lab settings

FIGURE 1-75 Virtual Machines per lab

4. Select Yes to enable limiting the number of virtual machines per user, and
No to disable limits.

5. If Yes is selected, enter a numeric value indicating the maximum number
of VMs that can be created in the lab (Figure 1-76).

7.
8.

Hsave X Discard WP Feedback

Virtual machines per lab

Limit the number of virtual machines?

What is the limit?
1

Limit the number of virtual machines using premium OS5 disks (35070
Yes | Mo

What is the limit?

FIGURE 1-76 The VMs per user policy

Select Yes to enable limiting the number of virtual machines using
premium OD disks (SSD), and No to disable limits on premium disk
utilization.

If Yes is selected, enter a numeric value to specify the limit.
Select Save to save your policy settings.

Configure auto-shutdown policy

The auto-shutdown policy in Azure DevTest Labs is one of the most
important policies for helping you to minimize lab waste and control cost,
allowing you to specify a time that the lab’s VMs will automatically shut down.
This helps to prevent incurring costs when the VMs are not in use, and ensures
VMs are shut down, even when you forget to do it at the end of a work day. To
configure the auto-shutdown policy, follow the below steps:

1.
2.

Navigate to the blade of your DevTest Labs instance.

On the lab’s Configuration and policies blade, select Auto-shutdown
(Figure 1-77).

SCHEDULES

Auto-shutdown

(® Auto-start

FIGURE 1-77 Auto-Shutdown policies

Select On to enable this policy, and Off to disable it (Figure 1-78).

Hsave 3 Discard WP Feedback

Enabled

| on | on

Scheduled shutdown

700:00 PM

Time zane

(UTC-05:00) Eastern Time {US & Canada) v

Send notification before auto-shutdown?
Yes No |

Webhook URL @

Ernail address @

-+ This policy automatically applies auto-shutdown to all the virtual machines in the lab. Each individual virtual machine can opt-out or
override the shutdown palicy by going to the virtual machine blade

FIGURE 1-78 The Auto-Shutdown Policy

4. 1If you enable this policy, specify the time and time zone to shut down all
VMs in the current lab.

5. Specify Yes or No for the option to send a notification before auto-
shutdown. Notifications will be sent 15 minutes prior to the specified auto-
shutdown time. If you specified Yes, enter either a Webhook URL endpoint
or an email address to receive the notifications.

6. Select Save.

By default, once enabled, the auto-shutdown policy applies to all VMs in the
current lab. This policy can be overridden on each individual VM in the lab,
enabling more fine-tuned management of the policy. To alter this setting for a
specific VM, complete the steps below:

1. Open the target VM’s blade.
2. Select the Auto-shutdown tile on the VM’s blade (Figure 1-79).

& Connect P Strt O Restart M Siop @ Oelete E.'AH";' ariifacts |+] Cla

0 Runnirg

Essentials -~

REauno: gioep

coniosolabZs93384855000

Virtwal networksubnet
MiComosalaby/DilContosolabSubne

P address or FQDN

conasolab2i93364955000 westus.cloudapp arure com
MAT peotocod £ Port ba corestct @

ADF S 53966
[l;":’ Auto-start 7:00 AM Ilg_:l Auto-shutdown
" @ opred-in Eastern Standard Time " @ opted-in
Monday, Tuesday, Wednesday, Thursday, Frday Diaily

[T} unciaim

Sarw

Standard D51 v2 (1 cores, 3.5 GB memory)

Oiperating systems

Windows

Base

Visual Studio Enterprise 2017 (latest release) on Windews Server 2016 (x64)
Expiraton date

Mo expiration

7:00 PM
Eastern Standard Time

FIGURE 1-79 Auto-Shutdown Tile

On the Auto-shutdown blade, select On to enable the policy, or Off to
disable it. If On is selected, enter a scheduled shutdown time, and time
zone, and specify if notifications should be sent before auto-shutdown. If
notifications are to be sent, provide a Webhook URL or email address to

send notifications (Figure 1-80).

Save X Discard WP Feedback
Fnabled
On Off

Scheduled shutdown
7:00:00 PM

Time zone

(UTC-05:00) Eastern Time (US & Canada)

Send notification before auto-shutdown?

Yes No

Webhook URL ©@

EFmail address @

FIGURE 1-80 Configuring Aut0-Shutdown policy

Configure auto-start policy

Azure DevTest Labs’ auto-start policy lets you specify when the VMs in the
current lab should be automatically started, allowing all VMs to be started at a
specific day and time. For example, if you want all your VMs to start at 7:00
AM each weekday, you can set up the policy to accommodate that configuration.
Complete the following steps to configure the auto-start policy:

1. Navigate to the blade of your DevTest Labs instance.

2. On your lab’s Configuration and policies blade, select Auto-start (Figure 1-
81).

SCHEDULES

Auto-shutdown

(D Auto-start

FIGURE 1-81 Auto-Start Policy settings

3. Select On to enable this policy, and Off to disable it (Figure 1-82).

Hseve X Discard W Feedback
i) This policy does not automatizally apply auto-start to any virtual machines in the lab. To opt in individual virtual machines, go to the virtual
machine blade and enable auto-start.
Allow virtual machines to be scheduled for automatic start
Scheduled start
00000 Akt
Time zane
[UTC-08:00) Eastern Time (US & Canada) w
[m] oarorweek TIME
' Monday 07:00:00
' Tuesday 07:00:00
' Wednesday O7-00:00
' Thursday 07:00:00
~' Friday 07:00:00
Saturday O7:00:00
Sunday 07:00:00

FIGURE 1-82 Configuring the Autto-Start policy

4. If you enable this policy, specify the scheduled start time, time zone, and
the days of the week for which the time applies.

5. Select Save.

Like the auto-shutdown policy, the auto-start policy applies to all VMs in the
current lab, once enabled. The steps to modify this policy for an individual VM
are similar to those for the auto-shutdown policy, but you will select the Auto-
start tile on the VM’s blade, and modify the policy from there.

Set expiration date policy

Another option for managing the life of a VM is the ability to set an expiration
date for the VM. This option is available when creating a new VM, and could be
used if you want to ensure the VM is automatically deleted at a specified date
and time. To set the expiration date for a VM:

1. During the VM creation process, select Advanced settings on the Virtual
machine blade.

2. Choose the calendar icon to specify a date and time on which the VM will

be automatically deleted. By default, VMs never expire.
3. Select OK on the Advanced settings blade (Figure 1-83).

Virtual machine Advanced
Configure settings Advanced settings
* Virtual machine name Metwork [)ptiDJ"IS
| Vs2017EntBase ~/. 5 :
* Virtual network @ >:
* User name DtiContosolab
| devadmin ‘/i e T e s e L s
Subnet @ 5
Password DtlContosolLabSubnet
D Use a saved secret @
* Type a value IP address configuration @
e ;,/I Public | Private . Shared
Disk and size
Virtual machine disk type @ Cc?nﬁgures your virtual machine to use a
A 0 private |P address and adds a MAT route
HOD SSD | to enable Internet connection via Remote
Desktop.
Virtual machine size Y . .
Standard DS1 v2 Automatic delete options
Expiration date @
More options Will not expire h:mm:ss A
EST
Artifacts 3 Claim options
1 artifact(s) selected Make this machine claimable @

Yes Mo -:

Number of instances @
1

Advanced settings @

* Image
Whienial Srudia Entarariea 2017 flas

ok

FIGURE 1-83 Auto-Delete options

Configure cost management

Azure DevTest Labs was designed to help development teams more effectively
manage costs and resources. One of the key features of this is Cost Management,
which allows you to track the cost associated with operating your lab. You can
also view trends. set cost targets and thresholds. and configure alerts to keep vou

informed about your monthly costs. Cost threshold targets allow you to monitor
usage throughout the month, and potentially alter behavior accordingly if you
see spending happening faster than anticipated during a specified time period.

To view your Cost trend chart, navigate to the blade for your DevTest Labs
instance, and select Cost trend from the Configuration and policies blade of your

lab (Figure 1-84).

COST TRACKING
Cost trend

(o' Cost by resource

FIGURE 1-84 Cost Trend

Cost trend

The Monthly Estimated Cost Trend chart displays the current calendar month’s
estimated cost-to-date, and the projected end-of-month cost for the current
calendar month (Figure 1-85).

FTil Wanage target WP Feedback
T E
"'-’ This chart shows the estimated cost of the lab using Pay-As-You-Go offer rates and excludes your offer rates, taxes and any discounts.
Estimated eost trend for the current calendar month
10 | rarser - 30
| 755 -s8
g
/!
i/
i
D e e W i
! /_._lflr
L ,-_-_/
pa—
i
4 /
I'Jl

E] P |

[

f
2 ,l'

|
||II
d
o
Mew 5 Mav 12 Mow 19 Mow 26
ESTIMATED CO5T FROJECTED COST
3 usp 9 usp

FIGURE 1-85 Cost trend chart

Azure DevTest Labs allows you to modify the time span displayed on the
chart, specify target costs, and set up notifications. You can configure these
options by completing the following steps:

1. From the Cost trend blade, select Manage target (Figure 1-86).

,’ﬁ] Manage target W Feedback

FIGURE 1-86 Manage Target

2. On the Manage target blade:

A. Select the time period you would like displayed on the chart. Monthly
is the default, and will display the current month. Selecting Fixed
allows you to specify a set time period to display on the chart (Figure
1-87).

Time period
Monthly EEZFEL]

Start date ©

2017-11-01
End date @

2017-11-30
FIGURE 1-87 Target Time Period

B. Specify a numeric value (in USD) for your target monthly cost (Figure
1-88).

Cost target and thresholds

[Target cost (USD) @
10

% 5 MNOTIFY PLOT ON CHART
25% %3 @ Disabled @ Disabled
50% 45 0 Disabled 0 Disabled
75% 38 & Enabled & Enabled
100% $10 @ Disabled @ Disabled

125% %13 @ Disabled @ Disabled

FIGURE 1-88 Target cost value

C. Select any desired cost thresholds, and on the Cost threshold blade,
specify whether to send notifications, and if you would like the
threshold displayed on the trend chart, then select OK (Figure 1-89).

Cost threshold =] P%

W Feedback

Matification ©

Display on chart

~ -

FIGURE 1-89 Target thresholds

D. If you chose to enable notifications, click to add an integration of a
Webhook under Cost integrations. The lab will post a notification to
the specified endpoint if lab spending reaches a threshold for which
you have opted to receive notification (Figure 1-90).

Cost integrations

WEBHOOK URL

Click here to add an integration

FIGURE 1-90 Add Webhook integration

E. On the Configure notification blade, enter a Webhook URL, and
Select OK (Figure 1-91).

Configure notification 0 X

W Feedback

* Webhook URL ©

FIGURE 1-91 Webhook URL

F. Select OK to save the trend chart targets.

The estimated cost value is the current calendar month’s estimated cost-to-
date. The projected cost is the estimated cost for the entire calendar month,

calculated using the lab cost tor the previous tive days. 1'hese cost numbers are
rounded up the nearest whole number, and do not reflect actual costs.

More Info: Webhooks

Webhooks are user defined HTTP/HTTPS endpoints that are
usually triggered by an event. You must create a Webhook prior to
entering it here. For more details on creating Webhooks, see:
https://docs.microsoft.com/azure/azure-functions/functions-create-

github-webhook-triggered-function.

Cost by resource
To provide you with more insight into cost of operating each individual resource
in your lab, you can also view a breakdown of cost by resource. To view this
breakdown, follow these steps:

1. Navigate to the blade of your DevTest Labs instance.

2. On the Configuration and policies blade for your lab, select Cost by
resource (Figure 1-92).

COST TRACKING
2 Cost trend

+ Cost by resource

FIGURE 1-92 Cost By Resource

3. View the list of individual resources, and how much money (in USD) is
being spent per resource (Figure 1-93).

W Feedback

4 This table shows the break down of the estimaied lab cost by resource for the curment calendar month wsing Pay-As-You-Go offer rates. There is 2 defay between the time e
when a resource was actually used and the time when the usage reached the billing system due te which you will notice a delay in reporting the cost in the table.

Estimated month to date cost by resource &

4 NAME T DWMER CATEGODRY STATUS COST [USD)

) Ve20TEntBaze kyle@solliance.ns! t Standard D51 w2 Running 1

| acontosolab5015 - Standard LRS Available 1

FIGURE 1-93 Viewing cost by resource

https://docs.microsoft.com/azure/azure-functions/functions-create-github-webhook-triggered-function

4. The list can be sorted to easier view those resources which have the most
associated cost.

Secure access to labs

Security access in DevTest Labs is determined by Azure Role-Based Access
Control (RBAC). To understand how access works, it helps to understand the
differences between a permission, a role, and a scope as defined by RBAC.

m Permission Defined access to a specific action (e.g. read-access to all virtual
machines).

m Role A set of permissions that can be grouped and assigned to a user. For
example, the subscription owner role has access to all resources within a
subscription.

m Scope A level within the hierarchy of an Azure resource, such as a resource
group, a single lab, or the entire subscription.

Using RBAC, you can segregate duties within your team into roles where you
grant only the amount of access necessary to users to perform their jobs. The
three RBAC roles most relevant to Azure DevTest Labs are Owner, DevTest
Labs User, and Contributor.

The Table 1-3 provides a breakdown of the actions that can be performed by
users in each of these roles.

TABLE 1-3 Actions that can be performed by users in specified roles.

Actions users in this role DevTest Labs Owner | Contributor
can perform User

LAB TASKS

Add users to a lab No Yes No

Update cost settings No Yes Yes

VM BASE TASKS

Add and remove custom No Yes Yes

images

Add, update, and delete Yes Yes Yes
formulas

Whitelist Azure No Yes Yes
Marketplace images

VM TASKS

Create VMs Yes Yes Yes
Start, stop, and delete Only VMs created Yes Yes
VMs by the user

Update VM policies No Yes Yes
Add/remove data disks Only VMs created Yes Yes
to/from VMs by the user

ARTIFACT TASKS

Add and remove artifact No Yes Yes
repositories

Apply artifacts Yes Yes Yes

Add an owner or user at the lab level

Owners and users can be added at the lab level via the Azure portal. This
includes external users with a valid Microsoft account (MSA). The following
steps guide you through the process of adding an owner or user to a lab in Azure
DevTest Labs:

1. Navigate to the blade of your DevTest Labs instance.
2. On your lab’s blade, select Configuration and policies.

3. On the Configuration and policies blade (Figure 1-94), select Access
control (IAM).

MANAGE

um Access control (IAM)

% Diagnose and solve problems
B Activity log

‘1Y Properties

® 1ags

& Llocks
FIGURE 1-94 Access Control (IAM)

4. Select +Add
5. On the Add permission blade, select a role, Owner or DevTest Labs User
(Figure 1-95).

Role @

Select a role W

Cwner ©

Contributor @

Reader ©

DevTest Labs User @

Log Analytics Contributor ©

Log Analytics Reader @

Monitoring Contributor @

Monitoring Reader @

Resource Policy Contributor (Preview) @

User Access Administrator ®

FIGURE 1-95 New lab owner role

6. On the Add permissions blade, enter a name or an email address, and select
the user (Figure 1-96).

Add permissions X

Role @

DevTest Labs User v
Assign access to @

Azure AD user, group, or application v
Select®

kyle v

Selected members:;

kyle) Remave
kyle@solliance.net

FIGURE 1-96 Add permissions to users

7. Click Save.

Add an external user to a lab using PowerShell

In addition to adding users in the Azure portal, you can add an external user to
your lab using a PowerShell script.

The PowerShell script below assumes that the specified user has been added
as a guest to the Active Directory, and will fail if that is not the case. To add a
user not in the Active Directory to a lab, use the Azure portal to assign the user
to a role as illustrated in the section, Add an owner or user at the lab level,
above.

Ta add an external nicer to a lah comnlete the following stens:

AT MITANA LS CUALLAAAML HUTE LU S Ay S UAAA AT LS LIAS L SAANS Y Aaaemy L pre

1. Ata PowerShell prompt, log into your Azure account with the following
call to the Login-AzureRmA ccount cmdlet.

Login-AzureRmAccount
2. Select the desired Azure subscription by calling the Select-

AzureRmSubscription cmdlet. Replace the placeholder for $subscriptionId
variable with a valid Azure subscription ID.

Click here to view code image

$subscriptionId = '<Specify your subscription ID here>'
Select-AzureRmSubscription -SubscriptionId $subscriptionId

3. Retrieve the user object with the Get-AzureRmAdUser cmdlet. Replace the
$userDisplayName placeholder with the appropriate value.

Click here to view code image

$userDisplayName = "<Specify the User's Display Name here>"
$adObject = Get-AzureRmADUser -SearchString $userDisplayName

4. Get the lab object by calling the Get-AzureRmResource cmdlet. Replace
the following placeholders for the $labRg and $labName variables with the
appropriate values for your environment.

Click here to view code image

$labRg = '<Specify your lab resource group name here>'

$labName = '<Specify your lab name here>'

$lab = Get-AzureRmResource -ResourceId ('subscriptions' +
$subscriptionId +

'resourceGroups' + $labRg + 'providersMicrosoft.DevTestLab/labs/"' +
$labName)

5. Create the role assignment, using the New-AzureRmRoleAssignment
cmdlet.

Click here to view code image

New-AzureRmRoleAssignment -ObjectId $adObject.Id -
RoleDefinitionName 'DevTest
Labs User' -Scope $labId

Use lab settings to set access rights to the environment

Lab settings allow you to modify the access rights of your lab users to the
resource group containing your lab resources. By giving your lab users
Contributor access rights, you enable them to edit resources, such as SQL Server

nr (Cnamne NR in tha recniiree arniin that cantaine vanr Iah anvirnnment Ry

Ul JUULILIVUD 171 Jy 111 UL 1LovuLrLu éluul.l LiiuL LwviLituiiio JULIL 1UU LL11VIIULIIIILLIL, J_IJ

default, lab users have Reader access rights, and cannot change the resources in
the resource group.

1. Navigate to the blade of your DevTest Labs instance.

2. On the DevTest Lab’s Overview blade, select Configuration and policies.

3. On the lab’s Configuration and policies menu, select Lab settings (Figure
1-97).

SETTINGS

i~ Allowed virtual machine sizes
4% Virtual machines per user

4 Virtual machines per lab

4. Lab settings

FIGURE 1-97 Lab Settings blade

4. Specify whether lab users should have Contributor or Reader access rights
on the environment resource group (Figure 1-98).

- LT
=] SavE M Discarc

Configure access rights for the lab users on the environment resource group; @

Contributor | Reader

FIGURE 1-98 Access rights for lab users

5. Select Save.

Use environments in a lab

The Azure portal enables you to easily create and add VMs to your lab one at a
time. Sometimes, however, there is a requirement to deploy an environment
containing multiple VMs, such as a multi-tier web app or a SharePoint farm. For
this scenario, you can use Azure Resource Manager (ARM) templates to spin up
a complete environment in DevTest labs, allowing your infrastructure to be as
complicated as it needs to be for your environment.

More Info: ARM Templates

For more information on the benefits of using ARM templates to
deploy, update, or delete all your lab resources in a single
operation, see: https://docs.microsoft.com/azure/azure-resource-
manager/resource-group-overview#the-benefits-of-using-resource-

manager.

Following infrastructure-as-code and configuration-as-code best practices,
environment templates are managed in source control. Azure DevTest Labs
loads all ARM templates directly from your GitHub or VSTS Git repositories.
As a result, Resource Manager templates can be used across the entire release
cycle, from the test environment to the production environment.

Configure an ARM template repository

To provide the greatest flexibility, Azure DevTest Labs allow you to build your
own repositories, which can contain multiple environment templates, each in a
separate folder. There are a couple of rules to follow for organizing your Azure
Resource Manager templates in a repository:

1.
2.

The master template file must be named azuredeploy.json.

If you want to use parameter values defined in a parameter file, the
parameter file must be named azuredeploy.parameters.json.

You can use the parameters artifactsLocation and
artifactsLocationSasToken to construct the parametersLink URI value,
allowing DevTest Labs to automatically manage nested templates.

Metadata can be defined to specify the template display name and
description. This metadata must be in a file named metadata.json. The
following example metadata file illustrated how to specify the display name
and description:

Click here to view code image
{

"itemDisplayName": "<your template name>",
"description": "<description of the template>"

}

With your ARM template added to the repo, you are now ready to add the
repository to your lab. To add a repository to your lab using the Azure portal,
follow the steps below:

https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#the-benefits-of-using-resource-manager

. Navigate to the blade of your DevTest Labs instance.

2. On your lab’s blade, select Configuration and policies.

. From the Configuration and policies blade, select Repositories. The
Repositories blade (Figure 1-99) lists the repositories that have been added
to the lab. A repository named Public Repo is automatically generated for
all labs, and connects to the DevTest Labs GitHub repo that contains
several VM artifacts for your use.

EXTERMAL RESOURCES

Repositories

“7 Virtual networks

-

FIGURE 1-99 Repositories blade

. Select +Add to add your Azure Resource Manager template repository.

. When the second Repositories blade opens, enter the necessary information

as follows:

A. Enter a name for the repository.

B. Enter the GIT HTTPS clone URL from GitHub or Visual Studio Team
Services account.

C. Enter the branch name to access your Azure Resource Manager
template definitions.

D. The personal access token is used to securely access your repository.
To get your token from Visual Studio Team Services, select
<YourName> > My profile > Security > Public access token. To get
your token from GitHub, select your avatar followed by selecting
Settings > Public access token.

E. Using one of the two input fields, enter a folder path that starts with a

forward slash - / - and is relative to your Git clone URI to either your
artifact definitions (first input field) or your Azure Resource Manager
template definitions (Figure 1-100).

Repositories B X

* Name

I_Cuntoso DevTest Labs \,:‘

* Git clone URI &
] https://github.com/Contoso/DevTestLabs.git \/‘

Branch &
] dev ‘

* Personal access token®

Folder paths
At least one folder path is required below
Artifact folder path @

e.g. /main/src/DevTestlabs/Artifacts

Azure Resource Manager termplate folder path @

] /Templates/ W

T o]

FIGURE 1-100 Repositories configuration

6. Select Save (Figure 1-101).

= Add WP Feedback

REPOSITORY STATUS
Public Repo & Enabled

Contoso DevTest Labs & Enabled

FIGURE 1-101 Available repositories

Create an environment from an ARM template

Once an ARM template repository has been configured in the lab, your lab users
can create an environment using the Azure portal by following the steps below:

~—

s v

1. Navigate to the blade of your DevTest Labs instance.

2. On your lab’s Overview blade, select +Add.

3. On the Choose a base blade, you will see resources with a Type of ARM
template listed first. Select the desired ARM Template.

4. On the Add blade, enter an Environment name value. This is what will be
displayed to your users in the lab. The remaining input fields come from
the parameters defined in the ARM template. If default values are defined
in the template or the azuredeploy.parameters.json file is present, default
values are displayed in those input fields. For parameter types of secure
string, you can use the secrets store in the lab’s personal secret store

(Figure 1-102).

Choose a base

Add

Configure settings

]

(1

-
[~

MEEEERE T

;3 Search to fter items._..

MNAME

115 VM and SOL Server 2017

UbuntuServerBase

| vs-2017-Enterprise-Formula

Vs2017EntBaselmage

BizTalk Server 2013 R2 Enterprise
BizTalk Server 2013 R2 Standard
BizTalk Server 2016 Developer
BizTalk Server 2016 Enterprise
BizTalk Server 2016 Standard
CentOS-based 6.5 HPC
CentOs-based 6.8 HPC
CentOS-based 6.9
CentOS-based 7.1 HPC
CentOS-based 7.3
CentO5-based 7.3 HPC

CentO5-based 7.3 SRIOV

PUBLISHER

kyle@sollianc...
kyle@sollianc...
kyle@sollianc...
Microsoft
Microsoft
Microsoft
Microsoft
Microsoft
Rogue Wave ...
Rogue Wave ..,
Rogue Wave ...
Rogue Wave ...
Rogue Wave ...
Rogue Wave ...

Rogue Wave ...

a5 TYPE

Linux

Windows

Windows

Windows

Windows

Windows

Windows

Windows

Lirax

Lirkax

Lirux

Liruax

Liruax

Lirue

Linux

TYPE

ARM template .,

Formula

Formula

Custom image ,,,
Gallery image ,,,

Galleryimage

Gallery image

Gallery image

Gallery image

Gallery image .

Gallery image .,

Gallery image

Gallery image .

Gallery image
Gallery image

Gallery image

IS VMs and SQL Server 2017

Load-balancad 115 Vivis plus SCL Server 2017

* Ervironment name &

|_ C_u-n'.uso-(}_h)

* ervPrefidMame 8
| galab

* usermame @

| labuser

password &
|_| Use a saved secret @

* Type 2 value @

* webSn/WivSize @
[stendard_Ds1 v

* numberOfwWebSmvs @

| 2 W
* sgVMSize B
| Standard_Ds1 v

* storageAccountType @

| Standard_LRS v

FIGURE 1-102 New environment from ARM template

5. Select Add to create the environment. The environment starts provisioning
immediately with the status displaying in the My Virtual Machines list. A

new resource group is automatically created by the lab to provision all the
resources defined in the ARM template (Figure 1-103).

My virtual machines

NAME STATUS AUTO-START AUTO-SHUTDOWHN BASE

ot |

o Ve2017EntBase & Running & Yes @ Yes Visual Studio Enterprise 2017
k [;-'?.-] Contosola @ Creating 115 ¥Ms and SQL Server 2017

FIGURE 1-103 My Virtual Machines blade

Once the deployment of the environment completes, select the environment
in the My Virtual Machines list to open the resource group blade, and
browse all the resources provisioned in the environment (Figure 1-104).

14 items
|_j PMAME THPE LOCATION

D dixisg Metwork security group West US

D feMsg Matwork security group West US

| qalsglPip Public IP address West US

.'_.| galeg|Srld Wirtual machine West US
galsgSreldMic Metwork interface West US

| galstgictizudhhiid Storage acoount West US

FIGURE 1-104 Resource group for a new environment

You can also expand the environment in the My Virtual Machines list to

view just the list of VMs that are provisioned in the environment (Figure 1-
105).

V{e':r] Contoso-QA @ Ready 115 VMs and SQL Server 2017
_:ﬂ galsglSrvi4 Standard
:;J galwebSrv(wen 2012-R2-Datacenter
':.'LJ qalwebSrvi wee 2012-R2-Datacenter

FIGURE 1-105 Viewing the VMs

You can select any of the resources in the environment to view the
available actions, such as applying artifacts, attaching data disks, changing
the auto-shutdown time, and more (Figure 1-106).

£ Search (Crie o Cormest B Corestant W Stap [Delete [Apply amilacts [" |
ﬂ Running
Coervie w
i Meoesso 1 {1AR
Sing
& Tags Standard D51 [1 cores, 3.5 GB memorny]
Oparating sysnem
Windows
::::::: 1P address or FDN by
gahwebsrvibamestus.cloudapp.azure.com 2012-R2-Datacenter
& Lo T presacel Fort 1o comoct @ Expiration cat
RO / 50007 Mo gxpiration
AL
H Audit logs
" ([Y) Auto-start (%) Auto-shutdown 7.00 PM
K Viradl mpching dispansics i Cpted-aut * @ opted-in Eastern Standard Time
a2 it i Daily
lili Comate formula (reusaile base)
5 Disks
Adtifacts

FIGURE 1-106 Available actions

Thought experiment

In this thought experiment, apply what you’ve learned about this skill. You can
find answers to these questions in the “Answers” section at the end of this
chapter.

Your solution architecture has two tiers: a front-end web tier that you want to
configure the so that is available and scales out during the busiest times, which
are weekdays, and a diagnostics VM that enables you to analyze any issues with
the web tier VM instances.

1. How would you place the VMs within Scale Sets and what constraints
would you need to ensure you meet them?

2. How would you configure scaling?

Thought experiment answer
This section contains the answers to the thought experiment.

1. You should ensure that you create a Virtual machine scale set for the web
tier VM’s The diagnostic VM, since it does not have any scaling needs,
should not be placed in a Virtual machine scale set, but it should be
deployed in the same Virtual Network as used by the Scale Set so that it
can reach the VM instances across the network.

2. You should configure Autoscale on the Scale Set with a condition that
increases the VMs count to the desired capacity on weekdays and a default
condition that sets the VM count that is in effect at all other times

Chapter summary

m There are two approaches to identifying supported workloads in Azure:
looking for explicit support by a listing in the Marketplace and performing a
manual comparison of the workload requirements against the capacities of
VMs.

m New VMs can be created by uploading a VM you have already created on-
premises or by instantiating one from a selection of pre-built images that are
available in the Marketplace.

m Azure supports the creation of “bare-bones” VMs that provide just Windows
or Linux operating system from pre-built images available in the
Marketplace.

m The Marketplace provides the ability to provision single VMs with
preconfigured applications. The example shown in this chapter provisions
SQL Server in a VM.

m The Marketplace use ARM templates to deploy and configure a complex
topology consisting of multiple VMs, such as a SQL Server AlwaysOn or a
SharePoint farm, the network resources and any supporting resources
required.

m The VM Agent is a very lightweight process. When installed on a VM, it
makes it possible to bootstrap additional VM extensions such as DSC.

m The Custom Script Extension makes it possible to download files from Azure
Storage, run Windows PowerShell of Linux Shell scripts, and automate
copying files and configuring a VM.

m DSC helps you avoid configuration drift by specifying the desired state for
VM provisioning and subsequent updates.

m Azure VM sizes control the capacity of the resources available to a VM
instance. The size can be scaled up and scaled down using the portal or
Windows PowerShell.

m Virtual machine scale sets enable you to easily manage the scale up and scale
down of the number of instances of a particular virtual machine image.

m Autoscale can be used with Virtual Machine Scale Sets to adjust the capacity
based on resource metrics or according to a schedule.

m Storage capacity for VMs is dictated by the scalability limits (IOPS,
throughput, and maximum file size) of Azure Storage as well as per-VM
limits that adjust with the VM size (the number of VHD disks that can be
attached).

m Azure VMs support Standard Storage and Premium storage in both
unmanaged and managed variants.

m Disk caching provides a cache on the machine hosting your VM that can
avert the need to read from or write to Blob storage. The options are None,
Read Only, and Read/Write.

m Geo-replication should not be used for Azure Storage accounts that store
VHDs because the added redundancy does not provide additional protection
against corrupting the data and may in fact result in data loss if you attempt
to restore from a geo-replication.

m Azure File storage enables you to use network shares to provide distributed
access to files from your VMs.

®m A VM can be configured to collect diagnostics data (that is, logs) as well as
performance counter metrics (CPU percentage, memory utilization, and so
on).

= Endpoint monitoring can be configured on a VM to provide outside-in
monitoring of HTTP or HTTPS endpoints provided by your VM.

® You can monitor various metrics using the management portal, and you can
configure alerts on these metrics to send out emails when a metric threshold
is exceeded.

m Diagnostic logs can be retrieved from Azure Storage (Table or Blob storage,
depending on the specific type of log).

m An availability set defines both the update domains and fault domains to
which VMs are assigned.

® VMs in the same update domain will not all be updated at the same time.

® VMs in the same fault domain share either the same power supply, network
switch or both.

m An Azure Load Balancer can be used to load balance traffic between VMs in
an availability set.

m [t is a best practice to deploy VMs that represent the same application tier in
the same availability set.

m Azure DevTest Labs allows you to quickly spin up virtual machines (VMs)
or complete environments in Azure.

m Custom images and formulas facilitate the rapid deployment of
preconfigured VMs in DevTest Labs.

m Custom images provide a static, immutable way to create VMs from a

desired configuration, and can be created from a provisioned VM, or from a
VDH, using either PowerShell or the Azure portal.

m Formulas are modifiable lists of default property values, providing a dynamic
way to create VMs from a desired configuration, and can be created from a
base image or an existing VM.

m DevTest Labs enable you to better manage resources by specifying limits and
quotas, allowing you to better control cost and minimize waste by managing
policies.

m Security access in DevTest Labs is determined by Azure Role-Based Access
Control (RBAC), mainly using the owner, DevTest Labs user, and
contributor roles.

m Azure Resource Manager (ARM) templates can be used to spin up complete
environments in DevTest labs, allowing your infrastructure to be as
complicated as it needs to be for your environment.

Design and implement a storage and data
strategy

In this section, we’ll look at most of the various methods of handling data and
state in Microsoft Azure. All of the different data options can be somewhat
overwhelming. For the last several decades, application state was primarily
stored in a relational database system, like Microsoft SQL Server. Microsoft
Azure has non-relational storage products, like Azure Storage Tables, Azure
CosmosDB, and Azure Redis Cache. You might ask yourself which data product
do you choose? What are the differences between each one? How do I get started
if I have little or no experience with one? This chapter will explain the
differences between relational data stores, file storage, and JSON document
storage. It will also help you get started with the various Azure data products.

Skills in this chapter:
m Skill 2.1: Implement Azure Storage blobs and Azure files

m Skill 2.2: Implement Azure Storage tables and queues
m Skill 2.3. Manage access and monitor storage

m Skill 2.4: Implement Azure SQL Databases

m Skill 2.5: Implement Azure Cosmos DB

m Skill 2.6: Implement Redis caching

m Skill 2.7: Implement Azure Search

Skill 2.1: Implement Azure Storage blobs and Azure files

File storage is incredibly useful in a wide variety of solutions for your
organization. Whether storing sensor data from refrigeration trucks that check in
every few minutes, storing resumes as PDFs for your company website, or
storing SQL Server backup files to comply with a retention policy. Microsoft
Azure provides several methods of storing files, including Azure Storage blobs
and Azure Files. We will look at the differences between these products and
teach you how to begin using each one.

This skill covers how to:

m Create a blob storage account

m Read data and change data

= Set metadata on a container

m Store data using block and page blobss
m Stream data using blobs

m Access blobs securely

» Implement async blob copy

= Configure Content Delivery Network (CDN)
= Design blob hierarchies

m Configure custom domains

m Scale blob storage

» Implement blob leasing

m Create connections to files from on-premises or cloudbased Windows
or Linux machines

m Shard large datasets

Azure Storage blobs

Azure Storage blobs are the perfect product to use when you have files that
you’re storing using a custom application. Other developers might also write
applications that store files in Azure Storage blobs, which is the storage location
for many Microsoft Azure products, like Azure HDInsight, Azure VMs, and
Azure Data Lake Analytics. Azure Storage blobs should not be used as a file
location for users directly, like a corporate shared drive. Azure Storage blobs
provide client libraries and a REST interface that allows unstructured data to be
stored and accessed at a massive scale in block blobs.

Create a blob storage account

1.
2.
3.

Sign in to the Azure portal.
Click the green plus symbol on the left side.

On the Hub menu, select New > Storage > Storage account—blob, file,
table, queue.

Click Create.
Enter a name for your storage account.

10.

11.

12.

13.

14.

15.

16.

For most of the options, you can choose the defaults.

Specify the Resource Manager deployment model. You should choose an
Azure Resource Manager deployment. This is the newest deployment API.
Classic deployment will eventually be retired.

Your application is typically made up of many components, for instance a
website and a database. These components are not separate entities, but one
application. You want to deploy and monitor them as a group, called a
resource group. Azure Resource Manager enables you to work with the
resources in your solution as a group.

Select the General Purpose type of storage account.

There are two types of storage accounts: General purpose or Blob storage.
General purpose storage type allows you to store tables, queues, and blobs
all-in-one storage. Blob storage is just for blobs. The difference is that Blob
storage has hot and cold tiers for performance and pricing and a few other
features just for Blob storage. We’ll choose General Purpose so we can use
table storage later.

Under performance, specify the standard storage method. Standard storage
uses magnetic disks that are lower performing than Premium storage.
Premium storage uses solid-state drives.

Storage service encryption will encrypt your data at rest. This might slow
data access, but will satisfy security audit requirements.

Secure transfer required will force the client application to use SSL in their
data transfers.

You can choose several types of replication options. Select the replication
option for the storage account.

The data in your Microsoft Azure storage account is always replicated to
ensure durability and high availability. Replication copies your data, either
within the same data center, or to a second data center, depending on which
replication option you choose. For replication, choose carefully, as this will
affect pricing. The most affordable option is Locally Redundant Storage
(LRS).

Select the subscription in which you want to create the new storage
account.

Specify a new resource group or select an existing resource group.
Resource groups allow you to keep components of an application in the
same area for performance and management. It is highly recommended that

you use a resource group. All service placed in a resource group will be
logically organized together in the portal. In addition, all of the services in
that resource group can be deleted as a unit.

17. Select the geographic location for your storage account. Try to choose one
that is geographically close to you to reduce latency and improve
performance.

18. Click Create to create the storage account.

Once created, you will have two components that allow you to interact with
your Azure Storage account via an SDK. SDKs exist for several languages,
including C#, JavaScript, and Python. In this module, we’ll focus on using the
SDK in C#. Those two components are the URI and the access key. The URI
will look like this: http:/A{your storage account name from step
4}.blob.core.windows.net.

Your access key will look like this:
KEsm421/uwSiel3dipSGGL124K0124SxoHA X q3jk124vuCjw35124fHRIk142W

Read and change data
First, let’s use the Azure SDK for .NET to load data into your storage account.

1. Create a console application.
2. Use Nuget Package Manager to install WindowsAzure.Storage.

3. In the Using section, add a using to Microsoft. WindowsAzure.Storage and
Microsoft. WindowsAzure.Storage.Blob.

4. Create a storage account in your application like this:

Click here to view code image

CloudStorageAccount storageAccount;
storageAccount =
CloudStorageAccount.Parse("DefaultEndpointsProtocol=https;AccountNe

{your
storage account name};AccountKey={your storage key}");

Azure Storage blobs are organized with containers. Each storage account
can have an unlimited amount of containers. Think of containers like
folders, but they are very flat with no sub-containers. In order to load blobs
into an Azure Storage account, you must first choose the container.

5. Create a container using the following code:

Click here to view code image

http://blob.core.windows.net

CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient();

CloudBlobContainer container =
blobClient.GetContainerReference("democontainerblo

ckblob");
try
{
await container.CreateIfNotExistsAsync();
iatch (StorageException ex)
{
Console.WriteLine(ex.Message);
Console.ReadlLine();
throw;
}

6. In the following code, you need to set the path of the file you want to
upload using the ImageToUpload variable.

Click here to view code image

const string ImageToUpload = @"C:\temp\HelloWorld.png";
CloudBlockBlob blockBlob =
container.GetBlockBlobReference("Helloworld.png");

// Create or overwrite the "myblob" blob with contents from a local
file.

using (var fileStream = System.IO.File.OpenRead(ImageToUpload))

{
}

blockBlob.UploadFromStream(fileStream);

7. Every blob has an individual URI. By default, you can gain access to that
blob as long as you have the storage account name and the access key. We
can change the default by changing the Access Policy of the Azure Storage
blob container. By default, containers are set to private. They can be
changed to either blob or container. When set to Public Container, no
credentials are required to access the container and its blobs. When set to
Public Blob, only blobs can be accessed without credentials if the full URL
is known. We can read that blob using the following code:

Click here to view code image
foreach (IListBlobItem blob in container.ListBlobs())

{
Console.WriteLine("- {0} (type: {1})", blob.Uri,
blob.GetType());

}

NTatn hAacis vc7A 23 AthA mAanmtninanta liar A KlAka 4A xads +ha TTDT YATA Alaa khacra

INULE 1IUW WE ude e CULILALILIEL LU 1ISL LI DIVDS LU gL UIE UL, VVE dIdU lidve
all of the information necessary to download the blob in the future.

Set metadata on a container

Metadata is useful in Azure Storage blobs. It can be used to set content types for
web artifacts or it can be used to determine when files have been updated. There
are two different types of metadata in Azure Storage Blobs: System Properties
and User-defined Metadata. System properties give you information about
access, file types, and more. Some of them are read-only. User-defined metadata
is a key-value pair that you specify for your application. Maybe you need to
make a note of the source, or the time the file was processed. Data like that is
perfect for user-defined metadata.

Blobs and containers have metadata attached to them. There are two forms of
metadata:

m System properties metadata
m User-defined metadata

System properties can influence how the blob behaves, while user-defined
metadata is your own set of name/value pairs that your applications can use. A

container has only read-only system properties, while blobs have both read-only
and read-write properties.

Setting user-defined metadata

To set user-defined metadata for a container, get the container reference using
GetContainerReference(), and then use the Metadata member to set values. After
setting all the desired values, call SetMetadata() to persist the values, as in the
following example:

Click here to view code image

CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient();
CloudBlobContainer container =
blobClient.GetContainerReference("democontainerblockblob™");
container.Metadata.Add("counter", "100");container.SetMetadata();

More Info: Blob Metadata

Blob metadata includes both read-only and read-write properties
that are valid HTTP headers and follow restrictions governing
HTTP headers. The total size of the metadata is limited to 8 KB for
the combination of name and value pairs. For more information on

interacting with individual blob metadata, see

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-
properties-metadata.

Reading user-defined metadata

To read user-defined metadata for a container, get the container reference using
GetContainerReference(), and then use the Metadata member to retrieve a
dictionary of values and access them by key, as in the following example:

Click here to view code image

container.FetchAttributes();

foreach (var metadataItem in container.Metadata)

{

Console.WritelLine("\tKey: {0}", metadataItem.Key);
Console.WritelLine("\tValue: {0}", metadataItem.Value);

)

Exam Tip

If the metadata key doesn’t exist, an exception is thrown.

Reading system properties

To read a container’s system properties, first get a reference to the container
using GetContainerReference(), and then use the Properties member to retrieve
values. The following code illustrates accessing container system properties:
Click here to view code image

container = blobClient.GetContainerReference("democontainerblockblob");
container.FetchAttributes();

Console.WritelLine("LastModifiedUuTC: " +
container.Properties.LastModified);
Console.WriteLine("ETag: " + container.Properties.ETag);

More Info: Container Metadata and the Storage API

You can request container metadata using the Storage API. For
more information on this and the list of system properties

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-properties-metadata

returned, see http://msdn.microsoft.com/en-
us/library/azure/dd179370.aspx.

Store data using block and page blobs

There are three types of blobs used in Azure Storage Blobs: Block, Append, and
Page. Block blobs are used to upload large files. They are comprised of blocks,
each with its own block ID. Because the blob is divided up in blocks, it allows
for easy updating or resending when transferring large files. You can insert,
replace, or delete an existing block in any order. Once a block is updated, added,
or removed, the list of blocks needs to be committed for the file to actually
record the update.

Page blobs are comprised of 512-byte pages that are optimized for random
read and write operations. Writes happen in place and are immediately
committed. Page blobs are good for VHDs in Azure VMs and other files that
have frequent, random access.

Append blobs are optimized for append operations. Append blobs are good for
logging and streaming data. When you modify an append blob, blocks are added
to the end of the blob.

In most cases, block blobs will be the type you will use. Block blobs are
perfect for text files, images, and videos.

A previous section demonstrated how to interact with a block blob. Here’s
how to write a page blob:

Click here to view code image

string pageBlobName = "random";
CloudPageBlob pageBlob = container.GetPageBlobReference(pageBlobName);

await pageBlob.CreateAsync(512 2 /size*/); // size needs to be multiple
of 512 bytes

byte[] samplePagedata = new byte[512];

Random random = new Random();
random.NextBytes(samplePagedata);

await pageBlob.UploadFromByteArrayAsync(samplePagedata, 0,
samplePagedata.Length);

To read a page blob, use the following code:

Click here to view code image

int bytesRead = await
pageBlob.DownloadRangeToByteArrayAsync(samplePagedata,
0, 0, samplePagedata.Count());

http://msdn.microsoft.com/en-us/library/azure/dd179370.aspx

Stream data using blobs

You can stream blobs by downloading to a stream using the
DownloadToStream() API method. The advantage of this is that it avoids
loading the entire blob into memory, for example before saving it to a file or
returning it to a web request.

Access blobs securely

Secure access to blob storage implies a secure connection for data transfer and
controlled access through authentication and authorization.

Azure Storage supports both HTTP and secure HTTPS requests. For data
transfer security, you should always use HTTPS connections. To authorize
access to content, you can authenticate in three different ways to your storage
account and content:

» Shared Key Constructed from a set of fields related to the request.
Computed with a SHA-256 algorithm and encoded in Base64.

m Shared Key Lite Similar to Shared Key, but compatible with previous
versions of Azure Storage. This provides backwards compatibility with code
that was written against versions prior to 19 September 2009. This allows for
migration to newer versions with minimal changes.

m Shared Access Signature Grants restricted access rights to containers and
blobs. You can provide a shared access signature to users you don’t trust with
your storage account key. You can give them a shared access signature that
will grant them specific permissions to the resource for a specified amount of
time. This is discussed in a later section.

To interact with blob storage content authenticated with the account key, you
can use the Storage Client Library as illustrated in earlier sections. When you
create an instance of the CloudStorageAccount using the account name and key,
each call to interact with blob storage will be secured, as shown in the following
code:

Click here to view code image

string accountName = "ACCOUNTNAME";

string accountKey = "ACCOUNTKEY";

CloudStorageAccount storageAccount = new CloudStorageAccount(new
StorageCredentials(accountName, accountKey), true);

Implement Async blob copy

It is possible to copy blobs between storage accounts. You may want to do this

to create a point-in-time backup of your blobs before a dangerous update or
operation. You may also want to do this if you’re migrating files from one
account to another one. You cannot change blob types during an async copy
operation. Block blobs will stay block blobs. Any files with the same name on
the destination account will be overwritten.

Blob copy operations are truly asynchronous. When you call the API and get a
success message, this means the copy operation has been successfully scheduled.
The success message will be returned after checking the permissions on the
source and destination accounts.

You can perform a copy in conjunction with the Shared Access Signature
method of gaining permissions to the account. We’ll cover that security method
in a later topic.

Configure a Content Delivery Network with Azure Blob Storage

A Content Delivery Network (CDN) is used to cache static files to different parts
of the world. For instance, let’s say you were developing an online catalog for a
retail organization with a global audience. Your main website was hosted in
western United States. Users of the application in Florida complain of slowness
while users in Washington state compliment you for how fast it is. A CDN
would be a perfect solution for serving files close to the users, without the added
latency of going across country. Once files are hosted in an Azure Storage
Account, a configured CDN will store and replicate those files for you without
any added management. The CDN cache is perfect for style sheets, documents,
images, JavaScript files, packages, and HTML pages.

After creating an Azure Storage Account like you did earlier, you must
configure it for use with the Azure CDN service. Once that is done, you can call
the files from the CDN inside the application.

To enable the CDN for the storage account, follow these steps:

1. In the Storage Account navigation pane, find Azure CDN towards the
bottom. Click on it.

2. Create a new CDN endpoint by filling out the form that popped up.

A. Azure CDN is hosted by two different CDN networks. These are
partner companies that actually host and replicate the data. Choosing a
correct network will affect the features available to you and the price
you pay. No matter which tier you use, you will only be billed through
the Microsoft Azure Portal, not through the third-party. There are
three pricing tiers:

® Premium Verizon The most expensive tier. This tier offers
advanced real-time analytics so you can know what users are hitting
what content and when.

m Standard Verizon The standard CDN offering on Verizon’s
network.

» Standard Akamai The standard CDN offering on Akamai’s
network.

B. Specify a Profile and an endpoint name. After the CDN endpoint is
created, it will appear on the list above.

3. Once this is done, you can configure the CDN if needed. For instance, you
can use a custom domain name is it looks like your content is coming from
your website.

4. Once the CDN endpoint is created, you can reference your files using a
path similar to the following;:

Click here to view code image

Error! Hyperlink reference not valid.>

If a file needs to be replaced or removed, you can delete it from the Azure
Storage blob container. Remember that the file is being cached in the CDN. It
will be removed or updated when the Time-to-Live (TTL) expires. If no cache
expiry period is specified, it will be cached in the CDN for seven days. You set
the TTL is the web application by using the clientCache element in the
web.config file. Remember when you place that in the web.config file it affects
all folders and subfolders for that application.

Design blob hierarchies

Azure Storage blobs are stored in containers, which are very flat. This means
that you cannot have child containers contained inside a parent container. This
can lead to organizational confusion for users who rely on folders and subfolders
to organize files.

A hierarchy can be replicated by naming the files something that’s similar to a
folder structure. For instance, you can have a storage account named “sally.”
Your container could be named “pictures.” Your file could be named
“productl\mainFrontPanel.jpg.” The URI to your file would look like this:
http://sally.blob.core.windows.net/pictures/productl/mainFrontPanel.jpg

In this manner, a folder/subfolder relationship can be maintained. This might
prove useful in migrating legacy applications over to Azure.

http://sally.blob.core.windows.net/pictures/product1/mainFrontPanel.jpg

Configure custom domains

The default endpoint for Azure Storage blobs is: (Storage Account
Name).blob.core.windows.net. Using the default can negatively affect SEO. You
might also not want to make it obvious that you are hosting your files in Azure.
To obfuscate this, you can configure Azure Storage to respond to a custom
domain. To do this, follow these steps:

1.
2.
3.

Navigate to your storage account in the Azure portal.
On the navigation pane, find BLOB SERVICE. Click Custom Domain.

Check the Use Indirect CNAME Validation check box. We use this method
because it does not incur any downtime for your application or website.

Log on to your DNS provider. Add a CName record with the subdomain
alias that includes the Asverify subdomain. For example, if you are holding
pictures in your blob storage account and you want to note that in the URL,
then the CName would be Asverify.pictures (your custom domain
including the .com or .edu, etc.) Then provide the hostname for the
CNAME alias, which would also include Asverify. If we follow the earlier
example of pictures, the hostname URL would be
sverify.pictures.blob.core.windows.net. The hostname to use appears in #2
of the Custom domain blade in the Azure portal from the previous step.

In the text box on the Custom domain blade, enter the name of your custom
domain, but without the Asverify. In our example, it would be pictures.
(your custom domain including the .com or .edu, etc.) .

Select Save.

Now return to your DNS provider’s website and create another CNAME
record that maps your subdomain to your blob service endpoint. In our
example, we can make pictures.(your custom domain) point to
pictures.blob.core.windows.net.

Now you can delete the azverify CName now that it has been verified by
Azure.

Why did we go through the azverify steps? We were allowing Azure to
recognize that you own that custom domain before doing the redirection. This
allows the CNAME to work with no downtime.

In the previous example, we referenced a file like this:
http://sally.blob.core.windows.net/pictures/productl/mainFrontPanel.jpg.

http://sally.blob.core.windows.net/pictures/product1/mainFrontPanel.jpg

With the custom domain, it would now look like this: http:/pictures.(your
custom domain)/pictures/productl/mainFrontPanel.jpg.

Scale blob storage

We can scale blob storage both in terms of storage capacity and performance.
Each Azure subscription can have 200 storage accounts, with 500TB of capacity
each. That means that each Azure subscription can have 100 petabytes of data in
it without creating another subscription.

An individual block blob can have 50,000 100MB blocks with a total size of
4.75TB. An append blob has a max size of 195GB. A page blob has a max size
of 8TB.

In order to scale performance, we have several features available to us. We
can implement an Azure CDN to enable geo-caching to keep blobs close to the
users. We can implement read access geo-redundant storage and offload some of
the reads to another geographic location (thus creating a mini-CDN that will be
slower, but cheaper).

Azure Storage blobs (and tables, queues, and files, too) have an amazing
feature. By far, the most expensive services for most cloud vendors is compute
time. You pay for how many and how fast the processors are in the service you
are using. Azure Storage doesn’t charge for compute. It only charges for disk
space used and network bandwidth (which is a fairly nominal charge). Azure
Storage blobs are partitioned by storage account name + container name + blob
name. This means that each blob is retrieved by one and only one server. Many
small files will perform better in Azure Storage than one large file. Blobs use
containers for logical grouping, but each blob can be retrieved by different
compute resources, even if they are in the same container.

Azure files

Azure file storage provides a way for applications to share storage accessible via
SMB 2.1 protocol. It is particularly useful for VMs and cloud services as a
mounted share, and applications can use the File Storage API to access file
storage.

More Info: File Storage Documentation

For additional information on file storage, see the guide at:
http://azure.microsoft.com/en-us/documentation/articles/storage-
dotnet-how-to-use-files/.

http://pictures.(yourcustomdomain)/pictures/product1/mainFrontPanel.jpg
http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-files/

Implement blob leasing

You can create a lock on a blob for write and delete operations. The lock can be
between 15 and 60 seconds or it can be infinite. To write to a blob with an active
lease, the client must include the active lease ID with the request.

When a client requests a lease, a lease ID is returned. The client may then use
this lease ID to renew, change, or release the lease. When the lease is active, the
lease ID must be included to write to the blob, set any meta data, add to the blob
(through append), copy the blob, or delete the blob. You may still read a blob
that has an active lease ID to another client and without using the lease ID.

The code to acquire a lease looks like the following example (assuming the
blockBlob variable was instantiated earlier):

Click here to view code image

TimeSpan? leaseTime = TimeSpan.FromSeconds(60);
string leaseID = blockBlob.AcquirelLease(leaseTime, null);

Create connections to files from on-premises or cloudbased
Windows or, Linux machines

Azure Files can be used to replace on-premise file servers or NAS devices. You
can connect to Azure Files using Windows, Linux, or MacOS.

You can mount an Azure File share using Windows File Explorer,
PowerShell, or the Command Prompt. To use File Explorer, follow these steps:

1. Open File Explorer

2. Under the computer menu, click Map Network Drive (see Figure 2-1).

s | This PC |

Computer View
Properties Ope me | Access Map network ;‘l
media~| dnve~
Locall| e Map network drive
& « sy Disconnect network drive ' l

FIGURE 2-1 Map network Drive

3. Copy the UNC path from the Connect pane in the Azure portal, as shown in
Figure 2-2.

Connect

myazurefileshare

Connecting from Windows

To connect to this file share from a Windows computer, run this
command:

> net use [drive letter]
\\myazurefileaccount.file.core.windows.net\myazurefiles

JU: AZURE EM}I’BZUI"‘E rileaccount

mehLWRwIkxSZTBFs8QFd7X13qjwF8Tojea2EudBfTeed /alobuBlupl

b,

FIGURE 2-2 Azure portal UNC path

4. Select the drive letter and enter the UNC path.

5. Use the storage account name prepended with Azure\ as the username and
the Storage Account Key as the password (see Figure 2-3).

Windows Security

Enter network credentials

Enter your credentials to connect to:
myazurefileaccount file.corewindows.net

o AZURE\myazurefileshareaccount

PERERSRRRRRR AR RN R RN OO RERRRRRS

Domain: AZURE

[] Remember my credentials

More choices

oK Cancel

FIGURE 2-3 Login credentials for Azure Files

The PowerShell code to map a drive to Azure Files looks like this:

Click here to view code image

$acctKey = ConvertTo-SecureString -String "<storage-account-key>"
AsPlainText

-Force

$credential = New-Object System.Management.Automation.PSCredential -
ArgumentlList

"Azure\<storage-account-name>", $acctKey

New-PSDrive -Name <desired-drive-letter> -PSProvider FileSystem -Root

"\\<storage-account-name>.file.core.windows.net\<share-name>"
Credential $credential

To map a drive using a command prompt, use a command that looks like this:
Click here to view code image

net use <desired-drive-letter>: \\<storage-account-
name>.file.core.windows.net

\<share-name> <storage-account-key> /user:Azure\<storage-account-name>

To use Azure Files on a Linux machine, first install the cifs-utils package.

Thon rreate a falder far a mannt nnint ncainag mldir A fterurarde 11ce the mnnnt

A4 11V LILUlL U 1vIvLlL 1VUL U v viiiL uo1iil 1irIvlILl ., L A1LLL VVULOUILD CIOL LiIL Liiuvuni
b

command with code similar to the following:
Click here to view code image

sudo mount -t cifs //<storage-account-
name>,file.core.windows.net/<share-name>
./mymountpoint -o vers=2.1,username=<storage-account-name>, password=

<storage-
account-key>, dir_mode=0777, file_mode=0777, serverino

Shard large datasets

Each blob is held in a container in Azure Storage. You can use containers to
group related blobs that have the same security requirements. The partition key
of a blob is account name + container name + blob name. Each blob can have its
own partition if load on the blob demands it. A single blob can only be served by
a single server. If sharding is needed, you need to create multiple blobs.

Skill 2.2: Implement Azure Storage tables, queues, and Azure
Cosmos DB Table API
Azure Tables are used to store simple tabular data at petabyte scale on Microsoft

Azure. Azure Queue storage is used to provide messaging between application
components so they can be de-coupled and scale under heavy load.

This skill covers how to:

» Implement CRUD with and without transactions;
m Design and manage partitions;

® Query using OData;

m Designing, managing, and scaling tablepartitions;
m Add and process queue messages;

m Retrieve a batch of messages;

m Scale queues

m Choose between Azure Storage Tables and Azure Cosmos DB Table
API

Azure Table Storage

Azure Tables are simple tables filled with rows and columns. They are a key-
value database solution, which references how the data is stored and retrieved,

— n

not how complex the table can be. ‘l'ables store data as a collection ot entities.
Each entity has a property. Azure Tables can have 255 properties (or columns to
hijack the relational vocabulary). The total entity size (or row size) cannot
exceed 1MB. That might seem small initially, but 1IMB can store a lot of tabular
data per entity. Azure Tables are similar to Azure Storage blobs, in that you are
not charged for compute time for inserting, updating, or retrieving your data.
You are only charged for the total storage of your data.

Azure Tables are stored in the same storage account as Azure Storage blobs
discussed earlier. Where blobs organize data based on container, Azure Tables
organize data based on table name. Entities that are functionally the same should
be stored in the same table. For example, all customers should be stored in the
Customers table, while their orders should be stored in the Orders table.

Azure Tables store entities based on a partition key and a row key. Partition
keys are the partition boundary. All entities stored with the same PartitionKey
property are grouped into the same partition and are served by the same partition
server. Choosing the correct partition key is a key responsibility of the Azure
developer. Having a few partitions will improve scalability, as it will increase
the number of partition servers handling your requests. Having too many
partitions, however, will affect how you do batch operations like batch updates
or large data retrieval. We will discuss this further at the end of this section.

Later in this chapter, we will discuss Azure SQL Database. Azure SQL
Database also allows you to store tabular data. Why would you use Azure Tables
vs Azure SQL Database? Why have two products that have similar functions?
Well, actually they are very different.

Azure Tables service does not enforce any schema for tables. It simply stores
the properties of your entity based on the partition key and the row key. If the
data in the entity matches the data in your object model, your object is populated
with the right values when the data is retrieved. Developers need to enforce the
schema on the client side. All business logic for your application should be
inside the application and not expected to be enforced in Azure Tables. Azure
SQL Database also has an incredible amount of features that Azure Tables do
not have including: stored procedures, triggers, indexes, constraints, functions,
default values, row and column level security, SQL injection detection, and
much, much more.

If Azure Tables are missing all of these features, why is the service so popular
among developers? As we said earlier, you are not charged for compute
resources when using Azure Tables, and you are charged in Azure SQL DB.
This makes Azure Tables extremely affordable for large datasets. If we

ettectively use table partitioning, Azure lables will also scale very well without
sacrificing performance.

Now that you have a good overview of Azure Tables, let’s dive right in and
look at using it. If you’ve been following along through Azure Storage blobs,
some of this code will be familiar to you.

Using basic CRUD operations
In this section, you learn how to access table storage programmatically.

Creating a table

1. Create a C# console application.

2. In your app.config file, add an entry under the Configuration element,
replacing the account name and key with your own storage account details:

Click here to view code image

<configuration>

<appSettings>

<add key="StorageConnectionString"

value="DefaultEndpointsProtocol=
https;AccountName=<your account name>;AccountKey=<your account
key>" />

</appSettings>
</configuration>

Use NuGet to obtain the Microsoft. WindowsAzure.Storage.dll. An easy way
to do this is by using the following command in the NuGet console:
1. Install-package windowsazure.storage
2. Add the following using statements to the top of your Program.cs file:
Click here to view code image

using Microsoft.wWindowsAzure.Storage;

using Microsoft.WindowsAzure.Storage.Auth;
using Microsoft.WindowsAzure.Storage.Table;
using Microsoft.WindowsAzure;

using System.Configuration;

3. Add a reference to System.Configuration.

4. Type the following command to retrieve your connection string in the Main
function of Program.cs:
Click here to view code image

var storageAccount =CloudStorageAccount.Parse

A -~ .o ~ . wAan

(LonTigurationmanager.AppSettings| “Storageconnectionstring-]);

5. Use the following command to create a table if one doesn’t already exist:

Click here to view code image

CloudTableClient tableClient =
storageAccount.CreateCloudTableClient();

CloudTable table = tableClient.GetTableReference("orders");
table.CreateIfNotExists();

Inserting records

To add entries to a table, you create objects based on the TableEntity base class
and serialize them into the table using the Storage Client Library. The following
properties are provided for you in this base class:

m Partition Key Used to partition data across storage infrastructure
= Row Key Unique identifier in a partition

m Timestamp Time of last update maintained by Azure Storage

m ETag Used internally to provide optimistic concurrency

The combination of partition key and row key must be unique within the table.
This combination is used for load balancing and scaling, as well as for querying
and sorting entities.

Follow these steps to add code that inserts records:

1. Add a class to your project, and then add the following code to it:
Click here to view code image

using System;
using Microsoft.WindowsAzure.Storage.Table;
public class OrderEntity : TableEntity
{
public OrderEntity(string customerName, string orderDate)
{
this.PartitionKey = customerName;
this.RowKey = orderDate;
}
public OrderEntity() { }
public string OrderNumber { get; set; }
public DateTime RequiredDate { get; set; }
public DateTime ShippedDate { get; set; }
public string Status { get; set; }
}

2. Add the following code to the console program to insert a record:

Click here to view code image

CloudTableClient tableClient =
storageAccount.CreateCloudTableClient();

CloudTable table = tableClient.GetTableReference("orders");

OrderEntity newOrder = new OrderEntity("Archer", "20141216");

newOrder.OrderNumber "101";

newOrder.ShippedDate = Convert.ToDateTime("12/18/2017");

newOrder .RequiredDate = Convert.ToDateTime("12/14/2017");

newOrder.Status = "shipped";

TableOperation insertOperation = TableOperation.Insert(newOrder);

table.Execute(insertOperation);

Inserting multiple records in a transaction

You can group inserts and other operations into a single batch transaction. All
operations in the batch must take place on the same partition. You can have up to

100 entities in a batch. The total batch payload size cannot be greater than four
MBs.

The following code illustrates how to insert several records as part of a single
transaction. This is done after creating a storage account object and table.:

Click here to view code image

TableBatchOperation batchOperation = new TableBatchOperation();

OrderEntity newOrderl = new OrderEntity("Lana", "20141217");
newOrderl.0rderNumber "102";

newOrderl.ShippedDate = Convert.ToDateTime("1/1/1900");
newOrderl.RequiredDate = Convert.ToDateTime("1/1/1900");
newOrderl.Status = "pending";

OrderEntity newOrder2 = new OrderEntity("Lana", "20141218");
newOrder2.0rderNumber "103";

newOrder2.ShippedDate = Convert.ToDateTime("1/1/1900");
newOrder2.RequiredDate = Convert.ToDateTime("12/25/2014");
newOrder2.Status = "open";

OrderEntity newOrder3 = new OrderEntity("Lana", "20141219");
newOrder3.0rderNumber "103";

newOrder3.ShippedDate = Convert.ToDateTime("12/17/2014");
newOrder3.RequiredDate = Convert.ToDateTime("12/17/2014");
newOrder3.Status = "shipped";
batchOperation.Insert(newOrderl);
batchOperation.Insert(newOrder2);

batchOperation.Insert(newOrder3);
table.ExecuteBatch(batchOperation);

More Info: Entity Group Transactions

You can batch transactions that belong to the same table and
partition group for insert, update, merge, delete, and related
actions programmatically or by using the Storage API. For more
information, see the reference at http://msdn.microsoft.com/en-

us/library/dd894038.aspx.

Getting records in a partition

You can select all of the entities in a partition or a range of entities by partition
and row key. Wherever possible, you should try to query with the partition key
and row key. Querying entities by other properties does not work well because it
launches a scan of the entire table.

Within a table, entities are ordered within the partition key. Within a partition,
entities are ordered by the row key. RowKey is a string property, so sorting is
handled as a string sort. If you are using a date value for your RowKey property
use the following order: year, month, day. For instance, use 20140108 for
January 8, 2014.

The following code requests all records within a partition using the
PartitionKey property to query:

Click here to view code image

TableQuery<OrderEntity> query = new TableQuery<OrderEntity>().Where(
TableQuery.GenerateFilterCondition("PartitionKey",
QueryComparisons.Equal, "Lana"));

foreach (OrderEntity entity in table.ExecuteQuery(query))

{
Console.WriteLine("{0}, {1}\t{2}\t{3}", entity.PartitionKey,

entity.RowKey,
entity.Status, entity.RequiredDate);

}
Console.ReadKey();

Updating records

One technique you can use to update a record is to use InsertOrReplace(). This
creates the record if one does not already exist or updates an existing record,
based on the partition key and the row key. In this example, we retrieve a record

hl hl . P 1 . 1 1 1 1 - TT™ .

http://msdn.microsoft.com/en-us/library/dd894038.aspx

we Inserted during the patch 1nsert example, change the status and shippedpate
property and then execute an InsertOrReplace operation:

Click here to view code image

TableOperation retrieveOperation = TableOperation.Retrieve<OrderEntity>
("Lana" ,

"'20141217");

TableResult retrievedResult = table.Execute(retrieveOperation);
OrderEntity updateEntity = (OrderEntity)retrievedResult.Result;

if (updateEntity != null)

{
updateEntity.Status = "shipped";

updateEntity.ShippedDate = Convert.ToDateTime("12/20/2014");
TableOperation insertOrReplaceOperation = TableOperation.
InsertOrReplace(updateEntity);
table.Execute(insertOrReplaceOperation);
}

Deleting a record

To delete a record, first retrieve the record as shown in earlier examples, and
then delete it with code, such as assuming deleteEntity is declared and populated
similar to how we created one earlier:

Click here to view code image

TableOperation deleteOperation = TableOperation.Delete(deleteEntity);
table.Execute(deleteOperation);
Console.WritelLine("Entity deleted.");

Querying using ODATA

The Storage API for tables supports OData, which exposes a simple query
interface for interacting with table data. Table storage does not support
anonymous access, so you must supply credentials using the account key or a
Shared Access Signature (SAS) (discussed in “Manage Access) before you can
perform requests using OData.

To query what tables you have created, provide credentials, and issue a GET
request as follows:

Click here to view code image

https://myaccount.table.core.windows.net/Tables

To query the entities in a specific table, provide credentials, and issue a GET
request formatted as follows:

Click here to view code image

https://<your account name>.table.core.windows.net/<your table
name>(PartitionKey='<partition-key>’, RowKey='<row-key>')?$select=
<comma separated
property names>

Note: Query Limitations

The result is limited to 1,000 entities per request, and the query will
run for a maximum of five seconds.

More Info: Odata

For more information on OData, see the reference at
http://msdn.microsoft.com/en-us/library/azure/dn535600.aspXx.

Designing, managing, and scaling table partitions

The Azure Table service can scale to handle massive amounts of structured data
and billions of records. To handle that amount, tables are partitioned. The
partition key is the unit of scale for storage tables. The table service will spread
your table to multiple servers and key all rows with the same partition key co-
located. Thus, the partition key is an important grouping, not only for querying
but also for scalability.

There are three types of partition keys to choose from:

= Single value There is one partition key for the entire table. This favors a
small number of entities. It also makes batch transactions easier since batch
transactions need to share a partition key to run without error. It does not
scale well for large tables since all rows will be on the same partition server.

m Multiple values This might place each partition on its own partition server.
If the partition size is smaller, it’s easier for Azure to load balance the
partitions. Partitions might get slower as the number of entities increases.
This might make further partitioning necessary at some point.

m Unique values This is many small partitions. This is highly scalable, but
batch transactions are not possible.

For query performance, you should use the partition key and row key together
when possible. This leads to an exact row match. The next best thing is to have
an exact partition match with a row range. It is best to avoid scanning the entire
table.

http://msdn.microsoft.com/en-us/library/azure/dn535600.aspx

Azure Storage Queues

The Azure Storage Queue service provides a mechanism for reliable inter-
application messaging to support asynchronous distributed application
workflows. This section covers a few fundamental features of the Queue service

for adding messages to a queue, processing those messages individually or in a
batch, and scaling the service.

More Info: Queue Service

For a general overview of working with the Queue service, see the
reference at http://azure.microsoft.com/en-
us/documentation/articles/storage-dotnet-how-to-use-queues/.

Adding messages to a queue

You can access your storage queues and add messages to a queue using many
storage browsing tools; however, it is more likely you will add messages
programmatically as part of your application workflow.

The following code demonstrates how to add messages to a queue. In order to
use it, you will need a using statement for

Microsoft. WindowsAzure.Storage.Queue. You can also create a queue in the
portal called, “queue:”

Click here to view code image

CloudQueueClient queueClient = storageAccount.CreateCloudQueueClient();

//This code assumes you have a queue called "queue" already. If you
don’t have one, you

should call queue.CreateIfNotExists();

CloudQueue queue = queueClient.GetQueueReference("queue");
queue.AddMessage(new CloudQueueMessage('"Queued message 1"));
queue.AddMessage(new CloudQueueMessage('"Queued message 2"));
queue.AddMessage(new CloudQueueMessage('"Queued message 3"))

4

In the Azure Portal, you can browse to your storage account, browse to
Queues, click the queue in the list and see the above messages.

Note: Message Identifiers

The Queue service assigns a message identifier to each message

http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-queues/

when it is added to the queue. This is opaque to the client, but it is
used by the Storage Client Library to identify a message uniquely
when retrieving, processing, and deleting messages.

More Info: Large Messages

There is a limit of 64 KB per message stored in a queue. It is
considered best practice to keep the message small and to store any
required data for processing in a durable store, such as SQL
Azure, storage tables, or storage blobs. This also increases system
reliability since each queued message can expire after seven days if
not processed. For more information, see the reference at
https://docs.microsoft.com/en-us/azure/service-bus-
messaging/service-bus-azure-and-service-bus-queues-compared-
contrasted.

Processing messages

Messages are typically published by a separate application in the system from
the application that listens to the queue and processes messages. As shown in the
previous section, you can create a CloudQueue reference and then proceed to

call GetMessage() to de-queue the next available message from the queue as
follows:

Click here to view code image

CloudQueueMessage message = queue.GetMessage(new TimeSpan(0, 5, 0));
if (message != null)

{

string theMessage = message.AsString;

// your processing code goes here

}

Note: Invisibility Setting

By default, when you de-queue a message, it is invisible to the
queue for 30 seconds. In the event message processing exceeds this
timeframe, supply an alternate setting for this value when creating
or updating the message. You can set the timeout to a value
between one second and seven days. Visibility can also exceed the
message expiry time.

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted

Retrieving a batch of messages

A queue listener can be implemented as single-threaded (processing one
message at a time) or multi-threaded (processing messages in a batch on separate
threads). You can retrieve up to 32 messages from a queue using the
GetMessages() method to process multiple messages in parallel. As discussed in
the previous sections, create a CloudQueue reference, and then proceed to call
GetMessages(). Specify the number of items to de-queue up to 32 (this number
can exceed the number of items in the queue) as follows:

Click here to view code image

IEnumerable<CloudQueueMessage> batch = queue.GetMessages(10, new
TimeSpan(0, 5, 0));
foreach (CloudQueueMessage batchMessage in batch)

{

Console.WritelLine(batchMessage.AsString);

}

Note: Parallel Processing Overhead

Consider the overhead of message processing before deciding the
appropriate number of messages to process in parallel. If
significant memory, disk space, or other network resources are
used during processing, throttling parallel processing to an
acceptable number will be necessary to avoid performance
degradation on the compute instance.

Scaling queues

When working with Azure Storage queues, you need to consider a few
scalability issues, including the messaging throughput of the queue itself and the
design topology for processing messages and scaling out as needed.

Each individual queue has a target of approximately 20,000 messages per
second (assuming a message is within 1 KB). You can partition your application
to use multiple queues to increase this throughput value.

As for processing messages, it is more cost effective and efficient to pull
multiple messages from the queue for processing in parallel on a single compute
node; however, this depends on the type of processing and resources required.
Scaling out compute nodes to increase processing throughput is usually also
required.

You can configure VMs or cloud services to auto-scale by queue. You can

specify the average number of messages to be processed per instance, and the
auto-scale algorithm will queue to run scale actions to increase or decrease
available instances accordingly.

More Info: Back Off Polling

To control storage costs, you should implement a back off polling
algorithm for queue message processing. This and other scale
considerations are discussed in the reference at
https://docs.microsoft.com/en-us/azure/storage/common/storage-
performance-checklist.

Choose between Azure Storage Tables and Azure Cosmos DB
Table API

Azure Cosmos DB is a cloud-hosted, NoSQL database that allows different data
models to be implemented. NoSQL databases can be key/value stores, table
stores, and graph stores (along with several others). Azure Cosmos DB has
different engines that accommodate these different models. Azure Cosmos DB
Table API is a key value store that is very similar to Azure Storage Tables.

The main differences between these products are:

m Azure Cosmos DB is much faster, with latency lower than 10ms on reads
and 15ms on writes at any scale.

m Azure Table Storage only supports a single region with one optional readable
secondary for high availability. Azure Cosmos DB supports over 30 regions.

m Azure Table Storage only indexes the partition key and the row key. Azure
Cosmos DB automatically indexes all properties.

m Azure Table Storage only supports strong or eventual consistency.
Consistency refers to how up to date the data is that you read and weather
you see the latest writes from other users. Stronger consistency means less
overall throughput and concurrent performance while having more up to date
data. Eventual consistency allows for high concurrent throughput but you
might see older data. Azure Cosmos DB supports five different consistency
models and allows those models to be specified at the session level. This
means that one user or feature might have a different consistency level than a
different user or feature.

m Azure Table Storage only charges you for the storage fees, not for compute

https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-checklist

fees. This makes Azure Table Storage very affordable. Azure Cosmos DB
charges for a Request Unit (RU) which really is a way for a PAAS product to
charge for compute fees. If you need more RUs, you can scale them up. This
makes Cosmos DB significantly more expensive than Azure Storage Tables.

Skill 2.3: Manage access and monitor storage

We have already learned how Azure Storage allows access through access keys,
but what happens if we want to gain access to specific resources without giving
keys to the entire storage account? In this topic, we’ll introduce security issues
that may arise and how to solve them.

Azure Storage has a built-in analytics feature called Azure Storage Analytics
used for collecting metrics and logging storage request activity. You enable
Storage Analytics Metrics to collect aggregate transaction and capacity data, and
you enable Storage Analytics Logging to capture successful and failed request
attempts to your storage account. This section covers how to enable monitoring
and logging, control logging levels, set retention policies, and analyze the logs.

This skill covers how to:

m Generate shared access signatures, including client renewal and data
validation

m Create stored access policies

m Regenerate storage account keys

m Configure and use Cross-Origin Resource Sharing (CORS)
m Set retention policies and logging levels

= Analyze logs

Generate shared access signatures

By default, storage resources are protected at the service level. Only
authenticated callers can access tables and queues. Blob containers and blobs can
optionally be exposed for anonymous access, but you would typically allow
anonymous access only to individual blobs. To authenticate to any storage
service, a primary or secondary key is used, but this grants the caller access to all
actions on the storage account.

An SAS is used to delegate access to specific storage account resources
without enabling access to the entire account. An SAS token lets you control the
lifetime bv setting the start and expiration time of the signature. the resources

you are g;anting access to, and the permissions being grzlnted.)
The following is a list of operations supported by SAS:

m Reading or writing blobs, blob properties, and blob metadata

m Leasing or creating a snapshot of a blob

m Listing blobs in a container

m Deleting a blob

» Adding, updating, or deleting table entities

m Querying tables

m Processing queue messages (read and delete)

m Adding and updating queue messages

m Retrieving queue metadata

This section covers creating an SAS token to access storage services using the
Storage Client Library.

More Info: Controlling Anonymous Access

To control anonymous access to containers and blobs, follow the
instructions provided at http://msdn.microsoft.com/en-

us/library/azure/dd179354.aspx.

More Info: Constructing an Sas Uri

SAS tokens are typically used to authorize access to the Storage
Client Library when interacting with storage resources, but you
can also use it directly with the storage resource URI and use
HTTP requests directly. For details regarding the format of an
SAS URI, see http:/msdn.microsoft.com/en-
us/library/azure/dn140255.aspx.

Creating an SAS token (Blobs)

The following code shows how to create an SAS token for a blob container.
Note that it is created with a start time and an expiration time. It is then applied
to a blob container:

Click here to view code image

SharedAccessBlobPolicy sasPolicy = new SharedAccessBlobPolicy();

http://msdn.microsoft.com/en-us/library/azure/dd179354.aspx
http://msdn.microsoft.com/en-us/library/azure/dn140255.aspx

sasPolicy.SharedAccessExpiryTime = DateTime.UtcNow.AddHours(1);
sasPolicy.SharedAccessStartTime = DateTime.UtcNow.Subtract(new
TimeSpan(0, 5, 0));

sasPolicy.Permissions = SharedAccessBlobPermissions.Read |
SharedAccessBlobPermissions.

Write | SharedAccessBlobPermissions.Delete |
SharedAccessBlobPermissions.List;

CloudBlobContainer files = blobClient.GetContainerReference("files");
string sasContainerToken = files.GetSharedAccessSignature(sasPolicy);

The SAS token grants read, write, delete, and list permissions to the container
(rwdl). It looks like this:

Click here to view code image

?sv=2014-02-
14&sr=c&sig=B6bi4xKkdgOXhWg3RWIDO5peekq%2FRjvnuo5041hj1pA%3D&st=2014
-12-24T14%3A16%3A07Z2&se=2014-12-24T15%3A21%3A07Z&sp=rwdl

You can use this token as follows to gain access to the blob container without
a storage account key:

Click here to view code image

StorageCredentials creds = new StorageCredentials(sasContainerToken);
CloudStorageAccount accountWithSAS = new

CloudStorageAccount (accountSAS, "accountname",

endpointSuffix: null, useHttps: true);

CloudBlobClientCloudBlobContainer sasFiles =
sasClient.GetContainerReference("files");

With this container reference, if you have write permissions, you can interact
with the container as you normally would assuming you have the correct
permissions.

Creating an SAS token (Queues)

Assuming the same account reference as created in the previous section, the
following code shows how to create an SAS token for a queue:

Click here to view code image

CloudQueueClient queueClient = account.CreateCloudQueueClient();
CloudQueue queue = queueClient.GetQueueReference("queue");
SharedAccessQueuePolicy sasPolicy = new SharedAccessQueuePolicy();
sasPolicy.SharedAccessExpiryTime = DateTime.UtcNow.AddHours(1);
sasPolicy.Permissions = SharedAccessQueuePermissions.Read |
SharedAccessQueuePermissions.Add | SharedAccessQueuePermissions.Update

SharedAccessQueuePermissions.ProcessMessages;

sasPolicy.SharedAccessStartTime = DateTime.UtcNow.Subtract(new
TimeSpan(0, 5, 0));

string sasToken = queue.GetSharedAccessSignature(sasPolicy);

The SAS token grants read, add, update, and process messages permissions to
the container (raup). It looks like this:

Click here to view code image

?sv=2014-02-

14&sig=wE50AUYHCcGJ8chwyZZd3Byp5jK1Po8uKu2t%2FYzQsIhY%3D&st=2014-12-2
AT14%3A23%3A22728se=2014-12-24T15%3A28%3A22Z&Sp=raup

You can use this token as follows to gain access to the queue and add messages:

Click here to view code image

StorageCredentials creds = new StorageCredentials(sasContainerToken);
CloudQueueClient sasClient = new CloudQueueClient(new
Uri("https://dataikel.queue.core.windows.net/"), creds);

CloudQueue sasQueue = sasClient.GetQueueReference("queue");

sasQueue.AddMessage(new CloudQueueMessage("new message"));
Console.ReadKey();

Important: Secure Use of Sas

Always use a secure HTTPS connection to generate an SAS token
to protect the exchange of the URI, which grants access to
protected storage resources.

Creating an SAS token (Tables)
The following code shows how to create an SAS token for a table:

Click here to view code image

SharedAccessTablePolicy sasPolicy = new SharedAccessTablePolicy();
sasPolicy.SharedAccessExpiryTime = DateTime.UtcNow.AddHours(1);
sasPolicy.Permissions = SharedAccessTablePermissions.Query |
SharedAccessTablePermissions.Add | SharedAccessTablePermissions.Update

SharedAccessTablePermissions.Delete;

sasPolicy.SharedAccessStartTime = DateTime.UtcNow.Subtract(new
TimeSpan(0, 5, 0));

string sasToken = table.GetSharedAccessSignature(sasPolicy);

The SAS token grants query, add, update, and delete permissions to the
container (raud). It looks like this:

Click here to view code image

?sv=2014-02-
14&tn=%24109s&sig=dsnI7RBA1XYQVr%2FT1pDEZMO2H8YtSGwtyuUUntVmxstA%3D&s
t=2014-12-24T14%3A48%3A09Z2&se=2014-12-24T15%3A53%3A09Z&sp=raud

Renewing an SAS token

SAS tokens have a limited period of validity based on the start and expiration
times requested. You should limit the duration of an SAS token to limit access to
controlled periods of time. You can extend access to the same application or user
by issuing new SAS tokens on request. This should be done with appropriate
authentication and authorization in place.

Validating data

When you extend write access to storage resources with SAS, the contents of
those resources can potentially be made corrupt or even be tampered with by a
malicious party, particularly if the SAS was leaked. Be sure to validate system
use of all resources exposed with SAS keys.

Create stored access policies

Stored access policies provide greater control over how you grant access to
storage resources using SAS tokens. With a stored access policy, you can do the
following after releasing an SAS token for resource access:

m Change the start and end time for a signature’s validity
= Control permissions for the signature
= Revoke access

The stored access policy can be used to control all issued SAS tokens that are
based on the policy. For a step-by-step tutorial for creating and testing stored
access policies for blobs, queues, and tables, see http://azure.microsoft.com/en-
us/documentation/articles/storage-dotnet-shared-access-signature-part-2.

Important: Recommendation for Sas Tokens

Use stored access policies wherever possible, or limit the lifetime of
SAS tokens to avoid malicious use.

More Info: Stored Access Policy Format

For more information on the HTTP request format for creating
stored access policies, see: https://docs.microsoft.com/en-

http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-shared-access-signature-part-2
https://docs.microsoft.com/en-us/rest/api/storageservices/establishing-a-stored-access-policy

us/rest/api/storageservices/establishing-a-stored-access-policy.

Regenerate storage account keys

When you create a storage account, two 512-bit storage access keys are
generated for authentication to the storage account. This makes it possible to
regenerate keys without impacting application access to storage.

The process for managing keys typically follows this pattern:

1.

When you create your storage account, the primary and secondary keys are
generated for you. You typically use the primary key when you first deploy
applications that access the storage account.

When it is time to regenerate keys, you first switch all application
configurations to use the secondary key.

Next, you regenerate the primary key, and switch all application
configurations to use this primary key.

Next, you regenerate the secondary key.

Important: Managing Key Regeneration

It is imperative that you have a sound key management strategy. In
particular, you must be certain that all applications are using the
primary key at a given point in time to facilitate the regeneration
process.

Regenerating storage account keys

To regenerate storage account keys using the portal, complete the following
steps:

1.
2.

Navigate to the management portal accessed via https://portal.azure.com.

Select your storage account from your dashboard or your All Resources
list.

Click the Keys box.

On the Manage Keys blade, click Regenerate Primary or Regenerate
Secondary on the command bar, depending on which key you want to
regenerate.

In the confirmation dialog box, click Yes to confirm the key regeneration.

https://portal.azure.com

Configure and use Cross-Origin Resource Sharing

Cross-Origin Resource Sharing (CORS) enables web applications running in the
browser to call web APIs that are hosted by a different domain. Azure Storage
blobs, tables, and queues all support CORS to allow for access to the Storage
API from the browser. By default, CORS is disabled, but you can explicitly
enable it for a specific storage service within your storage account.

More: Info Enabling Cors

For additional information about enabling CORS for your storage
accounts, see: http://msdn.microsoft.com/en-

us/library/azure/dn535601.aspx.

Configure storage metrics

Storage Analytics metrics provide insight into transactions and capacity for your
storage accounts. You can think of them as the equivalent of Windows
Performance Monitor counters. By default, storage metrics are not enabled, but
you can enable them through the management portal, using Windows
PowerShell, or by calling the management API directly.

When you configure storage metrics for a storage account, tables are
generated to store the output of metrics collection. You determine the level of
metrics collection for transactions and the retention level for each service: Blob,
Table, and Queue.

Transaction metrics record request access to each service for the storage
account. You specify the interval for metric collection (hourly or by minute). In
addition, there are two levels of metrics collection:

m Service level These metrics include aggregate statistics for all requests,
aggregated at the specified interval. Even if no requests are made to the
service, an aggregate entry is created for the interval, indicating no requests
for that period.

m API level These metrics record every request to each service only if a
request is made within the hour interval.

Note: Metrics Collected

All requests are included in the metrics collected, including any
requests made by Storage Analytics.

http://msdn.microsoft.com/en-us/library/azure/dn535601.aspx

Capacity metrics are only recorded for the Blob service for the account.
Metrics include total storage in bytes, the container count, and the object count
(committed and uncommitted).

Table 2-1 summarizes the tables automatically created for the storage account
when Storage Analytics metrics are enabled.

TABLE 2-1 Storage metrics tables

METRICS TABLE NAMES

Hourly metrics $MetricsHourPrimaryTransactionsBlob
$MetricsHourPrimaryTransactionsTable
$MetricsHourPrimaryTransactionsQueue
$MetricsHourPrimaryTransactionsFile

Minute metrics (cannot set $MetricsMinutePrimaryTransactionsBlob
throulg)h the management $MetricsMinutePrimaryTransactionsTable
porta

$MetricsMinutePrimaryTransactionsQueue
$MetricsMinutePrimaryTransactionsFile

Capacity (only for the Blob $MetricsCapacityBlob
service)

More Info: Storage Analytics Metrics Tabale Schema

For additional details on the transaction and capacity metrics
collected, see: https://docs.microsoft.com/en-
us/rest/api/storageservices/storage-analytics-metrics-table-schema.

Retention can be configured for each service in the storage account. By
default, Storage Analytics will not delete any metrics data. When the shared 20-
terabyte limit is reached, new data cannot be written until space is freed. This
limit is independent of the storage limit of the account. You can specify a
retention period from O to 365 days. Metrics data is automatically deleted when
the retention period is reached for the entry.

When metrics are disabled, existing metrics that have been collected are
persisted up to their retention policy.

https://docs.microsoft.com/en-us/rest/api/storageservices/storage-analytics-metrics-table-schema

More Info: Storage Metrics

For more information about enabling and working with storage
metrics, see: http://msdn.microsoft.com/en-
us/library/azure/dn782843.aspx.

Configuring storage metrics and retention

To enable storage metrics and associated retention levels for Blob, Table, and
Queue services in the portal, follow these steps:

1. Navigate to the management portal accessed via https://portal.azure.com.

A. Select your storage account from your dashboard or your All
resources list.

B. Scroll down to the Usage section, and click the Capacity graph check
box.

C. On the Metric blade, click Diagnostics Settings on the command bar.

Click the On button under Status. This shows the options for metrics
and logging.

<

m If this storage account uses blobs, select Blob Aggregate Metrics to
enable service level metrics. Select Blob Per API Metrics for API
level metrics.

m If this storage account uses tables, select Table Aggregate Metrics to
enable service level metrics. Select Table Per API Metrics for API
level metrics.

m If this storage account uses queues, select Queue Aggregate Metrics
to enable service level metrics. Select Queue Per API Metrics for
API level metrics.

2. Provide a value for retention according to your retention policy. Through
the portal, this will apply to all services. It will also apply to Storage
Analytics Logging if that is enabled. Select one of the available retention
settings from the slider-bar, or enter a number from 0 to 365.

Note: Choosing a Metrics Level

Minimal metrics yield enough information to provide a picture of
the overall usage and health of the storage account services.

http://msdn.microsoft.com/en-us/library/azure/dn782843.aspx
https://portal.azure.com

Verbose metrics provide more insight at the API level, allowing for
deeper analysis of activities and issues, which is helpful for
troubleshooting.

Analyze storage metrics

Storage Analytics metrics are collected in tables as discussed in the previous
section. You can access the tables directly to analyze metrics, but you can also
review metrics in both Azure management portals. This section discusses
various ways to access metrics and review or analyze them.

More Info: Storage Monitoring, Diagnosing, and Troubleshooting

For more details on how to work with storage metrics and logs, see:

http://azure.microsoft.com/en-us/documentation/articles/storage-
monitoring-diagnosing-troubleshooting.

Monitor metrics

At the time of this writing, the portal features for monitoring metrics is limited to
some predefined metrics, including total requests, total egress, average latency,
and availability (see Figure 2-4). Click each box to see a Metric blade that
provides additional detail.

http://azure.microsoft.com/en-us/documentation/articles/storage-monitoring-diagnosing-troubleshooting

Total requests Total egress

[
[1="

TOTALRECUESTS

10

Average E2E latency Success percentage

100

FIGURE 2-4 Monitoring overview from the portal

To monitor the metrics available in the portal, complete the following steps:

1. Navigate to the management portal accessed via https://portal.azure.com.

2. Select your storage account from your dashboard or your All Resources
list.

3. Scroll down to the Monitor section, and view the monitoring boxes
summarizing statistics. You’ll see TotalRequests, TotalEgress,
AverageE2ELatency, and AvailabilityToday by default.

4. Click each metric box to view additional details for each metric. You’ll see
metrics for blobs, tables, and queues if all three metrics are being collected.

Note: Customizing the Monitoring Blade

You can customize which boxes appear in the Monitoring area of
the portal, and you can adjust the size of each box to control how
much detail is shown at a glance without drilling into the metrics
blade.

Configure Storage Analytics Logging
Storage Analytics Logging provides details about successful and failed requests

https://portal.azure.com

to each storage service that has activity across the account’s blobs, tables, and
queues. By default, storage logging is not enabled, but you can enable it through
the management portal, by using Windows PowerShell, or by calling the
management API directly.

When you configure Storage Analytics Logging for a storage account, a blob
container named $logs is automatically created to store the output of the logs.
You choose which services you want to log for the storage account. You can log
any or all of the Blob, Table, or Queue servicesL.ogs are created only for those
services that have activity, so you will not be charged if you enable logging for a
service that has no requests. The logs are stored as block blobs as requests are
logged and are periodically committed so that they are available as blobs.

Note: Deleting the Log Container

After Storage Analytics has been enabled, the log container cannot
be deleted; however, the contents of the log container can be
deleted.

Retention can be configured for each service in the storage account. By default,
Storage Analytics will not delete any logging data. When the shared 20-terabyte
limit is reached, new data cannot be written until space is freed. This limit is
independent of the storage limit of the account. You can specify a retention
period from 0 to 365 days. Logging data is automatically deleted when the
retention period is reached for the entry.

Note: Duplicate Logs

Duplicate log entries may be present within the same hour. You
can use the Requestld and operation number to uniquely identify
an entry to filter duplicates.

More Info: Storage Logging

For more information about enabling and working with Azure
storage logging, see: http://msdn.microsoft.com/en-
us/library/azure/dn782843.aspx and http://msdn.microsoft.com/en-

us/library/azure/hh343262.aspx.

Set retention policies and logging levels To enable storage logging and

http://msdn.microsoft.com/en-us/library/azure/dn782843.aspx
http://msdn.microsoft.com/en-us/library/azure/hh343262.aspx

associated retention levels for Blob, Table, and Queue services in the portal,
follow these steps:

1. Navigate to the management portal accessed via https://portal.azure.com.

Select your storage account from your dashboard or your All resources list.
Under the Metrics section, click Diagnostics.

Eal s\

Click the On button under Status. This shows the options for enabling
monitoring features.

If this storage account uses blobs, select Blob Logs to log all activity.
If this storage account uses tables, select Table Logs to log all activity.
If this storage account uses queues, select Queue Logs to log all activity.

® NS w

Provide a value for retention according to your retention policy. Through
the portal, this will apply to all services. It will also apply to Storage
Analytics Metrics if that is enabled. Select one of the available retention
settings from the drop-down list, or enter a number from 0 to 365.

Note: Controlling Logged Activities

From the portal, when you enable or disable logging for each
service, you enable read, write, and delete logging. To log only
specific activities, use Windows PowerShell cmdlets.

Enable client-side logging

You can enable client-side logging using Microsoft Azure storage libraries to log
activity from client applications to your storage accounts. For information on the
.NET Storage Client Library, see: http://msdn.microsoft.com/en-
us/library/azure/dn782839.aspx. For information on the Storage SDK for Java,
see: http://msdn.microsoft.com/en-us/library/azure/dn782844.aspx.

Analyze logs

Logs are stored as block blobs in delimited text format. When you access the
container, you can download logs for review and analysis using any tool
compatible with that format. Within the logs, you’ll find entries for authenticated
and anonymous requests, as listed in Table 2-2.

TABLE 2-2 Authenticated and anonymous logs

Request type Logged requests

https://portal.azure.com
http://msdn.microsoft.com/en-us/library/azure/dn782839.a
http://msdn.microsoft.com/en-us/library/azure/dn782844.aspx

Authenticated
requests

Anonymous
requests

m Successful requests
m Failed requests such as timeouts, authorization,
throttling issues, and other errors

m Requests that use an SAS
m Requests for analytics data

m Successful requests

m Server errors

m Timeouts for client or server

m Failed GET requests with error code 304 (Not Modified)

Logs include status messages and operation logs. Status message columns
include those shown in Table 2-3. Some status messages are also reported with
storage metrics data. There are many operation logs for the Blob, Table, and

Queue services.

More Info: Status Messages and Operation Logs

For a detailed list ofx specific logs and log format specifics, see:
http://msdn.microsoft.com/en-us/library/azure/hh343260.aspx and

http://msdn.microsoft.com/en-us/library/hh343259.aspx.

TABLE 2-3 Information included in logged status messages

Column

Status
Message

Description

Billable

Availability

- .

Finding your logs

Description

Indicates a value for the type of status message, indicating
type of success or failure

Describes the status, including any HTTP verbs or status
codes

Indicates whether the request was billable

Indicates whether the request is included in the availability
calculation for storage metrics

http://msdn.microsoft.com/en-us/library/azure/hh343260.aspx
http://msdn.microsoft.com/en-us/library/hh343259.aspx

When storage logging 1s contigured, log data 1s saved to blobs 1n the $logs
container created for your storage account. You can’t see this container by
listing containers, but you can navigate directly to the container to access, view,
or download the logs.

To view analytics logs produced for a storage account, do the following:

Using a storage browsing tool, navigate to the $logs container within the
storage account you have enabled Storage Analytics Logging for using this
convention: https://<accountname>.blob.core.windows.net/$logs.

View the list of log files with the convention
<servicetype>/YYYY/MM/DD/HHMM)/<counter>.log.

Select the log file you want to review, and download it using the storage
browsing tool.

More Info: Log Metadata

The blob name for each log file does not provide an indication of
the time range for the logs. You can search this information in the
blob metadata using storage browsing tools or Windows
PowerShell.

View logs with Microsoft Excel
Storage logs are recorded in a delimited format so that you can use any
compatible tool to view logs. To view logs data in Excel, follow these steps:
1. Open Excel, and on the Data menu, click From Text.
2. Find the log file and click Import.

3. During import, select Delimited format. Select Semicolon as the only
delimiter, and Double-Quote (“) as the text qualifier.

Analyze logs

After you load your logs into a viewer like Excel, you can analyze and gather
information such as the following:

m Number of requests from a specific IP range

m Which tables or containers are being accessed and the frequency of those
requests

m Which user issued a request, in particular, any requests of concern
m Slow requests

m How many times a particular blob is being accessed with an SAS URL
m Details to assist in investigating network errors

More Info: Log Analysis

You can run the Azure HDInsight Log Analysis Toolkit (LAT) for
a deeper analysis of your storage logs. For more information, see:
https://hadoopsdk.codeplex.com/releases/view/117906.

Skill 2.4: Implement Azure SQL databases

In this section, you learn about Microsoft Azure SQL Database, a PaaS offering
for relational data.

This skill covers how to:

m Choose the appropriate database tier and performance level
m Configure and perform point in time recovery

= Enable geo-replication

m Import and export data and schema

m Scale Azure SQL databases

m Manage elastic pools, including DTUs and eDTUs

m Manage limits and resource governor

» Implement Azure SQL Data Sync

m Implement graph database functionality in Azure SQL

Choosing the appropriate database tier and performance level

Choosing a SQL Database tier used to be simply a matter of storage space.
Recently, Microsoft added new tiers that also affect the performance of SQL
Database. This tiered pricing is called Service Tiers. There are three service tiers
to choose from, and while they still each have restrictions on storage space, they
also have some differences that might affect your choice. The major difference is
in a measurement called database throughput units (DTUs). A DTU is a blended
measure of CPU, memory, disk reads, and disk writes. Because SQL Database is
a shared resource with other Azure customers, sometimes performance is not
stable or predictable. As you go up in performance tiers, you also get better
predictability in performance.

https://hadoopsdk.codeplex.com/releases/view/117906

= Basic Basic tier is meant for light workloads. There is only one performance
level of the basic service tier. This level is good for small use, new projects,
testing, development, or learning.

m Standard Standard tier is used for most production online transaction
processing (OLTP) databases. The performance is more predictable than the
basic tier. In addition, there are four performance levels under this tier, levels
SO to S3 (S4 — S12 are currently in preview).

® Premium Premium tier continues to scale at the same level as the standard
tier. In addition, performance is typically measured in seconds. For instance,
the basic tier can handle 16,600 transactions per hour. The standard/S2 level
can handle 2,570 transactions per minute. The top tier of premium can handle

735 transactions per second. That translates to 2,645,000 per hour in basic
tier terminology.

More Info: Sql Database Tiers and Throughput

For more information on SQL Database tiers, see:
http://msdn.microsoft.com/en-us/library/azure/dn741336.aspx.

There are many similarities between the various tiers. Each tier has a 99.99
percent uptime SL A, backup and restore capabilities, access to the same tooling,
and the same database engine features. Fortunately, the levels are adjustable, and
you can change your tier as your scaling requirements change.

The management portal can help you select the appropriate level. You can
review the metrics on the Metrics tab to see the current load of your database
and decide whether to scale up or down.

1. Click the SQL database you want to monitor.
2. Click the DTU tab, as shown in Figure 2-5.
3. Add the following metrics:

m CPU Percentage

m Physical Data Reads Percentage

= Log Writes Percentage

http://msdn.microsoft.com/en-us/library/azure/dn741336.aspx

Metrics

A+ Diagnostics settings + Add metric alert

Subscription @ Resource group @ Resource type @

Windows Azure MSDM - Visual Studio Ultimate | Default-Stomge-WestLI5 4 5 selected

Available metrics DTU percentage

Filter metnics..

+ You can only select metrics of the
same unit (%)
Blocked bry Firiwall
CPU penentage
DT Famit
DTU parcarmgs
DT uzed
Dt 10 parcantags
Database size perentage
Dmlocks
Failed Connections:
In-Mamnory OLTP storege percer

Leqg KO percentage

FIGURE 2-5 The Metrics tab

All three of these metrics are shown relative to the DTU of your database. If
you reach 80 percent of your performance metrics, it’s time to consider
increasing your service tier or performance level. If you’re consistently below 10
percent of the DTU, you might consider decreasing your service tier or
performance level. Be aware of momentary spikes in usage when making your
choice.

In addition, you can configure an email alert for when your metrics are 80
percent of your selected DTU by completing the following steps:
1. Click the metric.
2. Click Add Rule.

3. The first page of the Create Alert Rule dialog box is shown in Figure 2-6.
Add a name and description, and then click the right arrow.

Add an alert rule

Resource @

azuresqlike/ikedb (servers/databases)

MName @

Name

Description

Description

Metric @
Blocked by Firewall

6 PM Aug 14 5 AM 1Z2PM R

FIGURE 2-6 The first page of the Add An Alert Rule dialog box

. Scroll down for the rest of the page of the Create Alert Rule dialog box,
shown in Figure 2-7, select the condition and the threshold value.

Metric @
Blocked by Firewall

Condition
greater than

Threshold @
1

Period @
Ower the last 5 minutes

Email owners, contnbutors, and readers

Addrtional administrator email(s)

Add email addresses separated by semicolons

Webhook @

HTTP or HTTPS endpoint to route alerts to

FIGURE 2-7 The second page of the Create Alert Rule dialog box

5. Select your alert evaluation window. An email will be generated if the
event happens over a specific duration. You should indicate at least 10
minutes.

6. Select the action. You can choose to send an email either to the service
administrator(s) or to a specific email address.

Configuring and performing point in time recovery

Azure SQL Database does a full backup every week, a differential backup each
day, and an incremental log backup every five minutes. The incremental log
backup allows for a point in time restore, which means the database can be
restored to any specific time of day. This means that if you accidentally delete a
customer’s table from your database, you will be able to recover it with minimal
data loss if you know the timeframe to restore from that has the most recent

copy.
The length of time it takes to do a restore varies. The further awav vou get

vV (o]

from the last differential backup determines the longer the restore operation
takes because there are more log backups to restore. When you restore a new
database, the service tier stays the same, but the performance level changes to
the minimum level of that tier.

Depending on your service tier, you will have different backup retention
periods. Basic retains backups for 7 days. Standard and premium retains for 35
days.

You can restore a database that was deleted as long as you are within the
retention period. Follow these steps to restore a database:

1. Select the database you want to restore, and then click Restore.
2. The Restore dialog box opens, as shown in Figure 2-8.

5.

Restore

ikedb

Database name

' ikedb_2017-08-14T21-497

Oldest restore point
2017-08-07 00:00 UTC

Restore point (UTC)
2017-08-14 9:49:00 PM

Target server
azuresqlike West US

Elastic database pool
MNone

Pricing tier
Basic: 5 DTU, 2 GB

Pin to dashboard

FIGURE 2-8 The Restore dialog box

Select a database name.

Select a restore point. You can use the slider bar or manually enter a date
and time.

You can also restore a deleted database. Click on the SQL Server (not the
database) that once held the database you wish to restore. Select the
Deleted Databases tab, as shown in Figure 2-9.

© @ N

= a *
- WL R 2 PO K
= & | @ Secure | Mtpey/portalasan.com/Teabur I Taq.q a | m
m DATEBASE sTAPUE 0 FmKm Rt
B O
yidigr atecdC stabave i
L]
W sewig rySarmleTanalase 4
i &
-] &
-
- F
(L] ¥ D om
L SITTIHEE
=]
T 0 Freval Elastic databass pools
Elagtic dmabaie poaly
-] v hackup refentizn d F
@] P
B suditing & Trreat Deectior
b4 ﬂ Elastic database pn-nk@'
‘ iy HauE PREIRG THR PO, BT
¥ B EinE e
. T Te———]
o OTU quota
SUPBONT + TROVELESHOOTING
a
] P | .
i
5 400
i 0 0=
o
45000 on
Operations
i g
Ik B
Dol dababurlird e Enppenst ity

FIGURE 2-9 The Deleted Databases tab for SQL databases in the
management portal

Select the database you want to restore.

Click Restore as you did in Step 1.

Specify a database name for the new database.
Click Submit.

Enabling geo-replication

Every Azure SQL Database subscription has built-in redundancy. Three copies

of your data are stored across fault domains in the datacenter to protect against
server and hardware failire Thig i huilt in ta the snhserintion nrice and is not

B I e i A A i i el et

configurable.

In addition, you can configure active geo-replication. This allows your data to
be replicated between Azure data centers. Active geo-replication has the
following benefits:

m Database-level disaster recovery goes quickly when you’ve replicated
transactions to databases on different SQL Database servers in the same or
different regions.

® You can fail over to a different data center in the event of a natural disaster
or other intentionally malicious act.

m Online secondary databases are readable, and they can be used as load
balancers for read-only workloads such as reporting.

m With automatic asynchronous replication, after an online secondary database
has been seeded, updates to the primary database are automatically copied to
the secondary database.

Creating an offline secondary database
To create an offline secondary database in the portal, follow these steps:

1. Navigate to your SQL database in the management portal accessed via
https://portal.azure.com.

2. Scroll to the Geo Replication section, and click the Configure Geo
Replication box.

3. On the Geo Replication blade, select your target region.
4. On the Create Secondary blade, click Create.

Note: Uses for Creating an Offline Secondary

Another use for this feature has to do with the ability to terminate
the continuous copy relationship between a primary and secondary
database. You can terminate the relationship and then upgrade the
primary database to a different schema to support a software
upgrade. The secondary database gives you a rollback option.

Creating an online secondary database
Before you create an online secondary, the following requirements must be met:
m The secondary database must have the same name as the primary.

https://portal.azure.com

m They must be on separate servers.
m They both must be on the same subscription.
m The secondary server cannot be a lower performance tier than the primary.

The steps for configuring an active secondary is the same as creating an offline
secondary, except you can select the target region, as shown in Figure 2-10.

Create secondary

Create geo-replicated secondaries to
protect against prolonged datacenter

Region
South Central US

Database name

WideWorld|
ywidevworiaimporiers

Pricing tier
52 Standard

* Secondary type
Readable

* Target server
Configure required settings

Elastic database pool

Pin to dashboard

FIGURE 2-10 The New Secondary For Geo Replication dialog box for
creating an active secondary

Creating an online secondary database

1. To create an online secondary in the portal, follow these steps:Navigate to
your SQL database in the management portal accessed via
https://portal.azure.com.

2. On the Create Secondary blade, change the Secondary Type to Readable.
3. Click Create to create the secondary.

Import and export schema and data

The on-premise version of Microsoft SQL Server has long had the ability to
export and import data using a BACPAC file. This file will also work with
Azure SQL Database. A BACPAC file is just a ZIP file that contains all of the
metadata and state data of a SQL Server database.

The easiest way to import schema and data from an on-premise SQL Server
into an Azure SQL Database is to use SQL Server Management Studio (SSMS).
The general steps are:

1. Export source database using SSMS
2. Import database to a new destination using SSMS.

Export source database

1. Open SQL Server Management Studio

2. Right-click on the source database, click Tasks, and click Export Data-tier
Application (see Figure 2-11).

Export Data-tier Application...
FIGURE 2-11 SSMS Export Data-tier right-click menu

3. Click Next on the Welcome screen (Figure 2-12).

https://portal.azure.com

% Expont Data-tier Apphcation TSOLV - O X

-
j “ Imtroduction

==

obrodoction__________ | @ Hel
Expot Settings
Export Data-tier Application
Summary
Results This Wizard will help you to export the schema and dsts from a database to the logical BACPAC file

format,

T export your detabase you rmust
= Specify export settings.
+ FReview the export summary.

+ Check the results of operation.

To begin expaorting your databasze, click next.

[[] Do not show this page sgain.

FIGURE 2-12 Welcome screen for BACPAC process

4. In the Export Settings screen, you can choose where the BACPAC file
should be stored. You can either save it to a local disk or save it in an
Azure Storage blob container. Either method is easy to use when you
import the BACPAC file (Figure 2-13).

0% Export Data-tier Apgplication TSOLVA

- m] =
\.
I 0" Export Settings
Irtreduction & Help
EEETT
Summarny This operstion will creste a BACPAL file that contams the logical contents of your dsabate. To continue,
Results

specify the location whene you want the BACPAC file to be created, and then click Nest. To specify a subset
of tables to export, use the Advanced opticn.

Settings Advenced
() Save to local disk
EC.'-.ump".T'SQL'M.harpn:

3 Save to Microsoft Azure

CAUsers\ike\AppDatstLocal Temp' TSOLVA- 201 7090918004

< Privipu Mgt = Camcel

FIGURE 2-13 Location for BACPAC file

5. On the Advanced tab (Figure 2-14), you can selective choose specific
tables or schemas or the entire database.

1% Export Data-tier Applicetion "WideWorldimporters =]} x

1™

Export Settings

Introduction & Help
Export Settings

Summary This cperation will create a BACPAC file that containg the logical contents of your database. To contimue,

i specify the location where you want the BACPAC file to be created, and then click Mext. To specify a subset

Results of tables to export, use the Advanced option.

Settings Advanced

Select tables for data export:
B Setect AN
[Applcation
++ [Purchasing
w1k Sales
v z'fﬂarehm.u

s | o

FIGURE 2-14 The advanced tab for selecting the correct tables and
schema

6. Then click Finish and we’re all done.

Import BACPAC file into Azure SQL Database

1. Connect to your Azure SQL Database using SSMS.

2. You may need to log into the portal and allow your IP address in to the
built-in firewall used by Azure SQL Database. More information can be
found here: https://docs.microsoft.com/en-us/azure/sql-database/sql-
database-firewall-configure.

A. Right-click on the database folder and click Import Data-tier
Application.

Click Next.
C. Choose the correct BACPAC file and click Next.
In the next screen (Figure 2-15), click Connect and enter your storage

=

=

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-firewall-configure

account name and account key.

= Connect to Microsoft Azure Storage - X

Storage account:
|dataike1 v

Account key:

[...4} 1
Use secure endpoints (HTTPS)
[] Save account key

T [

FIGURE 2-15 The Connect To Microsoft Azure Storage screen

3. Name the new database and select the pricing tier (see Figure 2-16).
Warning: this option determines pricing. If you are just experimenting,
choose Basic under the Edition of Microsoft Azure SQL Database.

51 Import Data-tier Application - O X

J
Database Settings

Intreducticn & Help

Import Settings

Database Settings
This cperation will create a Microseft Azure 5QL Database from a BACPAC file, To continue, specify the

Surmmary settings for the new database and click Next.

Specify settings for the new Microsoft Azure SQL Database.

Results azuresqlike (ike)

MNew database name:

test

Microsoft Azure SOL Database settings

Edition of Microsoft Azure SOL Database: Standard w
Maximum database size (GB): 250
Service Objective : 52 w
< Previous Mext = Cancel

FIGURE 2-16 Choosing the database name and pricing tier

4. Click Next and Finish.
5. The schema and data will import into the new database that you’ve named.

Scale Azure SQL databases

There are two methods for preparing a relational database for a high transaction
load. First, we can scale-up. This means that we will add CPU, memory, and
better disk i/o to handle the load. In Azure SQL Database, scaling up is very
simple: we just move the slider bar over to the right or choose a new pricing tier.
This will give us the ability to handle more DTUs. Under a very high load, we
might not be able to scale-up much futher. That would mean we’d have to use
our second method, scale-out.

Scaling out a database means that we would break apart a large database into
small portions. This is called sharding. We would put one portion of our data in

one database and another portion of our data in a different database. We can do
this by function, by date, by geo-location of our brand offices, by business unit,
or some other method.

We may also shard a database simply because it is too large to be stored in a
single Azure SQL Database. Or it is too much data to backup and restore in a
reasonable amount of time. We may also shard data because we are a software
company and our customers require that their data is stored away from our other
customers, effectively giving us one database per customer.

Sharding is burdensome in a transactional system because it usually involves
rewriting a significant portion of our applications to handle multiple databases.
Also, if we get the sharding boundaries wrong, we might not actually improve
performance. For instance, what if we often join data from one database with
data from a different database? Now we’re locking resources while we wait for
the slower database to respond. This can compound our concurrency, blocking,
and deadlocking issues that we might have led us towards scaling-out in the first
place.

Some of these issues are solved with a shard map. This is usually a table or
database that tells the application where data actually is and where to go looking
for it. This allows us to move data around and update the shard map, thus
avoiding significant rewriting of our application. If implemented correctly, shard
maps can allow us to add more databases or delete database as necessary. This
may give us the elasticity that may have eluded us on the database thus far.

You’ll note that sharding is easily implemented in Azure Table Storage and
Azure Cosmos DB, but is significantly more difficult in a relational database like
Azure SQL Database. The complexity comes from being transactionally
consistent while having data available and spread throughout several databases.

Microsoft has released a set of tools called Elastic Database Tools that are
compatible with Azure SQL Database. This client library can be used in your
application to create sharded databases. It has a split-merge tool that will allow
you to create new nodes or drop nodes without data loss. It also includes a tool
that will keep schema consistent across all the nodes by running scripts on each
node individually.

The main power of the Elastic Database Tools is the ability to fan-out queries
across multiple shards without a lot of code changes. Follow these general steps
to use a sharded database:

1. Get a Shard Map.
m There are several different types of shard maps, for instance range shard

map will tell you what range of values exist in which databases. If we were
to divide our data by customer ID, then we would make sure all tables in
our database included a customer ID. We could grab anything about that
customer, including their contacts, orders, invoices, payments, customer
service disputes, and employees as long as we have the correct customer
ID. A shard map might look like this:

m 1 - 100 = Databasel
m 101 — 200 = Database2
m 202 — 300 = Database 3
2. Create a MultiShareConnection Object

m This is similar to a regular SqlConnection object, except in represents a
connection to a set of shards.

Create a multi-shard command.

Set the CommandText property

ExecuteReader

View the results using the MultiShardDataReader class.

NSy W

Assuming you had a ShardMap object, the query would look like this:

Click here to view code image

using (MultiShardConnection conn = new MultiShardConnection(
myShardMap.GetShards(),
myShardConnectionString)
)
{
using (MultiShardCommand cmd = conn.CreateCommand())
{
cmd.CommandText = "SELECT c1, c2, c¢3 FROM ShardedTable";
cmd.CommandType = CommandType.Text;
cmd.ExecutionOptions =
MultiShardExecutionOptions.IncludeShardNameColumn;
cmd.ExecutionPolicy =
MultiShardExecutionPolicy.PartialResults;

using (MultiShardDataReader sdr = cmd.ExecuteReader())

{
while (sdr.Read())
{
var clField = sdr.GetString(0);
var c2Field = sdr.GetFieldValue<int>(1);
var c3Field = sdr.GetFieldValue<Int64>(2);
}

}

Managed elastic pools, including DTUs and eDTUs

A single SQL Database server can have several databases on it. Those databases
can each have their own size and pricing tier. This might work out well if we
always know exactly how large each database will be and how many DTUs are
needed for them individually. What happens if we don’t really know that? Or
we’d like the databases on a single server to share a DTU pool? Elastic pools
(not to be confused with the last topic, Elastic Tools) are used to do exactly this:
share DTUs across databases on a single server.

Elastic pools enable the user to purchase elastic Database Transaction Units
(eDTUs) for a pool of multiple databases. The user adds databases to the pool,
sets the minimum and maximum eDTUS for each database, and sets the eDTU
limit of the pool based on their budget. This means that within the pool, each
database is given the ability to auto-scale in a set range.

In Figure 2-17, you will see a database that spends most of its time idle, but
occasionally spikes in activity. This database is a good candidate for an Elastic
pool.

1 database
100
90
80
S 70
® 60
= S0
= a4
E 30 —8— DB1
20
10
= Ty} [] [} Lo} W o= %y] = [T} Lo] Tyl
¢ @ o o & o ® @m ¥ ¥ A own
] i~ (o'] (o'} (o'} i i~ [| (o) (o'} s]
— Lo i —i — = Lo —i — — ™ —
Time

FIGURE 2-17 Choosing the right database to participate in the pool

To create an Elastic pool, follow these steps:

1. Click on your database server and click New Pool.
m The new pool pane appears (Figure 2-18).

Elastic database pool

An elastic database pool provides
elastic database transaction units
(eDTUs), and storage (GBs) that are
shared by multiple databases.

Name

ikepool

Pricing tier
Standard Pool

Configure pool
100 eDTU, 100 GB pool, 0 databa...

Summary

Pool settings 100 eDTU, 100 GB
FIGURE 2-18 Creating an Elastic pool

2. Name the pool a unique name.
3. Choose a pricing tier for the pool.

4. To choose the databases you want to participate in the pool, click
Configure Pool. This pane appears in Figure 2-19.

£ Search to filter databases..

DATAB...

e
sQL

Standard: S2 --

FIGURE 2-19 Choosing the databases that participate in the Elastic pool

Implement Azure SQL Data Sync

SQL Data Sync is a new service for Azure SQL Database. It allows you to bi-
directionally replicate data between two Azure SQL Databases or between an
Azure SQL Database and an on-premise SQL Server.

A Sync Group is a group of databases that you want to synchronize using
Azure SQL Data Sync. A Sync Schema is the data you want to synchronize.
Sync Direction allows you to synchronize data in either one direction or bi-
directionally. Sync Interval controls how often synchronization occurs. Finally, a
Conflict Resolution Policy determines who wins if data conflicts with one
another.

The following diagram (Figure 2-20) shows how Azure Data Sync keeps
multiple databases consistent with each other.

FIGURE 2-20 Azure Data Sync diagram

The hub database must always be an Azure SQL Database. A member
database can either be Azure SQL Database or an on-premise SQL Server.

It is important to note that this is a method to of keeping data consistent across
multiple databases, it is not an ETL tool. This should not be used to populate a
data warehouse or to migrate an on-premise SQL Server to the cloud. This can
be used to populate a read-only version of the database for reporting, but only if
the schema will be 100% consistent.

More Info: Azure SQL Data Sync

Here’s a tutorial for creating a Data Sync Group:

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-
started-sql-data-sync.

Implement graph database functionality in Azure SQL Database

SQL Server 2017 introduces a new graph database feature. This feature hasn’t
been released in the on-premise edition as of this writing, but should be available
in Azure SQL Database by the time this book is released. We discuss graph
databases in the next section on Azure Cosmos DB as well.

So far, we’ve discussed a NoSQL solution when we covered Azure Storage
Tahlac That wurnac a2 lravr_xraliia ctnra A7a wrill ~axrar 2 Aifforant txmo nf NTAQNT

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-started-sql-data-sync

1QaQulico,., 111alt vvao a I\C)'—vcuuc OLULT, VYVUT Vvvill LUYVUCL uULiicicuie l.)’lJC UL LYUOU\Y L

solution, JSON document storage, when we examine Azure Cosmos DB
DocumentDB. Graph databases are yet another NoSQL solution. Graph database
introduce two new vocabulary words: nodes and relationships.

Nodes are entities in relational database terms. Each node is popularly a noun,
like a person, an event, an employee, a product, or a car. A relationship is similar
to a relationship in SQL Server in that it defines that a connection exists between
nouns. Where the relationship in graph databases differ is that it is hierarchal in
nature, where it tends to be flat in SQL Server, PostgresSQL, and other relational
storage engines.

A graph is an abstract representation of a set of objects where nodes are linked
with relationships in a hierarchy. A graph database is a database with an explicit
and enforceable graph structure. Another key difference between a relational
storage engine and a graph database storage engine is that as the number of
nodes increase, the performance cost stays the same. Any relational database
professional will tell you that joining tables will burden the engine and be a
common source of performance issues when scaling. Graph databases don’t
suffer from that issue. Also, entities can be connected with each other through
several different paths.

So where relational databases are optimized for aggregation, graph databases
are optimized for having plenty of connections between nodes. Graph databases
are popularly traversed through a domain specific language (DSL) called
Gremlin.

In Azure SQL Database, graph-like capabilities are implemented through T-
SQL. Graph databases popularly have several different relationship types that
are possible between nodes. Azure SQL Database only has many-to-many
relationships.

You can create graph objects in T-SQL with the following syntax:
Click here to view code image

CREATE TABLE Person (ID INTEGER PRIMARY KEY, Name VARCHAR(100), Age
INT) AS NODE;
CREATE TABLE friends (StartDate date) AS EDGE;

This is very similar to the standard CREATE TABLE syntax, with the added

“AS NODE” or “AS EDGE?” at the end.

Azure SQL Database supports new query syntax for traversing the graph
hierarchy. This query looks something like this:

Click here to view code image

SELECT Restaurant.name

FROM Person, likes, Restaurant

WHERE MATCH (Person-(likes)->Restaurant)
AND Person.name = 'John';

Notice the MATCH keyword in the T-SQL WHERE clause. This will show us
every person that likes a restaurant named John.

More Info: Azure SQL Graph

Here's a tutorial for creating a graph relationships that currently
works with Azure SQL Database: https://docs.microsoft.com/en-

us/sql/relational-databases/graphs/sql-graph-sample.

Skill 2.5: Implement Azure Cosmos DB DocumentDB

Azure Cosmos DB DocumentDB is a JSON document store database, similar to
MongoDB. JSON document stores are quite a bit different than traditional
relational database engines, and any attempt to map concepts will likely be
futile. With that in mind, we’ll do our best to use your existing knowledge of
RDBMS’s while discussing this topic. JSON document stores are the fastest
growing NoSQL solutions. Developers gravitate towards it because it doesn’t
require assembling or disassembling object hierarchies into a flat relational
design. Azure Cosmos DB was originally designed as a JSON document storage
product. It has since added support for key-value (Table API) and graph
(Gremlin).

JSON has been the lingua franca of data exchange on the internet for over a
decade. Here is an example of JSON:

Click here to view code image

{
{
“glossary”: {
“title”: “example glossary”,
“GlossDiv”: {
lltitlell: ”S",
“GlossList”: {
“GlossEntry”: {
IIIDII: ”SGML",
“SortAs”: “SGML",
“GlossTerm”: “Standard Generalized Markup
Language”,

“Acronym”: “SGML”,

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-sample

“Abbrev”: “ISO 8879:1986",
“GlossDef”: {

“para”: “A meta-markup language, used to create
markup languages such as DocBook.”,
“GlossSeeAlso”: [“GML", “XML"]
I
“GlossSee”: “markup”

Notice the hierarchal nature of JSON. One of the key advantages of JSON is
that it can express an object model that developers often create in code. Object
models have parent nodes and child nodes. In our above example, GlossTerm is
a child object of GlossEntry. JSON can also express arrays: GlossSeeAlso has
two values in it. When relational database developers create an API to store
JSON, they have to undergo a process called shredding where they remove each
individual element and store them in flat tables that have relationships with each
other. This process was time-consuming, offered little in real business value, and
was prone to errors. Because of these drawbacks, developers often turn towards
JSON document stores, where saving a document is as easy as pressing the Save
icon in Microsoft Word. In this section we’ll show how to create an object
model, save it, and query it using Azure Cosmos DB DocumentDB.

This skill covers how to:

m Choose the Cosmos DB API surface

m Create Cosmos DB API Databases and Collections
® Query documents

®m Run Cosmos DB queries

m Create Graph API databases

m Execute GraphDB queries

Choose the Cosmos DB API surface

Like previously mentioned, Azure Cosmos DB is a multi-model database that
has several different APIs you can choose between: Table, DocumentDB, and
GraphDB.

Azure Cosmos DB Table API provides the same functionality and the same

A T™T n A ~ . . 11 Tnr 1 . Pl

API surtace as Azure >Storage tables. IT you have an existing application that uses
Azure Storage tables, you can easily migrate that application to use Azure
Cosmos DB. This will allow you to take advantage of better performance, global
data distribution, and automatic indexing of all fields, thus reducing significant
management overhead of your existing Azure Storage table application.

Azure Cosmos DB Document DB is an easy-to-implement JSON document
storage API. It is an excellent choice for mobile applications, web application,
and IoT applications. It allows for rapid software development by cutting down
the code the developer has to write to either shred their object model into a
relational store, or manage the consistency of manual indexing in Azure Storage
Tables. It also is compatible with MongoDB, another JSON document storage
product. You can migrate an existing MongoDB application to Azure Cosmos
DB DocumentDB.

Azure Cosmos DB supports the Gremlin, a popular graph API. This allows
developers to write applications that take advantage of Graph traversal of their
data structures. Graph databases allow us to define the relationship between
entities that are stored. For instance, we can declare that one entity works for
another one, is married to a different one, and owns even a different one. Entities
are not people, rather they are entries defined in our data store. We can say Paula
works for Sally and is married to Rick. Paula owns a vintage Chevy Corvette.
Knowing these, we can write a simple line of code in Gremlin to find out what
car Paula owns. Graph databases excel at defining relationships and exploring
the network of those relationships. As a result, they have been popular as
engines for social media applications. Because Azure Cosmos DB supports the
Gremlin API, it is easy to port existing applications that use it to Azure Cosmos
DB.

Create Cosmos DB API Database and Collections

Each Cosmos DB account must have at least one database. A database is a
logical container that can contain collections of documents and users. Users are
the mechanism that get permissions to Cosmos DB resources. Collections
primarily contain JSON documents. Collections should store JSON documents
of the same type and purpose, just like a SQL Server table. Collections are
different than tables because they don’t enforce that documents have a particular
schema. This can be very foreign to the relational database developer who
assumes that every record in a table will have the same number of columns with
the same data types. Collections should have documents of the same properties
and data types, but they aren’t required to. Azure Cosmos DB DocumentDB

gracefully handles if columns don’t exist on a document. For instance, if we are
looking for all customers in zip code 92101, and a customer JSON document
doesn’t happen to have that property, Azure Cosmos DB just ignores the
document and doesn’t return it.

Collections can also store stored procedures, triggers, and functions. These
concepts are also similar to relational databases, like Microsoft SQL Server.
Stored procedures are application logic that are registered with a collection and
repeatedly executed. Triggers are application logic that execute either before or
after an insert, update (replace), or delete operation. Functions allow you to
model a custom query operator and extend the core DocumentDB API query
language. Unlike SQL Server, where these components are written in Transact-
SQL, Azure DocumentDB stored procedures, triggers, and functions are written
in JavaScript.

Before we can begin writing code against Azure Cosmos DB, we must first
create an Azure Cosmos DB account. Follow these steps:

1. Sign in to the Azure portal.

2. On the left pane, click New, Databases, and then click Azure Cosmos DB.

3. On the New account blade, choose your programming model. For our
example, click SQL (DocumentDB).

4. Choose a unique ID for this account. It must be globally unique, such as
developazurel, but then you should call yours developazure(your given
name here). This will be prepended to documents.azure.com to create the
URI you will use to gain access to your account.

Choose the Subscription, Resource Group, and Location of your account.
Click Create.

Now let’s create a Visual Studio solution.

Open Visual Studio 2015 or 2017.

Create a New Project.

e Naw

10. Select Templates, Visual C#, Console Application.
11. Name your project.

12. Click OK.

13. Open Nuget Package Manager.

14. In the Browse tab, look for Azure DocumentDB. Add the
Microsoft.Azure.DocumentDB client to your project.

http://documents.azure.com

15. In order to use the code, you may need a using statement like this:
Click here to view code image

using Microsoft.Azure.Documents.Client;
using Microsoft.Azure.Documents;
using Newtonsoft.Json;

Azure Cosmos DB requires two things in order to create and query
documents, an account name and an access key. This should be familiar to you if
you read the section on Azure Storage blobs or Azure Storage tables. You should
store them in constants in your application like this:

Click here to view code image

private const string account = '"<your account URI>";
private const string key = "<your key>";

Azure DocumentDB SDK also has several async calls, so we’ll create our
own async function called TestDocDb. We’ll call it in the Main function of the
console app.

Click here to view code image

static void Main(string[] args)

{
}

You can find both of these things in Azure portal for your Azure Cosmos DB
account. To create a database named SalesDB, use the following code:

TestDocDb().Wait();

Click here to view code image

private static async Task TestDocDb()

{

string id = "SalesDB";

var database = _client.CreateDatabaseQuery().Where(db => db.Id ==
id).AsEnumerable().FirstOrDefault();

if (database == null)
{

database = await client.CreateDatabaseAsync(new Database { Id = id
3);
}

Now that we have a database for our sales data, we’ll want to store our
customers. We’ll do that in our Customers collection. We’ll create that
collection with the following code:

Click here to view code image

string collectionName = "Customers";

var collection =
client.CreateDocumentCollectionQuery(database.CollectionsLink).
Where(c => c.Id == collectionName).AsEnumerable().FirstOrDefault();
if (collection == null)

{

collection = await
client.CreateDocumentCollectionAsync(database.CollectionsLink,
new DocumentCollection { Id = collectionName});

}

Now let’s add a few documents to our collection. Before we can do that, let’s
create a couple of plain-old CLR objects (POCOs). We want a little complexity
to see what those documents look like when serialized out to Azure Cosmos DB.
First we’ll create a phone number POCO:

Click here to view code image

public class PhoneNumber

{
public string CountryCode { get; set; }

public string AreaCode { get; set; }
public string MainNumber { get; set; }

}

And now we add another POCO for each customer and their phone numbers:

Click here to view code image

public class Customer

{

public string CustomerName { get; set; }
public PhoneNumber[] PhoneNumbers { get; set; }

Now let’s instantiate a few customers:

var contoso = new Customer

{
CustomerName = "Contoso Corp",
PhoneNumbers = new PhoneNumber[]
{

new PhoneNumber
{
CountryCode = "1",
AreaCode = "619",
MainNumber = "555-1212" }
new PhoneNumber

{

CountryCode = "1",
AreaCode = "760",

MainNumber = "555-2442" 3,
}
iy
var wwi = new Customer
{
CustomerName = "World Wide Importers",
PhoneNumbers = new PhoneNumber[]
{
new PhoneNumber
{
CountryCode = "1",
AreaCode = "858",
MainNumber = "555-7756" 3,
new PhoneNumber
{
CountryCode = "1",
AreaCode = "858",
MainNumber = "555-9142" 3,

}
iy

Once the customers are created, it becomes really easy to save them in Azure
Cosmos DB DocumentDB. In order to serialize the object model to JSON and
save it, it is really only once line of code:

Click here to view code image

await client.CreateDocumentAsync(collection.DocumentsLink, contoso);

And, to save the other document:
Click here to view code image

await _client.CreateDocumentAsync(collection.DocumentsLink, wwi);

Now that the documents are saved, you can log into your Cosmos DB account
in the Azure portal, open Document Explorer and view them. Document
Explorer is accessible on the top menu toolbar of your Cosmos DB configuration
pane.

Query documents

Retrieving documents from Azure Cosmos DB DocumentDB is where the magic
really happens. The SDK allows you to call a query to retrieve a JSON
document and store the return in an object model. The SDK wires up any
properties with the same name and data type automatically. This will sound

amazing to a relational database developer who might be used to writing all of
that code by hand. With Cosmos DB, the wiring up of persistence store to the
object model happens without any data layer code.

In addition, the main way to retrieve data from Azure Cosmos DB is through
LINQ, the popular C# feature that allows developers to interact with objects,
Entity Framework, XML, and SQL Server.

Run Cosmos DB queries

There are three main ways you can query documents using the Azure Cosmos
DB SDK: lambda LINQ, query LINQ, and SQL (a SQL-like language that’s
compatible with Cosmos DB).

A query of documents using lambda LINQ looks like this:
Click here to view code image

var customers = client.CreateDocumentQuery<Customer>
(collection.DocumentsLink).
Where(c => c.CustomerName == "Contoso Corp").ToList();

A query of documents using LINQ queries looks like this:
Click here to view code image

var linqCustomers = from c¢ in
client.CreateDocumentQuery<Customer>(collection.DocumentsLink)

select c;

A query for documents using SQL looks like this:

Click here to view code image

var customers = client.CreateDocumentQuery<Customer>
(collection.DocumentsLink,
"SELECT * FROM Customers c WHERE c.CustomerName = 'Contoso Corp'");

More Info: Documentdb Query Tutorial

Azure Cosmos DB has a demo tool that will teach you how to write
SQL against the hierarchal nature of JSON. It can be found here:
https://www.documentdb.com/sql/demo.

Create Graph API databases

In order to create a Graph API database, you should follow the exact steps at the
beginning of this ohiective. The difference would be that in the creation hlade of

https://www.documentdb.com/sql/demo

— ~ e O — = teemm m— gy m—em o —r e e —ee e o e emmem = cmmene hms mm— — —emea e aa e mem——— —

Azure Cosmos DB, instead of choosing SQL as the API, choose Gremlin Graph
APL

Use the following code to create a document client to your new Azure
Cosmos DB Graph API account:

Click here to view code image

using (DocumentClient client = new DocumentClient(

new Uri(endpoint),

authKey,

new ConnectionPolicy { ConnectionMode = ConnectionMode.Direct,
ConnectionProtocol
= Protocol.Tcp 1}))

Once you have a client instantiated, you can create a new graph database with
this code:
Click here to view code image

Database database = await client.CreateDatabaseIfNotExistsAsync(new
Database
{ Id = "graphdb" });

Just like before, we need a collection for our data, so we’ll create it like this:

Click here to view code image

DocumentCollection graph = await
client.CreateDocumentCollectionIfNotExistsAsync(
UriFactory.CreateDatabaseUri("graphdb"),
new DocumentCollection { Id = "graph" },
new RequestOptions { OfferThroughput = 1000 });

Execute GraphDB queries

GraphDB API queries are executed very similarly to the queries we looked at
before. GraphDB queries are defined through a series of Gremlin steps. Here is a
simple version of that query:

Click here to view code image

IDocumentQuery<dynamic> query = client.CreateGremlinQuery<dynamic>
(graph, "g.v().count()");
while (query.HasMoreResults)

{

foreach (dynamic result in await query.ExecuteNextAsync())

{
}

Console.WritelLine($"\t {JsonConvert.SerializeObject(result)}");

Implement MongoDB database

Azure Cosmos DB can be used with applications that were originally written in
MongoDB. Existing MongoDB drivers are compatible with Azure Cosmos DB.
Ideally, you would switch between from MongoDB to Azure Cosmos DB by just
changing a connection string (after loading the documents, of course).

You can even use existing MongoDB tooling with Azure Cosmos DB.

Manage scaling of Cosmos DB, including managing partitioning,
consistency, and RUs

The main method for scaling performance in Azure Cosmos DB is the
collection. Collections are assigned a specific amount of storage space and
transactional throughput. Transactional throughput is measured in Request
Units(RUs). Collections are also used to store similar documents together. An
organization can choose to organize their documents into collections in any
manner that logically makes sense to them. A software company might create a
single collection per customer. A different company may choose to put heavy
load documents in their own collection so they can scale them separately from
other collections.

We described sharding in the last section and when we discussed Azure
Storage Tables. Sharding is a feature of Azure Cosmos DB also. We can shard
automatically by using a partition key. Azure Cosmos DB will automatically
create multiple partitions for us. Partitioning is completely transparent to your
application. All documents with the same partition key value will always be
stored on the same partition. Cosmos DB may store different partition keys on
the same partition or it may not. The provisioned throughput of a collection is
distributed evenly among the partitions within a collection.

You can also have a single partition collection. It’s important to remember
that partitioning is always done at the collection, not at the Cosmos DB account
level. You can have a collection that is a single partition alongside multiple
partition collections. Single partition collections have a 10GB storage limit and
can only have up to 10,000 RUs. When you create them, you do not have to
specify a partition key. To create a single partition collection, follow these steps:

1. On you Cosmos DB account, click the overview tab and click Add
Collection (Figure 2-21).

== Add Collection |) Refresh

Resource group {change

Ao e bem] [TA LAY

FIGURE 2-21 Creating a collection in the Azure Portal

2. On the Add Collection pane, name the collection and click Fixed for

Storage Capacity. Notice how the partition key textbox automatically has a
green check next to it indicating that it doesn’t need to be filled out.

Add Collection

Collection Id ©

Enter collection id

STORAGE CAPACITY ©
Fixed (10GE) Unlimited®

INITIAL THROUGHPUT CAPACITY (RU/s) @

1000 / =

Between 400 and 10000 RU/s
Estimated hourly spend 0.080 USD

PARTITION KEY ©

MATANACT O

FIGURE 2-22 The Azure Portal

For multiple partition collections, it is important that you choose the right
partition key. A good partition key will have a high number of distinct values
without being unique to each individual document. Partitioning based on
geographic location, a large date range, department, or customer type is a good
idea. The storage size for documents with the same partition key is 10GB. The
partition key should also be in your filters frequently.

A partition key is also the transaction boundary for stored procedures. Choose
a key on documents that often get updated together with the same partition key
value.

Consistency

Traditional relational databases have a little bit of baggage as it relates to data
consistency. Users of those systems have the expectation that when they write
data, all readers of that data will see the latest version of it. That strong
consistency level is great for data integrity and notifying users when data
changes, but creates problems with concurrency. Writers have to lock data as
they write, blocking readers of the data until the write is over. This creates a line
of readers waiting to read until the write is over. In most transactional
applications, reads outnumber writes 10 to 1. Having writes block readers gives
the readers the impression that the application is slow.

This has particularly created issues when scaling out relational databases. If a
write occurs on one partition and it hasn’t replicated to another partition, readers
are frustrated that they are seeing bad or out of date data. It is important to note
that consistency has long had an inverse relationship with concurrency.

Many JSON document storage products have solved that tradeoff by having a
tunable consistency model. This allows the application developer to choose
between strong consistency and eventual consistency. Strong consistency slows
down reads and writes while giving the best data consistency between users.
Eventual consistency allows the readers to read data while writes happen on a
different replica, but isn’t guaranteed to return current data. Things are faster
because replicas don’t wait to get the latest updates from a different replica.

In DocumentDB, there are five tunable consistency levels:
= Strong Mentioned in the previous paragraph.

= Bounded Staleness Tolerates inconsistent query results, but with a freshness
guarantee that the results are at least as current as a specified period of time.

m Session The default in DocumentDB. Writers are guaranteed strong
consistency on writers that they have written. Readers and other writer
sessions are eventually consistent.

m Consistent Prefix Guarantees that readers do not see out of order writes.
Meaning the writes may not have arrived yet, but when they do, they’ll be in
the correct order.

= Eventual Mentioned in the previous paragraph.

Manage multiple regions

It is possible to globally distribute data in Azure Cosmos DB. Most people think
of global distribution as an high availability/disaster recovery (HADR) scenario.
Although that is a side effect in Cosmos DB, it is primarily to get data closer to

the n1eers with lnwer netwaork latencv Fuiironean enistomers consiime data honced

TAAN SLUS AL TV ALAL A VT A SAT L TT LR ALALSAAT) 6 At U AL S UL AIAT A L UL AL ST S L LA s e

in a data center in Europe. Indian customers consume data housed in India. At
this writing, there are 30 data centers that can house Cosmos DB data.

Each replica will add to your Cosmos DB costs.

In a single geo-location Cosmos DB collection, you cannot really see the
difference in consistency choices from the previous section. Data replicates so
fast that the user always sees the latest copy of the data with few exceptions.

When replicating data around the globe, choosing the correct consistency level
becomes more important.

To choose to globally distribute your data, follow these steps:

1. In the Azure portal, click on your Cosmos DB account.
2. On the account blade, click Replicate data globally (Figure 2-23).

» Replicate data globally

Replicate data globally

Click on a location to add or remove regions from your Azure Cosmos DE account.

* Each region is billable based on the throughput and storage for the account.

FIGURE 2-23 The Replicate data globally blade

3. In the Replicate data globally blade, select the regions to add or remove by
clicking the regions on the map.

® One region is flagged as the write region. The other regions are read
regions. This consolidates the writes while distributing the reads, and
since reads often outnumber writes significantly, this can drastically

improve the perceived performance of your application.

4. You can now set that region for either manual or automatic failover (Figure
2-24). Automatic failover will switch the write region in order of priority.

Automatic Failover

Enable Automatic Faslowver &
(o] OFF

Drag-and-drop read regions items to reorder the failover prionties.

Tipe Drag i on the left of the hovered row to reorder the list

WRITE REGIIN

West Us

FIGURE 2-24 The Automatic Failover pane

It is also possible to choose your preferred region in your application by using
the DocumentDB API. The code looks like this in C#:

Click here to view code image

ConnectionPolicy connectionPolicy = new ConnectionPolicy();

//Setting read region selection preference

connectionPolicy.PreferredLocations.Add(LocationNames.WestUS); // first
preference

connectionPolicy.PreferredLocations.Add(LocationNames.EastUS); //
second preference

connectionPolicy.PreferredLocations.Add(LocationNames.NorthEurope); //
third preference

// initialize connection

DocumentClient docClient = new DocumentClient(
accountEndPoint,
accountkKey,

connectionPolicy);

Implement stored procedures

Cosmos DB collections can have stored procedures, triggers, and user defined
functions (UDFs), just like traditional database engines. In SQL Server, these
objects are written using T-SQL. In Cosmos DB, they are written in JavaScript.
This code will be executed directly in the collection’s partition itself. Batch
operations executed on the server will avoid network latency and will be fully
atomic across multiple documents in that collection’s partition. Operations in a
stored procedure either all succeed or none succeed.

In order to create a Cosmos DB stored procedure in C#, you would use code
that looked something like this.

Click here to view code image

var mySproc = new StoredProcedure

Id = "createDocs",
Body = "function(documentToCreate) {" +
"var context = getContext();" +
"var collection = context.getCollection();" +
"var accepted = collection.createDocument(collection.getSelfLink()," +
"documentToCreate," +
"function (err, documentCreated) {" +
"if (err) throw new Error('Error oh ' +
documentToCreate.Name +
'- ' + err.message);" +
"context.getResponse().setBody(documentCreated. id

Il});ll +
"if (laccepted) return;" +
Il}ll
iy
var response = await
client.CreateStoredProcedureAsync(conferenceCollection.

SelfLink, mySproc);

This code creates a stored procedure using a string literal. It takes a document
in as a parameter and saves it in the collection. It does that by using the context
object inside the stored procedure.

More Info: Azure Cosmos DB Stored Procedures

There’s a tutorial for implementing server side objects that’s worth
going through: https://docs.microsoft.com/en-us/azure/cosmos-

https://docs.microsoft.com/en-us/azure/cosmos-db/programming

db/programming.

Access Cosmos DB from REST interface

Cosmos DB has a REST API that provides a programmatic interface to create,
query, and delete databases, collections, and documents. So far, we’ve been
using the Azure Document DB SDK in C#, but it’s possible to call the REST
URIs directly without the SDK. The SDK makes these calls simpler and easier to
implement, but are not strictly necessary. SDKs are available for Python,
JavaScript, Java, Node.js, and Xamarin. These SDKs all call the REST API
underneath. Using the REST API allows you to use a language that might not
have an SDK, like Elixir. Other people have created SDKs for Cosmos DB, like
Swift developers for use in creating iPhone applications. If you choose other
APIs, there are SDKs in even more langauges. For instance, the MongoDB API
supports Golang.

The REST API allows you to send HTTPS requests using GET, POST, PUT,
or DELETE to a specific endpoint.

More Info: Azure Cosmos DB Rest API

Rest API documentation can be found here:
https://docs.microsoft.com/en-us/rest/api/documentdb/.

Manage Cosmos DB security

Here are the various types of Cosmos DB security.

Encryption at rest

Encryption at rest means that all physical files used to implement Cosmos DB
are encrypted on the hard drives they are using. Anyone with direct access to
those files would have to unencrypt them in order to read the data. This also
applies to all backups of Cosmos DB databases. There is no need for
configuration of this option.

Encryption in flight

Encryption in flight is also required when using Cosmos DB. All REST URI
calls are done over HTTPS. This means that anyone sniffing a network will only
see encryption round trips and not clear text data.

- = e -u

https://docs.microsoft.com/en-us/rest/api/documentdb/

Network tirewall

Azure Cosmos DB implements an inbound firewall. This firewall is off by
default and needs to be enabled. You can provide a list of IP addresses that are
authorized to use Azure Cosmos DB. You can specify the IP addresses one at a
time or in a range. This ensures that only an approved set of machines can access
Cosmos DB. These machines will still need to provide the right access key in
order to gain access. Follow these steps to enable the firewall:

1. Navigate to your Cosmos DB account.

2. Click Firewall.

3. Enable the firewall and specify the current IP address range.
4. Click Save (see Figure 2-25).

-
1 This Azure Cosmos DE account allows connections only from the IP addresses listed below.

Enable IP Access Control oN

Allow access to Azure Portal oM

Add my current IP (174.65.164.22) B “

P (SINGLE IFV4 OR CIDE RANGE)

Mo P range fulter 1:|:|n1|gur|:d.

FIGURE 2-25 The Cosmos DB firewall pane

Users and permissions

Azure Cosmos DB support giving access to users in the database to specific
resources or using Active Directory users.

Users can be granted permissions to an application resource. They can have
two different access levels, either All or Read. All means they have full
permission to the resource. Read means they can only read the resource, but not

v ivmalbn mee AT Ai

WIILE OI' ueleLe.

More Info: Azure Users AND Permissions

More information on creating permissions for database users can
be found here: https://docs.microsoft.com/en-us/azure/cosmos-
db/secure-access-to-data/.

Active Directory
You can use Active Directory users and give them access to the entire Cosmos
DB database by using the Azure portal. Follow these steps to grant access:

1. Click on your Cosmos DB account and click Access Control (IAM).

2. Click Add to add a new Active Directory user.

Add permissions

lkce: Ellis

ike@ikeellis.com

Selected members:
Mo members selected. Search for and add one or more members you
want to assign to the role to for this resource.

FIGURE 2-26 The Cosmos DB Add permission pane

https://docs.microsoft.com/en-us/azure/cosmos-db/secure-access-to-data/

3. Choose the appropriate role for the user and enter the user’s name or email
address (Figure 2-27).

Role &
Select a role
Owner &
Contnibutor &
Reader @
DocumentDB Account Contributor &
Log Analytics Contributor @
Log Analytics Reader @

Monitoring Contnbutor 6

Monitoring Reader &

Resource Policy Contributor (Preview) ©

User Access Administrator &

FIGURE 2-27 The Cosmos DB user role list

Now you’ve given permission to another user to that database. Note that you
can give them reader access which will stop them from writing over documents.
This might be good for ETL accounts, business/data analysts, or report authors.

Skill 2.6: Implement Redis caching

Redis is a key-value store, NoSQL database. Its implementation is very similar
to Azure Table Storage. The main difference is Redis is very high performing by
keeping the data in memory most of the time. By default, Redis also doesn’t
persist the data between reboots. There are exceptions to this, but the main
purpose of keeping Redis cache in memory is for fast data retrieval and fast
aggregations. This allows important data to be easily accessible to an application
without loading the backend data store. As a result, Redis is typically not used as
a data store for an application, but used to augment the data store you’ve already
selected. Imagine using Azure SQL Database as your main data repository. Your
application constantly looks up sales tax for all 50 states. Some cities even have
their own sales tax that’s higher than the state’s sales tax. Constantly looking this
up can compete with I/O for the rest of your application’s functions. Offloading
the sales tax lookup to a pinned Redis cache will not only make that lookup
much faster, but will free up resources for your data repository for things like
taking orders, updating addresses, awarding sales commission, and general
reporting.

This is just one example of how Redis can be used. Redis has many uses, but
primarily it’s a temporary storage location of data that has a longer lifespan. That
data needs to be expired when it’s out of date and re-populated.

Azure Redis Cache is the Azure product built around Redis and offering it as a
Platform-as-a-Service (PAAS) product.

This skill covers how to:

m Choose a cache tier

» Implement data persistence

m Implement security and network isolation
m Tune cluster performance

m Integrate Redis caching with ASP.NET session and cache providers

Choose a cache tier

First we need to create an Azure Redis Cache account using the Azure portal.
1. Log in to the Azure portal.
2. Click New, Databases, Redis Cache. Click Create.

3. In the New Redis Cache blade, specify configuration parameters (Figure 2-
28).

http://ASP.NET

Mew Redis Cache

* DNS name ™~

| contoso L

redis.cache.windows.net
* Subscription

Prototype3 ¥

* Resource group @

® Create new O Use existing

* Location

Central US w

* Pricing tier (View full pricing details)

Standard C1 (1 GB Cache, Replication) w

o

Pin to dashboard

| Automation options

FIGURE 2-28 Azure Redis Cache Panel

4. Choose a DNS name for your cache. It must be globally unique.

5. Choose a Subscription, Resource group, and Location for the Redis Cache.
Remember to keep it close to the application that will be using it.

6. Choose a Pricing tier for Redis Cache.

There are three tiers of Azure Redis Cache: Basic, Standard, and Premium.
Basic is the cheapest tier and allows up to 53GB of Redis Cache database size.
Standard has the same storage limit, but includes replication and failover with
master/slave replication. This replication is automatic between two nodes.
Premium increases ten times to 530GB. It also offers data persistence, meaning
that data will survive power outages. It also includes much better network
performance, topping out at 40,000 client connections. Obviously, the pricing

increases as you move up from Basic through Premium.

Implement data persistence

Redis peristance allows you to save data to disk instead of just memory.
Additionally, you can take snapshots of your data for backup purposes. This
allows your Redis cache to survive hardware failure. Redis persistence is
implemented through the RDB model, where data is streamed out to binary into
Azure Storage blobs. Azure Redis Cache persistence is configured through the
following pane shown in Figure 2-29.

Redis data persistence =] 5

RDB Backup

m Disabled

* Backup Frequency

60 minutes

* Storage Account @

26test1diagd12

* Storage Key @
Primary key

FIGURE 2-29 Redis data persistence

On this pane, you can configure the frequency of the RDB snapshot, as well as
the storage account that will be the storage target.

More Info: Import/Export RDB

You can also manually import and export the RDB snapshot. More
information is found here: https://docs.microsoft.com/en-
us/azure/redis-cache/cache-how-to-import-export-data.

Implement security and network isolation

Azure Redis Cache’s primary security mechanism is done through access keys.
We’ve used access keys in Azure Storage blobs, Azure Storage tables, and
Azure Cosmos DB. In addition to access keys, Azure Redis Cache offers
enhanced security when you use the premium offering. This is done primarily
through the Virtual Network (VNET). This allows you to hide Redis Cache
behind your application and not have a public URL that is open to the internet.

The VNET is configured at the bottom of the New Redis Cache pane (pictured
earlier.) You can configure the virtual network when creating the Azure Redis
Cache account. You cannot configure it after it has been created. Also, you can
only use a VNET that exists in the same data center as your Azure Redis Cache
account. Azure Redis Cache must be created in an empty subnet.

When creating an Azure Redis Cache account, select Virtual Network towards
the bottom. You will see the following pane shown in Figure 2-30.

https://docs.microsoft.com/en-us/azure/redis-cache/cache-how-to-import-export-data

Virtual Network

SUBSCRIPTION
Cache Test

@ East US

contosoSSvnet W

Subnet @
default (10.14.0.0/24)

* Static IP addrass @
10.14.0.5

Click here to learn more about B
common misconfiguration issues

o with Virtual Metwork rules that
might cause Redis Cache to
function incorrectly.

XV V VY.

FIGURE 2-30 Azure Redis Cache Virtual Network pane

This is where you can configure your static IP address and subnet.

More Info: Virtual Networking

For more information on Azure Virtual Networking, see here:
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-
networks-overview.

Doing this isolates your Azure Redis Cache service behind your virtual
network and keeps it from being accessed from the internet.

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview

Tune cluster performance

Also with the premium service, you can implement a Redis Cluster. Redis
clusters allow you to split the dataset among multiple nodes, allowing you to
continue operations when a subset of the nodes experience failure, give more
throughput, and increase memory (and there for total database) size as you
increase the number of shards. Redis clustering is configured when you create
the Azure Redis Cache account (Figure 2-31). The reason why Premium can
store 10 times the data as the other two tiers is because clustering allows you to
choose the number of nodes in the cluster, from 1 to 10.

[y gy R W

New Redis Cache Redis Cluster

DNS name Clustering

testike

| Disabled

redis.cache windows.net
Subscription Shard count @

Windows Azure M5DN - Visual Studio UH... w 1
Total size: 6 GB
Resource group @ 412.92 USD/Month (Estimated)

@ createnew ® Use existing
datalake

Location

Central U5

Pricing tier (View full pricing details)

Premium P1 (6 GB Cache, Replication)

Redis Cluster @

Mot configured

FIGURE 2-31 Redis Cache Clustering

Once the cache is created, you use it just like a non-clustered cache. Redis
distributes your data for you.

Integrate Redis caching with ASP.NET session and cache
providers

Session state in an ASP.NET applications is traditionally stored in either

http://asp.net/
http://ASP.NET

memory or a SQL Server database. Session state in memory is difficult to
implement if the server is a member of a server farm and the user changes which
server they’re attached to. Session state would be lost in that case. Storing
session state in a SQL database solves that problem, but introduces database
management of performance, latency, and license management. Often databases
are already under high load and don’t need the added load of managing a high
amount of session state.

Redis cache is an excellent place to store session state. To implement this, use
the Redis Cache Session State Nuget package. Once added to the project, you
just have to add the following line to your web.config file under the providers
section:

Click here to view code image

<add name="MySessionStateStore"
host = "127.0.0.1"

port = mnn

accesskey = ""

ssl = "false"

throwOnError = "true"
retryTimeoutInMilliseconds = "O"
databaseId = "0O"

applicationName = ""
connectionTimeoutInMilliseconds = "5000"
operationTimeoutInMilliseconds = "5000"

/>
<add name="MySessionStateStore"
type="Microsoft.Web.Redis.RedisSessionStateProvider"
host="127.0.0.1" accessKey="" ssl="false'"/>

The host attribute points to the endpoint of your Azure Redis account.
ApplicationName allows multiple applications to use the same Redis database.
Every other attribute is self-explanatory.

There is a different Nuget packaged called the Redis Output Cache Provider.
This will store page output in Redis cache for future use. It’s configured in a
similar manner as the previous product.

Skill 2.7: Implement Azure Search

Azure Search is a Platform-as-a-Service (PAAS) offering that gives developers
APIs needed to add search functionality in their applications. Primarily this
mean full text search. The typical example is how Google and Bing search
works. Bing doesn’t care what tense you use, it spell checks for you, and finds
similar topics based on search terms. It also offers term highlighting and can

1gnore noise words, as well as many other search-related teatures. Applying
these features inside your application can give your users a rich and comforting
search experience.

This skill covers how to:
m Create a service index
m Add data

m Search an index

m Handle Search results

Create a service index

There are several types of Azure Search accounts: free, basic, standard, and
high-density. The free tier only allows 50MB of data storage and 10,000
documents. As you increase from basic to high-density, you increase how many
documents you can index as well as how quickly searches return. Compute
resources for Azure Search are sold through Search Units (SUs). The basic level
allows 3 search units. The high-density level goes up to 36 SUs. In addition, all
of the paid pricing tiers offer load-balancing over three replicas or more replicas.
To create an Azure Search service, follow these steps:

1. Log on to the Azure portal.
2. Add a new item. Look up Azure Search Service.

3. In the New Search Service pane, choose a unique URL, Subscription,
Resource group, and Location.

Mew Search Service Choose your pricing tier

Please choose a pricing tier for your search service. Fnrserwces :eq.mnng mare than 1.4 billion
documents or 24T of storage, please contact us. Lea

F Free |'s standard

L ewes 50 Indexes

ViCE name
search windows net
Subscription
‘Windows Azure MSDM - Visual Studio Ui, 10K Documents 15M Docs/Partition*

i 50 MB 25 GB/Partition™
Resgurce group .

@ Create new @ Use edsting

" Up to 36 search units |
E coalime

locaton 0 M |
West US

Pricing ther

Standard 0.00 75.14

USD/MONTH USDMONTH PER LINIT ESTIMATED] I| SCVADITH PER LIMIT {ESTE M.ATFHI |
52 Standard 53 Standard 53 High-density
200 Indexes 200 Indexes 1000 Indexes/Partition*
BOM Docs/Partition® 120M Docs/Partition 200M Docs/Partition®

100 GB/Partition® = 200 GB/Partition* Zﬂﬂ GBPartition®
- Storaga - Storag Sonag

6 search units

Fin to dashboard

FIGURE 2-32 Azure Search pane

4. Carefully choose an Azure Search pricing tier. Make a note of the search
URI (your search name).search.windows.net.

As you use Azure Search, you can scale it if you need more SUs or have more
documents to search. On your Azure Search pane, click Scale. The Scale blade is
supported in Standard level and above, not basic. From there you can choose
how many replicas handle your workload and how many partitions you have.
Replicas distribute workloads across multiple nodes. Partitions allow for scaling
the document count as well as faster data ingestion by spanning your index over
multiple Azure Search Units. Both of these are only offered in the paid service
tiers.

Add data

You add data to Azure Search through creating an index. An index contains
documents used by Azure Search. For instance, a hotel chain might have a
document describing each hotel they own, a home builder might have a
document for each house thev have on the market. An index is similar to a SOL

Server table and documents are similar to rows in those tables.

In our examples, we’ll use C# and the Microsoft .NET Framework to add data
to an index and search it. To use the .NET SDK for Azure Search with our
examples, you must meet the following requirements:

m Visual Studio 2017.

m Create an Azure Search service with the Azure portal. The free version will
work for these code samples.

m Download the Azure Search SDK Nuget package.

Just like with our other services, we must first create a Search service client,
like this:

Click here to view code image

string searchServiceName = "your search service name;
string accesskey = "your access key"
SearchServiceClient serviceClient = new
SearchServiceClient(searchServiceName,

new SearchCredentials(accesskey));

Let’s assume we build homes and we have a POCO for the home class. That
class would have properties like RetailPrice, SquareFootage, Description, and
FlooringType.

The home class might look like this:
Click here to view code image

using System;

using Microsoft.Azure.Search;

using Microsoft.Azure.Search.Models;
using Microsoft.Spatial;

using Newtonsoft.Json;

// The SerializePropertyNamesAsCamelCase attribute is defined in the
Azure
// Search .NET SDK.
// It ensures that Pascal-case property names in the model class are
mapped to
// camel-case field names in the index.
[SerializePropertyNamesAsCamelCase]
public partial class Home
{

[System.ComponentModel.DataAnnotations.Key]

[IsFilterable]

public string HomeID { get; set; }

[IsFilterable, IsSortable, IsFacetable]

public double? RetailPrice { get; set; }

[IsFilterable, IsSortable, IsFacetable]
public int? SquareFootage { get; set; }

[IsSearchable]
public string Description { get; set; }

[IsFilterable, IsSortable]
public GeographyPoint Location { get; set; }

The properties all have attributes on them that tell Azure Search how to
construct field definitions for them in the index. Notice how these are all public
properties. Azure Search will only create definitions for public properties.

First, we create an index with the following code:
Click here to view code image

var definition = new Index()

{

Name = "homes",

Fields = FieldBuilder.BuildForType<Home>()
iy

serviceClient.Indexes.Create(definition);

This will create an index object with field objects that define the correct

schema based on our POCO. The FieldBuilder class iterates over the properties
of the Home POCO using reflection.

First, create a batch of homes to upload.
Click here to view code image

var homes = new Home[]

{

new Home()

{

RetailPrice = Convert.ToDouble("459999.00"),
SquareFootage = 3200,

Description = "Single floor, ranch style on 1 acre of
property. 4 bedroon,

large living room with open kitchen, dining area.",

Location = GeographyPoint.Create(47.678581, -122.131577)
iy

Then create a batch object, declaring that you intend to upload a document:

Click here to view code image

ISearchIndexClient indexClient =

serviceClient.Indexes.GetClient("homes");
var batch = IndexBatch.Upload(homes);

Then upload the document:
Click here to view code image

indexClient.Documents.Index(batch);

Search an index

In order to search documents, we must first declare a SearchParameters object
and DocumentSearchResult object of type Home in our example.

Click here to view code image

SearchParameters parameters;
DocumentSearchResult<Home> searchResults;

Now we look for any home that has the word ranch in the document. We
return only the HomelD field. We save the results.

Click here to view code image

parameters =
new SearchParameters()
{
Select = new[] { "SquareFootage" }
iy

searchResults = indexClient.Documents.Search<Home>('"3200", parameters);

Handle Search results

After we have the search results saved in the results variable, we can iterate
through them like this:

Click here to view code image
foreach (SearchResult<Home> result in searchResults.Results)

{
}

We have covered many different areas that data can be stored in Microsoft
Azure. These different storage products can be overwhelming and make
choosing correctly difficult.

Console.WritelLine(result.Document);

It is important to note that the same data can be stored in any of these
solutions just fine, and your application will likely succeed no matter which
storage product you use. You can store data in a key-value store, a document

1. 1 .. 1 . T . (ol | 1

store, a graph database, a relational store, Or any compination of these proaucts.
Functionally, they are very similar with similar features. There is also no specific
set of problems that can only be stored in a graph database or only be stored in a
relational engine. Understanding the different features, problems, advantages,
and query languages will help you choose the correct data store for your
application, but you will always feel uncertain that you chose the right one.

Anyone who looks at your problem and definitely knows the perfect storage
product is likely either trying to sell you something, only knows that product and
therefore has a vested interest in choosing it, has bought in to a specific buzz
word or new trend, or is underinformed about the drawbacks of their preferred
product. This author’s advice is to inform yourself the best you can and make a
decision while accepting the fact that every product has tradeoffs.

Thought experiment

In this thought experiment, apply what you’ve learned about this skill. You can
find answers to these questions in the next section.

Contoso Limited creates lasers that etch patterns for processors and memory.
Their customers include large chip manufacturers around the world

Contoso is in the process of moving several applications to Azure. You are the
data architect contracted by Contoso to help them make the good decisions for
these applications regarding storage products and features. Contoso has a mobile
application their sales people use to create quotes to email to their customers.
The product catalog is in several languages and contains detailed product
images. You are localizing a mobile application for multiple languages.

1. How will you structure the files in Blob storage so that you can retrieve
them easily?

2. What can you do to make access to these images quick for users around the
world?

On a regular interval, a Contoso laser sends the shot count of how many
times the laser fired to your application. The shot count is cumulative by
day. Contoso built more than 500 of these lasers and distributed them
around the world. Each laser has its own ma chine identifier. Each time the
shot count is sent, it includes a time stamp. The analysts are mostly
concerned with the most recent shot count sent. It’s been decided to store
the shot count in Azure Table Storage.

3. What should you use for the partition key? How many partitions should
you create?

4. How should you create the row key?
5. How many tables should you build? What’s in each table?

Contoso also wants to write a third application, a web application, that
executives can use to show the relationship between customers of your
company. Contoso knows that some of their customers purchase chips from
other Contoso customers. Your company feels like it’s in a perfect position
to examine global business relationships since it has all of the laser records
that occur in the global enterprise. Your company uses a variety of
relational databases, like Oracle and Microsoft SQL Server. You have heard
a lot about JSON Document storage engines, like Azure Cosmos DB, and
feel like it would be a perfect fit for this project. Contoso is concerned that
this application will have a significant load considering the amount of data
that will be processed for each laser. You’ve decided to help them by
implementing Redis Cache.

6. What are some advantages that Azure Cosmos DB has over traditional
relational data stores?

7. What are disadvantages your enterprise will face in implementing a store
like this?

8. How will your organization’s data analyst query data from Azure Cosmos
DB?

9. Where do you think Redis Cache can help them?
10. How will Redis Cache lessen the load on their database server?
11. What are some considerations when implementing Redis Cache?

Thought experiment answers

This section contains the solution to the thought experiment.
1. You would consider structuring the blob hierarchy so that one of the
portions of the path represented the language or region.

2. You would consider creating a CDN on a publicly available container to
cache those files locally around the world.

3. Machine ID seems like a logical candidate for PartitionKey.
4. Shot count time stamp, ordered descending.

5. There might be two tables, one for the machine metadata and one for the
shots. You could also make an argument for consolidating both pieces of
data into one table for speed in querying.

6. Cosmos DB will be easier to maintain because the schema is declared
inside the application. As the application matures, the schema can mature.
This will keep the schema fresh and new and changeable. Cosmos DB
doesn’t really need a complicated data layer or an ORM, thus saving hours
of development as we write and release. CosmosDB keeps the data in the
same structure as the object model, keeping the data easy for developers to
learn and navigate.

7. There is a learning curve for document stores and graph stores. Traditional
relational developers might have a difficult time keeping up with it.

8. Business analysts and data analysts might need to learn a new query
language in order to gain access to the data in Cosmos DB. ETL processes
might need to be written to pipe document data into a traditional data store
for reporting and visualizations. Otherwise the reporting burden of the
application will rest on the original developers, which also may be an
acceptable solution.

9. They can cache their entire product catalog. They can cache each session so
that the session can be saved before it’s committed to the database. They
can cache location information, shipping information, etc.

10. All of the above items will greatly alleviate the load of their applications.
Basically, you are stopping the relational database read locks from blocking
the writing transactions. Also, by caching the reads, you are stopping them
from competing for I/O with the writes.

11. Caching is memory intensive, so make sure you are using memory
effectively. Caching rarely used things is not effective. Caching needs data
management. Knowing when to expire cache, refresh cache, and populate
cache are all things that should be thought of ahead of time.

Chapter summary

m A blob container has several options for access permissions. When set to
Private, all access requires credentials. When set to Public Container, no
credentials are required to access the container and its blobs. When set to
Public Blob, only blobs can be accessed without credentials if the full URL is
known.

m To access secure containers and blobs, you can use the storage account key
or shared access signatures.

m Block blobs allow you to upload, store, and download large blobs in blocks
up to 4 MB each. The size of the blob can be up to 200 GB.

® You can use a blob naming convention akin to folder paths to create a logical
hierarchy for blobs, which is useful for query operations.

m All file copies with Azure Storage blobs are done asynchronously.

m Table storage is a non-relational database implementation (NoSQL)
following the key-value database pattern.

m Table entries each have a partition key and row key. The partition key is used
to logically group rows that are related; the row key is a unique entry for the
row.

m The Table service uses the partition key for distributing collections of rows
across physical partitions in Azure to automatically scale out the database as
needed.

m A Table storage query returns up to 1,000 records per request, and will time
out after five seconds.

® Querying Table storage with both the partition and row key results in fast
queries. A table scan is required for queries that do not use these keys.

m Applications can add messages to a queue programmatically using the .NET
Storage Client Library or equivalent for other languages, or you can directly
call the Storage API.

m Messages are stored in a storage queue for up to seven days based on the
expiry setting for the message. Message expiry can be modified while the
message is in the queue.

® An application can retrieve messages from a queue in batch to increase
throughput and process messages in parallel.

m Each queue has a target of approximately 2,000 messages per second. You
can increase this throughput by partitioning messages across multiple queues.

® You can use SAS tokens to delegate access to storage account resources
without sharing the account key.

m With SAS tokens, you can generate a link to a container, blob, table, table
entity, or queue. You can control the permissions granted to the resource.

m Using Shared Access Policies, you can remotely control the lifetime of a
SAS token grant to one or more resources. You can extend the lifetime of the
policy or cause it to expire.

m Storage Analytics metrics provide the equivalent of Windows Performance
Monitor counters for storage services.

® You can determine which services to collect metrics for (Blob, Table, or

Queue), whether to collect metrics for the service or API level, and whether
to collect metrics by the minute or hour.

m Capacity metrics are only applicable to the Blob service.

m Storage Analytics Logging provides details about the success or failure of
requests to storage services.

m Storage logs are stored in blob services for the account, in the $logs
container for the service.

® You can specify up to 365 days for retention of storage metrics or logs, or
you can set retention to 0 to retain metrics indefinitely. Metrics and logs are
removed automatically from storage when the retention period expires.

m Storage metrics can be viewed in the management portal. Storage logs can be
downloaded and viewed in a reporting tool such as Excel.

m The different editions of Azure SQL Database affect performance, SLAs,
backup/restore policies, pricing, geo-replication options, and database size.

m The edition of Azure SQL Database determines the retention period for point
in time restores. This should factor into your backup and restore policies.

m [t is possible to create an online secondary when you configure Azure SQL
Database geo-replication. It requires the Premium Edition.

m [f you are migrating an existing database to the cloud, you can use the
BACPACs to move schema and data into your Azure SQL database.

m Elastic pools will help you share DTUs with multiple databases on the same
server.

m Sharding and scale-out can be easier to manage by using the Elastic Tools
from Microsoft.

m Azure SQL Database introduces new graph features and graph query syntax.

m The different types of APIs available in Azure Cosmos DB, including table,
graph, and document.

m Why developers find document storage easy to use in web, mobile, and IoT
applications because saving and retrieving data does not require a complex
data layer or an ORM.

m The different ways to query Azure Cosmos DB, including LINQ lambda,
LINQ query, and SQL.

m Why graph databases are a great solution for certain problems, particularly
showing relationships between entities.

m Cosmos DB scaling is in large part automatic and requires little to no

management. The most important thing is to correctly choose which
documents will go in which collections and which partition key to use with
them.

m Cosmos DB supports multiple regions for disaster recovery and to keep the
data close to the users for improved network latency.

m Cosmos DB has several different security mechanisms, including encryption
at rest, network firewalls, and users and permissions.

m What Redis Cache is and how it can help speed up applications.
m How to choose between the different tiers of Azure Redis Cache

m The importance of data persistence in maintaining state in case of power or
hardware failure.

m How to scale Azure Redis Cache for better performance or larger data sets.
m Create an Azure Search Service using the Azure portal.

m Create an Azure Search index and populate it with documents using C# and
the .NET SDK.

m Search the index for a keyword and handle the results.

Manage identity, application and network
services

Beyond compute and storage features, Microsoft Azure also provides a number
of infrastructure services for security and communication mechanisms to support
many messaging patterns. In this chapter you learn about these core services.

Skills in this chapter:

m Skill 3.1: Integrate an app with Azure Active Directory (Azure AD)
m Skill 3.2: Develop apps that use Azure AD B2C and Azure AD B2B
m Skill 3.3: Manage Secrets using Azure Key Vault

m Skill 3.4: Design and implement a messaging strategy

Skill 3.1: Integrate an app with Azure AD

Azure Active Directory (Azure AD) provides a cloud-based identity
management service for application authentication, Single Sign-On (SSO), and
user management. Azure AD can be used for the following core scenarios:

m A standalone cloud directory service

m Corporate access to Software-as-a-Service (SaaS) applications with
directory synchronization

m SSO between corporate and SaaS applications

m Application integration for SaaS applications using different identity
protocols

m User management through a Graph API

m Manage multi-factor authentication settings for a directory
In this section, you learn how to do the following:

m Set up a directory

= How to integrate applications with Azure AD using WSFederation,
OAuth and SAML-P

m How to query the user directory with the Microsoft Graph API
® How to work with multi-factor authentication (MFA) features

More Info: Azure AD Documentation

You can find the Azure AD documentation at:
https://docs.microsoft.com/en-us/azure/active-directory/.

More Info: Using Windows Powershell to Manage Azure AD

This section will walk you through the steps to achieve results
through the Azure Portal. You may want to manage some aspects
of Azure AD with Windows PowerShell. For example, to initialize
Azure AD for application integration you would create
applications, permissions, users, and groups. For more
information, see: https://docs.microsoft.com/en-
us/powershell/module/Azuread/?view=azureadps-2.0.

This skill covers how to:

= Develop apps that use WSFederation, SAML-P, and OpenlID Connect
and OAuth endpoints

® Query the directory using Microsoft Graph API, MFA and MFA API

Preparing to integrate an app with Azure AD

There are several common scenarios for application integration with Azure AD,
including the following:

m Users sign in to web applications

m Users sign in to JavaScript application (for example, single page applications
or SPAs)

= Browser-based applications call Web APIs from JavaScript

m Users sign in to native / mobile applications that call Web APIs
m Web applications call Web APIs

m Server applications or processes call Web APIs

Where a user is present, the user must first be authenticated at Azure AD, thus
presenting proof of authentication back to the application in the form of a token.
You can choose from a few protocols to authenticate the user: WSFederation,
SAML-P, or OpenID Connect. OpenID Connect is the recommended path
because it is the most modern protocol available, and is based on OAuth 2.0.

[I S B ATMT _ _ Ao __M__ 1L _ __ 31 - _ MNA__1_ "N M

https://docs.microsoft.com/en-us/azure/active-directory/
https://docs.microsoft.com/en-us/powershell/module/Azuread/?view=azureadps-2.0

>Cenarlos tmart Involve AF1 Security are typically pased on UAULN Z.U TIOWS,
though this is not a strict requirement.

Authentication workflows involve details at the protocol level, but Figure 3-1
illustrates from a high level the OpenID Connect workflow for authenticating
users to a web app. The user typically starts by navigating to a protected area of
the web app, or electing to login (1). The application then sends an OpenlID
Connect sign in request (2) to Azure AD. If the user does not yet have a session
at Azure AD (usually represented by a cookie), they are prompted to login (3).
After successfully authenticating the user’s credential (4) Azure AD writes a
single sign-on (SSO) session cookie to establish the user session, and sends the
OpenID Connect sign in response back to the browser (5), including an id token
to identify the user. This is posted to the web app (6). The application validates
the response and establishes the user session at the application (7).

1

o]
py
: @ s
. “Sessloﬂ < />
Web App Cookie
e)

Cookie

id token Login
Login Page

Establish OpenlD OpenlD e
user Connact Connect User
seddion Request Response Credentals
Estallish
S50
. sessbon
i
POST
DpenlD
Connect
Response
O 0 O a | m| 0
Web App Azure AD Tenant

FIGURE 3-1 The high-level workflow for an OpenID Connect sign-in request

More Info: Authentication Scenarios

See the following reference for a review of these key authentication

scenarios with related sample applications:
https://docs.microsoft.com/en-us/azure/active-
directory/develop/active-directory-authentication-scenarios.

The following steps are involved in application integration scenarios with
Azure AD:

1.
2.
3.

Create your Azure AD directory. This is your tenant.
Create your application.

Register the application with Azure AD with information about your
application.

Write code in your application to satisfy one of the scenarios for user
authentication or token requests to call APIs.

Receive protocol-specific responses to your application from Azure AD,
including a valid token for proof of authentication or for authorization
purposes.

In this section, you’ll learn how to create a directory, register an application in
the Azure portal, and learn how to find integration endpoints for each protocol.

More Info: Azure AD Code Samples

Integration between applications and Azure AD involves selecting a
protocol for user authentication and for specific application
authorization scenarios and choosing components for your
application platform to simplify working with protocols. The
following reference has many authentication and authorization
samples to help you apply the review in this section to code,
illustrating the most common integration scenarios:
https://azure.microsoft.com/en-us/resources/samples/?service=active-
directory&sort=0.

Creating a directory

To create a new Azure AD directory, follow these steps:

1. Navigate to the Azure portal accessed via https:/portal.azure.com.

2. Click New and select Security + Identity, then select Azure Active

Directory from the list of choices.

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-authentication-scenarios
https://azure.microsoft.com/en-us/resources/samples/?service=active-directory&sort=0
https://portal.azure.com

3. From the Create Directory blade, (Figure 3-2) enter your Organization
name and your domain name. Select the country or region and click Create.

Create directory

* Organization name @

sol-aad-directory v

* |nitial domain narme @

solaaddirectory v

solaaddirectory.onmicrosoft.com

Country or region @

United States v

FIGURE 3-2 The Create Directory blade

4. Once created there will be a link shown on the same blade, that you can
click to navigate to the directory. You can also navigate to the directory by
selecting More Services from the navigate panel, then from the search
textbox type active, then select Azure Active Directory. The blade for the
new directory that you have created will be shown.

5. If the Azure Active Directory blade shown is not your new directory, you
can switch directories by selecting the Switch Directories link from the
directory blade (Figure 3-3). This drops down the directory selection menu
from which you can choose the directory you want to navigate to.

sol-aad-directory

Azure Active Directory

@ Oveni & Switch directory [l Delete directory
verview

r: Quick start

FIGURE 3-3 The Switch diEctor-y link available from an Azure Active
Directory blade

More Info: Creating a Premium Directory

See the following reference for setting up a premium directory:
https://docs.microsoft.com/en-us/azure/active-directory/active-
directory-get-started-premium.

More Info: Azure AD Connect

See the following reference for how to use Azure AD Connect to
integrate your on-premises directories with your Azure AD
directory: https://docs.microsoft.com/en-us/azure/active-
directory/connect/active-directory-aadconnect.

Registering an application

You can register Web/API or Native applications with your directory. Web/API
applications require setting up a URL for sign in responses. Native applications
require setting up an application URI for OAuth2 responses to be redirected to.
Visual Studio has tooling integration that supports automating the creation of
applications if you configure your directory authentication while setting up the
project with a template that supports this. This removes the need to manually
register applications, and it initializes the configuration of the application for you
as well, using middleware that understands how to integrate with Azure Active
Directory.

You can manually add a Web/API application using the Azure portal by
following these steps:

1. Navigate to the Azure portal accessed via https://portal.azure.com.

2. Select Azure Active Directory from the navigation panel and navigate to
your directory.

3. Select App registrations (Figure 3-4) from the navigation pane, and click
New Application Registration from the command bar at the top of the
blade.

https://docs.microsoft.com/en-us/azure/active-directory/active-directory-get-started-premium
https://docs.microsoft.com/en-us/azure/active-directory/connect/active-directory-aadconnect
https://portal.azure.com

directory - App registrations

DISPLAY HAME APPLICATION TYPE APPLICATION ID

Mo results

FIGURE 3-4 The App registrations blade

. From the Create application blade (Figure 3-5), supply a name for the
application. Choose the application type Web/API and supply the Sign-on
URL, which is the address where the sign in response can be posted to the
application. If you are using the OpenID Connect middleware for
aspnetcore, the address will end with /signin-oidc and the middleware
knows to look for responses arriving with that path.

* Mame @

AADClient v

Application type @
Web app / API W

* Sign-on URL @
https://localhost:44374/signin-oidc v

FIGURE 3-5 The Create application blade

. Click Create to register the application.

. Select App registrations from the navigation pane for the directory. The
new application will be listed in the blade.

. Select your application by clicking it. From here you can customize
additional settings such as the following:

Uploading a logo for login branding

Indicating if the application is single or multi-tenant
Managing keys for OAuth scenarios

Controlling consent settings

moOoR»

Granting permissions

More Info: Integrating Applications

For additional details related to integrating applications see this
reference: https://docs.microsoft.com/en-us/azure/active-
directory/develop/active-directory-integrating-applications.

Viewing integration endpoints

You can integrate applications with Azure AD through several protocol
endpoints including:

m WSFederation metadata and sign-on endpoints
m SAML-P sign-on and sign-out endpoints

m OAuth 2.0 token and authorization endpoints
m Azure AD Graph API endpoint

\/

Exam Tip

The graph endpoint exposed in the Azure Portal for Azure AD
directories and applications is the Azure AD Graph API, which
relates to Azure AD v1 capabilities. This chapter covers the
Microsoft Graph API which is the preferred way to integrate, so a
different endpoint will be discussed later.

To view the endpoints (Figure 3-6) available to your directory, do the
following:

1. Navigate to the Azure portal accessed via https://portal.azure.com.

2. Select Azure Active Directory from the navigation panel and navigate to
your directory.

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-integrating-applications
https://portal.azure.com

3.

4.

Select App registrations from the navigation pane for the directory, and
click Endpoints from the command bar.

The endpoints blade (see Figure 3-2) lists protocol endpoints, such as the
following:

m https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdcO-
44150037bfd9/federationmetadata/2007-06/federationmetadata.xml

m https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdcO-
44150037bfd9/wsfed

m https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdcO-
44150037bfd9/saml2

m https.//graph.windows.net/c6cad604-0f11-4c1c-bdc0-44150037bfd9

m https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdcO-
44150037bfd9/oauth2/token

m https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdcO-
44150037bfd9/oauth2/authorize

https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-44150037bfd9/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-44150037bfd9/wsfed
https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-44150037bfd9/saml2
https://graph.windows.net/c6cad604-0f11-4c1c-bdc0-44150037bfd9
https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-44150037bfd9/oauth2/token
https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-44150037bfd9/oauth2/authorize

Endpoints

FEDERATION METADATA DOCUMENT

https:/foginmicrosoftonline.com/cecad604-011-4c 1 c-bdc0-441 50037 biddfederationmetadata/ 2007 -06/federationmetadata.xm

W5-FEDERATION SIGN-ON ENDFOINT

hittps:floginmicrosoftonline.com/cbcadb04-0f11-dcTc-bdc0-441 50037 bfd9/wsfed

SAML-P SIGN-ON ENDPOINT

https:/flogin.microsaftonline.com/cbcad604-0f11-4¢ 1 c-bdc0-44 150037 bfd9/saml2

SAML-P SIGN-OUT ENDPOINT

https:/floginmicrosaftonline com/chcadb0d-0f11-dc1c-bdc0-441 50037 bfd9/saml2

MICROSOFT AZURE AD GRAPH AP| EMDPOINT

https: ffgraphowind ows.net/cbead604-0f11-de 1e-bd c0-44 150037 bfd9

OAUTH 2.0 TOKEN ENDPOINT

https:/flogin microsaftonline com/cocad604-0f11-4¢ 1 e-hde0-44 150037 bfd9 /oauth2 ftoken

CAUTH 2.0 AUTHORIZATION ENDPOINT

httpe: Moginmicrosoftonline com/cbcad804-0f11-4¢1¢-bde0-441 50037 bfd9/sauth2 /authorize

FIGURE 3-6 A list of protocol endpoints for an Azure AD tenant

Develop apps that use WSFederation, SAML-P, OpenID Connect
and OAuth endpoints

You can integrate your applications for authentication and authorization
workflows using WSFederation, SAML Protocol (SAML-P), OpenlID Connect
and OAuth 2.0. Azure AD OAuth 2.0 and endpoints support both OpenID
Connect and OAuth 2.0 integration for authentication or authorization requests.
If your applications require support for WSFederation or SAML 2.0 protocol
you can use those endpoints to achieve the integration. This section discusses
integration using these protocols.

Note: Openid Connect

OpenID Connect extends the features of OAuth 2.0 protocol to
support user authentication workflows and session management.
The OAuth 2.0 authorization endpoint is the endpoint used by

OpenlD Connect to perform authentication, and some new
endpoints are introduced with OpenID Connect that also support
session management, although you may not see all of these
endpoints exposed directly by Azure AD. The endpoints exposed by
an identity service are often implementation specific while they still
(should) follow the protocols at their core.

Integrating with OpenID Connect

OAuth 2.0 is an authorization protocol, not an authentication protocol. OpenID
Connect extends OAuth 2.0 with standard flows for user authentication and
session management. Today’s applications typically use OpenID Connect
workflows authenticating users from web, JavaScript, or mobile applications
(via the browser). OpenlID Connect authentication involves the application
sending a sign in request to the directory, and receiving a sign in response at the
application. The sign in response includes an id token representing proof of
authentication, and the application uses this to establish the user session at the
application.

To create an aspnetcore application that authenticates users with OpenID
Connect, do the following from Visual Studio 2017:

1. Open Visual Studio 2017 and create a new project based on the ASP.NET
Core Web Application project template (Figure 3-7). Select Web
Application for the style of application on the second dialog and then click
Change Authentication.

http://ASP.NET

Mew ASP.NET Core Web Application - OpenlDCoraClient s x

MET Core ~ || ASP.MET Core 2.0 * | Learn more

A project template for creating an ASP.MET Core

application with example ASP.NET Core Razor Pages
N B O gEll e o G g

content.
Empty Web AP 'H'l-'Eb- li"feb_ Angular ket e
Application Application
(Model-View-
Controller)

2
el

React,js Reactjs and
R

Change Authentication

Authentication Mo Authentication

[] Enable Docker Support

05 Windows
Requires Docker for Windows

Docker support can also be enabled later Learn more

OK | | Cancel

FIGURE 3-7 The new ASP.NET Core Web Application dialog

2. Select Work or School Accounts and enter your Azure AD domain into the
textbox provided (if you are signed in, this will also be available in the
drop-down list). Click OK to return to the previous dialog, and again click
OK to accept the settings and create the project (Figure 3-8).

Change Authentication X

For applications that authenticate users with Active Directory, Microsoft Azure Active

Directory, or Office 365.
O No Authentication
Learn more
O Individual User Accounts Cloud - Single Organization v 0
® Domain:
0
Wark cr School Accounts solaaddirectory.onmicrosoft.com v | L]

O Windows Authentication Directory Access Permissions:

(1 Read directory data @

| More Options

O | | Cancel

FIGURE 3-8 The Change Authentication dialog

http://ASP.NET

3. Visual Studio will register this application with your Azure AD directory,
and configure the project with the correct application settings in the
appsettings.json file. These settings provide the following key information
to the middleware:

A. Which directory to communicate with (Domain and Tenantld).
B. Which registered application is making the request (ClientId).

C. Which redirect URI should be provided with the sign in request, so
that Azure AD can validate this in its list of approved redirect URIs
(built from the CallbackPath).

D. The base address of the Azure AD instance to send requests to
(Instance).

4. The following settings are found in the web.config for the new project:
Click here to view code image

"AzureAd": { "Instance": "https://login.microsoftonline.com/",
"Domain": "solaaddirectory.onmicrosoft.com",
"TenantId": "c6cad604-0f11-4clc-bdc0-44150037bfd9",
"ClientId": "483db32c-f517-495d-a7b5-03d6453c939c",
"CallbackPath": "/signin-oidc"

iy

5. Navigate to your Azure AD directory (Figure 3-9) at the Azure portal and
view the App registrations. Select your new application to view its
properties. The properties show the App ID URI used to uniquely identify
your application at the directory, and the home page URL used to send
protocol responses post sign in.

H: X

* Mame @

] OpenlDCoreClient

Ohject 1D &

Application 1D @

* App 1D URI @

https:/fsolaaddirectory. onmicrosoft.com/Openl DCoreClient

Logo

Upload new logo @

Calact a fifa

Home page LRL @

https:/flocalhost44309/7
Logout URL

Application type

Multi-tenanted @

‘r’e's_No|

FIGURE 3-9 Azure AD application settings blade

When you run the new project from Visual Studio you will see a workflow
like this:

1. A user navigates to the application.

2. When the user browses to a protected page or selects Login, the application
redirects anonymous users to sign in at Azure AD, sending an OpenlD
Connect sign in request to the OAuth endpoint.

3. The user is presented with a login page, unless she has previously signed in

and established a user session at the Azure AD tenant.

4. When authenticated, an OpenID Connect response is returned via HTTP
POST to the application URL, and this response includes an id token
showing proof of user authentication.

5. The application processes this response, using the configured middleware
that supports OpenID Connect protocol, and verifies the token is signed by
the specified trusted issuer (your Azure AD tenant), onfirming that the
token is still valid.

6. The application can optionally use claims in the token to personalize the
application experience for the logged in user.

7. The application can also optionally query Azure AD for groups for
authorization purposes.

Note: Oauth Endpoints

Azure AD exposes two OAuth endpoints: the authorization

endpoint (supports authentication via OpenID Connect) and the
token endpoint (supports requests pertaining to access tokens).

These are protocol endpoints defined by the OAuth 2.0 protocol.
Middleware components that support OpenID Connect and OAuth
2.0 usually rely on a well-known OpenID Connect metadata

endpoint at the identity service to discover which endpoint to send
requests to. This metadata endpoint for a given directory looks
something like this:
https://login.microsoftonline.com/solaaddirectory.onmicrosoft.com/.well-

known/openid-configuration.

More Info: Openid Connect Sample

For more information on integrating an ASP.NET MVC
application using the OWIN framework to handle OpenID Connect
requests and responses, see: https://github.com/Azure-

Samples/active-directory-dotnet-webapp-openidconnect.

Integrating with OAuth

OAuth 2.0 is an authorization protocol that is typically used for delegated
authorization scenarios where user consent is required to access resources, and

n . 1 rml 1 . 1 ~~ A .1 Y N P

https://login.microsoftonline.com/solaaddirectory.onmicrosoft.com/.well-known/openid-configuration
http://ASP.NET
https://github.com/Azure-Samples/active-directory-dotnet-webapp-openidconnect

TOr access token requests. 1he desired response rrom an UAuUth Z.U authorization
request is an access token, which is typically used to call APIs protecting
resources.

Before an application can request tokens, it must be registered with the Azure
AD tenant and have both a client id and secret (key) that can be used to make
OAuth requests on behalf of the application.

To generate a secret for an application, complete the following steps:

1. Navigate to the directory from the Azure portal accessed via
https://portal.azure.com.

2. Click App registrations in the navigation pane, and select the application
you want to enable for token requests via OAuth.

3. Select Keys in the navigation pane. Provide a friendly name for the key and
select a duration for the key to be valid (Figure 3-10).

Hsave X Discard

DESCRIFTION EXFIRES WALUE

Key description 9297208 Hidden

| APIRequests o | | Mever expires b Value will be displayed an save

Duration
n 1 year
n 2 years

Mewver expires

FIGURE 3-10 The Keys blade for an application in Azure AD

4. Click Save on the command bar and the value for the key appears.

5. Copy the key somewhere safe; it will not be presented again.

6. You can now use the client id and secret (key) to perform OAuth token
requests from your application.

A later section, “Query the Graph APL” covers an example of an OAuth token
request authorizing an application to use the Graph API.

More Info: Oauth Token Request Samples

The following samples illustrate authorizing users and applications
for OAuth token requests: https://github.com/Azure-Samples/active-

https://portal.azure.com
https://github.com/Azure-Samples/active-directory-dotnet-webapp-webapi-oauth2-useridentity

directory-dotnet-webapp-webapi-oauth2-useridentity and
https://github.com/Azure-Samples/active-directory-dotnet-webapp-

webapi-oauth2-appidentity.

Integrating with WSFederation

WSFederation is an identity protocol used for browser-based applications for
user authentication. To create a new ASP.NET MVC application that integrates
with the WSFederation endpoint there are a number of custom coding steps that
are required since the templates do not support this directly. Those steps are
discussed at the following reference: https://github.com/Azure-Samples/active-
directory-dotnet-webapp-wsfederation.

Note: Visual Studio

The reference uses Visual Studio 2013 but the steps work for
Visual Studio 2017.

A few key points to call out about the setup for WSFederation are as follows:

1. When you create a new project using Visual Studio (for example, based on
the ASP.NET Web Application project template) you will select MV C for
the style of application on the second dialog and leave No Authentication
as the authentication option for the template (Figure 3-11). If you choose
other authentication options, the generated code will always use OpenlD
Connect as the protocol, and this will not work for WSFederation or other
protocols.

https://github.com/Azure-Samples/active-directory-dotnet-webapp-webapi-oauth2-appidentity
http://ASP.NET
https://github.com/Azure-Samples/active-directory-dotnet-webapp-wsfederation
http://ASP.NET

Mew ASP.MET Web Application - WSFederationClient

Empty Web Forms Web AP|

Azure APl App Azure Mobile
App

Single Page
Application

Add folders and core references for

[web Forms & pve [web ARl

O Add unit tests

Test project name: WSFederationClient.Tests

T X

A project template for creating ASP.NET MVC
applications. ASP.MET MVC allows you to build
applications using the Model-View-Controller
architecture. ASP.NET MVC includes many features that
enable fast, test-driven development for creating
applications that use the latest standards.

Learn more

Change Authentication

Authentication: Mo Authentication

ok || cancel

FIGURE 3-11 The new ASP.NET Web Application dialog with no

authentication option selected

You will have to add code per the above reference to communicate using
WSFederation protocol and set up the application settings required to
match your Azure AD setup for the application.

You will register an Azure AD application following the steps shown
earlier in this skill. Here is an example for a WSFederation application

setup (Figure 3-12).

http://ASP.NET

* Mame @

| WsFederationClient
Object ID @
| 91ch3Sf7-af8f-4d98-aae7-T55e65891dd2

Application ID @

| 12fbb7eb-cf15-4eb2-9710-2af4 15904 5e

* App ID URI @&

https://solaaddirectory.onmicrosoft com/WSFederationClient

Logo

WS

Upload new logo @

Sefect a hile

Home page UREL @
https:/flacalhost: 44337/

Logout LIRL

Application type

Multi-tenanted @

FIGURE 3-12 The settings for a registered WSFederation compatible
application in Azure AD

4. The details for connecting an MV C application with the registered Azure
AD application for WSFederation are covered in the reference. It shows

you how to setup the OWIN middleware for WSFederation:
WsFederationAuthenticationMiddleware. In addition to following those
steps, note the following:

A. Ensure that the App ID URI matches the wtrealm parameter that will
be passed in the WSFederation request from the client application.
B. Ensure SSL is enabled for your application.

C. Ensure that the Home page URL is an HTTPS endpoint and matches
the application SSL path.

When you run a WSFederation client you will see the following workflow:

1.
2.

A user navigates to the application.

When the user browses to a protected page or selects Login, the application
redirects anonymous users to sign in at Azure AD, sending a WSFederation
protocol request that indicates the application URI for the realm parameter.
The URI matches the App ID URI shown in the registered application
settings.

The request is sent to the tenant WSFederation endpoint.

The user is presented with a login page, unless she has previously signed in
and established a user session at the Azure AD tenant.

When authenticated, a WSFederation response is returned via HTTP POST
to the application URL - and this response includes a SAML token showing
proof of user authentication.

The application processes this response, using the configured OWIN
middleware that supports WSFederation, and verifies the token is signed by
the specified trusted issuer (your Azure AD tenant), and confirms that the
token is still valid.

The application can optionally use claims in the token to personalize the
application experience for the logged in user.

The application can optionally query Azure AD for groups for
authorization purposes.

Note: Federation Metadata

WSFederation exposes two endpoints: one for metadata and one
for sign-in and sign-out. The metadata endpoint exposes the
standard federation metadata document that many identity

middleware know how to consume to discover the address of the
sign-in and sign-out endpoint, the certificate required to validate
signatures in a response, and other endpoints available at the
service, such as SAML-P endpoints. If you use the metadata
endpoint, your application should dynamically receive updates,
such as new certificates used by the service. The sign-in and sign-
out endpoint expects parameters indicating the purpose of the
request.

Integrating with SAML.-P

SAML 2.0 Protocol (SAML-P) can be used like WSFederation to support user
authentication to browser-based applications. For example, SAML-P integration
with Azure AD might follow steps like this:

1.
2.

A user navigates to your application.

Your application redirects anonymous users to authenticate at Azure AD,
sending a SAML-P request that indicates the application URI for the
ConsumerServiceURL element in the request.

The request is sent to your tenant SAML?2 sign in endpoint.

The user is presented with a login page, unless she has previously signed in
and established a user session at the Azure AD tenant.

When authenticated, a SAML-P response is returned via HTTP POST to
the application URL. The URL to use is specified in the single sign-on
settings as the Reply URL. This response contains a SAML token.

The application processes this response, verifies the token is signed by a
trusted issuer (Azure AD), and confirms that the token is still valid.

The application can optionally use claims in the token to personalize the
application experience for the logged in user.

The application can optionally query Azure AD for groups for
authorization purposes.

Note: SAML-P Endpoints

SAML.-P support in Azure AD includes a sign-on and sign-out
endpoint, and they are both the same URL. The protocol describes
how to format each request so that the endpoint knows which
action is requested.

More Info: SAML Protocol

SAML-P tools are not provided as part of the NET Framework
libraries; however, there are a few third-party libraries available
for building applications based on this protocol. Typically, support
for SAML-P becomes important when you are integrating other
SaaS applications with your Azure AD because some applications
do not support WSFederation or OpenID Connect. For more
information on SAML-P and Azure AD, see
https://docs.microsoft.com/en-us/azure/active-directory/active-
directory-saml-protocol-reference.

Query the directory using Microsoft Graph API, MFA and MFA
API

Beyond authentication and authorization workflows for your applications, you
can also interact with the Microsoft Graph API to manage users and request
information about users, and integrate multi-factor authentication scenarios into
your solutions. This section discusses those capabilities.

Note: Microsoft Graph VS. Azure AD Graph

Microsoft Graph is the recommended API to be used over Azure
AD Graph API - as it is where future investments in functionality
are being made. Microsoft Graph already supports most
everything that is exposed today through Azure AD graph and will
ultimately support all of Azure AD Graph functionality. In the
meantime, both APIs are supported for those applications that
were already implemented against Azure AD Graph. New
applications are recommended to use Microsoft Graph unless there
is a feature that only Azure AD Graph exposes. See this reference

for the roadmap: https://dev.office.com/blogs/microsoft-graph-or-
azure-ad-graph.

Query the Microsoft Graph API

Using the Microsoft Graph API, you can interact with your Azure AD tenant to
manage users, groups, and more. If the application is limited to read access only,
query activity will be allowed. With read and write access. the application can

https://docs.microsoft.com/en-us/azure/active-directory/active-directory-saml-protocol-reference
https://dev.office.com/blogs/microsoft-graph-or-azure-ad-graph

perform additional management activities:

m Add, update, and delete users and groups

m Find users

m Request a user’s group and role membership

= Manage group membership

m Create applications

® Query and create directory properties

More Info: Microsoft Graph API Reference

See this reference for documentation regarding the Microsoft

Graph: https://developer.microsoft.com/en-us/graph/docs.

)

Exam Tip

The Microsoft Graph API is accessible via the Azure AD v2
endpoint. The Azure AD v2 endpoint is an evolution of the Azure
AD v1 endpoint that modernizes some of the protocol payloads,
allows you to use a single endpoint for both Azure AD and
Microsoft Account users, and also adds other features. At the time
of this writing, the only way to use the Azure AD v2 endpoint is to
register applications at the new Microsoft Application Registry at
https://apps.dev.microsoft.com. For more details on this see:
https://docs.microsoft.com/en-us/azure/active-
directory/develop/active-directory-appmodel-v2-overview.

Before you can interact with the Microsoft Graph API programmatically, you
must create an application with the Microsoft Application Registry as follows

(Figure 3-13):

1.

Navigate to the Microsoft Application Registry accessed via
https://apps.dev.microsoft.com.

Click Add an app, and from the app registration page enter a friendly name
for your application and supply your contact email for administering the

https://developer.microsoft.com/en-us/graph/docs
https://apps.dev.microsoft.com
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-appmodel-v2-overview
https://apps.dev.microsoft.com

applications. You can optionally select the Guided Setup checkbox for a
walkthrough to complete additional settings. Click to create the application.

Register your application

Application Mame

GraphAPiClient
Contact Ernail
tor important communications abowt your AP cation

michelebusta@solliance net

Guided Setup

Let us help you get started

By proceeding, you agree to the Microsoft Platform Pol

FIGURE 3-13 The Register your application page

3. If you do not select the guided setup, you will see the registration details
for your new application and be able to view and manage those details, for
example:

A.
B.

C.

=

View the application id (a GUID) identifying your application.

Generate a password or set up a key pair for the application to support
token requests.

Supply web application integration details such as redirect URL and
single sign-out URL.

Supply mobile application integration details such as redirect URI.

Set any delegated or application permissions that the application
requires.

Provide other application customization details that are relevant
during sign in such as the logo, home page URL, terms of service
URL, and privacy statement URL.

An application can query the Microsoft Graph API in a few ways:

m The application can directly query the graph API with the application id and
secret, to access information that the application has direct access to (without
user consent being required).

m The application can request information about the user through delegated
permissions, which implies that the user must first authenticate to the
application, grant consent (or at least have consent automatically granted at
the administrative level), and then make requests on behalf of that user.

To set up a web application to support user authentication, consent and
delegated permissions to user information exposed via the Graph API:

1. Create an application password. Click Generate New Password from the
Application secrets section. In the dialog presented save the generated
password somewhere safe as it will not be presented again (Figure 3-14).

Application Secrets
Genrate New Passwor | Generate New Key i | Utosd Pubic ke

Password/Public Key Created

Passwaord OO AR A A Sep 30, 2017 2:58:54 PM

FIGURE 3-14 The Application Secrets section of the registered
application

2. From Platforms section, select Add Platform and select Web. Provide the
web application sign in URL and for single sign-out scenarios you can
optionally provide the application sign out URL (Figure 3-15).

Platforms

Add Flatiarm

¥ Allow Implicit Flow
Redirect URLs @ [ERSEILN

hitpsYlocalhost12 34/ ignin-oide

Logout URL @

httpsyiocalhest1 234 Account Signout

FIGURE 3-15 The web application configuration for sign in and sign out

3. By default, the Microsoft Graph Permissions will have delegated
permissions for User.Read selected. You may choose to change the
delegated permissions, or add application permissions, based on the type of
requests your application may make to the Graph API.

More Info: Azure Samples for Microsoft Graph

See the Azure Samples on GitHub for more examples for calling
the Microsoft Graph API including the following examples for web
apps and JavaScript based applications:

https://github.com/Azure-Samples/active-directory-dotnet-webapp-
openidconnect-v2 and https://qithub.com/Azure-Samples/active-
directory-javascript-singlepageapp-dotnet-webapi-v2.

Working with MFA

Multi-factor authentication (MFA) requires that users provide more than one
verification method during the authentication process, including two or more of
the following:

m A password (something you know)
m An email account or phone (something you have)
m Biometric input like a thumbprint (something you are)

Azure Multi-Factor Authentication (MFA) is the Microsoft solution for two-
step verification workflows that can work with phone, text messages or mobile
app verification methods.

Note: MFA Settings

At the time of this writing, you must still navigate to the (old)
management portal to enable MFA for users in your directory, and
to configure MFA settings. This will change in the near future.

You can enable MFA for users in your directory by doing the following:

1. Navigate to the Azure portal accessed via https://portal.azure.com.

2. Click New and select Security + Identity, then select Multi-Factor
Authentication from the list of choices (Figure 3-16).

https://github.com/Azure-Samples/active-directory-dotnet-webapp-openidconnect-v2
https://github.com/Azure-Samples/active-directory-javascript-singlepageapp-dotnet-webapi-v2
https://portal.azure.com

Azure Marketplace

O Search the Marketplace

See all

Get started

Compute

MNetworking

Storage

Web + Mobile
Databases

Data + Analytics

Al + Cognitive Services
Internet of Things

Enterprise Integration

Developer tools
Monitoring + Management
Add-ons

Caontainers

Blockchain

Featured

e

Key Vault

Learn more

Azure Active Directory

Learn more

Azure AD Connect Health

Learn more

Azure AD Cloud App Discovery

Learn more

Azure AD Privileged Identity
Management

Learn more
Azure AD |dentity Protection

Learn more

Azure Information Protection

Learn more

Multi-Factor Authentication

Learn more

See all

FIGURE 3-16 The Multi-Factor Authentication selection in the Azure

Portal

Go to navigate to that portal (Figure 3-17).

3. You will see a link that will take you to the (old) management portal. Click

Coming soon

Multi-Factor
Authentication

We're workng 1o add services to the rew Anure portal, but we're
it et theene. I you want to gt staried row, sign into the

HAzure classic portal

FIGURE 3-17 The Coming Soon screen that links to the old management
portal for managing Multi-Factor Authentication

. From the (old) management portal select your directory and click the
Configure tab (Figure 3-18).

sol-aad-directory

&3 DASHBOARD UISERS GROUPS APPLICATIONS DIRECTORY INTEGRATION CONFIGLRE
directory properties

NAME sol-aad-directory

SIGN IN AND ACCESS PANEL PAGE

APPEARAMCE

FIGURE 3-18 A directory view in the (old) management portal where
you can configure MFA settings

. Scroll down to the multi-factor authentication section and click Manage
service settings. You will navigate to another portal where you can
configure your multi-factor authentication service settings (Figure 3-19).

multi-factor authentication

Manage service settings

FIGURE 3-19 The configuration section where you can manage multi-
factor authentication

6. From the multi-factor authentication portal, select the service settings tab.
You can optionally customize settings for the following:
A. App passwords
B. Trusted IPs to bypass multi-factor authentication

C. Enabled multi-factor verification options such as call or text to phone,
mobile notifications or mobile apps

D. Device remember-me settings

7. Select the users tab. From here you can select users and enable multi-factor
authentication (Figure 3-20). Select a user from your directory who does
not yet have multi-factor enabled, and click Enable from the action pane to
the right.

multi-factor authentication

users e

Before you begin, tlake a look at the multi-factor auth deplayment guide.

Wiew: Sign-in allowed users v ' Multi-Factor Auth status: | Ar W T bulk update

MULTI-FACTOR AUTH
STATUS

DISPLAY NAME = USER NAME
Disabled

Ll Userl userl @solhaddirectory.onmicrosoft. com Cisabled

User2 @solaaddirectony onmicrosoft.com Cisabled

crasoftcom Enablec Quick '-'15f3'-‘

Manage user settings

FIGURE 3-20 The user configuration settings for multi-factor
authentication

Users with multi-factor authentication enabled will be prompted to set up their
multi-factor authentication settings during their next login. The login workflow
will follow these steps:

1. First, the user is taken to the directory login where they are prompted to
login with their username and password.

2. Once authenticated, they are presented with a request to set up their multi-
factor settings (Figure 3-21).

For added security, we need to further verify your account

user3@solaaddirectory.onm...

Your admin has required that you set up this account for
additional security verification,

Set it up now

Sign out and sign in with a different account

More infarmation

FIGURE 3-21 A user prompt to set up multi-factor authentication

3. If the user has not yet supplied their email address or phone number for
multi-factor authentication, they will be asked to provide this information
now. In addition, they will be taken through the process of verifying this
information to ensure they can be used safely for future multi-factor
authentication workflows.

\ J

Exam Tip

Azure Multi-Factor Authentication is included inAzure Active
Directory Premium plans and Enterprise Mobility + Security
plans, and can be deployed either in the cloud or on-premises. See
the following documentation for the full details about Microsoft’s
MFA solution: https://docs.microsoft.com/en-us/azure/multi-factor-
authentication.

Work with the MFA API

You may choose to integrate multi-factor authentication directly into your
applications. This can be done by using the Multi-factor Authentication Software
Development Kit (SDK), which provides an API for interacting with Azure
MFA from your application.

In order to use these MFA APIs you must first create a Multi-factor

https://www.microsoft.com/cloud-platform/azure-active-directory-features
https://www.microsoft.com/cloud-platform/enterprise-mobility-security-pricing
https://docs.microsoft.com/en-us/azure/multi-factor-authentication

Authentication Provider from the Azure portal following these steps:

1. Navigate to the Azure portal accessed via https:/portal.azure.com.

2. Click New and select Security + Identity, then select Multi-Factor
Authentication from the list of choices. You will see a link that will take
you to the (old) management portal (Figure 3-22). Click Go to navigate to
that portal.

3. Select Active Directory from the navigation pane and select the Multi-
factor Auth Providers tab.

active directory

DIRECTORY ACCESS COMNTR MAMESPACES MULTI-FACTOR AUTH PROVIDERS REGHTS BAAMAGEMENT
MAME STATUS ROLE SUBSCRIPTION LOCATION COUNTRY OR ... O
sol-aad - directory >

FIGURE 3-22 The list of directories in the (old) management portal

4. Create a new provider and set these values (Figure 3-23):

A. Name for the provider.
B. Usage model, choosing between Per Enabled User or Per
Authentication.

C. Associate the provider with one of your directories.

5 L Y | ; QLACK CRENTE MAKE
M I ACCESS CONTRO

LISMGE MODEL .-

BIULTI- FACTOR ALTH PROVIDER
Par Enabied Llser L

DIRECTORY .:'1.

- wl-and-diractang
el cwnnal

=
e} | 6 ACTIVE DIRECTORY
>

CREATE «F

FIGURE 3-23 Creating a new multi-factor auth provider in the (old)
management portal

https://portal.azure.com

5. Click Create to create the new multi-factor authentication provider (Figure
3-24). You will see it in the list of the providers once it’s created.

active directory
ACCESS COMTROL MAMESPACES FULTI-FACTOR AUTH PROVIDERS GHTS MANAGEMEN

MNAME STATUS USAGE MODEL SUBSCRIPTEON DIRECTORY sl

FIGURE 3-24 The list of multi-factor authentication providers

6. To manage settings for the multi-factor authentication provider, select it
and click Manage from the command bar below. You will be taken to the
Azure Multi-Factor Authentication portal (Figure 3-25).

7. Select Downloads to view the available MFA SDK downloads and choose
the one for your development environment for download.

Azure Multi-Factor Authentication

H Contact Support
USER ADMINISTRATION Down |oads SDK
Block/Unblock Lsers

One-Time Bypass
¥ Download a copy of the Multi-Factor Authentication SDK. The 50K is available in 8 varely of languages. Instructions for using the

VIEW A REPORT SDK are included in the archive. The Multi-Factor Authentication S0K s comgatible with all Windows and nbe-like systams.
Usage
S LANGUAGE ZIP TAR RELEASE NOTES
Blocked User History
Per
Bypassed LUser Histary
Fraud Alert Ruby Bownioe Do
Queuved PHP Download Download

; ST ASP.MET 11 C# Download
COMFIGLIRE
ASPMETIAVE L

settings

Caching ASPMET 20 C# Download Dowrilosd
Voice Massages ASPMNET 20VE Download

Mot L lava Dorenload Dow
DOWMLOADS

= Back

Server

SDK

FIGURE 3-25 The Azure Multi-factor Authentication portal and
Downloads SDK area

More Info: Multi-Factor Authentication SDK

For more information on using the MFA SDK to integrate with
your applications see this resource: https://docs.microsoft.com/en-
us/azure/multi-factor-authentication/multi-factor-authentication-sdk.

\/

Exam Tip

You can only associate one multi-factor authentication provider to
a directory.

Skill 3.2: Develop apps that use Azure AD B2C and Azure AD
B2B

Azure AD supports user sign-in with social identity providers such as Google
and Facebook as part of Azure AD B2C. Azure AD also enables access to
applications from external partners as part of Azure B2B collaboration. This
section discusses these features.

This skill covers how to:
m Design and implement .NET MVC, Web API, and Windows desktop
apps that leverage social identity provider authentication

m Leverage Azure AD B2B to design and implement applications that
support partner-managed identities and enforce multi-factor
authentication

Design and implement apps that leverage social identity provider
authentication

Azure AD B2C makes it possible for users of your applications to authenticate
with social identity providers, enterprise accounts using open standards, and
local accounts where users are managed by Azure AD. Fundamentally this
means that the user signs in at the identity provider, and therefore, credentials
are managed by the identity provider.

Figure 3-26 illustrates the workflow assuming OpenID Connect protocol for
communication between a web application and the Azure AD B2C tenant. The
user navigates to the application to login (1) and is redirected to Azure AD with

https://docs.microsoft.com/en-us/azure/multi-factor-authentication/multi-factor-authentication-sdk

an OpenlD Connect sign in request (2). Azure AD redirects the user to the third
party identity provider (3) with the protocol that is established for
communication between Azure AD and that provider (it may not be OpenID
Connect). If the user does not yet have an active session at the identity provider,
they are typically presented with a login page to enter credentials (4), and upon
successful authentication (5), the identity provider issues a protocol response and
sets up the user session (6) possibly in the form of an SSO session cookie. The
response is posted to Azure AD (7) and validated. Upon successful validation of
the response (and user identity) Azure AD establishes a user session (SSO
session cookie) and issues an OpenID Connect response to the calling web app
(8). This response is posted to the web app (9) and validated to establish the user
session at the web app (10).

550
. 550
P 7 Sesiien
S . ™ .cm:-m </>
Sawaion —
Coslde id token Logle
- e Page
Establish Dpenil DpeniD E st -
user Cannect Canmect Signin
b Rirgquant Respanse [] Reguest Resparnse 'Elrs:‘;“l »
Establish Extabilish
S50 S50
4 . session POST | wemsion
- v, Signin
L 4 Respans
POST
Openil
Comnect
Respomse
[u] (u]] n] 0 n o o o]
External
Web 4 Azure AD Tenant : ;
PP Identity Provider

FIGURE 3-26 The high-level workflow for user sign-in to an external identity
provider via Azure AD B2C

There are a few important things to point out about this workflow:

m Applications need not be aware of the identity provider where the user signs
in, since the application trusts the response from Azure AD.

m The trust relationships are between applications and Azure AD, and between
Azure AD and the identity provider(s) that are configured (see Figure 3-27).

m The protocols to be used between Azure AD and identity provider can vary

per identity provider. This has no relationship to how the application
communicates with Azure AD.

.& Mohbile Client Trust

Trust

Azure AD
External

Identity Provider

Trust

hl Web Client

FIGURE 3-27 Trust relationships between Applications and Azure AD, and
between Azure AD and external identity providers

This section covers how to set up Azure AD B2C to enable users to login with
their preferred social identity provider such as Microsoft Account, Facebook,

Google+, Amazon or Linked In.

More Info: Azure AD B2C Overview

For a complete look at Azure AD B2C see this overview:
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-

directory-b2c-overview.

Create an Azure AD B2C tenant
To create a new Azure AD B2C tenant follow these steps:

1. Navigate to the Azure portal accessed via https://portal.azure.com.

2. Click New and select Security + Identity, then select Azure Active
Directory B2C from the list of choices (Figure 3-28).

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-overview
https://portal.azure.com

Everything T Fler
Compute
M Bgan Iy AT
Metworking
Storage Security = protection Mare
‘Web + Mobile
Databases l 1
Data + Analytics
M + Cognitive Servioes Agure AD Cleud Cisea ALk - Key Vault Barracuda Kasgersky S=gure Barracuda
* App Discovery 4 NI Mentan Firewall ol Gateway MextGen Firgwall

ntermet of Things Ihorosoft Do Systems, Inc Microsoft Baracuda Network. Kaspersky Lab Bamacuda Network.
Entarprise integrasion Identity + access management Kare
Security + [dentity
Developer lools @ @ a @ ﬁ l\
Monitonng + Managemeni . I :
Add-ans kAulti-Factor Azure Active Azure Infarmation Azure &0 Azure Active Azure A0 Domain

Authentication Diirectory Protection Privieged |dentsty | Directory B2C Serdces
Cortainers cresol Fcrosolt Micraseft Mlicrosolt Fiicrasalft Migrasaft
Blockchain

Compliance Koare

FIGURE 3-28 The list of options under Security + Identity in the Azure
portal where Azure Active Directory B2C can be found

Click Create from the Azure Active Directory B2C blade.

You may be prompted to switch to a directory with a subscription attached.
If so, click Switch directories and select the correct subscription where you
want to create the new B2C tenant. You may also have to repeat steps 1-3.

From the Create new B2C tenant or Link to existing tenant blade, select
Create a new Azure AD B2C tenant (Figure 3-29).

Enter a name for the organization, a domain name, and select the country or
region for the new tenant.

Azure AD B2C Create Tenant B X

* Organization name @

solaad W

* |pitial domain name @

solaadbic W

solaadb2c.onmicrasoft.com

Country or region @

United States W

Directory creation will take about
one minute.

FIGURE 3-29 Settings for creating a new Azure AD B2C tenant.

. You can navigate to your directory by clicking the link supplied in the
create blade, after the directory is created. Or, you can navigate to More
Services from the navigation menu and type Azure AD to filter the list and
find Azure AD B2C, then select it (Figure 3-30).

X
Shift+5pace to toggle favorites
azure ad ¢
@ Azure AD B2C
A Azure AD Cloud App Discovery
& Azure AD Connect Health 3
E Azure AD Domain Services

Azure AD |dentity Protection

} Azure AD Privileged Identity Management

FIGURE 3-30 Filtering services to show Azure AD B2C

7. Your tenant will appear in the B2C Tenant dashboard and may show a
notification indicating that it is not attached to a subscription. If this
happens, switch directories again, select your subscription from the list, and
repeat steps 1-3. At step 4 select Link to existing tenant and choose your
tenant. This will remove the warning.

8. Repeat step 6 to return to your Azure B2C tenant dashboard and click the
tenant settings component. From here you will be able to manage your
tenant settings.

Register an application

A given solution may have one or more applications that will integrate with
Azure AD B2C. Integration requires an application be registered with the B2C
tenant. When you register an application, you can configure how the application
will integrate with the tenant, for example:

m Indicate if the application is a web or API application, or a native
application

m Indicate if OpenID Connect will be used to authenticate users interactively
» Indicate any required redirect URLs or URIs
Follow these steps to register a web application:

1. Navigate to your B2C tenant settings (Figure 3-31) as described in the

previous section
2. Select Applications and click Add from the command bar

Applications

{e] |}

earch (Ctri+/) + Add

A
Ly

Overview NAME

Mo applications found in the tenant
MANAGE

Bl Applications
Identity providers
i-] User attributes

a Users and groups

FIGURE 3-31 The applicatiohs list where you can register a new
application

3. In the New application blade, provide the following settings (Figure 3-32):

A. Enter a name for the application

B. Select Yes for Web App / Web API

C. Select Yes for Allow implicit flow

D. Provide a reply URL authentication responses should be posted

Mew application

* Mame @

| B2CWebClient o

Web App / Web API

nclude web app / web AFl@

Bl imnplicit flow @

| Yes Mo

W0 Redirect URIs must all belong to the same domain

Heply URL @

https:flocalhost: 1234/ signin-cidc

App 1D URI {optional) @

https:/fsolaadb2c. onmicrasaftcomy’ | B20WebClient o

Mative client
nclude native client @&

¥ies Mo

FIGURE 3-32 The New application blade

An application ID is created for the application once you create it (Figure
3-33). Select the application from the applications list and you can review
its settings including this new application ID.

CENERAL B2CWebClient
Properties Agplication ID@
Oa0Beced-0a3B-43b6-8deT-Tdbc339R5549
Keys
Web App / Web API
APl ACCESS (PREVIEW) nchucle web app [web AP
ez Mo
Fu AP access (Preview)
e Allows implcit flow @
*= Published scopes (Preview .
¥as Mo

88 Fedirect URE must all belong to the same domain

witpsyfocalhost 1.2 34 fsigrin-oide

Fitpsfisolasd bl C onmicrosaf oom, B0 WeabThant

Mative client

hude native dient @

Mo

FIGURE 3-33 The settings for an application

Now you can set up your application with the following settings:

m Configure any external identity providers to be supported for sign in
m Manage user attributes

m Manage users and groups

m Manage policies

Configure identity providers

You may want to give your users a choice between one or more external identity
providers to sign in. Azure AD supports a pre-defined set of well-known social
identity providers to choose from (Figure 3-34).

To configure an external identity provider, follow these steps:
1. Navigate to your directory settings as discussed previously.
2. Select identity providers from the navigation pane.
3. Enter a name for the identity provider, something that matches the provider

you will configure such as “google” or “facebook.”
4. Select the identity provider to configure and click OK.

Add social identity provider X Select social identity provider B X
* plame &
: T ;
ool = | SOCIAL IDENTITY PROVIDERS
Microsoft Account
* Identity provider type 5
None selected
Google
* Sat up this identity provider 5
Required
Facehoak
Linkedin
Amazon

Weibo (Preview)

O [Presview)

WeChat (Preview)

Twitter [Praview]

FIGURE 3-34 The identity providers supported by Azure B2C tenants

5. Set up the identity provider in the final tab. Based on the selected identity
provider, you will be presented with required settings that typically include
a client id and secret for the provider. You must have previously set up an
application with the identity provider, in order to have the required settings
for this configuration. Once you have entered the required settings, click

OK (see Figure 3-35).

Add social identity provider Set up the social identity pro... B X

* Name @ * Client ID @&
I Google 3 | Enter the client 1D
* Client secret @
* |dentity provider type g
o YP > Enter the client secret
Google

* Set up this identity provider
Required

FIGURE 3-35 Required settings for Google as an identity provider

6. Click Create to complete the configuration of the identity provider. You
will see your new provider listed in the identity providers blade.

More Info: Configuring Identity Providers

The setup for each identity provider involves setting up an
application at the identity provider, sometimes through a
development account, and then setting up the credentials and
related information required by that identity provider in your
Azure AD B2C settings. See this reference for setting up a
Microsoft Account: https://docs.microsoft.com/en-us/azure/active-
directory-b2c/active-directory-b2c-setup-msa-app. Additional
provider setup instructions can be found in the same area of the
documentation including Google and Facebook.

Configuring policies

There are several policies you can configure for your Azure AD B2C tenant.
These policies enable features and govern the user experience for the following
scenarios:

= Sign-up

m Sign-in

m Profile editing

m Password reset

These policies all brovide default UI temblates but allow for overriding those

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-msa-app

templates for further customization. You can also determine which identity
provider shall be supported, support for multi-factor authentication, and control
over which claims shall be returned with the id token post authentication. For
sign-up, you can also configure which profile attributes you want to collect for
the user.

More Info: B2C Application Samples

Once you have set up your Azure B2C tenant, configuring
applications to integrate involves similar steps to those described
earlier for OpenID Connect application integration. See the
following samples from the Azure Samples GitHub repository,
specifically related to B2C applications:

https://github.com/Azure-Samples/active-directory-b2c-dotnetcore-
webapp https://github.com/Azure-Samples/active-directory-b2c-
Xxamarin-native

https://github.com/Azure-Samples/active-directory-b2c-dotnet-
webapp-and-webapi

Leverage Azure AD B2B to design and implement applications
that support partner-managed identities and enforce multi-factor
authentication

Azure AD B2B collaboration capabilities enable organizations using Azure AD
to allow users from other organizations, with or without Azure AD, to have
limited access to documents, resources and applications.

From your Azure AD tenant you can:

m Set up single sign-on to enterprise applications such as Salesforce and
Dropbox through Azure AD

m Support user authentication via Azure AD for your own applications
m Enable access to these applications to users outside of your directory
m Enforce multi-factor authentication for these users

More Info: Azure AD B2B

For details on Azure AD B2B collaboration and adding guest users
to access applications, see this reference:

https://github.com/Azure-Samples/active-directory-b2c-dotnetcore-webapp
https://github.com/Azure-Samples/active-directory-b2c-xamarin-native
https://github.com/Azure-Samples/active-directory-b2c-dotnet-webapp-and-webapi

https://docs.microsoft.com/en-us/azure/active-directory/active-
directory-b2b-what-is-azure-ad-b2b.

Skill 3.3: Manage Secrets using Azure Key Vault

Cloud applications typically need a safe workflow for secret management. Azure
Key Vault provides a secure service for Azure applications and services for:

m Encrypting storage account keys, data encryption keys, certificates,
passwords and other keys and secrets

m Protecting those keys using hardware security modules (HSMs)

)
Exam Tip

Azure Key Vault supports importing and generating keys in HSMs.

This means that keys are processed in FIPS 140-2 Level 2 validated
HSMs.

Developers can easily create keys to support development efforts, while
administrators are able to grant or revoke access to keys as needed. This section
covers how to manage secrets with Azure Key Vault.

This skill covers how to:

m Configure Azure Key Vault

= Manage access, including tenants
m Implement HSM protected keys
= Manage service limits

» Implement logging

» Implement key rotation

More Info: Key Vault Overview

For detailed documentation on Azure Key Vault, see this reference:
https://docs.microsoft.com/en-us/azure/keyvault/keyvault-whatis.

https://docs.microsoft.com/en-us/azure/active-directory/active-directory-b2b-what-is-azure-ad-b2b
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-whatis

Configure Azure Key Vault

You can create one or more key vault in a subscription, according to your needs
for management isolation. To create a new key vault, follow these steps:

1. Navigate to the Azure portal accessed via https:/portal.azure.com.

2. Click New and select Security + Identity, then select Key Vault from the
list of choices (Figure 3-36).

J2 Search the Marketplace

Azure Marketplace Seeall Featured See all

Get started ® Key Vault
I 2darn maore
Compute
Metworking Azure Active Directory
Storage @ Learn mare

Web + Mobile Azure AD Connect Health

Databases Learn mare

Data + Analytics
Azure AD Cloud App Discovery

Al + Cognitive Services Learn mane
Internet of Things

Enterprise Integration Azure AD Privileged Identity

Management
Security + Identity Learn mare
Developer tools Azure AD |dentity Protection

FIGURE 3-36 Selecting Key Vault fromlt.}-l.é ”S.e”curity + Identity features

3. From the Create key vault blade, enter the following values (Figure 3-37):

A. A name for the key vault

B. Choose the subscription

C. Create or choose a resource group
D. A location

https://portal.azure.com

[

Choose a pricing tier - primarily based on your requirements for HSM

o2

Set up policies for user access to keys, secrets and certificates

G. Optionally grant access for Azure Virtual Machines, Azure Resource
Manager or Azure Disk Encryption

Create key vault X Pricing tier

ick a pricing tier

* Name

1
| Loading pricing...Click here to open pricing calculator [E]
sol-keyvault '

* Subscription 7
Al Standard P1 Premium
Microscft AZure Spansorship b

Gen availability Gen availability

* Resource Group

o Him backed keys
& Create new Use axisting ¥

sol-keyvault

* Location

West LIS w
Pricing tler >
Standard
Acess policies >
1 principal selected o i
Loading priding_ Loading priding_
Advanced access palicy >

MNone selected (optional)

FIGURE 3-37 The Create key vault blade

4. Click Create to create the key vault.

Manage access, including tenants

There are two ways to access the key vault - through the management plane or
the data plane. The management plane exposes an interface for managing the
key vault settings and policies, and the data plane exposes an interface for
managing the actual secrets and policies related directly to managing those
secrets. You can set up policies that control access through each of these planes,
granting users, applications or devices access to specific functionality (service
principals). These service principals must be associated with the same Azure AD
tenant as the key vault.

To create policies for your key vault, navigate to the key vault Overview and
do the following (Figure 3-38):

1. Select Access policies from the navigation pane.

2. Select Add new from the Access policies blade.

3. Select Configure from template and select Key, Secret & Certificate
Management. This will initialize a set of permissions based on the
template, which you can later adjust.

Configure from template {optional)

| Key, Secret, & Ceriificate Management W

Key, Secret, & Certificate Management
Key & Secret Management

Secret & Certificate Management

Key Management

secret Management

Certificate Management

SQL Server Connector

Azure Backup

Azure Data Lake Store

Azure Storage

Exchange Online Customer Key

SharePoint Online Customer Key

FIGURE 3-38 Options for configuring a policy

4. Click Select a principal and enter a username, application id or device id
from your directory.

5. Review key permissions selected by the template-modify them as needed
according to the requirements for the principal selected (Figure 3-39).

Key permissions

4 selected hd

B select all
Key Management Operations
v Get

List
Update
Create
Import
Delete

Recover

418 (8][4 (& S [S

Backup
~| Restore
Cryptographic Operations
Decrypt
Encrypt
Unwrap Key
Wrap Key
Verify
Sign
Privileged Key Operations

Purge

FIGURE 3-39 The options for customizing key permissions for a policy

6. Review secret permissions selected by the template, modify them as needed
according to the requirements for the principal selected (Figure 3-40).

Secret permissions

7 selected W

B Selectall
Secret Management Operations
v| Get

& List
Set
Delete

Recover

B ASBASEAS

Backup

v Restore
Privileged Secret Operations
Purge

FIGURE 3-40 The options for customizing secret permissions for a
policy

. Review certificate permissions selected by the template, and modify them

as needed according to the requirements for the principal selected (Figure
3-41).

Certificate permissions

12 selected W

v/| Select all
Certificate Management Operations
V| Get

List

Update

Create

Import

Delete

Manage Contacts
Manage Issuers
Get Issuers

List Issuers

Set Issuers

L QIS SRR R] IR SR

Delete Issuers

FIGURE 3-41 The options for customizing certificate permissions for a
policy

8. Click OK to save the policy settings (Figure 3-42).

Add access policy X Principal

Add a new ac

Iy Select a principal

i
Configure from template (optional) -

| Key, Secret, & Certificate Management v | Select @

michelebusta@gmail.com

* Select principal S
None selacted
Michele Leroux
e MicheleLeroux@michelebusta.onmicrosof...
Key permissions
| 9 selected v |

secret permissions

| 7 selected v |

Certificate permissions

| 12 selected ~ |

Autharized application & n

Mone selected

FIGURE 3-42 The options for customizing key permissions for a policy

9. From the key vault blade, click Save from the command bar to commit the
changes.

In addition to granting access to service principals, you can also set advance
access policies to allow access to Azure Virtual Machines, Azure Resource
Manager, or Azure Disk Encryption as follows (Figure 3-43):

1. Select the Advanced access policies tab from the navigation pane.

2. Enable access by Azure Virtual Machines, Azure Resource Manager or
Azure Disk Encryption as appropriate.

L“ >3 XK Discard O Refresh
_| Enable access to Azure Virtual Machines for deployment @

D Enable access to Azure Resource Manager for template deployment @

D Enable access to Azure Disk Encryption for volume encryption @

FIGURE 3-43 The options for setting advanced rules for a policy

\/

Exam Tip

Your key vault is initially associated with the default Azure AD
tenant for the subscription it belongs to. You may move the key
vault to a new subscription, or simply need to associate the key
vault to another Azure AD tenant. You can change this tenant
association using PowerShell command as described by this
reference: https://docs.microsoft.com/en-us/azure/keyvault/keyvault-
subscription-move-fix.

More Info: Keys, Secrets and Certificates

See the following reference for details on how to distinguish
between keys, secrets and cerificates: https://docs.microsoft.com/en-
us/rest/api/keyvault/about-keys--secrets-and-certificates?
redirectedfrom=MSDN.

Implement HSM protected keys

If you create a key vault based on a premium subscription, you will be able to
generate, store and manage Hardware Security Module (HSM) protected keys.
To create an HSM protected key follow these steps:

1. Navigate to the Azure portal accessed via https://portal.azure.com.
2. Navigate to More Services from the navigation menu and type key vault to

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-subscription-move-fix
https://docs.microsoft.com/en-us/rest/api/keyvault/about-keys--secrets-and-certificates?redirectedfrom=MSDN
https://portal.azure.com

filter the list and find Key Vaults and then select it.

. From the Key vaults blade, select a previously created key vault that
supports HSM.

. Select the Keys tab from the navigation pane, and click Add from the
command bar.

. From the Create key blade, enter the following information (Figure 3-44):

A.

=

For Options, select Generate. You can also upload a key or restore a
key from a backup.

Provide a name for the key.

For key type, select HSM protected key.

Optionally provide an activation and expiry date for the key.
Otherwise there is no set expiry.

Indicate if the key should be enabled now.

Create a key

Options

Generate

* Mame

[sol-hsm-key

Key Type @

| H5M protected key

set activation date? @

Activation Date

2017-10-06

I | 1:43:57 PM

UTC -07:00

Set expiration date? @

Expiration Date

2019-10-05

BB | 11:55:22 pm

UTC -07:00

Enabled? Yes

Mo

FIGURE 3-44 The Create a key blade

6. Click Create to complete the creation of the key.

More Info: Managing HSM Keys with Powershell

See this reference for more on managing HSM keys with
PowerShell: https://docs.microsoft.com/en-
us/azure/keyvault/keyvault-hsm-protected-keys.

)

Exam Tip

Software keys (not protected by HSM) can be later exported from
the key vault. HSM keys, on the other hand, can never be exported.
In addition, all cryptographic operations using HSM keys are
always performed within the HSM boundary.

Implement logging
You can monitor access to Key Vault by enabling logging. Logs include:

m All REST API requests including failed, unauthenticated or unauthorized
requests

m Key vault operations to create, delete or change settings
m Operations that involve keys, secrets, and certificates in the key vault

Logs are saved to an Azure storage account of your choice, in a new container
(generated for you) named insights-logs-auditevent. To set up diagnostic
logging, follow these steps:

1. Navigate to the Azure portal accessed via https:/portal.azure.com.

2. Navigate to More Services from the navigation menu and type “key vault “
to filter the list and find Key Vaults, and then select it.

3. From the Key vaults blade, select the key vault to enable logging for.

4. From the Key vault blade, select the Diagnostics logs tab from the
navigation pane.

5. From the Diagnostics logs blade, select the Turn on diagnostics link.

6. From the Diagnostics settings blade enter the following settings (Figure 3-
45):

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-hsm-protected-keys
https://portal.azure.com

A. Provide a name for the diagnostics settings.
B. One of the following optional settings must be chosen:

m Select Archive to a storage account and configure a storage account
where the logs should be stored. This storage account must be
previously created using the Resource Manager deployment model
(not Classic), and a new container for key vault logs will be created
in this storage account.

m Optionally select Stream to an event hub if you want logs to be part
of your holistic log streaming solution.

m Optionally select Send logs to Log Analytics and configure an OMS
workspace for the logs to be sent to.

C. Select AuditEvent (the only category for key vault logging) and
configure retention preferences for storage. If you configure retention
settings, older logs will be deleted.

SIDF3QE ACCount

defaultkeyault

FIGURE 3-45 The Diagnostics settings blade

7. Click Save from the command bar to save these diagnostics settings.
8. You will now be able to see logs from the Diagnostics output.

\f

Exam Tip

You can use the same storage account to collect logs for multiple
key vaults. You can also seamlessly integrate key vault logs with log
analytics, provided by Operations Management Services (OMS).

More Info: Manage Key Vault Logging with Powershell

See this reference for more on how to set up key vault logging
including the use of PowerShell: https://docs.microsoft.com/en-
us/azure/keyvault/keyvault-logging.

Implement key rotation

The beauty of working with a key vault is the ability to roll keys without impact
to applications. Applications do not hold on to key material, and they reference
keys indirectly through the key vault. Keys are updated without affecting this
reference and so application configuration updates are no longer necessary when
keys are updated. This opens the door to simplified key update procedures and
the ability to embrace regular or ad-hoc key rotation schedules.

Each key, secret or certificate stored in Azure Key Vault can have one or
more versions associated. The first version is created when you first create the
key. Subsequent versions can be created through the Azure Portal, through key
vault management interfaces, or through automation procedures.

To rotate a key from the Azure Portal, navigate to the key vault and follow
these steps:

1. Select the Keys tab from the navigation pane.

2. Select the key to rotate.

3. From the key’s Versions blade (Figure 3-46), you will see the first version
of the key that was created.

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-logging

? sol-hsm-key

Versions

+ MNew Version O Refresh T Delete i Download Backup

VERSION STATUS ACTIVATION DATE EXPIRATION DATE

CURRENT VERSION

€5939608455b4... v Enabled 10/6,/2017 10/5/2019

FIGURE 3-46 The Versions blade where you can create a new version

. Click New Version from the command bar and you will be presented with
the Create A Key Blade where you can generate or upload a new key to be
associated with the same key name. You can choose the type of key
(Software key or HSM protected key) and optionally indicate an activation
and expiry timeframe. Click Create to replace the key.

. You will now see two versions of the key on the Versions blade (Figure 3-
47). Applications querying for the key will now retrieve the new version.

sol-hsm-key
Hide text labels |
+ Mew Version O Refresh Ml Delete i Download Backup

0 The new version a592cf53b51647169de558feadal15c6 has been successfully created.

VERSION STATUS ACTIVATION DATE EXPIRATION DATE

CURRENT VERSION

a592cf53b516471... + Enabled

OLDER VERSIOMNS

e5939608455b4... ' Enabled 10/6/2017 10/5/2019

FIGURE 3-47 The Versions blade showing a new version and older
versions

This key rotation procedure works similarly for secrets and certificates.
Applications will now retrieve the newer version when contacting the key vault
for the specified key.

More Info: Implementing Key Rotation

See this reference for more details on managing a key rotation
process with PowerShell: https://docs.microsoft.com/en-
us/azure/keyvault/keyvault-key-rotation-log-monitoring.

Skill 3.4: Design and implement a messaging strategy

MicrosoftAzure provides a robust set of hosted infrastructure services that
provides multi-tenant services for communications between applications.
Variously, these supports service publishing, messaging, and the distribution of
events at scale. The services we focus on in this section include:

m Azure Relay Expose secure endpoints for synchronous calls to service

endpoints across a network boundary, for example to expose on-premises
resources to a remote client without requiring a VPN.

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-key-rotation-log-monitoring

m Azure Service Bus Queues Implement brokered messaging patterns where

the message sender can deliver a message even if the receiver is temporarily
offline.

m Azure Service Bus Topics and subscriptions Implement brokered
messaging patterns for publish and subscribe where messages can be
received by more than one receiver (subscriber), and conditions can be
applied to message delivery.

m Azure Event Hubs Implement scenarios that support high-volume message
ingest and where receivers can pull messages to perform processing at scale.

m Azure Notification Hubs Implement scenarios for sending app-centric push
notifications to mobile devices.

Relays are used for relayed, synchronous messaging. The remaining scenarios
are a form of brokered, asynchronous messaging patterns. In this section, you
learn how to implement, scale and monitor each Service Bus resource.

More Info: Service Bus Resources and Samples

See these references for a collection of overviews, tutorials, and
samples related to Service Bus:

m Azure Relay https://docs.microsoft.com/en-us/azure/servicebus-
relay/

m Service Bus Messaging https.//docs.microsoft.com/en-
us/azure/servicebus-messaging/

m Event Hubs https://docs.microsoft.com/en-us/azure/eventhubs/

m Notification Hubs https://docs.microsoft.com/en-
us/azure/notification-hubs/

This skill covers how to:

m Develop and scale messaging solutions using Service Bus queues,
topics, relays and Notification Hubs

m Scale and monitor messaging

= Determine when to use Event Hubs, Service Bus, IoT Hub, Stream
Analytics and Notification Hubs

Develop and scale messaging solutions using Service Bus queues,

https://docs.microsoft.com/en-us/azure/service-bus-relay/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/event-hubs/
https://docs.microsoft.com/en-us/azure/notification-hubs/

topics, relays and Notification Hubs

A namespace is a container for Service Bus resources including queues, topics,
Relays, Notification Hubs, and Event Hubs. With namespaces, you can group
resources of the same type into a single namespace, and you can choose to
further separate resources according to management and scale requirements. You
don’t create a namespace directly, instead you will typically create a namespace
as a first step in deploying a Service Bus queue, topic, Relay, Notification Hubs
or Event Hubs instance. Once you have a namespace for a particular service, you
can add other service instances of the same type to it (a Service Bus namespace
supports the addition of queues and topics, so a Notification Hubs namespace
supports only Notification Hubs instances). You can also manage access policies
and adjust the pricing tier (for scaling purposes), both of which apply to all the
services in the namespace.

The steps for creating a Service Bus namespace are as follows:

1. In the Azure Portal, select + New, then search for the type of namespace
you want to create: Service Bus, Relay, Notification Hubs or Event Hubs.

2. Select Create.

3. In the Create namespace blade (Figure 3-48), enter a unique prefix for the
namespace name.

4. Choose your Azure Subscription, Resource group and Location.

Create namespace

=SEMACE T4

South Central US v

FIGURE 3-48 Creating a Service Bus namespace

5. Select Create to deploy the namespace.

Selecting a protocol for messaging

By default, Service Bus supports several communication protocols. Table 3-1
lists the protocol options and required ports.

TABLE 3-1 Service Bus protocols and ports

Protocol PORTS

SBMP 9350-9354
(for relay)

9354 (for
brokered
messaging)

Description

Service Bus Messaging Protocol (SBMP), is a
proprietary SOAP-based protocol that typically
relies on WCF under the covers to implement
messaging with between applications through
Service Bus. Relay services use this protocol by
default when non-HTTP relay bindings are chos
environment is set to use HTTP.

HTTP

AMQP

WebSockets

80, 443

5671, 5672

80, 443

This protocol is being phased out in favor of
AMQP.

HTTP protocol can be used for relay services wi
one of the HTTP relay bindings are selected and
the Service Bus environment is set to use HT'TP
connectivity. The brokered messaging client libr
uses this if you do not specify AMQP protocol a
set the Service Bus environment to HTTP as
follows:

ServiceBusEnvironment.SystemConnectivity.M
= ConnectivityMode.Http;

Advanced Message Queuing Protocol (AMQP) |
modern, cross-platform asynchronous messaging
standard. The brokered messaging client library
uses this protocol if the connection string indicat
TransportType of Amqp.

WebSockets provide a standards compliant way
establish bi-directional communication channels
and can be used for Service Bus queues, topics &
the Relay.

More Info: AMQP Protocol

Advanced Message Queuing Protocol (AMQP) is the recommended
protocol to use for brokered message exchange if firewall rules are
not an issue. For additional information, see
https://docs.microsoft.com/azure/servicebus-messaging/servicebus-

amgp-overview.

)

Exam Tip

Connectivity issues are common for on-premises environments that
disable ports other than 80 and 443. For this reason, it is still often

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-amqp-overview

necessary for portability to use HT'TP protocol for brokered
messaging.

Introducing the Azure Relay

The Azure Relay service supports applications that need to communicate by
providing an Azure hosted rendezvous endpoint where listeners (the server
process that exposes functionality) and senders (the application that consumes
the server process functionality) can connect, and then the Azure Relay service
itself takes care of relaying the data between the two cloud-side connections.
The Azure Relay has two distinct ways that you can choose from to securely
achieve this form of connectivity:

m Hybrid Connections With Hybrid Connections your applications
communicate by establishing Web Sockets connections with relay endpoints.
This approach is standards based, meaning it is useable from almost any
platform containing basic Web Socket capabilities.

m WCF Relays With WCEF relays, your applications use Windows
Communication Foundation to enable communication across relay endpoints.
This approach is only useable with applications leveraging WCF and .NET.

Using Hybrid Connections
At a high level, to use Hybrid Connections involves these steps:

1. Deploy an Azure Relay namespace

2. Deploy a Hybrid Connection within the namespace

3. Retrieve the connection configuration (connection details and credentials)
4

. Create a listener application that uses the configuration to provide service-
side functionality

5. Create a sender application that uses the configuration to communicate with
the listener

6. Run the applications

The following sections walk through creating a simple solution where the
listener simply echoes the text sent from the sender. The sender itself takes input
typed from the user in a console application and sends it to the listener by way of
a Hybrid Connection.

More Info: Creating Listener and Sender Applications

The following steps detail how to create listener and sender
applications using .NET. For an equivalent example that uses
Node.js, see https://docs.microsoft.com/azure/servicebus-relay/relay-
hybrid-connections-node-get-started.

DEPLOY AN AZURE RELAY NAMESPACE
The following steps are needed to deploy a new Azure Relay namespace:
1. In the Azure Portal, select + NEW and then search for “Relay”. Select the
item labeled Relay by Microsoft.

2. In the Create namespace blade, enter a unique prefix for the namespace
name.

3. Choose your Azure Subscription, Resource group and Location.
4. Select Create to deploy the namespace.

DEPLOY A HYBRID CONNECTION
The following steps are needed to deploy a new Hybrid Connection within the
Azure Relay namespace:
1. Using the Portal, navigate to the blade of your deployed Relay namespace.
2. Select + Hybrid Connection from the command bar.

3. On the Create Hybrid Connection blade, enter a name for your new Hybrid
Connection.

4. Select Create.

RETRIEVE THE CONNECTION CONFIGURATION

Your applications will need at minimum the following configuration in order to
communicate with the Hybrid Connection:

m Namespace URI

m Hybrid Connection Name

m Shared access policy name

m Shared access policy key

Follow these steps to retrieve these values for use in your listener and sender

applications:

1. Using the Portal, navigate to the blade of your deployed Relay namespace.
2. From the menu, select Shared access policies to retrieve the policies

https://docs.microsoft.com/azure/service-bus-relay/relay-hybrid-connections-node-get-started

® NS e

available at the namespace level.

In the list of policies, select a policy. For example, by default the
RootManageSharedAccessKey policy is available.

On the Policy blade, take note of the policy name and the value of the
Primary key. Also note the connection string values you can use with SDKs
that support these as inputs (Figure 3-49).

Policy: RootManageSharedAccessKey

examrefrelay - PREVIEW

H uogate Rignts X Discard changes @ Delete

Claim

M Manage
[v] send
Listen

Primary key T525e+04R2wh9tb-dSKITTKcGoYiFeRaym(C...

L)

Secondary key dbmEKbgatTKOIUSDialQ8ewRt6FEdixg/ilbyPt...

Conrection string-Primary key | Endpoint=sby//examrefrelay.servicebus.windo...
g ¥ KEY

EE EE
S (]

Connecticn string-Secondary key Endpoint=sby//examreirelay.servicebus.windo...

FIGURE 3-49 Examining a Policy

Close the Policy blade.
From the menu, select Hybrid Connections.
In the listing, select your deployed Hybrid Connection.

From the Essentials panel, take note of the value for Namespace. This is the
namespace name.

Also, take note of the Hybrid Connection URL (Figure 3-50). It is of the
form
https://<namespace>.servicebus.windows.net/<hybridconnectionname>

SETTINGE

Craaced 3t Upd a
EN4r20N7, 124252 BM 81142017, 12:42:52 B

FIGURE 3-50 Obtaining the Hybrid Connection URL

10. You can get the name of your Hybrid Connection either from the title of

the blade, or by looking at the Hybrid Connection URL and copying the
value after the slash (/).

CREATE A LISTENER APPLICATION

Follow these steps to create simple listener application that echoes any text
transmitted by a sender application:

1.
2.

8.
9.

Launch Visual Studio.

Select File, New, Project and select Visual C# from the tree under
Templates, and then the Console App (.NET Framework) template.

Provide the name and location of your choice.
Select OK.

In Solution Explorer, right click the new project and select Manage NuGet
Packages.

In the document that appears, select Browse.

Search for “Microsoft.Azure.Relay” and then select the Microsoft Azure
Relay item in the list (Figure 3-51).

Installed Updates MuGet Package Manager: FirstAzureRelaySender

Mieresalt Azure Reday ® = & [Inclde preralease Fackage source: nugetarg - B

L Microsoft.Azure.Relay
e

—
;o MicrosoftAzure.Relay by Micouit, 16.9K downloads VIO
Bt Thi is the net generation Azxeie Relay NET Standard client bbeary far Hylind Comnectians. For .
maore information aboul Relay, see htps,fazure.microsollcom/en-us/fservices/senice-busy Version: 1.0.0 - Irmstall
H Microsoft.Azure.Management.Relay by Microsaft, 427 downboads LD

Provides developers with libraries 1o creste and manage Namespaces, WCFRelay, @Dpl.il‘ml

HybndConnection and manege Authonzation Rules. Note: This client hibrary is for Relay under...

FIGURE 3-51 Selecting the Microsoft.Azure.Relay NuGet package

Select Install to begin the installation and follow the prompts.
Open program.cs.

10. Replace the using statements at the top of the document with the following:

using System;

using System.IO;

using System.Threading;

using System.Threading.Tasks;
using Microsoft.Azure.Relay;

11. Replace the Program class with the following:

Click here to view code image

class Program
private const string RelayNamespace "
<namespace>.servicebus.windows.net";

private const string ConnectionName = "<hybridconnectionname>";
private const string KeyName = '"<sharedaccesskeyname> ";
private const string Key = '"<sharedaccesskeyvalue>";

static void Main(string[] args)

{
}

RunAsync().GetAwaiter().GetResult();

private static async void ProcessMessagesOnConnection(
HybridConnectionStream
relayConnection,

CancellationTokenSource cts)

{

Console.WriteLine("New session'");

// The connection is a fully bidrectional stream, enabling
the Listener
to echo the text from the Sender.
var reader = new StreamReader(relayConnection);
var writer = new StreamWriter(relayConnection) { AutoFlush
= true };
while (!cts.IsCancellationRequested)
{
try
{

// Read a line of input until a newline is
encountered

var line = await reader.ReadLineAsync();

if (string.IsNullOrEmpty(line))
{

await relayConnection.ShutdownAsync(cts.Token);

break;

}

Console.WritelLine(line);

// Echo the line back to the client
await writer.WriteLineAsync($"Echo: {line}");

}
catch (IOException)
{
Console.WritelLine("Client closed connection");
break;
}
}
Console.WritelLine("End session");
// Close the connection
await relayConnection.CloseAsync(cts.Token);
}
private static async Task RunAsync()
{
var cts = new CancellationTokenSource();
var tokenProvider =
TokenProvider.CreateSharedAccessSignatureTc
me, Key);
var listener = new HybridConnectionListener(
new

Uri(string.Format("sb://{0}/{1}",
RelayNamespace, ConnectionName)),
tokenProvider);

// Subscribe to the status events
listener.Connecting += (o, e) => {
Console.WriteLine("Connecting"); };
listener.0ffline += (o, e) => {
Console.WritelLine("Offline"); };
listener.Online += (o0, e) => {
Console.WriteLine("Online"); };

// Establish the control channel to the Azure Relay
service

await listener.OpenAsync(cts.Token);

Console.WritelLine("Server listening");

// Providing callback for cancellation token that will
close the listener.

cts.Token.Register(() =>
listener.CloseAsync(CancellationToken.None));

// Start a new thread that will continuously read the

12.

console.
new Task(() =>
Console.In.ReadLineAsync().ContinuewWith((s) => {
cts.Cancel(); })).Start();

// Accept the next available, pending connection
request.

while (true)
{
var relayConnection = await
listener.AcceptConnectionAsync();

if (relayConnection == null)
{

break;
}

ProcessMessagesOnConnection(relayConnection, cts);

}

// Close the listener after we exit the processing loop
await listener.CloseAsync(cts.Token);

}
}

In the aforementioned code, replace the values as follows:
» <namespace> Your Azure Relay namespace name.
m <hybridconnectionname> The name of your Hybrid Connection.

m <sharedaccesskeyname> The name of your Shared Access Key as
acquired from the Policy blade in the Portal.

m <sharedaccesskeyvalue> The value of your Shared Access Key as
acquired from the Policy blade in the Portal.

CREATE A SENDER APPLICATION

Next, add another Console Application project that will contain the code for the
sender application by following these steps:

1.

In Solution Explorer, right click your solution and select Add, New Project
and then choose Console App (.NET Framework).

Provide the name and location of your choice.
Select OK.

In Solution Explorer, right click the new project and select Manage NuGet
Packages.

In the document that appears, select Browse.

Search for “Microsoft.Azure.Relay” and then select the Microsoft Azure
Relay item in the list.

Select Install to begin the installation and follow the prompts.
Open program.cs.
Replace the using statements at the top of the document with the following:

Click here to view code image

using System;

using System.IO;

using System.Threading;

using System.Threading.Tasks;

using Microsoft.Azure.Relay;

Replace the Program class with the following:
class Program

{

private const string RelayNamespace
<namespace>.servicebus.windows.net";

private const string ConnectionName = "<hybridconnectionname>";
private const string KeyName = '"<sharedaccesskeyname> ";
private const string Key = '"<sharedaccesskeyvalue>";

static void Main(string[] args)

{
RunAsync().GetAwaiter().GetResult();
}
private static async Task RunAsync()

{

Console.WritelLine("Enter lines of text to send to the
server with
ENTER");

// Create a new hybrid connection client

var tokenProvider =
TokenProvider.CreateSharedAccessSignatureTokenProv
ider (KeyName, Key);

var client = new HybridConnectionClient(new
Uri(String.Format("sb://{0}/{1}", RelayNamespace, ConnectionName)),
tokenProvider);

// Initiate the connection
var relayConnection = await
client.CreateConnectionAsync();
var reads = Task.Run(async () => {
var reader = new StreamReader(relayConnection);
var writer = Console.Out;
do

{
// Read a full line of UTF-8 text up to newline

string line = await reader.ReadLineAsync();
// if the string is empty or null, we are done.
if (String.IsNullOrEmpty(line))
break;
// Write to the console
await writer.WritelLineAsync(line);

}

while (true);

1),

// Read from the console and write to the hybrid
connection
var writes = Task.Run(async () => {
var reader = Console.In;
var writer = new StreamWriter(relayConnection) {
AutoFlush = true

Iy
do
{
// Read a line form the console
string line = await reader.ReadLineAsync();
await writer.WritelLineAsync(line);
if (String.IsNullOrEmpty(line))
break;
}
while (true);
1)
await Task.WhenAll(reads, writes);
await
relayConnection.CloseAsync(CancellationToken.None);

}

10. In the aforementioned code, replace the values as follows:
m <namespace> Your Azure Relay namespace name.
m <hybridconnectionname> The name of your Hybrid Connection.
m <sharedaccesskeyname> Tthe name of your Shared Access Key.
m <sharedaccesskeyvalue> Tthe value of your Shared Access Key.

RUN THE APPLICATIONS
Finally, run the applications to exercise the relay functionality:

1. Using Solution Explorer, right click your solution and select Set Startup
Projects.
2. In the dialog, select Multiple startup projects.

3. Set the action to Start for both projects, making sure that your listener is

above your sender so that it starts first.
Select OK.
From the Debug menu, select Start without debugging.

On the sender console screen (Figure 3-52), respond to the prompt by
typing some text to send to the listener and pressing enter.

Verify in the other console screen (the listener), that the text was received
and that it was echoed back to the sender.

lay!

FIGURE 3-52 The console output of the Listener and Sender applications

Using the WCF Relay

The WCF Relay service is frequently used to expose on-premises resources to
remote client applications located in the cloud or across network boundaries, in
other words it facilitates hybrid applications. It involves creating a Service Bus
namespace for the Relay service, creating shared access policies to secure access
to management, and following these high level implementation steps:

1.

Create a service contract defining the messages to be processed by the
Relay service.

Create a service implementation for that contract. This implementation
includes the code to run when messages are received.

Host the service in any compatible WCF hosting environment, expose an
endpoint using one of the available WCF relay bindings, and provide the
appropriate credentials for the service listener.

Create a client reference to the relay using typical WCF client channel
features, providing the appropriate relay binding and address to the service,
with the appropriate credentials for the client sender.

Use the client reference to call methods on the service contract to invoke
the service through the Service Bus relay.

The WCF Relay service supports different transport protocols and Web
services standards. The choice of protocol and standard is determined by the
WCEF relay binding selected for service endpoints. The list of bindings

supporting these options are as tollows:
m BasicHttpRelayBinding
= WS2007HttpRelayBinding
= WebHttpRelayBinding
m NetTcpRelayBinding
= NetOneWayRelayBinding
= NetEventRelayBinding

Clients must select from the available endpoints exposed by the service for
compatible communication. HTTP services support two-way calls using SOAP
protocol (optionally with extended WS* protocols) or classic HTTP protocol
requests (also referred to as REST services). For TCP services, you can use
synchronous two-way calls, one-way calls, or one-way event publishing to
multiple services.

)

Exam Tip

The NetTcpRelayBinding relay supports two connection modes:
relayed (the default) or hybrid. In hybrid mode, communications
are initially relayed, but if possible, a direct socket connection is
established between client and service, thus removing the relay
from communications for the session.

Deploy a WCF Relay

The following steps are needed to deploy a new WCF Relay within the Azure
Relay namespace:

1.
2.
3.

Using the Portal, navigate to the blade of your deployed Relay namespace.
Select + WCF Relay from the command bar.

On the Create WCF Relay blade (Figure 3-53), enter a name for your new
WCEF Relay.

Select the Relay Type (NetTcp or HTTP).

Create WCF Relay

examrefrelay?

* Mame

l examrefrelay

Ev’] Requires Chient Authonzation

l:] Requires Transport Security

UsarMetadata

FIGURE 3-53 Using the Portal to create a WCF Relay

5. Select Create.

6. Once deployment completes, select your new WCF Relay from the list
(Figure 3-54).

g s — -
+ Hybrnd Connection + WCF Ralay IE Dalate

Resource group g Pricing tie

examreaf Standard

Stat Cannection Strings
Active Shared access policies

Location

0O <

Subscription

L]
(L1
(L]
(1]
A
1

“a examrefrelay WCF Relays

FIGURE 3-54 Selecting the newly created Relay in the Portal

7. In the Essentials blade, take note of your WCF Relay URL and namespace
(Figure 3-55).

Essentials -~

MNamespace WICF Relay Ur

examrefrelay2 https://examrefrelay2.servicebus.windows.net/ex
R=lay Typs Requires Client Authonzation

MNetTcp true

Reguires Transpart Security Dyramic

g
true false

FIGURE 3-55 Viewing the Namespace and WCF Relay URL

Managing relay credentials
WCEF Relay credentials are managed on the Shared access policies blade for the
namespace as follows:
1. Make sure you have created a Service Bus namespace as described in the
section “Create a Service Bus namespace.”
2. Navigate to the blade for your Service Bus namespace in the Azure Portal.
3. From the menu, select Shared access.

4. To create a new shared access policy for the namespace, select + Add.

5. Provide a name for the Policy and select what permissions (Manage, Send,
Listen) it should have (Figure 3-56).

6. Select Create.

Add SAS Policy

Service Bus - PREVIEW

* Policy name

Sender
[] Manage
Send
[] Usten

FIGURE 3-56 Using the Portal to add a new SAS policy.

7. You can view the Keys after the policy has been created by selecting
Shared access polices and then choosing your newly created policy.

More Info: Sender and Receiver Keys

It is considered a best practice to create separate keys for the
sender and receiver, and possibly multiple keys according to
different groups of senders and receivers. This allows you to more
granularly control which applications have send, receive, and
management rights to Service Bus relays created in the namespace.
It also not recommended that you use the
RootManageSharedAccessKey in production application
configuration. You should treat this policy like you would an
administrator account.

CREATING A RELAY AND LISTENER ENDPOINT

After you have created the namespace and noted the listener policy name and
key, you can write code to create a relay service endpoint. Here is a simple
example, it assumes you have deployed a relay of type NetTcp:

1. Open Visual Studio and create a new console application.

2. Add the Microsoft Azure Service Bus NuGet package
(WindowsAzure.ServiceBus) to the console application.

3. Create a WCF service definition to be used as a definition for the relay
contract and an implementation for the relay listener service. Add a class
file to the project with the following service contract and implementation.
Include the using statement at the top of the file:

Click here to view code image

using System.ServiceModel;
[ServiceContract]
public interface IrelayService

{

[OperationContract]
string EchoMessage(string message);

}

public class RelayService:IrelayService

{

public string EchoMessage(string message)

{

Console.WriteLine(message);
return message;

}
}

4. Host the WCEF service in the console application by creating an instance of
the WCF ServiceHost for the service. Add an endpoint using
NetTcpRelayBinding, passing the name of the Service Bus namespace,
policy name, and key. Include the using statements at the top of the file:

Click here to view code image

using System.ServiceModel;
using Microsoft.ServiceBus;
class Program

{

static void Main(string[] args)
{
string serviceBusNamespace = '<namespace>";
string listenerPolicyName = "
<sharedaccesspolicykeyname>";
string listenerPolicyKey = "
<sharedaccesspolicykeyvalue>";
string serviceRelativePath = '"<relayname>";
ServiceHost host = new
ServiceHost(typeof(RelayService));

host.AddServiceEndpoint (typeof(IrelayService), new
NetTcpRelayBinding(){ IsDynamic = false },
ServiceBusEnvironment.CreateServiceUri("sb",
serviceBusNamespace,
serviceRelativePath))
.Behaviors.Add(new TransportClientEndpointBehavior

{

TokenProvider = TokenProvider.
CreateSharedAccessSignatureToke
nProvider(listenerPolicyName, listenerPolicyKey)

1)

host.Open();

Console.WritelLine("Service is running. Press ENTER to
stop the
service.");

Console.ReadLine();

host.Close();

}

5. In the aforementioned code, replace the values as follows:
» <namespace> Your WCF Relay namespace name.
m <sharedaccesskeyname> The name of your Shared Access Key.
m <sharedaccesskeyvalue> The value of your Shared Access Key.
m <relayname> The name of your WCF Relay.

6. Run the console, and the WCF service listener is now waiting for
messages.

)

Exam Tip

You can configure WCF Relay endpoints programmatically or by
using application configuration in the <system.servicemodel>
section. The latter is more appropriate for dynamically configuring
the host environment for production applications.

SENDING MESSAGES THROUGH RELAY

AN Fonsxrmns hncra mrantnd tha vAlascr fnascrian AAafivnAaAd +tha A AnAint And wAlAeaA

ALl yuu lidve Llgedled ule 1eidy seivite, ucliiieud uie elupullit diiu reidied
protocols, and noted the sender policy name and key, you can create a client to
send messages to the relay service. Here is a simple example with steps building
on the previous sections:

1.

2.

In the existing Visual Studio solution created in the previous section, add
another console application called RelayClient.

Add the Microsoft Azure Service Bus NuGet package to the client console
application.

Add a new class to the project, copy the WCF service interface, and create
a new interface to be used by the WCF client channel creation code.
Include the using statement at the top of the file:

Click here to view code image

using System.ServiceModel;
[ServiceContract]
public interface IrelayService

{

[OperationContract]
string EchoMessage(string message);

}

public interface IrelayServiceChannel:IrelayService,IClientChannel

{}

Add code in the main entry point to call the relay service. You will create a
WCEF client channel for the client channel interface, provide an instance of
the NetTcpRelayBinding for the client endpoint, and provide an
EndpointAddress for the namespace and relative path to the service. You
will also provide the sender policy name and key. Include the using
statement at the top of the file:

Click here to view code image

using Microsoft.ServiceBus;
using System.ServiceModel;
class Program

{

static void Main(string[] args)
{
string serviceBusNamespace = '<namespace>";
string senderPolicyName = "
<sharedaccesspolicykeyname>";
string senderPolicyKey = "
<sharedaccesspolicykeyvalue>";
string serviceRelativePath = '"<relayname>";

var client = new ChannelFactory<IrelayServiceChannel>(
new NetTcpRelayBinding(){ IsDynamic = false },
new EndpointAddress(
ServiceBusEnvironment.CreateServiceUri("sb",
serviceBusNamespace, serviceRelativePath)));

client.Endpoint.Behaviors.Add(
new TransportClientEndpointBehavior { TokenProvider

TokenProvider.CreateSharedAccessSignatureTokenProvider (senderPolicyl
senderPolicyKey) 1});

using (var channel = client.CreateChannel())

{

string message = channel.EchoMessage('"hello from

the relay!");
Console.WriteLine(message);

}

Console.ReadLine();

}

5. In the aforementioned code, replace the values as follows:
» <namespace> your WCF Relay namespace name.
m <sharedaccesskeyname> the name of your Shared Access Key.
m <sharedaccesskeyvalue> the value of your Shared Access Key.
m <relayname> the name of your WCF Relay.

6. To test sending messages to the service created in the previous section, first
run the service listener console, and then the client console. You will see
the message written to both consoles.

Note: Relay Alternatives

Practically speaking, most systems today employ an asynchronous
architecture that involves queues, topics, or event hubs as a way to
queue work for on-premises processing from a remote application.

Using Service Bus queues

Service Bus queues provide a brokered messaging service that supports physical
and temporal decoupling of a message producer (sender) and message consumer
(receiver). Queues are based on the brokered messaging infrastructure of Service
Bus and provide a First In First Out (FIFO) buffer to the first receiver that

. .
A nrran thAa mAanAn~xA T'hAawna 14 Andler AnmA mAmAIcrAT mAM v AmAn~A

1ELIUVEDS LLE 111Ed> dEt. 11IE1E 15 ULLLY ULIE jeLelvel pel 111ess>dge.

More Info: Azure Queues VS. Service Bus Queues

Azure queues are built on top of storage, while Service Bus queues
are built on top of a broader messaging infrastructure. For more
information on how the two compare, and how to choose between
them, see https://docs.microsoft.com/azure/servicebus-
messaging/servicebus-azure-and-servicebus-queues-compared-
contrasted.

Properties of the Service Bus queue influence its behavior, including the size
and partitions for scale out, message handling for expiry and locking, and
support for sessions. Table 3-2 shows the core properties of a Service Bus queue.
Properties prefixed with an asterisk (*) indicate a property not shown in the
portal while creating the queue, but can be edited in the portal after they are
created.

TABLE 3-2 Queue properties

Property Description

Max Size The size of the queue in terms of capacity for messages. Can
be from 1 GB to 5 GB without partitioning, and 80 GB when
partitioning is enabled.

Default Time after which a message will expire and be removed from

message the queue. Defaults to 14 days in the Portal.

time to live

Move If enabled, automatically moves expired messages to the dead
expired letter queue.

messages

to dead-

letter sub-

queue

Lock Duration of time a message is inaccessible to other receivers
duration when a receiver requests a peek lock on the message. Defaults

| RIS g N

to 1 minute. Can be set to a value up to 5 minutes.

I | F ARGRSY iy [P [SR G) UV U ARG o o SQUI R [U

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted

riidoie 11 elldvied, e gueue will rewdill d vpulier did 1g110re 111essdges

duplicate with the same message identifier (provided by the sender).

detection The window for this buffer can be set to a value up to 7 days.

*Duplicate | Window of time for measuring duplicate detection. Defaults

detection to 10 minutes.

history

Enable If enabled, messages can be grouped into sequential batches

sessions to guarantee ordered delivery of a set of messages.

Enable If enabled, messages will be distributed across multiple

partitioning | message brokers and can be grouped by partition key. Up to
100 partitioned queues are supported within a Basic or
Standard tier namespace. Premium tier namespaces support
1,000 partitions per messaging unit.

*Maximum | The maximum number of times Service Bus will try to deliver

delivery the message before moving it to the dead-letter sub-queue.

count

*Queue Allows for disabling publishing or consumption without

status removing the queue. Valid choices are Active, Disabled,
Receive Disabled (send only mode) or Send Disabled (receive
only mode).

More Info: Queue Properties

For a comprehensive list of all Service Bus queue properties, see
the QueueDescription class documentation available at

https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.qui

In this section you learn how to create a queue, send messages to a queue, and
retrieve messages from a queue.

CREATING A QUEUE
You can create a queue directly from the portal by following these steps:

1. Navigate to the Service Bus namespace (Figure 3-57) you provisioned in
the portal.

https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.queuedescription

2. In the command bar, select + Queue.
3. Provide a name for the new queue.

4. Select Create to deploy the queue.

Create queue

examrefzr - PREVIEW

* Name

examgueue W 1

hax size

1GB v

Message time to live (default)

14 1| days g

Lack duration
30 seconds v

[] Move expired messages to the dead-letter
subgueue

D Enable duplicate detection

I:I Enable sessions

Enable partitioning

FIGURE 3-57 Creating a new Service Bus queue in the Portal

Managing queue credentials

Queue credentials are managed either at the namespace level. To manage the
Shared access policies blade for the namespace, follow these steps:

1.
2. From the menu, select Shared access policies under the Settings header.

3.

4. Provide a name for the Policy and select what permissions (Manage, Send,

Navigate to the blade for your Service Bus namespace in the Azure Portal.

To create a new shared access policy for the queue, select + Add.

Listen) it should have.
5. Select Create.

6. You can view the Keys after the policy has been created by selecting
Shared access polices and then choosing your newly created policy.

FINDING QUEUE CONNECTION STRINGS

To communicate with a queue, you provide connection information including
the queue URL and shared access credentials. The portal provides a connection
string for each shared access policy you have created. For example, the
following are the connection strings for the Receiver and Sender policies created
at the namespace level in the previous section:

Click here to view code image

Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyName=
<policyname>;Share
dAccessKey=B2bwP15EErkuF2NHJ17w1NKUiCHrersCcag08/KoU8w=;

You can access this information as follows:

1. Navigate to the blade for your Service Bus namespace in the Azure Portal.
2. Select Shared access polices and then choosing the desired policy.
3. The connection strings are displayed on the blade that appears.

)

Exam Tip

The connection string shown in the management portal for queues,
topics, notification hubs, and event hubs does not use AMQP
protocol by default. You must add a TransportType=Amgp string
as follows to tell the client library to use this recommended
protocol:

Click here to view code image

Endpoint=sb://<namespace>.servicebus.windows.net/;Shared AccessKe
TransportType=Amgp.

SENDING MESSAGES TO A QUEUE
After you have created the namespace and queue and you’ve noted the sender

. . . .
AR AntiANn ot xrA1 Ann arritna AndAa ta Arranta n o Arnnia Aliant that cande mmAconan

LCULILITLLIULL DU lE, YUl Ldll WILILT LUUC LU LITAdLT a uout LLITLIL Uldl DTHUD 111T5daxc

to that queue. Here is a simple example with steps:

1.

2.

5.

Open Visual Studio and create a new console application called
QueueSender.

Add the Microsoft Azure Service Bus NuGet package to the console
application.

In the main entry point, add code to send messages to the queue. Get the
connection string with a TransportType setting for AMQP, create an
instance of the MessagingFactory, and create a reference to the queue with
QueueClient. You can then create a BrokeredMessage (in this case, a
string) and send that using the queue reference. The following listing shows
the entire implementation, including required namespaces:

Click here to view code image

using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Messaging;
class Program

{

static void Main(string[] args)
{
string queueName = '<queuename>";
string connection =
"Endpoint=sb://<namespace>.servicebus.windows.net/;
SharedAccessKeyName=<sharedaccesskeyname>;
SharedAccessKey=<sharedaccesskeyvalue>; TransportType=Amgp";
MessagingFactory factory =
MessagingFactory.CreateFromConnectionString(
connection);
QueueClient queue = factory.CreateQueueClient(queueName);
string message = "queue message over amgp";
BrokeredMessage bm = new BrokeredMessage(message);
queue.Send(bm);

}

In the aforementioned code, replace the values as follows:

= <namespace> Your Service Bus namespace name.

m <sharedaccesskeyname> The name of your Shared Access Key.
m <sharedaccesskeyvalue> The value of your Shared Access Key.
m <queuename> The name of your queue.

Run the project to send a message to the queue.

)

Exam Tip

The BrokeredMessage type can accept any serializable object or a
stream to be included in the body of the message. You can also set
additional custom properties on the message and provide settings

relevant to partitions and sessions.

RECEIVING MESSAGES FROM A QUEUE
There are two modes for processing queue messages:

m ReceiveAndDelete Messages are delivered once, regardless of whether the
receiver fails to process the message.

= PeekLock Messages are locked after they are delivered to a receiver so that
other receivers do not process them unless they are unlocked through timeout
or if the receiver that locked the message abandons processing.

By default, PeeklL.ock mode is used, and this is preferred unless the system
can tolerate lost messages. The receiver should manage aborting the message if
it can’t be processed to allow another receiver to try to process the message more
quickly.

After you have created the namespace and queue and you’ve noted the
receiver connection string, you can write code to read messages from the queue
using the client library. Here is a simple example with steps:

1. In the existing Visual Studio solution created in the previous section, add
another console application called QueueListener.

2. Add the Microsoft Azure Service Bus NuGet package to the console
application.

3. In the main entry point, add code to read messages from the queue. Get the
connection string with a TransportType setting for AMQP, create an
instance of the MessagingFactory, and create a reference to the queue with
QueueClient. You can then use that QueueClient to receive messages. The
following listing shows the entire implementation, including required
namespaces:

Click here to view code image

using System;
using Microsoft.ServiceBus.Messaging;

class Program
{
static void Main(string[] args)
{
string queueName = '<queuename>";
string connection =
"Endpoint=sb://<namespace>.servicebus.windows.net/;
SharedAccessKeyName=<sharedaccesskeyname>;
SharedAccessKey=<sharedaccesskeyvalue>=; TransportType=Amgp";

MessagingFactory factory =
MessagingFactory.CreateFromConnectionString(
connection);
QueueClient queue = factory.CreateQueueClient(queueName);
while (true)

¢ BrokeredMessage message = queue.Receive();
if (message != null)
{
try
{

Console.WritelLine("MessageId {0}",
message.MessagelId);

Console.WritelLine("Delivery {0}",
message.DeliveryCount);

Console.WritelLine("Size {0}", message.Size);

Console.WritelLine(message.GetBody<string>());

message.Complete();

}

catch (Exception ex)

{
Console.WritelLine(ex.ToString());
message.Abandon();

}

}

4. In the aforementioned code, replace the values as follows:
= <namespace> Your Service Bus namespace name.
m <sharedaccesskeyname> The name of your Shared Access Key.
m <sharedaccesskeyvalue> The value of your Shared Access Key.
m <queuename> The name of your queue.

Note: Duplicate Messages

Service Bus queues support at-least-once processing. This means
that under certain circumstances, a message might be redelivered
and processed twice. To avoid duplicate messages, you can use the
Messageld of the message to verify that a message was not already
processed by your system.

More Info: Dead Letter Queues

Messages that cannot be processed are considered poison messages
and should be removed from the queue and handled separately.
This is typically done with a dead letter queue. Service Bus queues
have a dead letter sub-queue available for this purpose. You write
to the dead letter sub-squeue when you detect a poison message
and provide a separate service to process those failures. Messages
written to the dead letter sub-queue do not expire. For a sample,
see https://docs.microsoft.com/en-us/azure/servicebus-
messaging/servicebus-dead-letter-queues.

Using Service Bus topics and subscriptions

Service Bus queues support one-to-one delivery from a sender to a single
receiver. Service Bus topics and subscriptions support one-to-many
communication in support of traditional publish and subscribe patterns in
brokered messaging. When messages are sent to a topic, a copy is made for each
subscription, depending on filtering rules applied to the subscription. Messages
are not received from the topic; they are received from the subscription.
Receivers can listen to one or more subscriptions to retrieve messages.

Properties of the Service Bus topic influence its behavior, including the size
and partitions for scale out and message handling for expiry. Table 3-3 and
Table 3-4 respectively show the core properties of a Service Bus topic and
subscription. Properties prefixed with an asterisk (*) indicate a property not
shown in the management portal while creating the topic or subscription, but can
be edited in the management portal after they are created.

TABLE 3-3 Topic properties

Property | Description

Max size ‘ The size of the topic buffer in terms of capacity for messages.
(Can he fraom 1 (2R tn B (CR and 2N (R whon nartitinninag ic

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dead-letter-queues

Default
message
time to live

Enable
duplicate
detection

*Duplicate
detection
history

*Filter
message
before
publishing

*Topic

status

Enable
partitioning

ULl UL 11V L I WV U \JJ_I’ Ulliul UV \J1J yviivlil]-_Iblll.ll.l\.lllllls 10

enabled.

Time after which a message will expire and be removed from
the topic buffer. Defaults to 14 days in the portal.

If enabled, the topic will retain a buffer and ignore messages
with the same message identifier (provided by the sender).
The window for this can be set to a value up to 7 days.

Window of time for measuring duplicate detection. Defaults
to 10 minutes.

If enabled, the publisher will fail to publish a message that
will not reach a subscriber.

Allows for disabling publishing without removing the topic.
Valid choices are Enabled, Disabled, or Send Disabled
(receive only mode).

If enabled, messages will be distributed across multiple
message brokers and can be grouped by partition key. Up to
100 partitioned topics are supported within a Basic or
Standard tier namespace. Premium tier namespaces support
1,000 partitions per messaging unit.

TABLE 3-4 Subscription properties

Property

Default message time

to live

Move expired
messages to dead-
letter sub-queue

Move messages that

Description

Time after which a message will expire and be
removed from the subscription buffer.

If enabled, automatically moves expired messages
to the dead letter topic path.

If enabled, automatically moves messages that fail

cause filter evaluation
exceptions to the
dead-letter sub-queue

Lock duration

Enable sessions

Enable batched
operations

Maximum delivery
count

*Topic subscription
state

filter evaluation to the dead letter sub-queue.

Duration of time a message is inaccessible to other
receivers when a receiver requests a peek lock on
the message. Defaults to 30 seconds. Can be set to
a value up to 5 minutes.

If enabled, messages can be grouped into
sequential batches to guarantee ordered delivery of
a set of messages.

If enabled, server-side batch operations are
supported.

The maximum number of times Service Bus will
try to deliver the message before moving it to the
dead-letter sub-queue.

Allows for disabling consumption without
removing the subscription. Valid choices are
Enabled, Disabled, or Receive Disabled (send only
mode).

More Info: Topic & Subscription Properties

For a comprehensive list of all Service Bus topic properties, see the
TopicDescription class documentation available at:

https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.top
Similarly, for subscription properties,
see:https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging

CREATING A TOPIC AND SUBSCRIPTION
You can create a topic directly from the portal by following these steps:

1. Navigate to the Service Bus namespace (Figure 3-58) you provisioned in
the portal.

2. In the command bar, select + Topic.

https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.topicdescription
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.subscriptiondescription

Provide a name for the new topic.

Select Create to deploy the topic.

To create subscriptions for the topic, select the topic in the portal.
Select + Subscription in the command bar.

NSy ew

Provide a name for the subscription.

Create subscription

Eamrefopicl

'.'-LL‘L'|..-:.J:

FIGURE 3-58 Creating a new Service Bus subscription against a selected
topic in the Portal

8. Select Create to deploy the subscription.

MANAGING TOPIC CREDENTIALS

Service Bus topic credentials can be managed from the portal. The following
example illustrates creating a sender and receiver policy:

1. Navigate to the blade for your Service Bus namespace in the Azure Portal.

From the menu, select Shared access policies.
To create a new shared access policy for the topic, select + Add.

Provide a name for the Policy and select what permissions (Manage, Send,
Listen) it should have. For a Sender policy, select only the Sender
permission. For a Receiver policy, select only the Listen permission.

Select Create.

You can view the Keys and connection strings after the policy has been
created by selecting Shared access polices and then choosing your newly
created policy.

Note: Shared Access Policies for Topics

You will usually create at least one policy per subscriber to isolate
access keys and one for send permissions to separate key access
between clients and services.

SENDING MESSAGES TO A TOPIC

With topics and subscriptions, you send messages to a topic and retrieve them
from a subscription. After you have created the namespace, the topic, and one or
more subscriptions, and you’ve noted the sender connection string, you can write
code to create a topic client that sends messages to that topic. Here is a simple
example with steps:

1.

Open Visual Studio and create a new console application called
TopicSender.

Add the Microsoft Azure Service Bus NuGet package to the console
application.

In Program.cs, add code to send messages to the topic. Begin by adding the
following namespace:

Click here to view code image

using Microsoft.ServiceBus.Messaging;

Create an instance of the MessagingFactory, and create a reference to the
topic with TopicClient. You can then create a BrokeredMessage and send
that using the topic reference. Here is the body of the main method:

Click here to view code image

string topicName = '"<topicname>";

PG TS . -_———— e m — 2 oo —

6.

sLring conneccion =
"Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyN:
<sharedaccesskeyname>; SharedAccessKey=<shareaccesskeyvalue>";
MessagingFactory factory =
MessagingFactory.CreateFromConnectionString(connection);
TopicClient topic = factory.CreateTopicClient(topicName);
topic.Send(new BrokeredMessage('"topic message"));

In the aforementioned code, replace the values as follows:

= <namespace> Your Service Bus namespace name.

m <sharedaccesskeyname> The name of your Shared Access Key.
m <sharedaccesskeyvalue> The value of your Shared Access Key.
m <topicname> The name of your topic.

Run the project to send a message to the topic.

RECEIVING MESSAGES FROM A SUBSCRIPTION

Processing messages from a subscription is similar to processing messages from
a queue. You can use ReceiveAndDelete or PeekL.ock mode. The latter is the
preferred mode and the default.

After you have created the namespace, topic, and subscriptions, and you’ve
noted the subscription connection string, you can write code to read messages
from the subscription using the client library. Here is a simple example with
steps:

1.

2.

In the existing Visual Studio solution created in the previous section, add
another console application called TopicListener.

Add the Microsoft Azure Service Bus NuGet package to the console
application.

In Program.cs, add code to receive messages from the subscription. Begin
by adding the following namespace:

Click here to view code image

using Microsoft.ServiceBus.Messaging;

In the main entry point, add code to read messages from a subscription. Get
the connection string for the subscription, create an instance of the
MessagingFactory, and create a reference to the subscription with
SubscriptionClient. You can then call Receive() to get the next
BrokeredMessage from the subscription for processing. Here is the body of
the main method:

Click here to view code image

string topicName = '"<topicname>";

string subA = "<subscriptioname>";

string connection =
"Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyN:
<sharedaccesskeyname>; SharedAccessKey=<sharedaccesskeyvalue>";
MessagingFactory factory =
MessagingFactory.CreateFromConnectionString(connection);
SubscriptionClient clientA =
factory.CreateSubscriptionClient(topicName, subA);

while (true)

¢ BrokeredMessage message = clientA.Receive();
if (message != null)
{
try
{

Console.WritelLine("MessageId {0}", message.Messageld);

Console.WritelLine("Delivery {0}",
message.DeliveryCount);

Console.WritelLine("Size {0}", message.Size);

Console.WritelLine(message.GetBody<string>());

message.Complete();

}
catch (Exception ex)
{
Console.WritelLine(ex.ToString());
message.Abandon();
}

}

5. In the aforementioned code, replace the values as follows:
= <namespace> Your Service Bus namespace name.
m <sharedaccesskeyname> The name of your Shared Access Key.
m <sharedaccesskeyvalue> The value of your Shared Access Key.
m <topicname> The name of your topic.
m <subscriptionname> The name of your Service Bus subscription to the
topic.
6. Run both the sender and the receiver projects to see the message exchange.

)

Exam Tip

If you enable batch processing for the subscription, you can receive
a batch of messages in a single call using ReceiveBatch() or
ReceiveBatchAsync(). This will pull messages in the subscription
up to the number you specify, or fewer if applicable. Note that you

must be aware of the potential lock timeout while processing the
batch.

More Info: Atching and Prefetch

You can batch messages from a queue or topic client to avoid
multiple calls to send messages to Service Bus, including them in a
single call. You can also batch receive messages from a queue or
subscription to process messages in batch. For more information
on batch processing and prefetch, an alternative to batch, see
https://docs.microsoft.com/azure/servicebus-messaging/servicebus-

performance-improvements.

FILTERING MESSAGES

One of the powerful features of topics and subscriptions is the ability to filter
messages based on certain criteria, such as the value of specific message
properties. Based on criteria, you can determine which subscription should
receive a copy of each message. In addition, you can configure the topic to
validate that every message has a valid destination subscription as part of
publishing.

By default, subscriptions are created with a “match all” criteria, meaning all
topic messages are copied to the subscription. You cannot create a subscription
with filter criteria through the portal, but you can create it programmatically
using the NamespaceManager object and its CreateSubscription() method. The
following code illustrates creating an instance of the NamespaceManager for a
topic and creating a subscription with a filter based on a custom message
property:

Click here to view code image

string topicName = '"<topicname>";

string connection = "Endpoint=sb://<namespace>.servicebus.windows.
net/;SharedAccessKeyName=

<sharedaccesskeyname>;

SharedAccessKey=<sharedacceskeyvalue>";

var ns = NamespaceManager.CreateFromConnectionString(connectionString);
CAlCil+tar Filtar — now CATCAl1+avr/"Drinvaityy — 111\ .

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-performance-improvements

\J\.1.LI LLLCTI I L1LLCl - 1Hcovww \J\.1.LI LLLCTI \ rir Lwvi .Ll_y -_— £) 7

ns.CreateSubscription(topicName, "PrioritySubscription", filter);
To send messages to the topic, targeting the priority subscription, set

the Priority property to one on each message:
BrokeredMessage message = new BrokeredMessage("priority message");
message.Properties["Priority"] = 1;

Using Event Hubs

Event Hubs support very high-volume message streaming as is typical of
enterprise application logging solutions or Internet of Things (IoT) scenarios.
With Event Hubs, your application can support the following:

m Ingesting message data at scale
m Consuming message data in parallel by multiple consumers

m Re-processing messages by restarting at any point in time within the message
stream

Messages to Event Hubs are FIFO and durable for up to seven days.
Consumers can reconnect to an Event Hub and choose where to begin
processing, allowing for the re-processing scenario (sometimes referred to as
message replay) or for reconnecting after failure. Event Hubs differ from queues
and topics in that there are no enterprise messaging features. Instead there is very
high throughput and volume. For example, there isn’t a Time-to-Live (TTL)
feature for messages, no dead-letter sub-queue, no transactions or
acknowledgements. The focus is low latency, highly reliable, message streaming
with order preservation and replay. Event Hubs also differ in their model from
traditional queues, which use a competing consumer pattern (whereby a message
goes to at most one consumer and the service tracks the state of messages sent to
consumer) and instead use a multi-consumer pattern where each consumer is
responsible for tracking the state of its own progress thru the messages.

Table 3-5 shows the core properties of an event hub. Properties prefixed with
an asterisk (*) indicate a property not shown in the management portal while
creating the queue, but they can be edited in the management portal after they
are created.

More Info: Event Hubs Overview

For more details on the event hubs architecture, see
http://msdn.microsoft.com/en-us/library/azure/dn836025.aspx.

http://msdn.microsoft.com/en-us/library/azure/dn836025.aspx

)

Exam Tip

Event hubs can by default handle 1-MB ingress per second, 2-MB
egress per second per partition. This can be increased to 1-GB
ingress per second and 2-GB egress per second through a support

ticket.

TABLE 3-5 Event Hub properties

Property

Partition
count

Message
retention

Capture

Capture
Time
window

Capture
Size
window

Capture
Container

Capture
Storage
Account

Description

Determines the number of partitions across which messages are
distributed. Can be set to a value between 2 and 32 and cannot
be modified after it is created.

Determines the number of days a message will be retained
before it is removed from the event hub. Can be between 1 and
7 days.

Enables the Capture feature that automatically writes messages
ingested to the Event Hub to an Azure Storage blob container.
The data is written as block blobs in the Apache Avro format.
Can be On or Off.

Defines the time window that triggers a capture event. The

default is 5 minutes.

Defines the size in bytes that once reached triggers a capture
event. The default is 300 MB.

The Azure Storage container that will store the capture files.

The Azure Storage Account that will store the capture files.

Capture The template used for creating the blob name ot the capture
file name | files, typically used with path segments for the namespace,
format Event Hub name, partition id, and timestamp.
*Event Allows for disabling the hub without removing it. Valid choices
hub state are Enabled or Disabled.

CREATING AN EVENT HUB

You can create an event hub directly from the portal by following these steps:

1. Using the portal, navigate to the blade for your deployed Event Hub
namespace.

2. From the command bar, select + Event Hub.

3. Provide a name for your Event Hub (Figure3-59) and select Create.

Create Event Hub

exaremfrevents - PREVIEW

* MName

] examrefnub V|

Partition Count @

I 2

hessage Retention @

Size window (MB)

Storage Account

Sample Capture file name formats

Capture file name format @

FIGURE 3-59 Creating a new Event Hub in the Portal

y

Exam Tip

You can create between 1 and 32 partitions, but with a support
ticket you can increase that number up to 1,024.

MANAGING EVENT HUB CREDENTIALS

Event Hub credentials can be managed from the portal at the namespace level in
the same way as was shown for Service Bus queues.

FINDING EVENT HUB CONNECTION STRINGS

Connection strings for Event Hubs are accessed in the same way as for queues
discussed earlier and are located under the namespace, Shared access policies
and then selecting a particular policy to view the connection strings.

SENDING MESSAGES TO AN EVENT HUB
With Event Hubs, you send messages as EventData instances to the Event Hub,
and the service will distribute those messages across the available partitions.
Messages are stored for up to seven days and can be retrieved multiple times by
consumers.

After you have created the namespace and Event Hub and you’ve noted the
sender connection string, you can write code to create an Event Hub client that
sends messages. Here is a simple example with steps:

1. Open Visual Studio and create a new console application called
EventHubSender.

2. Add the Microsoft Azure Service Bus NuGet package to the console
application.

3. In Program.cs, add code to receive messages from the subscription. Begin
by adding the following namespace:
Click here to view code image

using Microsoft.ServiceBus.Messaging;

4. In the main entry point, add code to send messages to the Event Hub.
Create an instance of the MessagingFactory and a reference to the
EventHubClient. You can then create an EventData instance and send. Here
is the body of the main method:

Click here to view code image

string ehName = "<eventhubname>";
string connection =

"Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyN:

<sharedaccesskeyname>; SharedAccessKey=

<sharedaccesskeyvalue>; TransportType=Amgp";

MessagingFactory factory =
MessagingFactory.CreateFromConnectionString(connection);
EventHubClient client = factory.CreateEventHubClient (ehName);

string message = "event hub message";

EventData data = new EventData(Encoding.UTF8.GetBytes(message));
client.Send(data);

5. In the aforementioned code, replace the values as follows:
= <namespace> Your Event Hub namespace name.
m <sharedaccesskeyname> The name of your Shared Access Key.
m <sharedaccesskeyvalue> The value of your Shared Access Key.
» <eventhubname> The name of your Event Hub.

6. Run the sender project to send a message.

Note: Partitions and Partition Keys

You can optionally supply a partition key to group event data so
that the data is collected in the same partition in sequence.
Otherwise, data is sent in a round-robin fashion across partitions.
In addition, you can supply custom properties and a sequence
number to event data prior to sending.

RECEIVING MESSAGES FROM A CONSUMER GROUP

When you create the Event Hub, you allocate a number of partitions to distribute
message ingestion. This helps you to scale the Event Hub ingress alongside
settings for throughput (to be discussed in the next section). To consume
messages, consumers connect to a single partition. In this example, a default
consumer group is created to consume events, and within that consumer group
there is typically one consumer application process for each partition. You can
think of the consumer process like a subscription to a Service Bus topic that is
specific to a partition, and the consumer group as a logical entity that represents
the stream processing application all-up, inclusive of all the individual processes
that together handle all messages.

After you have created the namespace, and Event Hub, and you’ve noted the

Event Hub connection string, you can write code to read messages from the
consumer group using the client library. Here is a simple example with steps:

In the existing Visual Studio solution created in the previous section, add
another console application called EventHubListener.

Add the Microsoft Azure Service Bus NuGet package to the console
application.

In Program.cs, add code to receive messages from the subscription. Begin
by adding the following namespace:
Click here to view code image

using Microsoft.ServiceBus.Messaging;

In the main entry point, add code to read data from the Event Hub using the
default consumer group. You can then call Receive() to get the next event
from the partition with ID “0” for processing. Here is the body of the main
method:

Click here to view code image

string ehName = "<eventhubname>";
string connection =
"Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyN:
<sharedaccesskeyname>;
SharedAccessKey=<sharedaccesskeyvalue>; TransportType=Amgp";
MessagingFactory factory =
MessagingFactory.CreateFromConnectionString(connection);
EventHubClient ehub = factory.CreateEventHubClient (ehName);
EventHubConsumerGroup group = ehub.GetDefaultConsumerGroup();
EventHubReceiver receiver = group.CreateReceiver("0");
while (true)
{

EventData data = receiver.Receive();

if (data != null)

{

try

{
string message =

Encoding.UTF8.GetString(data.GetBytes());

Console.WritelLine("EnqueuedTimeUtc: {0}",
data.EnqueuedTimeUtc);

Console.WritelLine("PartitionKey: {0}",
data.PartitionKey);

Console.WritelLine("SequenceNumber: {0}",
data.SequenceNumber);

Console.WriteLine(message);

}

catch (Exception ex)

{

Console.WritelLine(ex.ToString());

}

5. In the aforementioned code, replace the values as follows:
= <namespace> Your Event Hub namespace name.
m <sharedaccesskeyname> The name of your Shared Access Key.
m <sharedaccesskeyvalue> The value of your Shared Access Key.
» <eventhubname> The name of your Event Hub.

6. Run both projects to send and receive a message.

More Info: Eventprocessorhost

To simplify scaling event hub consumers for .NET developers,

there is a NuGet package that supplies a hosting feature for event
hubs called EventProcessorHost which can easily be hosted within

an Azure Web Job. For more information, see:
https://www.nuget.org/packages/Microsoft. Azure.ServiceBus. EventProce

Note: Consumer Groups

A default consumer group is created for each new event hub, but
you can optionally create multiple consumer groups (receivers) to
consume events in parallel.

Using Notification Hubs

Notification hubs provide a service for push notifications to mobile devices, at
scale. If you are implementing applications that are a source of events to mobile
applications, Notification Hubs simplify the effort to send platform-compatible
notifications to all the applications and devices in your ecosystem.

CREATING A NOTIFICATION HUB
You can create a notification hub directly from portal by following these steps:

1. Using the portal, select + NEW and search for Notification Hub.

2. Provide a name for the Notification Hub and the new Event Hub
Namespace.

3. Select a location, resource group, subscription and pricing tier.

https://www.nuget.org/packages/Microsoft.Azure.ServiceBus.EventProcessorHost/

4. Select Create.

IMPLEMENTING SOLUTIONS WITH NOTIFICATION HUBS

A solution that involves Notification Hubs typically has the following moving
parts:

m A mobile application deployed to a device and able to receive push
notifications

= A back-end application or other event source that will publish notifications to
the mobile application

m A platform notification service, compatible with the application platform

m A Notification Hub to receive messages from the publisher and handle
pushing those events in a platform-specific format to the mobile device

The implementation requirements vary based on the target platform for the
mobile application. For a set of tutorials with steps for each platform supported,
including the steps for setting up the mobile application, the back-end
application, and the notification hub, see
http://azure.microsoft.com/documentation/articles/notification-hubs-windows-
store-dotnet-get-started.

More Info: Notification Hub Guides

The following references provide additional background and
programming guidance for Notification Hubs and mobile
services:

m Notification hubs overview and tutorials:
http://msdn.microsoft.com/en-us/library/azure/jj891130.aspx

m Notification hubs documentation:
http://azure.microsoft.com/documentation/services/notification-hubs/

= Mobile Apps documentation: https://azure.microsoft.com/en-
us/documentation/learning-paths/appservice-mobileapps/

Scale and monitor messaging

In this section, you learn how to choose a Service Bus pricing tier, scale Service
Bus features, and monitor communication.

Choosing a pricing tier

http://azure.microsoft.com/documentation/articles/notification-hubs-windows-store-dotnet-get-started
http://msdn.microsoft.com/en-us/library/azure/jj891130.aspx
http://azure.microsoft.com/documentation/services/notification-hubs/
https://azure.microsoft.com/en-us/documentation/learning-paths/appservice-mobileapps/

When you create a Service Bus namespace, you choose a messaging tier for all
entities that will belong to that namespace. The tier you choose controls which
entities you have access to as follows:

m Basic tier Queues (up to 100 connections)
m Standard tier Queues, topics and related messaging features (up to 1000
connections)

® Premium tier All features in Standard, plus larger message sizes, resource
isolation and linear scalability (1,000 brokered connections per messaging
unit)

Standard and Premium tiers support advance brokered messaging features
such as transactions, de-duplication, sessions, and forwarding, so if you need
these features for your solution, select from these tiers.

More Info: Service Bus Tiers

For information on Service Bus tier pricing, see:

http://azure.microsoft.com/pricing/details/servicebus/.

Event Hubs have their own tiering approach. The basic tier only supports a
single consumer group, so if you want to support parallelized processing across
partitions, choose a standard or dedicated messaging tier. In addition, standard
tier provides additional storage up to seven days for event hubs. The dedicated
tier is sold at a fixed price per daily capacity unit instead of charged million
events as is done by the basic and standard tiers.

More Info: Event Hub Tiers

For information on event hub tier pricing, see:
http://azure.microsoft.com/pricing/details/eventhubs/.

Notification Hubs have a separate tier selection strategy. When you create a
namespace that supports Notification Hubs, you choose a messaging tier for
brokered messaging entities, if applicable, and select a Notification Hub tier
appropriate to your expected push notification strategy.

m Free tier Up to 1 million messages per month and up to 500 active devices
per Namespace; no support for auto-scale nor a number of other enterprise

http://azure.microsoft.com/pricing/details/service-bus/
http://azure.microsoft.com/pricing/details/event-hubs/

features

m Basic tier 10 million messages per month and up to 200,000 active devices
per namespace plus unlimited overage for a fee; support for auto-scale; no
support for other enterprise features

» Standard tier The same as basic tier, but supporting up to 10 million
devices per namespace, with all enterprise features

More Info: Notification Hub Tiers

For information on notification hub tier pricing, see:
http://azure.microsoft.com/pricing/details/notification-hubs/.

Scaling Service Bus features
Service Bus entities scale based on a variety of properties, including:
m Namespaces
m Partitions
m Message size
® Throughput units
= Entity instances

Not all of these properties impact every Service Bus entity in the same
manner.

A Service Bus namespace is a container for one or more entities, such as
relays, queues, topics, event hubs, and notification hubs. In most cases, the
namespace itself is not a unit of scale, with some exceptions specifically related
to pricing (referenced earlier), event hub throughput (to be discussed), and the
following:

m For relays, there is a limit to the number of endpoints, connections overall,
and listeners.

m The number of topics and queues are limited, and separately a smaller
number of partitioned topics and queues are supported.

Since pricing is not directly related to namespace allocation between relays,
queues, topics, and event hubs, you can avoid reaching some of these limits by
isolating entities that could be impacted into separate namespaces. For example,
consider isolating individual relays that might grow their connection
requirements, or consider isolating partitioned queues and topics.

http://azure.microsoft.com/pricing/details/notification-hubs/

More Info: Service Bus Quotas

For the latest information related to namespace and other quotas
for individual Service Bus entities, see:
https://docs.microsoft.com/azure/servicebus-messaging/servicebus-

quotas.

Beyond namespace selection, each entity has slightly different requirements
for scale as is discussed in this section.

Scaling relays
This section discusses how to scale relays for potential namespace limitations.

NAMESPACE

As mentioned previously, relay endpoints have a limited number of overall
connections and listeners that can be supported per namespace. When you are
considering the design for a relay service, you should consider the number of
concurrent connections that might be required for communicating with the
endpoint.

If the scale of the solution has the potential to exceed the quota per
namespace, the following approach can help to mitigate the limitation:

= Design the solution to support publishing an instance of each relay service
into multiple namespaces. This will allow for growth so that additional
listeners can be added by adding namespaces with a new relay service
instance.

m Design the solution so that clients sending messages to the relay service can
distribute calls across a selection of service instances. This implies building a
service registry.

)

Exam Tip

Relay services can be replaced with queues or topics to provide
greater throughput, scalability, and design flexibility.

Crnlina Arvnsrnc nd taniqc

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-quotas

oLaliiyg uouod altu tupivd

This section discusses how to scale queues and topics for potential namespace or
storage limitations and discusses the use of batching and partitions to help with
scaling.

NAMESPACE

Queues and topics are similar in their scale triggers. Neither is particularly
bound by the namespace it belongs to except in the total number of queues or
topics supported and the limited number of partitioned queues and topics.
Ideally, you will have a pattern for your solution in terms of namespace
allocations by Service Bus entities.

STORAGE

When you create a new queue or topic, you must choose the maximum expected
storage from one GB to five GBs, and this cannot be resized. This impacts the
amount of concurrent storage supported as messages flow through Service Bus.

BATCHING

To increase throughput for a queue or topic, you can have senders batch
messages to Service Bus and listeners batch receive or prefetch from Service
Bus. This increases overall throughput across all connected senders and listeners
and can help reduce the number of messages taking up storage.

More Info: Batching and PreFetching

For more information on batch send, batch receive, or prefetch,
see: https://docs.microsoft.com/en-us/azure/servicebus-

messaging/servicebus-performance-improvements.

PARTITIONS

Adding partitions increases the number of message brokers available for
incoming messages, as well as the number available for consuming messages.
For high throughput queues and topics, you should enable partitioning when you
create the queue or topic.

More Info: Partitioned Entities

For more information on partitions, see:

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-performance-improvements

https://docs.microsoft.com/en-us/azure/servicebus-
messaging/servicebus-partitioning.

Scaling Event Hubs

This section discusses how to scale event hubs for potential namespace
limitations and discusses how to set throughput units or use partitions to help
with scaling.

NAMESPACE

Each namespace can have multiple Event Hubs, but those Event Hubs share the
throughput units allocated to the namespace. This means that multiple Event
Hubs can share a single throughput unit to conserve cost, but conversely, if a
single Event Hub has the potential of scaling beyond the available throughput
units for a namespace, you might consider creating a separate namespace for it.

)

Exam Tip

You can request additional throughput by navigating to your
Event Hub namespace in the Azure Portal, selecting Scale,
adjusting the slider to the desired number of units and selecting
Save.

THROUGHPUT UNITS

The primary unit of scale for Event Hubs is throughput units. This value is
controlled at the namespace level and thus applies to all Event Hubs in the
namespace. By default, you get a single throughput unit which provides ingress
up to one MB per second, or 1,000 events per second, and egress up to two MB
per second. You pre-purchase units and can by default configure up to 20 units.

PARTITIONS

A single Event Hub partition can scale to utilize a maximum of one throughput
unit; therefore, the number of partitions across Event Hubs in the namespace
should be equal to or greater than the number of throughput units selected.

Scaling Notification Hubs

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-partitioning

There is no equivalent notion of throughput units in Notification Hubs. The
scaling capacity is dictated by the selected pricing tier.

Monitoring Service Bus features

In this section you learn how to monitor queues, topics, event hubs, and
notification hubs.

MONITORING QUEUES
To monitor a Service Bus queue from the portal, complete the following steps:

1. Navigate to the blade for the queue and select the Overview tab.

2. The metrics shown for a queue includes message counts, the max storage
size of the queue and the current storage used by the queue.

MONITORING TOPICS
To monitor a Service Bus topic from existing portal, complete the following
steps:

1. Navigate to the blade for the topic and select the Overview tab.

2. The metrics shown for a queue includes message counts, or the max storage
size of the queue and the current storage used by the queue.

MONITORING EVENT HUBS
To monitor Event Hub from the portal, follow these steps (Figure 3-60):

1. Navigate to the blade Event Hub Namespace blade and select the Overview
tab. From this tab you are viewing a summary of activity across all Event
Hub instances in the namespace, including statistics about incoming
messages, incoming send requests, outgoing messages and internal server
errors.

Fed #
- i R
- ¥ vt vy Siamsakn wcTral 1
roet
Miincs
8 Lo
J hJiETate flll
1
T / ‘|!
|
) 1
[
/ ‘!
e 1
) = 1
ot e S A AR p o e BT RS L A Spn AL &
e 1 |‘” ID 2
Pl B0 NS
Mk ST MEVAGERETENTION PARTIIOM COUNT

Tl ALl

FIGURE 3-60 Viewing Event Hub metrics from the Overview tab of an
Event Hub in the Portal

. Select the chart to view the Metric blade.

. Select Edit Chart from the command bar to view customize the time range
plotted in the chart, the style (Bar or Line) and the metrics to display
(Figure 3-61).

l:l Archive backiog messages

|:i Archive message throughput
l:l ARCRive Messages
|:I Failed Raquasts
l:l Ingoming Messages
=

| Incoming Messages [Depracated)

[+] Ircoming Serd Requests
I I (s] n; :J o
[] incoming bytes [Deprecatas)

[+] Irternal Seever Errars
| | Other Emors

[] Outgoing Messages

<
o

utgaing Messages [Déprecated)
|:| Outgoing bytes

[] Ouigoing oytes

|:! Sérvar Busy Errors

|____I Successiul Raquasts

FIGURE 3-61 Viewing the list of available Event Hub metrics from Edit
Chart blade for an Event Hub

4. Select OK to apply the changes to the chart.

MONITORING NOTIFICATION HUBS
To monitor a Notification Hub from the portal:

1. Navigate to the blade for your Notification Hub in the portal.
2. From the menu on the left, select Metrics under the Monitoring header.
3. Choose from the list of metrics the set of metrics you wish to chart and the

chart on the right will update with the corresponding metric.

Determine when to use Event Hubs, Service Bus, IoT Hub,
Stream Analytics and Notification Hubs

To help you better recall when to use which service, the following table
summarizes when to use each of the services discussed in this chapter, as well as
some of the related services that help in message processing.

TABLE 3-6 Services and related services for message processing help

Service Purpose Comment

Service Bus Queue Messaging Best for first in, first out messaging.
Service Bus Broadcast Best for publish/subscribe scenarios
Topics/Subscriptions | messaging or when you need multiple

consumers to be able to read the
same message conditionally.

Event Hubs High-scale Best for massive scale message
message ingest scenarios, such as telemetry
ingest

IoT Hub Device Best for scenarios that have high
messaging scale messaging requirements but

also need device management
capabilities

Notification Hubs Push Best for sending push notifications

notifications | for mobile apps.

Stream Analytics Message Best for processing messages from
processing Event Hubs, IoT Hub using SQL
queries
EventProcessorHost Message Best for processing messages from

processing Event Hubs, IoT Hub using .NET
custom code

Thought experiment

h g 1. Pl 1 . . 1 1 . L] bl 1 1 .. bl

In this thougnt experiment, apply what you've learned about implementing
Azure AD, Azure Key Vault, and selecting a messaging strategy. Apply this to a
scenario with an appropriate selection across each Azure feature. This will
require you to choose the Azure AD configuration, the Key Vault configuration,
and the messaging features, which are best suited to the solution. You can find
answers to this thought experiment in the “Thought Experiment Answers”
section at the end of this chapter. The following paragraphs describe the solution
and the questions to answer.

You are designing a multi-tenant solution that sells widgets. The system tracks
your products, each customer, and the orders.

There are several applications that comprise the system:

m The internal web application (Corporate Portal) that allows the corporate
employees to manage available widgets and manage customers and orders.

m All corporate employees should be able to use this portal, their access
restricted by the groups they belong to.

m There isn’t an existing directory to work with, so the user store will be a
green field setup.

m Corporate users are expected to use multi-factor authentication.

m It is expected that the corporate users will be setup by an administrator to
the organization.

m The external web application (Customer Portal) that allows customers to
view their orders, manage their profiles and preferences, and place new
orders.

m Customers can sign up for access to this portal, but access to tenants is
managed by the Corporate Portal.

m Customer users should be able to sign-in by creating a user account, or by
signing up with their Google or Microsoft Account.

These applications will not only authenticate users, but also request access
tokens to call secure APIs. This will require storing client id and secret settings
for each client application that will request access tokens.

Each customer also expects a report of his or her own activity each month,
and on demand as needed. These reports require sifting through large amounts of
data and generating a PDF file for the customer, to be emailed when it is
generated. In addition, since it is a multi-tenant site, you want to track detailed
logs for insights into individual customer activity at any given time to
troubleshoot or gather intelligence on usage patterns.

How would you go about setting up corporate users in Azure AD?

. How would you go about supporting self-registration and social login for

customer users in Azure AD?

Which features of Azure AD would you use to support user authentication
and token issuance for APIs?

How can Azure Key Vault be used in this solution?

. What kind of communication architecture might fit the reporting strategy

and why?

Thought experiment answers

This section contains the solution to the thought experiment.

1.

Consider setting up an Azure AD tenant dedicated to corporate users for
the Corporate Portal. Add users via the portal, or programmatically and
assign users to appropriate groups that align with application permissions.

Consider adding customer users as Azure AD B2C collaboration users -
guest users - who can register and sign-in with Microsoft Account or
Google identity providers.

Configure applications for the Azure AD tenant, and create keys for access
token requests for APIs. Applications can request access tokens during
sign-in if the application will use the token from a SPA or from the web
application, or individually request access tokens. Any protocol flows that
require a secret will use the client id and secret for the application.

Create a Key Vault in the same subscription as the Azure AD tenant. Create
secrets to hold the Azure AD application secrets that are necessary for
token requests.

Consider using Service Bus queues to offload processing of report
generation from the main website to a separate compute tier that can be
scaled as needed. Since this is not a publish-and-subscribe scenario, queues
can satisfy this requirement. Actual processing can be performed by any
compute tier, including a VM, cloud service worker role, or web job in an
isolated VM.

Chapter summary

® You can easily create new Azure AD directories and manage users and

registered applications via the Azure Portal.

m Azure AD supports WSFederation, SAML-P, OpenID Connect and OAuth 2
protocols for application integration. Registered applications can integrate
with Azure AD using any of these protocol endpoints.

® You can manage users programmatically using the Microsoft Graph API at
the Azure AD v2 endpoint, but this also requires registering application at the
new Microsoft Application Registry separate from the applications registered
from within the Azure Portal (today).

® You can use the Microsoft Graph API to query directories; to find and
manage users, groups and role assignment; and to create applications for
integration with Azure AD directories.

® You can enable multi-factor authentication for users individually or in batch.
This requires additional licenses for your users.

® You can integrate multi-factor authentication directly to your applications by
using the MFA SDK which exposes APIs for this purpose.

m Azure AD B2C enables users to register and sign-in using social identity
providers.

m Azure AD B2B enables organizations to allow access to applications and
resources by external users.

m Azure Key Vault provides a secure way to manage keys, secrets and
certificates including support for HSM protected assets.

m A Service Bus namespace is a container for relay and message broker
communication through relays, queues, topics and subscriptions, event hubs,
and notification hubs.

m Relay enables access to on-premises resources without exposing on-premises
services to the public Internet. By default, all relay messages are sent through
Service Bus (relay mode), but connections might be promoted to a direct
connection (hybrid mode).

m Queues and topics are message brokering features of Service Bus that
provide a buffer for messages, partitioning options for scalability, and a dead
letter feature for messages that can’t be processed.

m Queues support one-to-one message delivery while topics support one-to-
many delivery.

m Event hubs support high-volume message streaming and can ingest message
data at scale. Messages are stored in a buffer and can be processed multiple
times.

m Service Bus features can require authentication using a key. You can create

multiple keys to isolate the key used for management and usage patterns,
such as send and receive.

Design and implement Azure PaaS
compute and web and mobile services

The Azure platform provides a rich set of Platform-as-a-Service (PaaS)
capabilities for hosting web applications and services. The platform approach
provides more than just a host for running your application logic; it also includes
robust mechanisms for managing all aspects of your web application lifecycle,
from configuring continuous and staged deployments to managing runtime
configuration, monitoring health and diagnostic data, and of course, helping with
scale and resilience. Azure Apps Services includes a number of features to
manage web applications and services including Web Apps, Logic Apps, Mobile
Apps and API Apps. API Management provides additional features with first
class integration to APIs hosted in Azure. Azure Functions and Azure Service
Fabric enable modern microservices architectures for your solutions, in addition
to several third-party platforms that can be provisioned via Azure Quickstart
Templates. These key features are of prime importance to the modern web
application, and this chapter explores how to leverage them.

Skills in this chapter:
m Skill 4.1: Design Azure App Service Web Apps

m Skill 4.2: Design Azure App Service API Apps

m Skill 4.3: Develop Azure App Service Logic Apps

m Skill 4.4: Develop Azure App Service Maobile Apps

m Skill 4.5: Implement API Management

m Skill 4.6: Implement Azure Functions and WebJobs

m Skill 4.7: Design and implement Azure Service Fabric Apps

m Skill 4.8: Design and implement third-party Platform as a Service (PaaS)
m Skill 4.9: Design and implement DevOps

Skill 4.1: Design Azure App Service Web Apps

Azure App Service Web Apps (or, just Web Apps) provides a managed service
for hosting your web applications and APIs with infrastructure services such as
security, load balancing, and scaling provided as part of the service. In addition,
Web Abbs has an integrated DevOps experience from code repositories and

from Docker image repositories. You pay for compute resources according to
your App Service Plan and scale settings. This section covers key considerations
for designing and deploying your applications as Web Apps.

This skill covers how to:

m Define and manage App Service plans

m Configure Web App settings

m Configure Web App certificates and custom domains

m Manage Web Apps by using the API, Azure PowerShell, and XplatCLI
» Implement diagnostics, monitoring, and analytics

m Design and configure Web Apps for scale and resilience

Define and manage App Service plans

An App Service plan defines the supported feature set and capacity of a group of
virtual machine resources that are hosting one or more web apps, logic apps,
mobile apps, or API apps (this section discusses web apps specifically, and the
other resources are covered in later sections in this chapter).

Each App Service plan is configured with a pricing tier (for example, Free,
Shared, Basic, and Standard), and each tier describes its own set of capabilities
and cost. An App Service plan is unique to the region, resource group, and
subscription. In other words, two web apps can participate in the same App
Service plan only when they are created in the same subscription, resource
group, and region (with the same pricing tier requirements).

This section describes how to create a new App Service plan without creating
a web app, and how to create a new App Service plan while creating a web app.
It also reviews some of the settings that can be useful for managing the App
Service plan.

More Info: App Services Overview

For an overview of App Services and Web App development see
https://docs.microsoft.com/en-us/azure/app-service/.

Creating a new App Service plan

To create a new App Service plan in the portal, complete the following steps:

https://docs.microsoft.com/en-us/azure/app-service/

. Navigate to the portal accessed via https://portal.azure.com.

2. Select New on the command bar.

. Within the Marketplace (Figure 4-1) search text box, type App Service
Plan and press Enter.

2 App Service Plan ®

FIGURE 4-1 The Marketplace search for App Service Plan.

. Select App Service Plan from the results.
. On the App Service Plan blade, select Create.

. On the New App Service Plan blade (Figure 4-2), provide a name for your
App Service plan, choose the subscription, resource group, operating
system (Windows or Linux), and location into which you want to deploy.
You should also confirm and select the desired pricing tier.

https://portal.azure.com

New App Service Plan

Create a plan for the web app

* App Service plan

sol-appserviceplan v

* Subscription

Microsoft Azure Sponsorship W

* Resource Group @
® Create new O Use existing

sol-appserviceplan

* Operating System

| Windows v
* Location

South Central Us v
* Pricing tier >

S1 Standard

FIGURE 4-2 The settings for a new App Service Plan

7. Click Create to create the new App Service plan.

Following the creation of the new App Service plan, you can create a new
web app and associate this with the previously created App Service plan. Or, as
discussed in the next section, you can create a new App Service plan as you
create a new web app.

More Info: App Service Pricing Tiers

App Service plan pricing tiers range from Free, Shared, Basic,
Standard, Premium, and Isolated tiers. It is important to
understand the features offered by each tier related to custom
domains, certificates, scale, deployment slots, and more. For more
information see https://azure.microsoft.com/en-
us/pricing/details/app-service.

https://azure.microsoft.com/en-us/pricing/details/app-service

Creating a new Web App and App Service plan

To create a new Web App and a new App Service plan in the portal, complete
the following steps:

1. Navigate to the portal accessed via https://portal.azure.com.

2. Select New on the command bar.
3. Within the Marketplace list (Figure 4-3), select the Web + Mobile option.

L Search the Marketplace

Azure Marketplace Seeall Featured See all
Get started @ Web App
Quickstart tutorial
Compute
Metworking : Mobile App
Learn more
Storage
Web + Mobile Logic App
Containers {‘!‘} Learn more
Databases ;
' Web App for Containers
Data + Analytics Learn more

FIGURE 4-3 The Marketplace list for Web + Mobile

4. On the Web + Mobile blade, select Web App.

5. On the Web App blade (Figure 4-4), provide an app name, choose the
subscription, resource group, operating system (Windows or Linux), and
choose a setting for Application Insights. You also select the App Service
plan into which you want to deploy.

https://portal.azure.com

.P:..

* App name
= o An App Service plan is the container for your app. The App Service plan settings w..,
| sol-newwebapp w J determine the lacation, features, cost and compute resources associated with your
.azurewebsites.net BpP-
* Subscription
Microsoft Azure Sponsarship i

4 | Create new

* Resource Group @
® Create new O Use ewisting P sol-newappserviceplan(51)
sol-newwebapp 4 b WestUs 2 1 instanced(s)

* 05 |Windows | Linux

B App Sarvice plﬂn,-'l,q-rniinn)
sol-newappserviceplan{West LIS 2)

Application Insights & on off |

FIGURE 4-4 The selections for a new App Service.

6. When you click the App Service plan selection, you can choose an existing
App Service plan, or create a new App Service plan. To create a new App
Service plan, click Create New from the App Service Plan blade.

7. From the New App Service Plan blade (Figure 4-5), choose a name for the
App Service plan, select a location, and select a pricing tier. Click OK and
the new App Service plan is created with these settings.

New App Service Plan

Create a plan for the web app

* App Service plan

sol-newappserviceplanwithappservice v
* Location

West US 2 v
* Pricing tier >

S1 Standard

FIGURE 4-5 Options for a new App Service Plan.

8. From the Web App blade, click Create to create the web app and associate
it with the new App Service plan.

Review App Service plan settings

Once you’ve created a new App Service plan, you can select the App Service
plan in the portal and manage relevant settings including managing web apps
and adjusting scale.

To manage an App Service plan, complete the following steps:
1. Navigate to the portal accessed via https://portal.azure.com.
2. Select More Services on the command bar.

3. In the filter text box, type App Service Plans, and select App Service Plans
(Figure 4-6).

Microsoft Azure Mew > WebApp > App Service plan » MNew App Service Plan

X

Shift+5Space to toggle favorites
NE app service plang| ,
Dashboard

P App Service plans *

Resource groups

All resources |

Recent

FIGURE 4-6 Search results for App Service plans

4. Review the list of App Service plans (Figure 4-7). Note the number of apps
deployed to each is shown in the list. You can also see the pricing tiers.

Select an App Service plan from the list to navigate to the App Service Plan
blade.

https://portal.azure.com

o pdd P ES Columns () Refresh
Subscriptions: 1 of 2 selected - Don't see a subscription? Switch directonies
by name... Microsoft Azure Sponsorship R All resource groups W All locations W
2 items
: HAME AFPS PRICING TIER RESOURLCE GROURP
P sol-newappsarviceplan li] sol-newappserviceplan (Standard... sol-newappservicaplan
P sol-newappserviceplanwithappsersice 1 sol-newappserviceplanwithappse.. sol-newwebapp

FIGURE 4-7 List of App Service plans

5. From the left navigation pane, select Apps to view the apps that are
deployed to the App Service plan (Figure 4-8). You can select from the list
of apps to navigate to the app blade and manage its settings.

sol-newappsenviceplanwithappservice - Apps

B Ao senvice
L Seavek (Ot ;_3 |
HAME TYPE RESOURCE GROUP STATUS
’ Cherview
B Activity log SOL-MEWWEBARP
‘_; Access contral (JAM] s0l-newwebapp app sol-newwebapp Running
& Tags

x Diagnose and sohe problems

SETTINGS

Apps

il File system storage

FIGURE 4-8 List of apps deployed to the App Service plan.

6. From the left navigation pane, select Scale Up to choose a new pricing tier
for the App Service plan.

7. From the left navigation pane, select Scale Out to increase or decrease the
number of instances of the App Service plan, or to configure Autoscale
settings.

Configure Web App settings

Azure Web Apps provide a comprehensive collection of settings that you can
adjust to establish the environment in which your web application runs, as well
as tools to define and manage the values of settings used by your web
application code. You can configure the following groups of settings for your
applications:

m Application type and library versions

» Load balancing

m Slot management
= Debugging
= App settings and connection strings

m IIS related settings
To manage Web App settings follow these steps:

1.

Navigate to the blade of your web app in the portal accessed via
https://portal.azure.com.

Select the Application settings tab from the left navigation pane. The
setting blade appears to the right.

Choose from the general settings required for the application:

A.

B.
C.

Choose the required language support from .NET Framework, PHP,
Java, or Python, and their associated versions.

Choose between 32bit and 64bit runtime execution.

Choose web sockets if you are building a web application that
leverages this feature from the browser.

Choose Always On if you do not want the web application to be
unloaded when idle. This reduces the load time required for the next
request and is a required setting for web jobs to run effectively.

Choose the type of managed pipeline for IIS. Integrated is the more
modern pipeline and Classic would only be used for legacy

applications (Figure 4-9).

https://portal.azure.com

General settings

MET Framework version @ vd.7 W
PHP version @ Off W
Java version @ Off v

[EH
o App Service supports installing newer versions of Pythan, Click here to learn more.

Python version @& Off w

Platform @ 32-bit

Web sockets @ On
Always COn @ On
Managed Pipeline Version Integrated | Classic

FIGURE 4-9 General settings section for application settings

4. Choose your setting for ARR affinity (Figure 4-10). If you choose to enable
ARR affinity your users will be tied to a particular host machine (creating a
sticky session) for the duration of their session. If you disable this, your
application will not create a sticky session and your application is expected
to support load balancing between machines within a session.

ARR Affinity Off on |

FIGURE 4-10 ARR affinity settings

5. When you first create your web app, the auto swap settings are not
available to configure. You must first create a new slot, and from the slot
you may configure auto swap to another slot (Figure 4-11).

Auto Swap
Off On

Auto Swap Slot

| v

FIGURE 4-11 Auto Swap settings

. Enable remote debugging (Figure 4-12) if you run into situations where
deployed applications are not functioning as expected. You can enable
remote debugging for Visual Studio versions 2012, 2013, 2015, and 2017.

Debugging

Remote debugging Off “

Remote Visual Studio version 2012 2013 2015 2017

FIGURE 4-12 Remote debugging settings for the web app

. Configure the app settings required for your application. These app settings
(Figure 4-13) override any settings matching the same name from your
application.

App settings
WEBSITE_NODE_DEFALILT VERSION 69,1 [] stet setting
ACCOUNT AR PATH https:fapi.contoso.comyAccount [] shn aetling

Shot setting

FIGURE 4-13 Application settings

. Configure any connection strings for your application (Figure 4-14). These
connection string settings override any settings matching the same key
name from your application configuration. For connection strings, once you
create the settings, save, and later return to the application settings blade;
those settings are hidden unless you select it to show the value again.

Connection strings

The connaction string values are hidden 5 W Connech

DEFAULT COMMECTION < Hidden for Security = S0L Database l Slat setting

SOl Database w _ Slat setling

FIGURE 4-14 Connection string settings
9. Configure IIS settings related to default documents, handlers, and virtual

applications and directories required for your application (Figure 4-15).
This allows you to control these IIS features related to your application.

Dufault documaris

FIGURE 4-15 IIS settings

Note: Access to App Settings

App settings are represented as name-value pairs made available to
your web application when it starts. The mechanism you use to
access these values depends on the web platform in which your web
application is programmed. If your application is built using
ASP.NET 4.6, you access the values of app settings just as you
would access the AppSettings values stored in web.config. If your
web application is built using ASP.NET Core, you access the values
as you would in your appsettings.json file. If your web application
is built using another supported web platform, such as Node.js,

http://ASP.NET
http://ASP.NET

PHP, Python, or Java, the app settings are presented to your
application as environment variables.

Note: Accessing Connection Strings

Like app settings, connection strings represent name-value pairs,
but they are used specifically for settings that define the connection
string to a linked resource (typically a database) such as a SQL
database, a SQL server, MySQL, or some other custom resource.
Connection strings are given special treatment within the portal,
beyond that offered to app settings, in that you can specify a type
for the connection string to identify it as a SQL server, MySQL, a
SQL database, or a custom connection string. Additionally, the
values for connection strings are not displayed by default,
requiring an additional effort to display the values so that their
sensitive data is not displayed or editable until specifically
requested by the portal user.

Configure Web App certificates and custom domains

When you first create your web app, it is accessible through the subdomain you
specified in the web app creation process, where it takes the form
<yourwebappname>.azurewebsites.net. To map to a more user-friendly domain
name (such as contoso.com), you must set up a custom domain name.

If your website will use HTTPS to secure communication between it and the
browser using Transport Layer Security (TLS), more commonly (but less
accurately) referred to in the industry as Secure Socket Layer (SSL), you need to
utilize an SSL certificate. With Azure Web Apps, you can use an SSL certificate
with your web app in one of two ways:

® You can use the “built-in” wildcard SSL certificate that is associated with the
* azurewebsites.net domain.

m More commonly you use a certificate you purchase for your custom domain
from a third-party certificate authority.

Note

There are multiple types of SSL certificates, but the one you choose
primarily depends on the number of different custom domains (or

http://azurewebsites.net
http://contoso.com
http://azurewebsites.net

subdomains) that the certificate secures. Some certificates apply to
only a single fully qualified domain name (sometimes referred to as
basic certs), some certificates apply to a list of fully qualified
domain names (also called subjectAltName or UC certs), and other
certificates apply across an unlimited number of subdomains for a
given domain name (usually referred to as wildcard certs).

Mapping custom domain names

Web Apps support mapping to a custom domain that you purchase from a third-
party registrar either by mapping the custom domain name to the virtual IP
address of your website or by mapping it to the
<yourwebappname>.azurewebsites.net address of your website. This mapping is
captured in domain name system (DNS) records that are maintained by your
domain registrar. Two types of DNS records effectively express this purpose:

m A records (or, address records) map your domain name to the IP address of
your website.

m CNAME records (or, alias records) map a subdomain of your custom domain
name to the canonical name of your website, expressed as
<yourwebappname>.azurewebsites.net.

Table 4-1 shows some common scenarios along with the type of record, the
typical record name, and an example value based on the requirements of the

mapping.

TABLE 4-1 Mapping domain name requirements to DNS record types, names,

and values

Requirement Type of | Record | Record Value
Record Name

contoso.com should A 138.91.240.81
map to my web app IP @ IP address
address
contoso.com and all A 5 138.91.240.81
subdomains IP address
demo.contoso.com and
WWW.CONntoso.com
should map to my web
A TN A AAwAn~~

http://azurewebsites.net
http://azurewebsites.net
http://contoso.com
http://contoso.com
http://demo.contoso.com
http://www.contoso.com

dpp 1F duulesd

WWW.Contoso.com

should map to my web
app IP address

WWW.CONtoso.com
should map to my web
app canonical name in
Azure

CNAME

138.91.240.81
IP address

contoso.azurewebsites.net

Canonical name in Azure

Note that whereas A records enable you to map the root of the domain (like
contoso.com) and provide a wildcard mapping for all subdomains below the root
(like www.contoso.com and demo.contoso.com), CNAME records enable you to

map only subdomains (like the www in www.contoso.com).

Configuring a custom domain

To configure a custom domain, you need access to your domain name registrar
setup for the domain while also editing configuration for your web app in the

Azure portal.

\/

Exam Tip

Use of a custom domain name is not supported by the Free App
Service plan pricing tier. All other pricing tiers including Shared,
Basic, Standard, and Premium support custom domains.

These are the high-level steps for creating a custom domain name for your web

app:

1. Navigate to the blade of your web app in the portal accessed via
https://portal.azure.com.

2. Ensure your web app uses an App Service plan that supports custom

domains.

3. Click Custom Domains from the left navigation pane.
4. On the Custom Domains blade (Figure 4-16) note the external IP address of

http://www.contoso.com
http://www.contoso.com
http://contoso.azurewebsites.net
http://contoso.com
http://www.contoso.com
http://demo.contoso.com
http://www.contoso.com
https://portal.azure.com

your web app.

SETTINGS
= Application settings b Custom Hostnames

Authentication f Authorization

Coenfigure and manage custom hosthnames assignad to your

& Ma naged service identity app Learn more
& Backups
P addrass; B
B8 Custorn domains
HTTPS Only @ On Off
0 551 certificates
Metwerking + | Add hestname
[# Scale up (App Senvice plan] HOSTHAMES ASSIGNED TO SITE

I scale out (App Service plan)

FIGURE 4-16 Part of the custom domain blade for the web app

5. Select Add Hostname to open the Add Hostname blade. Enter the hostname
and click Validate for the portal to validate the state of the registrar setup

with respect to your web app. You can then choose to set up an A record or
CNAME record (Figure 4-17).

* Hostname

contoso.com d

Hostname record type

A record (example.com)

CMAME (www.example.com or any subdomain)
M Iouvutu LUIIIIHUI aumrn

An A record should map your domain to the IP address of your app. In
your scenario, that means mapping contoso.com to your IF address
£2.183.82.125. Along with an A record, you also need to add a TXT
record, The TXT record should point to your default Azure domain, sol-
newwebapp.azurewebsites.net. Learn More

External IP address

FIGURE 4-17 Part of the Add hostname blade

6. To set up an A record, select A Record and follow the instructions provided
in the blade. It guides you through the following steps for an A record
setup:

A. You first add a TXT record at your domain name registrar, pointing to
the default Azure domain for your web app, to verify you own the
domain name. The new TXT record should point to
<yourwebappname>.azurewebsites.net.

B. In addition, you add an A record pointing to the IP address shown in
the blade, for your web app.

7. To set up a CNAME record, select CNAME record, and follow the
instructions provided in the blade.

A. If using a CNAME record, following the instructions provided by

http://azurewebsites.net

8.

your domain name registrar, add a new CNAME record with the name
of the subdomain, and for the value, specify your web app’s default
Azure domain with <yourwebappname>.azurewebsites.net.

Save your DNS changes. Note that it may take some time for the changes
to propagate across DNS. In most cases, your changes are visible within
minutes, but in some cases, it may take up to 48 hours. You can check the
status of your DNS changes by doing a DNS lookup using third-party
websites like http://mxtoolbox.com/DNSLookup.aspx.

After completing the domain name registrar setup, from the Custom
Domains blade, click Add Hostname again to configure your custom
domain. Enter the domain name and select Validate again. If validation has
passed, select Add Hostname to complete the assignment.

Important: Ip Address Changes

The IP address that you get by following the preceding steps will
change if you move your web app to a Free web hosting plan, if you
delete and recreate it, or potentially if you subsequently enable SSL
with the IP Based type. This can also happen unintentionally if you
reach your spending limit and the web app is changed to the Free
web hosting plan mode. If the IP address changes and you are
using an A record to map your custom domain to your web app,
you will need to update the value of the A record to use the new IP
address.

Configuring SSL certificates

To configure SSL certificates for your custom domain, you first need to have
access to an SSL certificate that includes your custom domain name, including
the CNAME if it is not a wildcard certificate.

To assign an SSL certificate to your web app, follow these steps:

1.

Navigate to the blade of your web app in the portal accessed via
https://portal.azure.com.

. Click SSL certificates from the left navigation pane.

From the SSL certificates (Figure 4-18) blade you may choose to import an
existing app service certificate, or upload a new certificate.

http://azurewebsites.net
http://mxtoolbox.com/DNSLookup.aspx
https://portal.azure.com

551

A tian st
Cartificates must be assocated with yaur application befare you can uss them B creste a binding. You can uplosd a centificate you purchased extemally,
arimpart an App Senyioe Certificate

& & _
- ety +
= i
Public Cert
@ ates Veva h 1 now b ed abarted
t Private
eru 5. Uipload 1
o I
551 bendings
o
+ | Addbinging
& Weblobs
HOST HAKD COATIFICATE oLTYeL
Mo resuks

FIGURE 4-18 SSL certificates blade

4. You can then select Add Binding to set up the correct binding. You can set
up bindings that point at your naked domain (contoso.com), or to a
particular CNAME (www.contoso.com, demo.contoso.com), so long as the
certificate supports it.

5. You can choose between Server Name Indication (SNI) or IP based SSL
when you create the binding for your custom domain (Figure 4-19).

IP Based SSL
SNI S5L

FIGURE 4-19 Part of the Add Binding blade

More Info: SSL Certificates and Bindings

For more information on purchasing SSL certificates and setting
up Web App certificates see https://docs.microsoft.com/en-
us/azure/app-service/websites-purchase-ssl-website.

Manage Web Apps by using the API, Azure PowerShell, and
XplatCLI

T - _ X A*.* . a B L

http://contoso.com
http://www.contoso.com
http://demo.contoso.com
https://docs.microsoft.com/en-us/azure/app-service/web-sites-purchase-ssl-web-site

IN aaqItion 10 CONTIgUring ana managing wvep AppS via tne Azure porrtal,
programmatic or script-based access is available for much of this functionality
and can satisfy many development requirements.

The options for this include the following:

m Azure Resource Manager (ARM) Azure Resource Manager provides a
consistent management layer for the management tasks you can perform
using Azure PowerShell, Azure CLI, Azure portal, REST API, and other
development tools. For more information on this see
https://docs.microsoft.com/en-us/azure/azure-resource-manager/.

m REST API The REST API enables you to deploy and manage Azure
infrastructure resources using HTTP request and JSON payloads. For more
details on this see https://docs.microsoft.com/en-us/rest/api/resources/.

m Azure PowerShell Azure PowerShell provides cmdlets for interacting with
Azure Resource Manager to manage infrastructure resources. The
PowerShell modules can be installed to Windows, macOS, or Linux. For
additional details see https://docs.microsoft.com/en-
us/powershell/azure/overview.

m Azure CLI Azure CLI (also known as XplatCLI) is a command line
experience for managing Azure resources. This is an open source SDK that
works on Windows, macOS, and Linux platforms to create, manage, and
monitor web apps. For details see https://docs.microsoft.com/en-
us/cli/azure/overview.

More Info: Managing App Services

See the following links that provide samples for managing App
Services using Azure and Azure CLI at:
https://docs.microsoft.com/en-us/azure/app-service/app-service-

powershell-samples and https://docs.microsoft.com/en-us/azure/app-
service/app-service-cli-samples.

Implement diagnostics, monitoring, and analytics

Without diagnostics, monitoring, and analytics, you cannot effectively
investigate the cause of a failure, nor can you proactively prevent potential
problems before your users experience them. Web Apps provide multiple forms
of logs, features for monitoring availability and automatically sending email
alerts when the availability crosses a threshold, features for monitoring your web
ann resonrce usage. and integration with Azure Analvtics via Annlication

https://docs.microsoft.com/en-us/azure/azure-resource-manager/
https://docs.microsoft.com/en-us/rest/api/resources/
https://docs.microsoft.com/en-us/powershell/azure/overview
https://docs.microsoft.com/en-us/cli/azure/overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-powershell-samples
https://docs.microsoft.com/en-us/azure/app-service/app-service-cli-samples

rr T T TrTrTOT) Tf°T TtTTTOTTTTTTYTSTT v TTTTIoTTTST S TTTTTJO T T TTSoTrrTTTTTTT T

Insights.

)

Exam Tip

App Services are also governed by quotas depending on the App
Service plan you have chosen. Free and Shared apps have CPU,
memory, bandwidth, and filesystem quotas; when reached the web
app no longer runs until the next cycle, or the App Service plan is
changed. Basic, Standard, and Premium App Services are only
limited by filesystem quotas based on the SKU size selected for the
host.

More Info: QUOTAS

For the latest listing of specific quotas, limits, and features, visit

https://docs.microsoft.com/azure/azure-subscription-service-
limits#app-service-limits.

Configure diagnostics logs

A web app can produce many different types of logs, each focused on presenting
a particular source and format of diagnostic data. The following list describes
each of these logs:

m Event Log The equivalent of the logs typically found in the Windows Event
Log on a Windows Server machine, this is a single XML file on the local file
system of the web application. In the context of web apps, the Event Log is
particularly useful for capturing unhandled exceptions that may have escaped
the application’s exception handling logic and surfaced to the web server.
Only one XML file is created per web app.

m Web server logs Web server logs are textual files that create a text entry for
each HTTP request to the web app.

m Detailed error message logs These HTML files are generated by the web
server and log the error messages for failed requests that result in an HTTP
status code of 400 or higher. One error message is captured per HTML file.

m Failed request tracing logs In addition to the error message (captured by

https://docs.microsoft.com/azure/azure-subscription-service-limits#app-service-limits

detailed error message logs), the stack trace that led to a failed HTTP request
is captured in these XML documents that are presented with an XSL style
sheet for in-browser consumption. One failed request trace is captured per
XML file.

= Application diagnostic logs These text-based trace logs are created by web
application code in a manner specific to the platform the application is built
in using logging or tracing utilities.
To enable these diagnostic settings from the Azure portal, follow these steps:

1. Navigate to the blade of your web app in the portal accessed via
https://portal.azure.com.

2. Select the Diagnostics Logs tab from the left navigation pane. The

Diagnostics Logs blade (Figure 4-20) will appear to the right. From this
blade you can choose to configure the following:

A. Enable application logging to the file system for easy access through
the portal.

B. Enable storing application logs to blob storage for longer term access.

C. Enable Web Server logging to the file system or to blob storage for
longer term access.

=

Enable logging detailed error messages.
E. Enable logging failed request messages.

https://portal.azure.com

Applicat gging [Filesystem) &
Off On
sal
l erbose w

Off | On
Veb sarver logging @

o Storage m
o) B0
Rebert eriad (Days) O
Detailed ges 0

o

Download logs
FTP/deployment username

sal-newwebappimichelebustaazurne

FTP

e fwaws - prod-mwh-008 ftp asurewebsites wind ovws net

FTPS

ftpe/faaws-prod-mwh-009. fip.azurewebsites. windows. net

FIGURE 4-20 The diagnostics logs blade

3. If you enable files system logs for application and Web Server logs, you
can view those from the Log Streaming tab (Figure 4-21).

Application logs ~ *= Web serverlogs Il Pause XK Clear

Application logs

2817-11-87T@6:80:16 Welcome, you are now connected to log-streaming service.

FIGURE 4-21 The log streaming blade

4. You can access more advanced debugging and diagnostics tools from the

Advanced Tools tab (Figure 4-22).

Environment

Build 67.61027.3099.0 (c9c0083ea3)

Azure App Service 67.0.8598.18 (rd_websites_stable. 171020-2251)
Site up time 00.00:04:24

Site folder D:home

Temp folder D:\local\Temph

REST AP (works best when usinga JSON viewer extension)

= App Settings

+ Deployments

« Source control info

+ Flles

+ Processes and mini-dumps

= Runtime versions

+ Site Extensions: installed | feed

+ Web hooks

+ WebJobs: all | triggered | continuous
+ Functions: list | host config

More information about Kudu can be found on the wiki.

FIGURE 4-22 The Kudu web site

Table 4-2 describes where to find each type of log when retrieving diagnostic
data stored in the web app’s local file system. The Log Files folder is physically
located at D:\home\LogFiles.

TABLE 4-2 Locations of the various logs on the web app’s local file system

Log Type Location
Event Log \LogFiles\eventlog.xml

Web server \LogFiles\http\RawLogs*.log
logs

Detailed
error
message
logs

Failed
request
tracing logs

Application
diagnostic
logs (.NET)

Deployment
logs

\LogFiles\DetailedErrors\ErrorPage######.htm

\LogFiles\W3SVC** xml

\LogFiles\Application*.txt

\LogFiles\Git. This folder contains logs generated by the
internal deployment processes used by Azure web apps, as
well as logs for Git deployments

\/

Exam Tip

You can retrieve diagnostics logs data by using Visual Studio
Server Explorer, the Site Control Management (SCM) website
(also known as Kudu), the command line in Windows PowerShell
or the xplat-cli, or direct download via FTP to query Table or Blob

storage.

Configure endpoint monitoring

App Services provide features for monitoring your applications directly from the
Azure portal. There are many metrics available for monitoring, as listed in Table

4-3.

TABLE 4-3 List of available metrics that are monitored for your web apps

METRIC DESCRIPTION
Average Response The average time taken for the app to serve requests
Time in ms.

Average memorvy The average amount of memory in MiBs used bv the

workigg set app.

CPU Time The amount of CPU in seconds consumed by the
app.

Data In The amount of incoming bandwidth consumed by
the app in MiBs.

Data Out The amount of outgoing bandwidth consumed by
the app in MiBs.

Http 2xx Count of requests resulting in a http status code >=

200 but < 300.

Http 3xx Count of requests resulting in a http status code >=
300 but < 400.

Http 401 Count of requests resulting in HTTP 401 status
code.

Http 403 Count of requests resulting in HTTP 403 status
code.

Http 404 Count of requests resulting in HTTP 404 status
code.

Http 406 Count of requests resulting in HTTP 406 status
code.

Http 4xx Count of requests resulting in a http status code >=

400 but < 500.

Http Server Errors Count of requests resulting in a http status code >=
500 but < 600.

Memory working set | Current amount of memory used by the app in
MiBs.

Requests Total number of requests regardless of their

resulting HTTP status code.

You can monitor metrics from the portal and customize which metrics should
be shown by following these steps:

1. Navigate to the blade of your web app in the portal accessed via
https://portal.azure.com.

2. Select the Overview tab from the left navigation pane. This pane shows a

few default charts for metrics including server errors, data in and out,
requests, and average response time (Figure 4-23 and 4-24).

Http Sxx #* Data In #*

4 100kE
3 20kB
G0kB

40kB
20k M |
PRI | VER—— i =, .

34E AM 4 AW 415 AM £:30 AM 4:45 AM £ AM 415 &M 4:30 Ak 4:45 AW

HTTP SERVER ERRORS 0 DATA IN @
8 245.54 k8
Data Out }(

BOOKE
GO0KE
400k

200kKE

4 AM 415 AM 4:30 AM 4:45 AM
DATAOUT @

2.16 mB

FIGURE 4-23 Metrics showing http server errors, data in, and data out

https://portal.azure.com

Requests * Average Response Time f
80 B3
55
) ﬁ
ds
40 | 35
; | 23
20 | | | |
't | | 1s
) i || l J
L '....-..-..-...__A-__J"..J Lil | P | L-___.__J. R L T R — P,
4 AM 415 AM 4320 AM 445 AM 4 Al 4:15 AR 430 AM 4:45 Al
REQUESTS @ AVERAGE RESPONS... ©
176 129.54 ms

FIGURE 4-24 Metrics showing requests and average response time

. You can customize the metrics (Figure 4-25) shown by creating new graphs
and pinning those to your dashboard.

A. Click one of the graphs. You’ll be taken to edit the metrics blade for
the graph, limited to compatible metrics for the selection.

B. Select the metrics to add or remove from the graph.

Hittp S & arge
e v | Past hour w " Pin b daskboard

A [[a] (%

FIGURE 4-25 Selecting metrics to show on the graph

- | T /\ SR

TP 434 & IrTlPt:&ﬂ HTTP 43 @ | HTTF SERVER ERRCRS B
a

Q 42

C. Save the graph to the dashboard. You can now navigate to your portal
dashboard to view the selected metrics without having to navigate to
the web app directly. From here you can also edit the graph by
selecting it, editing metrics, and saving back to the same pinned
graph.

. You can also add alerts for metrics. From the Metrics blade click Add

Metric alert from the command bar at the top of the blade. This takes you
to the Add Rule blade (Figure 4-26) where you can configure the alert. To
configure an alert for slow requests, as an example, do the following:

A. Provide a name for the rule.

B. Optionally change the subscription, resource group, and resource but

it will default to the current web app.
C. Choose Metrics for the alert type.

* Mame @&

SlowPages

Deseripticn

Source
Alert on

Petrics

Criteria
Subscription

Microsoft Azure Spontorship

Resource group

sol-nevwwebapp

Resource

sol-newwebapp

FIGURE 4-26 Part of the Add rule blade

D. Choose the metric from the drop-down list (Figure 4-27), in this case
Average Response Time with a condition greater than a threshold of 2

seconds over a 15 minute period.

Metric @
Average Response Time w
28
1.55
1s
0.5s
Os = — Y T " "
B AM 12 Ph 5 PM MNov 9
Condition
Greater than b
* Threshold
‘ 2 "
seconds
Period @
‘ QOver the last 15 minutes hd |

FIGURE 4-27 Part of the Add rule blade where you can set the
metric values

E. From the same blade you can also indicate who to notify, configure a
web hook, or even configure a Logic App to produce a workflow
based on the alert.

5. Click OK to complete the alert configuration.
6. You can view the alerts from the Alerts tab of the navigation pane.

Note: MONITORING QUOTAS

You can also monitor quotas by selecting the Quotas tab from the
left navigation pane. This gives you an indication of where you
stand with your quotas based on the App Service plan.

Design and configure Web Apps for scale and resilience
App Services provide various mechanisms to scale your web apps up and down

by adjusting the number ot 1nstances serving requests and by adjusting the
instance size. You can, for example, increase the number of instances (scale out)
to support the load you experience during business hours, but then decrease
(scale in) the number of instances during less busy hours to save costs. Web
Apps enable you to scale the instance count manually, automatically via a
schedule, or automatically according to key performance metrics. Within a
datacenter, Azure load balances traffic between all of your Web Apps instances
using a round-robin approach.

You can also scale a web app by deploying to multiple regions around the
world and then utilizing Microsoft Azure Traffic Manager to direct web app
traffic to the appropriate region based on a round robin strategy or according to
performance (approximating the latency perceived by clients of your
application). Alternately, you can configure Traffic Manager to use the alternate
regions as targets for failover if the primary region becomes unavailable.

In addition to scaling instance counts, you can manually adjust your instance
size (scale up or down). For example, you can scale up your web app to utilize
more powerful VMs that have more RAM memory and more CPU cores to serve
applications that are more demanding of memory consumption or CPU
utilization, or scale down your VMs if you later discover your requirements are
not as great.

)

Exam Tip

Web Apps provide a high availability SLA of 99.9 percent using
only a single standard instance. You do not need to provision more
than one instance to benefit from this SLA.

To scale your web app, follow these steps:

1. Navigate to the blade of your web app in the portal accessed via
https://portal.azure.com.

2. Select the App Service plan tab from the left navigation pane. This takes
you to the App Service Plan blade.

3. Select the Scale Up tab from the left navigation pane and you’ll be taken to
a blade to select the new pricing tier for your web app VMs.

4. Select the Scale Out tab and you’ll be taken to the Scale Out blade to

https://portal.azure.com

choose the number of instances to scale out or into (Figure 4-28).

£ Scaleup (App Service plan)

7 Goalm ot [Apm Senice plan)

FIGURE 4-28 The scale out blade.

5. If you select Enable autoscale, you can create conditions based on metrics
and rules in order for the site to automatically adjust instance count.

More Info: MONITORING, ANALYTICS, AND
AUTOSCALING

For more information on monitoring web apps, analytics, and setting up
autoscale, see:

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-
azureweb-apps-analytics, https://docs.microsoft.com/en-
us/azure/application-insights/app-insights-analytics,
https://docs.microsoft.com/en-us/Azure/monitoring-and-

diagnostics/insights-autoscale-best-practices, and
https://docs.microsoft.com/en-us/Azure/monitoring-and-

diagnostics/insights-how-toscale.

Skill 4.2: Design Azure App Service API Apps

Azure API Apps provide a quick and easy way to create and consume scalable
RESTful APIs, using the language of your choice, in the cloud. As part of the
Azure infrastructure, you can integrate API Apps with many Azure services such
as API Management, Logic Apps, Functions, and many more. Securing your
APIs can be done with a few clicks, whether you are using Azure Active
Directorv. OAuth. or social networks for single sign-on.

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-azure-web-apps-analytics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics
https://docs.microsoft.com/en-us/Azure/monitoring-and-diagnostics/insights-autoscale-best-practices
https://docs.microsoft.com/en-us/Azure/monitoring-and-diagnostics/insights-how-to-scale

If you have existing APIs written in .NET, Node.js, Java, Python, or PHP,
they can be brought into App Services as API Apps. When you need to consume
these APIs, enable CORS support so you can access them from any client.
Swagger support makes generating client code to use your API simple. Once you
have your API App set up, and clients are consuming it, it is important to know

how to monitor it to detect any issues early on.

This skill covers how to:

m Create and deploy API Apps

m Automate API discovery by using Swashbuckle

m Use Swagger API metadata to generate client code for an API app
= Monitor API Apps

Create and deploy API Apps

There are different ways you can create and deploy API Apps, depending on the
language and development environment of choice. For instance, if you are using
Visual Studio, you can create a new API Apps project and publish to a new API
app, which provisions the service in Azure. If you are not using Visual Studio,
you can provision a new API App service using the Azure portal, Azure CLI, or
PowerShell.

Creating a new API App from the portal
To create a new API app in the portal, complete the following steps:

1. Navigate to the portal accessed via https://portal.azure.com.

2. Select New on the command bar.

3. Within the Marketplace (Figure 4-29) search text box, type API App, and
press Enter.

https://portal.azure.com

Y Filter

O APl App

Results

NAME

[EY ! APl App

FIGURE 4-29 Marketplace search for API App

4. Select API App from the results.
5. On the API App blade, select Create.

6. On the Create API App blade, choose your Azure subscription, select a
Resource Group, select or create an App Service Plan, select whether you
want to enable Application Insights, and then click Create.

Note: SERVER-SIDE AND CLIENT-SIDE PROJECTS

After creating your API App service, you can quickly create
sample ASP.NET, Node.js, or Java server-side and client-side
projects using your new service, by selecting Quickstart from your
API App blade in the portal.

Creating and deploying a new API app with Visual Studio 2017

Visual Studio 2017 comes preconfigured with the ability to create an API app
when you have installed the ASP.NET and web development, as well as Azure
development workloads. Follow these steps to create a new API app with Visual
Studio 2017:

1. Launch Visual Studio, and then select File > New > Project.

2. In the New Project dialog, select ASP.NET Web Application (NET
Framework) within the Cloud category (Figure 4-30). Provide a name and

http://ASP.NET
http://ASP.NET

location for your new project, and then click OK.

Mew Project

4 |nstalled

ation

VLMET Framewark)

Visual C#

FIGURE 4-30 The ASP.NET Web Application Cloud project type

3. Select the Azure API App template (Figure 4-31), and then click OK.

Mew ASP.NET Web Application - WebApplication?

ASP.MET 4.6.1 Templates

Empty Web Forms MVC Web API Single Page
Application
F:‘
1'PJ
LRI Azure Mobile
App

Add folders and core references for

Ll webforms LI mvc ¥ webapi

L1 add unit tests

Test project name: WebApplication1.Tests

Microsoft Azure APl Apps provide a rich platform for
hasting REST APIs, as well as an APl Marketplace in
which you can publish your APIs 50 customers can find
them and easily consume them from their own mobile,
web, or desktop apps, or used as dependencies in their
own APl Apps.

Learn moie

Change Authentication |
|

Authentication: No Authentication

| OE Cancel

FIGURE 4-31 The Azure API App template

http://ASP.NET

Visual Studio creates a new API App project within the specified directory,
adding useful NuGet packages, such as:

m Newtonsoft.Json for deserializing requests and serializing responses to and
from your API app.

m Swashbuckle to add Swagger for rich discovery and documentation for your
API REST endpoints.

In addition, Web API and Swagger configuration classes are created in the
project’s startup folder. All you need to do from this point, to deploy your API
app is to complete your Controller actions, and publish from Visual Studio.

Follow these steps to deploy your API app from Visual Studio:

1. Right-click your project in the Visual Studio Solution Explorer (Figure 4-
32), then click Publish.

Wiew »
Analyze - il
Convert ¥ @Aol- o-s5da@m Ll-
& Publish... 2 arch Solution Explorer (Ctrl+;) 2~
) B Solution ‘ContactListigibproject) =
- ; ContactList 1
Overview
& Connected Services
Scope to This b Properties
lél'--I Mew Solution Explorer View b =B References
Add . App_Data
b App_Start
i Manage NuGet Packages... Cgstroilers
Manage Bower Packages... b ContactsController.cs

FIGURE 4-32 Publish solution context menu

2. In the Publish dialog (Figure 4-33), select the Create New option
underneath Microsoft Azure App Service, and then click Publish. This
creates a new API app in Azure and publishes your solution to it. You
could alternately select the Select Existing option to publish to an existing
API App service.

R, Publish

Connected Services Publish your app to Azure or another host. Learn more

Microsoft Azure
App Service

® Create New . .
) Select Existing | Publish |

FIGURE 4-33 The Publish dialog

IS, FTP, etc Foldar

3. In the Create App Service dialog (Figure 4-34), provide a unique App
name, select your Azure subscription and resource group, select or create
an App Service Plan, and then click Create.

Create App Service BN Microsoft account
Host your web and mobile applications, REST APls, and more in Azure n

Services MyContactlistAPlApp

Subscription

Resource Group

Demo (eastus] -

App Service Plan

DemaappPlan® et

Clicking the Create button will create the following Azure resources

Explore additional Azure services

App Service - MyContactListAPIApp

App Service Plan - DemodppPlan

1f you have removed your spending limit or you are using Pay as You Go, there may be monetary impact if you provision additional resources,
Learn More

Create Cancel

FIGURE 4-34 Create App Service dialog

4. When your API app is finished publishing, it will open in a new web
browser. When the page is displayed, navigate to the /swagger path to view
your generated API details, and to try out the REST methods. For example
http://<YOUR-API-APP>.azurewebsites.net/swagger/ (Figure 4-35).

& Swagger Ul s

“ C O @ mycontactiistapiapp.azurewebsites.net/swagoer/uifindex + & B2

@ g hip:'mycontactlistapiapp.azurewebsites. net:80iswaggen'docs! | api_key m

ContactList

Contacts Show/Hide List Operations Expand Operations

fcontacts
m Jcontacts
fcontacts/{id}
feontacts/{id}

FIGURE 4-35 The Swagger interface for the published API App

Note: SWAGGER UI MAY NOT BE ENABLED BY DEFAULT
IN ASP.NET PROJECT

When you use the Swashbuckle NuGet package within an
ASP.NET project, the Swagger UI may not be enabled by default.
If this is the case, open SwaggerConfig.cs and uncomment the line
that starts with .EnableSwaggerUi(c =>.

You do not need to uncomment any of the properties within the
EnableSwaggerUi configuration to properly enable the UI.

More Info: Node.JS Api App Tutorial

To follow a tutorial for creating and deploying an API App using
Node.js, see https://docs.microsoft.com/azure/app-service/app-
service-web-tutorial-rest-api.

Automate API discovery by using Swashbuckle

http://ASP.NET
http://ASP.NET
https://docs.microsoft.com/azure/app-service/app-service-web-tutorial-rest-api

Swagger is a popular, open source framework backed by a large ecosystem of
tools that helps you design, build, document, and consume your RESTful APIs.
The previous section included a screenshot of the Swagger page generated for an
API App. This was generated by the Swashbuckle NuGet package.

More Info: SWASHBUCKLE

For more details on Swashbuckle, see
https://github.com/domaindrivendev/Swashbuckle.

The core component of Swagger is the Swagger Specification, which is the
API description metadata in the form of a JSON or YAML file. The
specification creates the RESTful contract for your API, detailing all its
resources and operations in a human and machine-readable format to simplify
development, discovery, and integration with other services. This is a
standardized OpenAPI Specification (OAS) for defining RESTful interfaces,
which makes the generated metadata valuable when working with a wide range
of consumers. Included in the list of consumers that can read the Swagger API
metadata are several Azure services, such as Microsoft PowerApps, Microsoft
Flow, and Logic Apps. Meaning, when you publish your API App service with
Swagger, these Azure services and more immediately know how to interact with
your API endpoints with no further effort on your part.

Beyond other Azure services being able to more easily use your API App,
Swagger RESTful interfaces make it easier for other developers to consume your
API endpoints. The API explorer that comes with swagger-ui makes it easy for
other developers (and you) to test the endpoints and know what the data format
looks like that need to be sent and should be returned in kind.

Generating this Swagger metadata manually can be a very tedious process. If
you build your API using ASP.NET or ASP.NET Core, you can use the
Swashbuckle NuGet package to automatically do this for you, saving a lot of
time initially creating the metadata, and maintaining it. In addition to its
Swagger metadata generator engine, Swashbuckle also contains an embedded
version of swagger-ui, which it will automatically serve up once Swashbuckle is
installed.

Use Swashbuckle in your API App project

Swashbuckle is provided by way of a set of NuGet packages: Swashbuckle and
Swashbuckle.Core. When you create a new API App project using the Visual
Studio template, these NuGet packages are already included. If you don’t have

https://github.com/domaindrivendev/Swashbuckle
http://ASP.NET
http://ASP.NET

them installed, follow these steps to add Swashbuckle to your API App project:

1. Install the Swashbuckle NuGet package, which includes Swashbuckle.Core
as a dependency, by using the following command from the NuGet
Package Manager Console:

Install-Package Swashbuckle

2. The NuGet package also installs a bootstrapper
(App_Start/SwaggerConfig.cs) that enables the Swagger routes on app
startup using WebActivatorEx. You can configure Swashbuckle’s options
by modifying the GlobalConfiguration.Configuration.EnableSwagger
extension method in SwaggerConfig.cs. For example, to exclude API
actions that are marked as Obsolete, add the following configuration:

Click here to view code image

public static void Register()

{
var thisAssembly = typeof(SwaggerConfig).Assembly;

GlobalConfiguration.Configuration
.EnableSwagger(c =>

{

// Set this flag to omit descriptions for

any actions
decorated with the Obsolete attribute

c.IgnoreObsoleteActions();

i
}

3. Modify your project’s controller actions to include Swagger attributes to
aid the generator in building your Swagger metadata. Listing 4-1 illustrates
the use of the SwaggerResponseAttribute at each controller method.

4. Swashbuckle is now configured to generate Swagger metadata for your
API endpoints with a simple Ul to explore that metadata. For example, the
controller in Listing 4-1 may produce the UI shown in Figure 4-36.

{§ Swagger LI b3

“ @ + @ mycontactlistapiapp.azurewebsites.net/swagger/ui/indax r @ B

hitp=mycontactistapiapp. azurewebsiles nel:B0/swaggerndocs/ Explore

ContactlList

Contacts Show/Hide = List Operations = Expand Operations

T Scontacts/{id)

“ fcontacts/{id}

FIGURE 4-36 The Swagger interface for the published API App

LISTING 4-1 C# code showing Swagger attributes added to the API App’s
controller actions

Click here to view code image

/// <summary>
/// Gets the list of contacts
/// </summary>
/// <returns>The contacts</returns>
[HttpGet]
[SwaggerResponse(HttpStatusCode.OK,
Type = typeof(IEnumerable<Contact>))]
[Route("~/contacts")]
public async Task<IEnumerable<Contact>> Get()

{
b

/// <summary>

/// Gets a specific contact

/// </summary>

/// <param name="id">Identifier for the contact</param>
/// <returns>The requested contact</returns>

[HttpGet]
[SwaggerResponse(HttpStatusCode.OK,
Description = "OK",

Type = typeof(IEnumerable<Contact>))]
[SwaggerResponse(HttpStatusCode.NotFound,

Description = "Contact not found",

Type = typeof(IEnumerable<Contact>))]
[SwaggerOperation("GetContactById")]
[Route("~contacts{id}")]
public async Task<Contact> Get([FromUri] int id)

{
}

/// <summary>

/// Creates a new contact

/// </summary>

/// <param name="contact">The new contact</param>
/// <returns>The saved contact</returns>

[HttpPost]
[SwaggerResponse(HttpStatusCode.Created,
Description = "Created",

Type = typeof(Contact))]
[Route("~/contacts")]
public async Task<Contact> Post([FromBody] Contact contact)

{

}

You can test any of the API methods by selecting it from the list. Here we
selected the contacts{id} GET method and tested it by entering a value of 2 in
the id parameter, and clicking the Try It Out! button. Notice that Swagger details
the return model schema, shows a Curl command and a Request URL for
invoking the method, and shows the actual response body after clicking the

button (Figure 4-37).

—ﬂ feontacts/{id}

Response Class (Status 200)
Model Schema

[
i
“Id": @,
"Hame": “string",
"Emailiddress™: “"string”
}
1

Response Content Type applicationfson *

Parameters

Parameter Walue Description Parameter Type Data Type

id 2 path e

Response Messages

HTTP Stagus Code Reason Response Model Headers

A Contact not found

Try & oull

Curl

eurl =X GET --header "Accept: applicatisa/json”™ “hRttp://mycontactlistaplapp. azurewebsites net/contactss2a"
Request URL

http://mycontactlistaplapp. azurewebsites . net/contacts/2

Response Body

{
“147: 2,
“Mama&™: "Lacy Barrera”,
"EnailAddress”: "lacy@contoss.com”
}

FIGURE 4-37 An API method and result after testing with Swagger

Enable CORS to allow clients to consume API and Swagger interface

Before clients, such as other web services or client code generators, can consume
your API endpoints and Swagger interface, you need to enable CORS on the API
App in Azure. To enable CORS, follow these steps:

1. Navigate to the portal accessed via https://portal.azure.com.

2. Open your API App service. You can find this by navigating to the
Resource Group in which you published your service.

3. Select CORS from the left-hand menu (Figure 4-38). Enter one or more
allowed origins, then select Save. To allow all origins, enter an asterisk (*)
in the Allowed Origins field and remove all other origins from the list.

https://portal.azure.com

ntactListAPIApp - CORS

B Search (Crl+/) ki

MOBILE = Ay r.

o cU"".

B Easy tables {h_--}u‘ﬁhLl CORS
= 4

3+ Easy APls

Cross-Origin Resource Sharing (CORS) allows JavaScript code running in a browser
on an external host to interact with your backend. Specify the crigins that should
be allowed to make cross-origin calls (for example: hitpy/fexample.com:12345). To
allow all, use "** and remove all other origins from the list. Slashes are not allowed
AP as part of domain or after TLD.

El Data connections

AP definition

ALLOWED ORIGINS

&) CORS | [

MONITORING

ﬁ_’ Application Insights

FIGURE 4-38 Enabling cross-origin calls for all sources

Use Swagger API metadata to generate client code for an API app

There are tools available to generate client code for your API Apps that have
Swagger API definitions, like the swagger.io online editor. The previous section
demonstrated how you can automatically generate the Swagger API metadata,
using the Swashbuckle NuGet package.

To generate client code for your API app that has Swagger API metadata,
follow these steps:

1. Find your Swagger 2.0 API definition document by navigating to
http://<your-api-app/swagger/docs/v1 (v1 is the API version). Alternately,
you can find it by navigating to the Azure portal, opening your API App
service, and selecting API definition from the left-hand menu. This
displays your Swagger 2.0 API definition URL (Figure 4-39).

http://swagger.io

ListAPIApp - AP| definition

£ Search {Cerl+
o API definition
= Easy tables -
s Easy APls i
AP| definition lets you configure the location of the Swagger 2.0 metadata
B Data connections describing your AP This makes it easy for others to discover and consume your
' o APl Mote: the URL can be a relative or absolute path, but must be publicly
accessible.
API
API definition lecation
AP definition . - n "
! https://mycontactlistapiapp azurewebsites.net/swagger/docs/v1
&) CoRrs
Export to PowerApps + Microsoft Flow
MONITORING

FIGURE 4-39 Stepé to find the API App’s Swagger 2.0 metadata URL

Navigate to https://editor.swagger.io to use the Swagger.io Online Editor.

Select File > Import URL. Enter your Swagger 2.0 metadata URL in the
dialog box and click OK (Figure 4-40).

D Swagger Editor *

<« C ¢ @ Secure https:/feditor.swagger.io//?_ga=2.111689805.874211093.1508173170-64666294.1508173170#/

T .
o TP
Edit » §

Import URL e

Import File

x

editor.swagger.io says:

Enter the URL to import from:

https;.n’.-frnycontau:l]istapiapp.azurewebs:tes.nwswa’ggerfdncsﬂ1!

ocm - |

T T

Download YAML

Download JSON This is a sample server Petstore s

hitp:fswagger.io or on irc.freenode
the api key special-key totes

L 2 Clear editor
apiteamis

FIU4-0 Steps to import the Swagger 2.0 metadata

S

After a few moments, your Swagger metadata appears on the left-hand side
of the editor, and the discovered API endpoints will be displayed on the
right. Verify that all desired API endpoints appear, and then select Generate
Client from the top menu. Select the desired language or platform for the
generated client app. This initiates a download of a zip file containing the
client app (Figure 4-41).

https://editor.swagger.io

Cahaapleibd il dait ynaimitc-hied
wifiel elixir flash a0

VY hiry himi2 A

A ERETI Jaaagiign- sk e il et elign e

laodin abjc pesl ohn

porwershell pythan qiicpp ruby

scaly SMRgges swRgger=yaml swadi

swafld swiftd tizen typescript-angular
typamczipl-angulard ypescnpl-taich ypescrpl-ppaTy Typeacalpi-rede

| PUSE e T

Jeontacts/{id}

r
| feontacts/{id}

Models LY

FGURE 4-41 Steps to generate client code in Swagger.io

Monitor API Apps

App Service, under which API Apps reside, provides built-in monitoring
capabilities, such as resource quotas and metrics. You can also set up alerts and
automatic scaling based on these metrics. In addition, Azure provides built-in
diagnostics to assist with debugging an App Service web or API app. A
combination of the monitoring capabilities and logging should provide you with
the information you need to monitor the health of your API app, and determine
whether it is able to meet capacity demands.

Using quotas and metrics

API Apps are subject to certain limits on the resources they can use. The limits
are defined by the App Service plan associated with the app. If the application is
hosted in a Free or Shared plan, and then the limits on the resources the app can
use are defined by Quotas, as discussed earlier for Web Apps.

If you exceed the CPU and bandwidth quotas, your app will respond with a
403 HTTP error, so it’s best to keep an eye on your resource usage. Exceeding
memory quotas causes an application reset, and exceeding the filesystem quota
will cause write operations to fail, even to logs. If you need to increase or
remove any of these quotas, you can upgrade your App Service plan.

Metrics that you can view pertaining to your apps are the same as shown

earlier in Table 4-3. As with Web Apps, metrics are accessed from the Overview
blade of your API App within the Azure portal by clicking one of the metrics
charts, such as Requests or Average Response Time. Once you click a chart, you
can customize it by clicking it and selecting edit chart. From here you can
change the time range, chart type, and metrics to display.

Enable and review diagnostics logs

By default, when you provision a new API App, diagnostics logs are disabled.
These are detailed server logs you can use to troubleshoot and debug your app.
To enable diagnostics logging, perform the following steps:

1. Navigate to the portal accessed via https://portal.azure.com.

2. Open your API App service. You can find this by navigating to the
Resource Group in which you published your service.

3. Select Diagnostics logs from the left-hand menu (Figure 4-42). Turn on any
logs you wish to capture. When you enable application diagnostics, you
also choose the Level. This setting allows you to filter the information
captured to informational, warning, or error information. Setting this to
verbose will log all information produced by the application. This is also
where you can go to retrieve FTP information for downloading the logs.

https://portal.azure.com

£ Search (Ctrl+/) Hﬂ.we ¥ Discard

Application Logging (Filesystem) @
& Easy APls Off Cn

El Data connections Leve

Information b

ap
Application Logging (Blob) &

AP| definition Off On
t;:l CORS Web server logging @

III Storage | File System

Detailed error messages @

@ Application Insights Off

“ Alerts Failed request tracing Li]

MOMITORING

Off Cn

[+

Diagnostics logs

Log stream
? Download logs
& Process explorer FTP/deployment username
MyContactListAPlApp, E
SUPPORT + TROUBLESHOOTING TP
%9 Resource health ftp:/fwaws-prod-blu-043. ftp.azurewebsites windows.net E
® App Service Advisor FTPS
fips.fwaws-prod-blu-043 ftp.azurewebsites windows.net E

MNew sUpport request

FIGURE 4-42 Steps to enable diagnostics logs

You can download the diagnostics logs via FTP, or they can be downloaded as
a zip archive by using PowerShell or the Azure CLI.

The types of logs and structure for accessing logs follow that described for
Web Apps and shown in Table 4-2.

More Info: Monitor an Api App with Web Server Logs

For more information about monitoring API Apps with web server
logs, see: https://docs.microsoft.com/azure/app-service/websites-
enable-diagnostic-log. To view sample CLI scripts you can use to

enable and download logs, see:

https://docs.microsoft.com/azure/app-service/scripts/app-service-cli-

https://docs.microsoft.com/azure/app-service/web-sites-enable-diagnostic-log
https://docs.microsoft.com/azure/app-service/scripts/app-service-cli-monitor

monitor. For information on troubleshooting your API Apps with

Visual Studio, refer to: https://docs.microsoft.com/azure/app-

service/websites-dotnet-troubleshoot-visual-studio.

More Info: Viewing Metrics and Quotas for your App Service

For more information on viewing metrics and quotas for your App
Service, such as an API App, see
https://docs.microsoft.com/azure/app-service/websites-monitor.

More Info: Receiving Alert Notifications on your App’s Metrics

You can configure alert notifications that you can receive when
certain metrics thresholds are reached. To found out how to do
this, see: https://docs.microsoft.com/azure/monitoring-and-
diagnostics/insights-receive-alert-notifications.

Skill 4.3: Develop Azure App Service Logic Apps

Azure Logic Apps is a fully managed iPaaS (integration Platform as a Service)
that helps you simplify and implement scalable integrations and workflows in
the cloud. As such, you don’t have to worry about infrastructure, management,
scalability, and availability because all of that is taken care of for you. Its Logic
App Designer gives you a nice way to model and automate your process
visually, as a series of steps known as a workflow. At its core, it allows you to
quickly integrate with many services and protocols, inside of Azure, outside of
Azure, as well as on-premises. When you create a Logic App, you start out with
a trigger, like “When an email arrives at this account,” and then you act on that
trigger with many combinations of actions, condition logic, and conversions.

More Info: Logic App Connectors

There is a large list of connectors you can use to integrate with services
and protocols that can be found at
https://docs.microsoft.com/azure/connectors/apis-list.

This skill covers how to:

https://docs.microsoft.com/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/azure/app-service/web-sites-monitor
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-receive-alert-notifications
https://docs.microsoft.com/azure/connectors/apis-list

= Create a Logic App connecting SaaS services

= Create a Logic App with B2B capabilities

m Create a Logic App with XML capabilities

m Trigger a Logic App from another app

m Create custom and long-running actions

® Monitor Logic Apps

Create a Logic App connecting SaaS services

One of the strengths of Logic Apps is its ability to connect a large number of
SaaS (Software as a Service) services to create your own custom workflows. In
this example, we will connect Twitter with an Outlook.com or hosted Office 365
mailbox to email certain tweets as they arrive.

To create a new Logic App in the portal, complete the following steps:

1. Navigate to the portal accessed via https://portal.azure.com.

2. Select New on the command bar.
3. Select Enterprise Integration, then Logic App (Figure 4-43).

Microsoft Azure New

= Mew

| Dashboard

Resource groups

§52 Al resources

Recent

App Semvices

Virtual machines (classic)

Virtual machines

SQL databases

Cloud services (classic)

Security Center

Subscriptions

)

A Search the Marketplace

Azure Marketplace

Get started

Compute

Metwarking

Storage

Web + Mobile
Containers

Databases

Data + Analytics

Al + Cognitive Services

Internet of Things

seeall Featured seeal

(&) [

APl management

Learn more

ar" On-premises data gateway
! edarn more

Integration Account

Learn mare

Service Bus

Enterprise Integration

s Learn more
b 4]

Security + Identity

m Data Factory
i_l.'-.i"l maore

http://Outlook.com
https://portal.azure.com

FIGURE 4-43 Creating a new Logic App from the Azure Portal

4. Provide a unique name, select a resource group and location, check Pin To
Dashboard, and then click Create (Figure 4-44).

Create logic app

Logic App

* Name

SaaS W

* Subscription

v
* Resource group @

e Create new Use existing

LogicApps W
Location

West U5 £

Log Analytics @

On Off

e You can add triggers and actions to
your Logic App after creation.

D Pin to dashboard

Create Automation options

FIGURE 4-44 The Create logic app form

Follow the above steps to create new Logic Apps as needed in the remaining
segments for this skill.

(Once the T.aoic Ann has heen nravicinoned onen it to view the T.aoic Anns

AL LA AL ama 4 AP SAMAL G Aa PUA NV AUA/IASNA) WP TAL AL VLS VAL VY LALL Sdemyate s oA pspro

Designer. This is where you design or modify your Logic App. You can select
from a series of commonly used triggers, or from several templates you can use
as a starting point. The following steps show how to create one from scratch.

1.

Select Blank Logic App under Templates.

2. All Logic Apps start with a trigger. Search the list for Twitter, and then

select it.

Click Sign in to create a connection to Twitter with your Twitter account. A
dialog will appear where you sign in and authorize the Logic App to access
your account.

In the Twitter trigger form on the designer (Figure 4-45), enter your search
text to return certain tweets (such as #nasa), and select an interval and
frequency, establishing how often you wish to check for items, returning all
tweets during that time span.

Logic Apps Designer

l_:' CAVE X Discard s s Ay Code view Ternplates B connectens ? Help

When a new tweet is posted
* Search bext

Fnasa

How often do you want to check for itemns?
itera Frequency
3 | Minute e

Change conmection,

+ Mew step

FIGURE 4-45 The Twitter trigger form in the Logic Apps Designer

5. Select the + New Step button, and then choose Add An Action.
6. Type outlook in the search box, and then select Office 365 Outlook (Send

An Email) from the results. Alternately, you can select Outlook.com from
the list (Figure 4-46).

http://Outlook.com

E ‘When 2 new twest is posted
Choose an action

):' aoutlook

Connectors See more
Oifice 365 Cutlook Outloak Outhaok.co..,
Qutlook Customer Tasks
Triggers (17) Actions [T1) See morne
Office 365 Qutlook o -
Create contact kigd
@ Office 365 Outlook T
Create event (V1) =
ﬁ Office 365 Qutlook Y
Create avent (V2) =
Office 265 Qutlook oy
Send an ema @ =
@ Office 365 Outlook 'S
Send approval email i
Office 365 Outlook Ty
Delete contact e
Office 365 Outlook T

Delete email

m Office 365 Outlook T -

Cancel

FIGURE 4-46 Adding a new Office 365 Outlook action in the Logic
Apps Designer

Click Sign In to create a connection to your Office 365 Outlook account
(Figure 4-47).

In the Send An Email form, provide values for the email recipient, the
subject of the email, and the body. In each of these fields, you can select
parameters from the Twitter Connector, such as the tweet’s text and who
posted it.

When a new tweel 15 posted

Send an ema (i) e

recipient @oontosocom

Mew tweel about #naca

A new tweet has been found about #nasal
Username x & 8 Twestedby x o

Teveel text |
Insert paramaters from previcus steps

Description Location Mediallrls - item | Mame

OriginalTweed.... Retweel count | Tweel text | Twested by

Lhange Jonnection.

FIGURE 4-47 Adding details to a new Office 365 Outlook action in the
Logic Apps Designer

9. Click Save in the Logic Apps Designer menu. Your Logic App is now live.
If you wish to test right away and not wait for your trigger interval, click
Run.

Create a Logic App with B2B capabilities

Logic Apps support business-to-business (B2B) workflows and communication
through the Enterprise Integration Pack. This allows organizations to exchange
messages electronically, even if they use different protocols and formats.
Enterprise integration allows you to store all your artifacts in one place, within
your integration account, and secure messages through encryption and digital
signatures. To access these artifacts from a logic app, you must first link it to
your integration account. Your integration account needs both Partner and
Agreement artifacts prior to creating B2B workflows for your logic app.

Create an integration account

To get started with the Enterprise Integration Pack so you can create B2B
workflows, you must first create an integration account, following these steps:

1. Navigate to the portal accessed via https://portal.azure.com.

https://portal.azure.com

2. Select More Services on the command bar.

3. In the filter box, type integration, and then select Integration Accounts in
the results list (Figure 4-48).

X
Shift+Space to toggle favorites

integration

Integration accounts

Keywards: IntegrationAccount

FIGURE 4-48 Navigating to the Integration accounts blade

4. At the top of the Integration Accounts blade, select + Add.

5. Provide a name for your Integration Account (Figure 4-49), select your
resource group, location, and a pricing tier. Once validation has passed,
click Create.

Integration account O X

* Name

MylntegrationAccount v

* Subscription

o
* Resource group @
Create new (@) Use existing

Demo v
* Pricing Tier

Fres v
Location

West US W

Log Analytics @
On Off

D Pin to dashboard

Automation options

FIGURE 4-49 The create Integration account form

Note: Integration Account and Logic App

Your integration account and logic app must be in the same
location before linking them.

Add partners to your integration account

Partners are entities that participate in B2B transactions and exchange messages
between each other. Before you can create partners that represent you and

another organization in these transactions, you must both share information that
identifies and validates messages sent by each other. After you discuss these
details and are ready to start your business relationship, you can create partners
in your integration account to represent you both. These message details are
called agreements. You need at least two partners in your integration account to
create an agreement. Your organization must be the host partner, and the other
partner(s) guests. Guest partners can be outside organizations, or even a
department in your own organization.

To add a partner to your integration account, follow these steps:

1. Navigate to the portal accessed via https://portal.azure.com.
2. Select More Services on the command bar.

3. In the filter box, type integration, then select Integration Accounts in the
results list.

4. Select your integration account, and then select the Partners tile.
5. In the Partners blade, select + Add.

6. Provide a name for your partner (Figure 4-50), select a Qualifier, and then
enter a Value to help identify documents that transfer through your apps.
When finished, click OK.

Add Partner =l 2

* Mame

ContosoCorp W

* Qualifier

1 - D-U-N-5 {Dun & Bradstreet) W

* Value

ContosoChicago v

FIGURE 4-50 Adding a partner to an Integration account

https://portal.azure.com

After a few moments, the new partner (Figure 4-51) will appear in your list
of partners.

Partners

MylntegrationAccount

o= add # Edit # EditasJSON [Delete
MNAME TYPE
AdventureWorks B2B
ContosoCorp B2B

FIGURE 4-51 Partners added to an Integration account

Add an agreement

Now that you have partners associated with your integration account, you can
allow them to communicate seamlessly using industry standard protocols
through agreements. These agreements are based on the type of information
exchanged, and through which protocol or transport standards they will
communicate: AS2, X12, or EDIFACT.

Follow these steps to create an AS2 agreement:

1.

Navigate to the portal accessed via https://portal.azure.com.

2. Select More Services on the command bar.

In the filter box, type integration, and then select Integration Accounts in
the results list (Figure 4-52).

Select your integration account, and then select the Agreements tile.
In the Agreements blade, select + Add.

Provide a name for your agreement and select AS2 for the agreement type.
Now select the Host Partner, Host Identity, Guest Partner, and Guest
Identity. You can override send and receive settings as desired. Click OK.

https://portal.azure.com

Add a X

* Mame

AS2Agreement W

* Agreement type

AS2 W

* Host Partner

ContosoCorp v

* Host Identity

AS2ldentity : ContosoChicago '

* Guest Partner

AdventureWorks W

* Guest ldentity

AS2ldentity : AdventureWorks v

Receive Settings

Send Settings

FIGURE 4-52 Adding an agreement to an Integration account

Link your Logic app to your Enterprise Integration account

You will need to link your Logic app to your integration account so you can
create B2B workflows using the partners and agreements you’ve created in your
integration account. You must make sure that both the integration account and
Logic app are in the same Azure region before linking.

To link, follow these steps:

s

Navigate to the portal accessed via https://portal.azure.com.

Select More Services on the command bar.

In the filter box, type logic, and then select Logic Apps in the results list.
Select your logic app, and then select Workflow settings.

G W N =

In the Workflow settings blade, select your integration account from the
select list, and click Save (Figure 4-53).

) Search (Crre) H save M Discard

L Ouick Start Guides - =
Access control configuration

I Rlease notes :
Allowed inbound IP addresses

Restrict calls to triggers in this logic app to the provided IP ranges. IP

SETTINGS i 3
: addresses can be either IPvd or IPvE and accepts range and bitrask range
formats
€ Workflow settings Trigger access option
.ﬁ.ny IP kv

E Access keys

Restrict calls to get input and output messages from run history to the

Properties provided IP ranges, |P addresses can be either IPvd or IPvE and accepts
range and bitmask range formats.
ﬂ Locks
IP RAMNGES FOR OOMNTEMTS
= Automation script
impud the valid 1P ranges, format ke ki oF KX x-e ey
MONITORIMNG
il Metrics |ntE‘g ration account

] Select an Integration account,
Alert rules il

MylntegrationAccount e

B Diagnostics logs

FIGURE 4-53 Linking an integration account with a logic app

Use B2B features to receive data in a Logic App

After creating an integration account, adding partners and agreements to it, and
linking it to a Logic app, you can now create a B2B workflow using the
Enterprise Integration Pack, following these steps:

1. Open the Logic App Designer on the Logic app that has a linked
integration account.
2. Select Blank Logic App under Templates.

3. Search for “http request” in the trigger filter, and then select Request
(When an HTTP request is received) from the list of results (Figure 4-54).

https://portal.azure.com

/D hittp request

Connectors See more

Request HTTP with

Azure AD
Triggers (1) Actions (1) See more
@' Request :
When a HTTP reguest is received -

TELL US WHAT ¥OU NEED

@ Help us decide which connectors and triggers to add next with UserVoice

FIGURE 4-54 Selecting a Request trigger in the Logic App Designer

. Select the + New Step button, and then choose Add An Action.

. Type as2 in the search box, and then select AS2 (Decode AS2 Message)
from the results (Figure 4-55).

‘When a HTTP request is received

= :
Choose an action

J

,':' a5
Connectars See mone

| =

A2
Triggpers (1) Actions [3) Sae Mg

ASZ oy
Jecode AS2 message =
Q=
Encode to AS2 message =

As2 _—
Add or update MIC contents -

TELL U5 WHAT YOL MEED

@ Help us decide which connectors and triggers to add next with UserVoice

Cancel

FIGURE 4-55 Selecting a Decode AS2 Message action in the Logic App
Designer

6. In the form that follows, provide a connection name, and then select your
integration account, and click Create (Figure 4-56).

v

E Decode ASZ2 message

* Connection Mame

| MyConnection

*Integration Account
Mame Resource Group Location

MylntegraticnAccount Demno westus

Manually enter connaction information

FIGURE 4-56 Setting the Decode AS2 Message connection information
form in the Logic App Designer

7. Add the Body that you want to use as input. In this example, we selected
the body of the HTTP request that triggers the Logic app. Add the required
Headers for AS2. In this example, we selected the headers of the HTTP
request that triggers the Logic app (Figure 4-57).

Decode AS2 message g
* body
1 EX

Insart parameters from previous steps

When a HTTP request is received

Body Headers (58 Path Parameters Queries

Connected to MyConnection. Change connection,

FIGURE 4-57 Setting the Decode AS2 Message body and headers
information form in the Logic App Designer

8. Select the + New Step button, and then choose Add An Action.

9. Type x12 in the search box, and then select X12 (Decode X12 Message)
from the results (Figure 4-58).

10.

11.

E When a HTTP request & received
D Decode AS? message
E Choose an action

}'-" k12

TELL LIS WHAT YO MEED

FIGURE 4-58 Selecting a Decode X12 Message action in the Logic App
Designer

In the form that follows, provide a connection name, and then select your
integration account as before, and click Create (Figure 4-59).

The input for this new action is the output for the previous AS2 action.
Because the actual message content is JSON-formatted and base64-
encoded, you must specify an expression as the input. To do this, you type
the following into the X12 Flat File Message to Decode field:
@base64ToString(body(‘Decode_AS2_Message’)?[‘AS2Message’]?
[‘Content’])

12.

13.

D Decode X12 message

* %12 flat file message to decode
@baset4ToString(body(Decode_AS2_Message’)['AS2Message’]?['Content’])

Insert parameters from previous steps
Decode AS2 message

. AS2From . ASZTo . Contant . Content . Error

Ses more

When a HTTP request is received

Body

Connected to MyConnection2. Change connection.

FIGURE 4-59 Setting the Decode X12 flat file message to decode the
information form in the Logic App Designer

Select the + New Step button, and then choose Add An Action (Figure 4-

60).

Type response in the search box, and then select Request (Response) from
the results.

‘When a HTTP request & received

B Decode ASE message
E Duncode X12 messacge

S Choose an action

é Responss

Triggers (5) Actions (5}

Azure Resource Manager 0

Create or update a resounce group

H Azure Resource Manager
Create o update & resoune
e Bizzy (H2 Solutions, Inc.) 0

M Get response from Bizzy

Content Moderator
Match an image against one of your custom image lists
“E Wecrosoft Forms
Get response details
Office 365 Outlook
Sand

ipproeal email

Outlook com
Serd approval ema

@ Request

Resporse

TELL U5 WHAT YOU MEED

@ Help us decide which connectors and triggers to add next with Uservoice

Cancel

FIGURE 4-60 Selecting a Request (Response) action in the Logic App
Designer

14. The response body should include the MDN from the output of the Decode
X12 Message action (Figure 4-61). To do this, we type the following into
the Body field: @base64ToString(body(‘Decode_AS2_message’)?
[‘OutgoingMdn’]?[‘Content’])

Response

*Status Code

200

Headers il

Enter key Enter value

Body

@baseb4Tostring{body' Decode_AS2_message’)?['Outgaingidn'] T Content'])

Insert parameters from previous steps

| AgreementMa... | | Badiessages L/ =] Body L 1 GeneratadAcks
1 GoodMessages :' - GroupControl... l | InterchangeCo...
| Receivedacks See more

Decode ASZ2 message

Ei z] AS2From ﬂ ASIMessage |] ASITa @ Content |i' I Content
Error I —1 OutboundHea. .. |—1 Dutgoinghdn a The recsponss ..

See more

When a HTTP request is received

E Body Headers E Path Parameters E Chueries

FIGURE 4-61 Setting the body in the Response form in the Logic Api)
Designer

15. Click Save in the Logic Apps Designer menu.

Create a Logic App with XML capabilities

Oftentimes, businesses send and receive data between one or more organizations
in XML format. Due to the dynamic nature of XML documents, schemas are
used to confirm that the documents received are valid and are in the correct
format. Schemas are also used to transform data from one format to another.
Transforms are also known as maps, which consist of source and target XML
schemas. When you link your logic app with an integration account, the schema
and map artifacts within enable your Logic app to use these Enterprise
Integration Pack XML capabilities.

The XML features included with the Enterprise Integration pack are:

m XML validation Used to validate incoming and outgoing XML messages
against a specific schema.

m XML transform Used to convert data from one format to another.

m Flat file encoding/decoding Used to encode XML content prior to sending,

or to convert XML content to flat files.

m XPath Used to extract specific properties from a message, using an xpath

expression.

Add schemas to your integration account

Since schemas are used to validate and transform XML messages, you must add
one or more to your integration account before working with the Enterprise
Integration Pack XML features within your linked logic app. To add a new
schema, follow these steps:

1.
2.
3.

Navigate to the portal accessed via https://portal.azure.com.

Select More Services on the command bar.

In the filter box, type integration, and then select Integration Accounts in
the results list (Figure 4-62).

Select your integration account, and then select the Schemas tile.

In the Schemas blade, select + Add.

Provide a name for your schema and select whether it is a small file (<=
2MB) or a large file (> 2MB). If it is a small file, you can upload it here. If
you select Large file, then you need to provide a publicly accessible URI to
the file. In this case, we’re uploading a small file. Click the Browse button
underneath Schema to select a local XSD file to upload. Click OK.

Add Schema A X

* Name

Order W

Small file | Large file (larger than 2MB)

* Schema @

“orderxsd” E

https://portal.azure.com

FIGURE 4-62 Adding a schema to an Integration account

Add maps to your Integration account

When you want to your Logic app to transform data from one format to another,
you first add a map (schema) to your linked Integration account.

To add a new schema, follow these steps:

1. Navigate to the portal accessed via https://portal.azure.com.

2. Select More Services on the command bar.

3. In the filter box, type integration, then select Integration Accounts in the
results list.

4. Select your integration account, and then select the Maps tile.
5. In the Maps blade, select + Add.

6. Provide a name for your map and click the Browse button underneath Map
to select a local XSLT file to upload. Click OK (Figure 4-63).

Add Map [EI

* Mame

SAPOrderMap v

* Map

"wsltmap.xsit" E

FIGURE 4-63 Adding a map to an Integration account

More Info: How to Create a Transform/Map

You can create the map that you upload to your Integration
account by using the Visual Studio Enterprise Integration SDK at

https://aka.ms/vsmapsandschemas.

Add XML capabilities to the linked Logic App

https://portal.azure.com
https://aka.ms/vsmapsandschemas

After adding an XML schema and map to the Integration account, you are ready
to use the Enterprise Integration Pack’s XML validation, XPath Extract, and
Transform XML operations in a Logic App.

Once your LogicAapp has been linked to the Integration account with these
artifacts, follow these steps to use the XML capabilities in your Logic App:
1. Open the Logic App Designer on the Logic pp that has a linked Integration
account.
2. Select Blank Logic App under Templates.

3. Search for “http request” in the trigger filter, and then select Request
(When An HTTP Request Is Received) from the list of results (Figure 4-
64).

4. Select the + New Step button, and then choose Add An Action.

5. Type xml in the search box, and then select XML (XML Validation) from
the results.

When a HTTP request is received

Choose an action

/D xmil

J

Connectors See more

BizTalk
Server

Triggers (0) Actions (3) See more

BizTalk Server
Prepare message from XML

|: Transform XML '
= Transform XML S

- B -~
¥ML Validation el

TELL US WHAT YOU MNEED

@ Help us decide which connectors and triggers to add next with UserVoice

Cancel

FIGURE 4-64 Selecting an XML Validation action in the Logic App
Designer

In the form that follows, select the Body parameter from the HTTP request
trigger for the Content value. Select the Order schema in the Schema Name

select list, which is the schema we added to the Integration account (Figure
4-65).

B XML Validation
* Content

l - Body x

Insert parameters from previous steps
When a HTTP request is received

Body

Schema Name

l Order

FIGURE 4-65 Selecting an XML Validation form values in the Logic
App Designer

7. Select the + New Step button, and then choose Add An Action.

8. Type xml in the search box, and then select Transform XML from the
results (Figure 4-66).

When a HTTF request is recsived

n XML Validation
Choose an action

p wrml
Connectons See more
BizTalk XML
Lerver
Trigpgiers (1) Actians (1) S mone

BizTalk Server

Prepare message from XML
Transform Xhil

Transfonm XKL

ML

XML Validation

TELL US WHAT YOU NEED

@ Help us decide which connectors and triggers to add next with User\Vioice

Cancel

FIGURE 4-66 Selecting an Transform XML action in the Logic App
Designer

. In the form that follows, select the Body parameter from the HTTP request
trigger for the Content value. Select the SAPOrderMap map in the Map
select list, which is the map we added to the Integration account (Figure 4-
67).

10.

11.

Transform XML

* Content

Body

Insert parameters from previous steps
XML Validation

RN Body
When a HTTF request is received

ﬁ Body

* Map

SAPOrderMap el

FIGURE 4-67 Setting the Transform XML form values in the Logic App
Designer

In the Condition form that appears, select the Edit In Advanced Mode link,
and then type in your XPath expression. In our case, we type in the
following (Figure 4-68): @equals(xpath(xml(body(‘Transform_XML")),
‘string(count(/.))’), ‘1°)

E Condition

@equals(xpath(xml(body(Transform_XML"), ‘string(count(/.))"), 1)

Edit in basic mode Collapse condition

FIGURE 4-68 Setting the XPath expression for the new condition in the
Logic App Designer

In the “If true” condition block beneath, select Add An Action. Search for
“response,” and then select Request (Response) from the resulting list of

actions (Figure 4-69).

12.

If true

E Choose an action

| 5 responsd " |
gnmectars Sew mone
e r_-:
- =
Ciffice 365 Azuwe Blzzy (H3 Content JotFarm Macrosaft
Dutlaok Resource Solutions, Moderator Farms
Outlook.ca..
Triggers (5] At (8] Sae more
RSSO ITOME DLy

Content Moderator

Match an image against one of vour custom image sts

B Microsoft Forms

et resparse Setails

nﬁ Cffice 365 Outlook

Send approval ema

Cutlook.com
Send approval ema
o Request

Respanse
TELL US WHAT YOU MEED

@ Help us decide which connectors and triggers to add next with
UserVoice

Cancel

FIGURE 4-69 Selecting a Response action for the new condition’s “If
true” block in the Logic App Designer

In the Response form, select the Transformed XML parameter from the
previous Transform XML step. This returns a 200 HTTP response
containing the transformed XML (an SAP order) within the body (Figure 4-

70).

Response

Status Code

200

Enter key Enter value

n Transformed X.. = |

Insert parameters from previous steps
Transform XML

a Transfarmed X..
XML Validation

E Body

When a HTTF request is received

Body E Headers Path Parameters ﬂ Cuseries

f Add an action = = = Maore

FIGURE 4-70 Completing the Response action form for the new

condition’s “If true” block in the Logic App Designer

13. Click Save in the Logic Apps Designer menu.

More Info: Deploy This Logic App

Visit the GitHub project page for this Azure Quickstart template to

deploy the Logic App in your Azure account at:

https://github.com/Azure/azure-quickstart-templates/tree/master/201-

logic-app-veter-pipeline.

More Info: Using Xml Capabilities in Logic Apps

For more information about working with XML capabilities in

Logic Apps, see: https://docs.microsoft.com/azure/logic-apps/logic-

apps-enterprise-integration-xml.

https://github.com/Azure/azure-quickstart-templates/tree/master/201-logic-app-veter-pipeline
https://docs.microsoft.com/azure/logic-apps/logic-apps-enterprise-integration-xml

Trigger a Logic App from another app

There are many triggers that can be added to a Logic App. Triggers are what
kick off the workflow within. The most common type of triggers you can use to
trigger, or call, your Logic Apps from another app, are those that create HTTP
endpoints. Triggers based on HTTP endpoints tend to be more widely used due
to the simplicity of making REST-based calls from practically any web-enabled
development platform.

These are the triggers that create HT'TP endpoints:

m Request Responds to incoming HTTP requests to start the Logic App’s
workflow in real time. Very versatile, in that it can be called from any web-
based application, external webhook events, even from another Logic App
with a request and response action.

m HTTP Webhook Event-based trigger that does not rely on polling for new
items. Register subscribe and unsubscribe methods with a callback URL used
to trigger the logic app. Whenever your external app or service makes an
HTTP POST to the callback URL, the logic app fires, and includes any data
passed into the request.

= API Connection Webhook The API connection trigger is similar to the
HTTP trigger in its basic functionality. However, the parameters for
identifying the action are slightly different.

Create an HTTP endpoint for your logic app

To create an HTTP endpoint to receive incoming requests for a Request Trigger,
follow these steps:

1. Open the Logic App Designer on the logic app to which you will be adding
an HTTP endpoint.

2. Select Blank Logic App under Templates.

3. Search for “http request” in the trigger filter, and then select Request
(When An HTTP Request Is Received) from the list of results.

4. You can optionally enter a JSON schema for the payload, or data, that you
expect to be sent to the trigger. This schema can be added to the Request
Body JSON Schema field. To generate the schema, select the Use Sample
Payload To Generate Schema link at the bottom of the form. This displays
a dialog where you can type in or paste a sample JSON payload. This
generates the schema when you click Done. The advantage to having a
schema defined is that the designer will use the schema to generate tokens

that your logic app can use to consume, parse, and pass data from the
trigger through your workflow (Figure 4-71).

Enter or paste a sample JSON payload.

{
"businessAddress”™: "21 2nd Street, Mew York, Mew York"

¥

Done

FIGURE 4-71 Adding a Request trigger with a request body JSON
schema

. Click Save in the Logic Apps Designer menu.

. After saving, the HTTP POST URL is generated on the Receive trigger
(Figure 4-72). This is the URL your app or service uses to trigger your
logic app. The URL contains a Shared Access Signature (SAS) key used to
authenticate the incoming requests.

When a HTTP request is received ®

HTTP POST URL

N ‘-§' Sl i L R A i R S s Mgl pm e " 1
| https://prod-26 westusllogicazure.com443/workflows/0ac6{2458

FIGURE 4-72 The generated HTTP POST URL on the Request trigger

More Info: Call, Trigger, or Nest Workflows with Http Endpoints
in Logic Apps

For more information on the topic of using HTTP endpoints to call,
trigger, or nest workflows in Logic Apps see:

More Info: Create an Api that Follows the Webhook
Subscribe/Unsubscribe Pattern

For more information on how to create an API that follows the
webhook subscribe and unsubscribe pattern in logic apps see
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-
app#webhook-triggers.

Create custom and long-running actions

You can create your own APIs that provide custom actions and triggers. Because
these are web-based APIs that use REST HTTP endpoints, you can build them in
any language framework like .NET, Node.js, or Java. You can also host your
APIs on Azure App Service as either web apps or API apps. However, API apps
are preferred because they will make it easier to build, host, and consume your
APIs used by Logic Apps. Another recommendation is to provide an OpenAPI
(previously Swagger) specification to describe your RESTful API endpoints,
their operations, and parameters. This makes it much easier to reference your
custom API from a logic app workflow because all of the endpoints are
selectable within the designer. You can use libraries like Swashbuckle to
automatically generate the OpenAPI (Swagger) file for you.

If your custom API has long-running tasks to perform, it is more than likely
that your logic app will time out waiting for the operation to complete. This is
because Logic Apps will only wait around two minutes before timing out a
request. If your long-running task takes several minutes, or hours to complete,
you need to implement a REST-based async pattern on your API. These types of
patterns are already fully supported natively by the Logic Apps workflow
engine, so you don’t need to worry about the implementation there.

More Info: Use Swashbuckle to Automatically Generate Openapi
(Swagger)

https://docs.microsoft.com/azure/logic-apps/logic-apps-http-endpoint
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-app#webhook-triggers

Swashbuckle makes it easy to automatically generate the OpenAPI
(Swagger) specification file for you. For more information see
https://github.com/domaindrivendev/Swashbuckle.

Long-running action patterns

Your custom API operations serve as endpoints for the actions in your Logic
App’s workflow. At a basic level, the endpoints accept an HTTP request and
return an HTTP response within the Logic App’s request timeout limit. When
your custom action executes a long-running operation that will exceed this
timeout, you can follow either the asynchronous polling pattern or the
asynchronous webhook pattern. These patterns allow your logic app to wait for
these long-running tasks to finish.

Asynchronous polling
The way the asynchronous polling pattern works is as follows:

1. When your API receives the initial request to start work, it starts a new
thread with the long-running task, and immediately returns an HTTP
Response “202 Accepted” with a location header. This immediate response
prevents the request from timing out, and causes the workflow engine to
start polling for changes.

2. The location header points to the URL for the Logic Apps to check the
status of the long-running job. By default, the engine checks every 20
seconds, but you can also add a “Retry-after” header to specify the number
of seconds until the next poll.

3. After the allotted time (20 seconds), the engine polls the URL on the
location header. If the long-running job is still going, you should return
another “202 Accepted” with a location header. If the job has completed,
you should return a “200 OK” along with any relevant data. This is what
the Logic Apps engine will continue the workflow with.

More Info: Asynchronous Polling Pattern

For more information on the asynchronous polling pattern see
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-

app#async-pattern.

Asynchronous Webhooks

https://github.com/domaindrivendev/Swashbuckle
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-app#async-pattern

The asynchronous webhook pattern works by creating two endpoints on your
API controller:

m Subscribe The Logic Apps engine calls the subscribe endpoint defined in
the workflow action for your API. Included in this call is a callback URL
created by the logic app that your API stores for when work is complete.
When your long-running task is complete, your API calls back with an
HTTP POST method to the URL, along with any returned content and
headers, as input to the logic app.

m Unsubscribe This endpoint is called any time the logic app run is
cancelled. When your API receives a request to this endpoint, it should
unregister the callback URL and stop any running processes.

More Info: Asynchronous Webhook Pattern

For more information on the asynchronous webhook pattern see
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-
app#webhook-actions.

Monitor Logic Apps

When you create a logic app, you can use out-of-the-box tools within Logic
Apps to monitor your app and detect any issues it may have, such as failures.
You can view runs and trigger history, overall status, and performance.

If you want real-time event monitoring, as well as richer debugging, you can
enable diagnostics on your logic app and send events to OMS with Log
Analytics, or to other services, such as Azure Storage and Event Hubs.

Select Metrics (Figure 4-73) under Monitoring in the left-hand menu of your
logic app to view performance information and the overall state, such as how
many actions succeeded or failed, over the specified time period. It will display
an interactive chart based on the selected metrics.

https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-app#webhook-actions

& [| - — w o Pinto dsikbased

S SN B).

00000

E

SCTHOR LATEN Y @ FLE LATENCY € TRIGGER ARE LATE.. @& TRIGGER LATENCY O

335 ms 325 ms 97.08 ms 9.51 ms

J0] :.I:T T

Mo alerts configured for this resource, Click o add an alert

FIGURE 4-73 Metrics for a logic app

Select Alert Rules under Monitoring to create alerts based on metrics (such as
any time failures occur over a 1-hour period), activity logs (with categories such
as security, service health, autoscale, etc.), and near real time metrics, based on
the data captured by your Logic App’s metrics, in time periods spanning from
one minute to 24 hours. Alerts can be emailed to one or more recipients, route
alerts to a webhook, or run a logic app.

The overview blade of your logic app displays both Runs History and Trigger
History (Figure 4-74). This view lets you see at a glance how often the app was
called, and whether those operations succeeded. Select a run history to see its
details, including any data it received.

STATUS START TRME IDEMTIFIER

Succeed.. 10222017, 1222 AM 085869295T1I096932

OBSBEA29ETIT139636

0B586AZF5TITIINGIE

Succeed.. 10/222017, 1222 AM 0858692957 NI0S6932_.

120 AM 0BSBES295T2IATOS,.. 220 Milliseco,

2fA017, 120 AM DBSBER2FSTZINATOS..

© Succeed.. 10/222017, 120 AM 0BSB69295T2318705.. 95 Milliseconds

All 5) Pick a dapas Pk & i
l:-_;:] When_a_new_tweet_is_posted w
DURETIOMN STATUS START T... FRED
96 Milliseconds @ Succeeded 10/22/2.. Fired
&R Milliseconds & Siceeded 1072802 Faresd
) il &
S F 1
5
Succeeded 1022/2.. Fired

) Su d.. 10/22/2017, 119 AM DBSBE9295T2922005_.. 160 Mill

FIGURE 4-74 The Runs history and Trigger History of a logic app

More Info: Monitor Status and Set up Diagnostics Logging for

Logic Apps

To learn more about how to monitor status, set up diagnostics
logging, and turn on alerts for Logic Apps see
https://docs.microsoft.com/azure/logic-apps/logic-apps-monitor-your-

logic-apps.

Skill 4.4: Develop Azure App Service Mobile Apps

Mobile Apps in Azure App Service provides a platform for the development of
mobile applications, providing a combination of backend Azure hosted services
with device side development frameworks that streamline the integration of the

backend services.

This skill covers how to:

m Create a mobile app

m Add authentication to a mobile app

m Add offline sync to a mobile app

m Add push notifications to a mobile app

Mobile Apps enables the development of applications across a variety of

platforms, targeting native iOS, Android, and Windows apps, cross-platform
Yamnrin (Anr]rnir] Enrmc nnr] inQ\ an] pnrr]nt7a]\/[n]‘\ﬂn AT\T\C inr‘]nr]nc ja

https://docs.microsoft.com/azure/logic-apps/logic-apps-monitor-your-logic-apps

Zxdaliiairiil \ﬂllululu, 1°'UlLl111D aliu l\Jl_)} ailiu uviuuvyva. 1lvivullic ﬂ]_JlJD 1iciuuco a
comprehensive set of open source SDKs for each of the aforementioned
platforms, and together with the services provided in Azure provide functionality
for:

» Authentication and authorization Enables integration with identity
providers including Azure Active Directory, Facebook, Google, Twitter, and
Microsoft Account.

m Data access Enables access to tabular data stored in an Azure SQL Database
or an on-premises SQL Server (via a hybrid connection) via an automatically
provisioned and mobile-friendly OData v3 data source.

m Offline sync Enables reads as well as create, update, and delete activity to
happen against the supporting tables even when the device is not connected
to a network, and coordinates the synchronization of data between local and
cloud stores as dictated by the application logic (e.g., network connectivity is
detected or the user presses a “Sync” button).

m Push notifications Enables the sending of push notifications to app users via
Azure Notifications Hubs, which in turn supports the sending of notifications
across the most popular push notifications services for Apple (APNS),
Google (GCM), Windows (WNS), Windows Phone (MPNS), Amazon
(ADM) and Baidu (Android China) devices.

Create a mobile app

From a high level, the process for creating a mobile app is as follows:

1. Identify the target device platforms you want your app to target.
Prepare your development environment.

Deploy an Azure Mobile App Service instance.

Configure the Azure Mobile App Service.

Configure your client application.

AL ol o A

Augment your project with authentication/authorization, offline data sync,
or push notification capabilities.

The sections that follow cover each of these steps in greater detail.

Identify the target device platforms

The first decision you make when creating an mobile app is choosing which
device platforms to support. For device platforms, you can choose from the set
that includes native Android, Cordova, native iOS (Objective-C or Swift),

xaTe 1 s/ N XT . A 1 c 1 x7 — 1 x7 cr~M

winaows (L#), Xamarin Android, Xamarin Forms and Xamarin 1u».

Because each device platform brings with it a set of requirements, it can make
getting started an almost overwhelming setup experience. One way to approach
this is to start with one device platform so that you can complete the end-to-end
process, and then layer on additional platforms after you have laid the
foundation for one platform. Additionally, if you choose to use Xamarin or
Cordova as your starting platform you gain the advantage that these platforms
can themselves target multiple device platforms, allowing you to write portable
code libraries once that is shared by projects that are specific to each target
device.

Prepare your development environment

The requirements for your development environment vary depending on the
device platforms you wish to target. The pre-requisites here include the
supported operating system (e.g., macOS, Windows), the integrated
development environment (e.g., Android Studio, Visual Studio for Windows,
Visual Studio for Mac or Xcode) and the devices (e.g., the emulators/simulators
or physical devices used for testing your app from the development environment
of your choice).

Table 4-4 summarizes key requirements by device platform.

TABLE 4-4 Requirements for each target platform

Target Platform | Requirements

Android OS: macOS or Windows
IDE: Android Studio
Devices: Android emulator and devices

Cordova OS: macOS and Windows
IDE: Visual Studio for Windows

Devices: Android, iOS*, Windows emulators and
devices.

i0S OS: macOS
IDE: Xcode
Devices: iOS simulator and devices

Windows OS: Windows

IDE: Visual Studio for Windows
Devices: Windows desktop and phone

Xamarin.Android | OS: macOS or Windows
IDE: Visual Studio for mac or Windows
Devices: Android emulators and devices.

Xamarin.Forms OS: macOS and Windows
IDE: Visual Studio for mac or Windows

Devices: Android, iOS*, Windows emulators and
devices.

Xamarin.iOS OS: macOS
IDE: Visual Studio for mac or Windows

Devices: iOS* simulator and devices

* Running the iOS simulator or connecting to an iOS device requires a computer running macOS that is
reachable across the network from the Windows development computer, or running the indicated IDE on a
macOS.

Deploy an Azure Mobile App Service

With the aforementioned decisions in place, you are now ready to deploy an
Azure Mobile App Service instance to provide the backend services to your app.
Follow these steps:

1. In the Azure Portal, select New, and search for Mobile App, and select the
Mobile App entry.

Select Create.

Provide a unique name for your Mobile App.

Select an Azure subscription and Resource Group.

Select an existing App Service Plan or create a new one.

S e wWN

Select Create to deploy the mobile app.

Configure the mobile app

Once you have deployed your mobile app, you need to configure where it will
store its tabular data and the language (your options are C# or Node.js) in which
the backend APIs are implemented (which affects the programming language
you use when customizing the backend behavior). The following steps walk you

T T S i S S R SO R

LIrougll prepdriig ule quiCk stdi't SO1Utioll, wilcil you Cdll use ds d Stdrtiilg pollit
for your mobile app. Follow these steps:

1.

10.

11.
12.

13.

14.

15.

In the Azure Portal, navigate to the blade for your mobile app.

2. From the menu, under the Deployment heading, select Quick Start.
3.
4. On the Quick Start blade, select the button underneath the header 1

On the General listing, select the platform you wish to target first.

Connect a database that reads You Will Need A Database In Order To
Complete This Quickstart. Click Here To Create One.”

On the Data Connections blade, select + Add.

On the Add Data Connection blade, leave the Type drop-down at SQL
Database.

Select SQL Database - Configure Required Settings.

On the Database blade, select an existing Azure SQL Database, or create a
new database (and optionally a new SQL Database Server).

Back on the Add Data Connection blade, select Connection String.

Provide the name to use for referring to this connection string in
configuration.

Select OK.

Select OK once more to add the data connection (and create the SQL
Database if so configured).

In a few minutes (when creating a new SQL Database), the new entry
appears in the Data Connections blade. When it does, close the Data
Connections blade.

On the Quick Start blade, underneath the header, Create A Table API,
choose Node.js and select the check box I Acknowledge That This Will
Overwrite All Site Contents. Then select the Create Todoltem table button
that is enabled. If you choose to use C#, note that you will have to
download the zip provided, extract it, open it in Visual Studio, compile and
then publish the App Service to your Mobile App instance. This is
performed in the same way as you deploy Web Apps as described
previously.

Leave the Quick Start blade open and continue to the next section.

Configure your client application

Now that you have a basic mobile app backend deployed, you are now ready to
create the application that will run on your targeted devices. You can create a
new application from a generated quick start project or by connecting an existing
application:

1. From the Quick Start blade of your mobile app, underneath the header,
Configure Your Client Application, set the toggle to create A New App If
You Want To Create A Solution or Connect An Existing App If You
Already Have A Solution Built and just need to connect it to the mobile
app.

2. If you select Create A New App, you will be provided with instructions
specific to the device platform you selected previously as well as a
download link from which you can download a generated solution that
includes the code customized for access to the deployed mobile app
backend. For example, if you selected Xamarin.Forms as your platform,
you are provided with a zip file that contains a personalized project that
you can open in Visual Studio for Windows or Visual Studio for macOS,
which has been preconfigured to connect to your mobile app backend.

3. If you select Connect An Existing App, you are provided with instructions
and code you can copy and paste into your project to connect it to the
mobile app backend.

4. Once you have completed the steps for either option, you can open and run
the project in the IDE and start working against your mobile app backend.

Add authentication to a mobile app

Once you have your project in place and connected to your mobile app backend,
you can enable authentication and authorization. Recall that this enables
integration with identity providers including Azure Active Directory, Facebook,
Google, Twitter and Microsoft Account such that your app users need to sign in
using credentials from one of these providers. To do so, follow these steps.

1. Identify the set of identity providers you want to support.

2. For each identity provider, you need to follow the provider’s specific
instructions to register your app and retrieve the credentials needed to
authenticate using that provider. The up-to-date instructions for each
provider are available:

10.

A. Azure Active Directory: https://docs.microsoft.com/en-us/azure/app-
service-mobile/app-service-mobile-how-to-configure-active-directory-
authentication

B. Facebook: https://docs.microsoft.com/en-us/azure/app-service-
mobile/app-service-mobile-how-to-configure-facebook-authentication

C. Google: https://docs.microsoft.com/en-us/azure/app-service-
mobile/app-service-mobile-how-to-configure-google-authentication

D. Microsoft: https://docs.microsoft.com/en-us/azure/app-service-
mobile/app-service-mobile-how-to-configure-microsoft-authentication

E. Twitter: https://docs.microsoft.com/en-us/azure/app-service-
mobile/app-service-mobile-how-to-configure-twitter-authentication

Configure authentication / authorization in your mobile app.
Navigate to the blade of your mobile app in the Azure Portal.

From the menu, under the Settings header, select Authentication /
Authorization.

Under the Allowed External Redirect URLs header, in the text box provide
a callback URL that will be used to invoke your application. It should be of
the form [scheme]://easyauth.callback where the value of [scheme] is a
string you specify that starts with a letter and consists of only letters and
numbers. For example, myapp://easyauth.callback.

Select Save from the command bar.

Restrict permissions to authenticated users on the service side. The
approach you take varies depending on how you configured your backend
language and if you have deployed custom backend code.

If you are using the Node.js backend created through the quick start in the
Azure Portal, you can control access to data on a table-by-table basis. From
your Mobile App blade, in the menu select Easy Tables, and then select the
table you want to secure. For all of the permission options, set the value to
Authenticated Access Only and select Save.

If you deployed a C# backend, in the controller for your project that
inherits from TableController, decorate the class with the Authorize
attribute. For example:

Click here to view code image
[Authorize]

public class TodoItemController : TableController<TodoItem>

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-active-directory-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-facebook-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-google-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-microsoft-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-twitter-authentication
http://myapp://easyauth.callback

11. If you have deployed a customized Node.js backend, you need to modify
the code accessing the table and set the access property to authenticated.
For example:
Click here to view code image

table.access = 'authenticated';

More Info: Detailed Step by Step for Requiring
Authentication for Access to Tables

Coverage of the implementation details for every platform
supported by Mobile Apps is out of scope for this book. To
read the implementation details for your particular platform
navigate to https://docs.microsoft.com/en-us/azure/app-service-
mobile/app-service-mobile-node-backend-how-to-use-server-
sdk#howto-tables-auth and use the dropdown at the top of the
article to select your platform.

12. Add the authentication logic to your app project. The specific steps to take
vary based upon the target platform for your app, but in general they
amount adding user interface elements to initiate sign-in and handling the
authentication events. An important step in the configuration of the
authentication is providing the value of your scheme you defined for the
Allowed External Redirects URL (e.g., myapp).

More Info: Adding Authentication Logic

For the detailed steps and boilerplate code to use for each
platform, see https://docs.microsoft.com/en-us/azure/app-
service-mobile/app-service-mobile-xamarin-forms-get-started-
users and using the dropdown list at the top select your target
platform.

13. Run your application in your local simulator or device to verify the
authentication flow.

Add offline sync to a mobile app

The offline data sync capability comes from a mix of client-side SDK and
service-side features. This capability enables reads as well as create, update and

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-node-backend-how-to-use-server-sdk#howto-tables-auth
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-users

delete activity to happen against the supporting tables even when the device is
not connected to a network, and coordinates the synchronization of data between
local and cloud stores as dictated by the application logic (e.g., network
connectivity is detected or the user presses a “Sync” button). The feature
includes support for conflict detection when the same record is changed on both
the client and the backend, and it allows for the conflicts to be resolved on either
the client side or service side.

= On the Mobile App service side, you need a table that leverages Mobile App
easy tables. This is typically a table in SQL Database that is exposed by
Mobile Apps using the OData endpoint. Easy tables can be managed in the
Mobile App blade in the portal, including adjusting their schema, setting
permissions, and modifying the service side script (for Node.js backends)
that processes the create, read, update, delete (CRUD) operations.

= On the client side, the Azure Mobile App SDKs provide an interface referred
to as a SyncTable that wraps access to the remote easy table. When using a
SyncTable all the CRUD operations work from a local store, whose
implementation is device platform specific. The local store provides the data
persistence capability on the client device. In iOS the local store is based on
Core Data, and for Windows, Xamarin, and Android the local store is based
on SQL lite.

Changes to the data are made through a sync context object that tracks the
changes that are made across all of the tables. This sync context maintains an
operation queue that is an ordered list of create, update and delete operations that
have been performed against the data locally.

m To modify the backend table data with the changes performed against the
local store, you have to perform a push. To populate the local store with data
from the backend, you have to perform a pull. A push operation executes a
series of REST calls to your mobile app backend that applies all the CUD
changes since the last push. It’s important to note that when you push
changes, you are always pushing a set containing at least one operation; you
are not pushing a specific table. This restriction ensures that multiple
operations against the context that may span across multiple tables are
replayed against the backend table in the correct order.

m There is a notion of an implicit push; this occurs when you execute a pull
operation but have pending operations to push. In this case, the pull will first
execute a push against the sync context.

m Offline sync supports incremental sync, whereby each time you pull records

from the source only the source records that are new or have changed are
retrieved (as opposed to downloading the entire table worth of data every
time). You can clear the contents of the local store by performing a purge.

You can enable Offline Sync by following these high-level steps:
1. Modify the client code that accesses your easy tables to use objects of the
SyncTable variety.

2. Implement a method that is run when your application first launches that
defines the table schema and initializes the local store with data from the
remote table.

3. Implement a method that launches initiate sync operation. This could be
triggered from a button or refresh gesture.

4. You can test the offline behavior of your app by:

5. Running the application once as normal and adding data to your table.

6. Modifying the application’s configuration so that it no longer points to the
correct URI of your mobile app backend.

7. Run the application again. This time the offline behavior should take affect.
Make some modifications to the data.

8. Restore the application’s configuration.

9. Run the application again and verify that the changes you made while
offline appear in your easy table. To do this, navigate to the blade of your
mobile app, select Easy Tables from the menu, and then select your table to
view its contents.

More Info: Adding Offline Sync Logic

Coverage of the implementation details of Offline Sync for every
platform supported by Mobile Apps is out of scope for this book.
To read the implementation details for your particular platform
navigate to https://docs.microsoft.com/en-us/azure/app-service-
mobile/app-service-mobile-xamarin-forms-get-started-offline-data
and use the dropdown at the top of the article to select your
platform.

Add push netifications to a mobile app

Push notifications enable you to send app-specific messages to your app running
across a variety of platforms. In Azure Mobile Apps, push notification

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-offline-data

capabilities are provided by Azure Notification Hubs, which is accessed using
the Mobile Apps SDKs for the platform of choice. Notification Hubs, in turn,
abstract your application from the complexities of dealing with the various push
notification systems (PNS) that are specific to each platform, which includes
challenges like device registration with the PNS, backend services to send
messages to the PNS, and provides for routing of messages to targeted users or
groups of users (which requires maintaining a mapping of users to devices), and
scaling to support such functions across a huge base of devices. Notifications
Hubs supports the sending of notifications across the most popular push
notifications services for Apple (APNS), Google (GCM), Windows (WNS),
Windows Phone (MPNS), Amazon (ADM), and Baidu (Android China) devices.

To add push notifications, follow these steps:

1. Deploy a Notification Hub with your mobile app.

2. Navigate to the blade of your mobile app, and on the menu under the
Settings heading, select Push.
3. From the Command bar, select Connect.

4. On the Notification Hub blade, choose an existing Notification Hub or
provision a new one. If you choose to provision a new Notification Hub,
provide a name for the hub, a name for the new namespace, and select the
desired pricing tier, and then select OK.

5. Select the link Configure Push Notification Services.

6. On the Push Notification Services blade, select the PNS to which you want
to connect the Notification Hub.

7. On the blade for the PNS, enter the PNS specific configuration, and select
Save.

8. Configure your backend server project to send push notifications.

More Info: Sending Push Notifications from the Server Side

Coverage of the implementation details of sending push
notifications for every platform supported by Mobile Apps is
out of scope for this book. To read the implementation details
for your particular platform navigate to
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-
service-mobile-xamarin-forms-get-started-push#update-the-
server-project-to-send-push-notifications and use the dropdown
at the top of the article to select your platform.

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-push#update-the-server-project-to-send-push-notifications

9. Modify the app project to respond to push notifications.

More Info: Receiving Push Notifications in the Client App

Coverage of the implementation details of receiving push
notifications for every platform supported by Mobile Apps is out of
scope for this book. To read the implementation details for your
particular platform navigate to https://docs.microsoft.com/en-
us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-
started-push#configure-and-run-the-android-project-optional and
use the dropdown at the top of the article to select your platform.

Skill 4.5: Implement API Management

Azure API Management is a turnkey solution for publishing, managing,
securing, and analyzing APIs to both external and internal customers in minutes.
You can create an API gateway for backend services hosted anywhere, not just
those hosted on Azure. Many modern APIs protect themselves by rate-limiting
consumers, meaning, limiting how many requests can be made in a certain
amount of time. Traditionally, there is a lot of work that goes into that process.
When you use API Management to manage your API, you can easily secure it
and protect it from abuse and overuse with an API key, JWT validation, IP
filtering, and through quotas and rate limits.

If you have several APIs as part of your solution, and they are hosted across
several services or platforms, you can group them all behind a single static IP
and domain, simplifying communication, protection, and reducing maintenance
of consumer software due to API locations changing. You also can scale API
Management on demand in one or more geographical locations. Its built-in
response caching also helps with improving latency and scale.

Hosting your APIs on the API Management platform also makes it easier for
developers to use your APIs, by offering self-service API key management, and
an auto-generated API catalog through the developer portal. APIs are also
documented and come with code examples, reducing developer onboarding time
using your APIs.

API Management is made up of the following components:
m The API gateway is the endpoint that:
m Accepts API calls and routes them to your backends.

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-push#configure-and-run-the-android-project-optional

m Verifies API keys, JWT tokens, certificates, and other credentials.
m Enforces usage quotas and rate limits.

m Transforms your API on the fly without code modifications.

m Caches backend responses where set up.

m Logs call metadata for analytics purposes.

m The publisher portal is the administrative interface where you set up your
API program. Use it to:

= Define or import API schema.

m Package APIs into products.

m Set up policies like quotas or transformations on the APIs.
m Get insights from analytics.

m Manage users.

m The developer portal serves as the main web presence for developers, where
they can:

m Read API documentation.

m Try out an API via the interactive console.

m Create an account and subscribe to get API keys.
m Access analytics on their own usage.

This skill covers how to:

m Create managed APIs

m Configure API management policies
= Protect APIs with rate limits

® Add caching to improve performance
= Monitor APIs

= Customize the Developer Portal

Create managed APIs

The API Management service is the platform on which the API gateway,
publisher portal, and developer portal are hosted. As such, before you can create
APIs, you must first create a service instance.

Create an API Management service

1. Navigate to the portal accessed via https://portal.azure.com.

2. Select New on the command bar.
3. Select Developer Tools, and then API Management (Figure 4-75).

Tt Azure New

ew

Mew

A2 Search the Marketplace

| Dashboard
Azure Marketplace seeall Featured See all

Resource groups

Team Project (preview)
Get started ject {p Vi
&2 Al resources Learn more

Compute
Recent .

Metworking DevTest Labs
App Services Storage

Web + Mobile _—
Virtual machines (classic) ¢ " © Application Insights

Containers . Learn more
Virtual machines

Databases —

P AP management

SQL databases Data + Analytics (5 |———

Cloud services (classic) Al + Cognitive Services

.. MyGet - Hosted NuGet, NPM, Bower,

Internet of Things Maven and Vi

Security Center nyget
Enterprise Integration

Learn more
Subscripts
Subscrniptions

Security + ldentity RavenHQ
R R Learn miore
& rzure Active Directory { Developer tools ;

Monitaring + Management

e Monitor

Ardd-nng

FIGURE 4-75 Creating a new API Management service instance from the
Azure Portal

4. Provide a unique name, select a resource group and location, enter an
organization name that will appear on the developer portal and emails, an
administrator email, your pricing tier, select Pin To Dashboard, and then
click Create.

Add a product

Before you can publish an API, it needs to be added to a product. A product in
API Management contains one or more APIs, as well as constraints such as a

usage quota and terms of use. This is a great way to add API access levels, like
starter (limit to five calls/minute) or unlimited. You can create several products

tn orniin A PTc with thair num ncaage milac Noawvalanarce ran aitherrihe tn a nradnct

https://portal.azure.com

v 61UL11_I 431 10 VVIULLIL LIIL11I UYVV1LL uou&u LUILC O, JJ\—VLlUI:ILLO “uUll VUuUULlLIULT VU u]_.IL\JLlLlLL

once it is published, and then begin using its APIs.

Follow these steps to add and publish a new product:

o\

Navigate to your API Management service on the portal.
Select Publisher Portal on the top of the overview blade.
Select Products on the left-hand menu, and then click Add Product.

Within the new product form, provide a Title, which should be a
descriptive name for your product that appears on the developer and admin
portals. Provide a Description that explains the product’s purpose and any
other information you want to display. The remaining fields allow you to
set your level of protection, meaning, whether your product requires a
subscription, and if so, whether the subscription needs to be approved by an
administrator, and whether developers can subscribe more than once. Once
finished, click Save.

Once the product has been added, you need to add one or more APIs to it
before you can publish it. Select a product, and then click the Add API To
Product link. This gives you a list of APIs that you can assign to the
product.

Create a new API

N

Navigate to your API Management service on the portal.
Select Publisher Portal on the top of the overview blade.
Select APIs on the left-hand menu, and then click Add API.
Within the new product form (Figure 4-76):
A. Provide a unique Web API Name, which should be a descriptive name
for your API that appears on the developer and publisher portals.

B. Enter the Web Service URL, which is the HTTP endpoint for your
API.

C. Enter the Web Service URL suffix, which is unique to your API, and
is the last part of the API’s public URL.

D. Select the desired Web API URL Scheme (HTTP or HTTPS
(default)).

Select the product you created and any others you want to add it to.
When finished, click OK.

m M

Add new API

Web APl name Public name of the AP as it would appear on the
Contoso Contacts : developer and admin portals.,

Web service URL A URL of the web service exposing the API This
hittpe//rmycontactlistapiapp azurewebsites net URL will be used by Azure AP| Management anly,

and will not be made public.

Web APl URL suffix Last part of the API's public URL. This URL will be
contoso-contacts used by AP consumers for sending requests 1o
the web service
Web AP1 URL scheme
HTTP = HTTPs

This is what the URL is going to look like

https://api-this.azure-api.net/contoso-contacts

Products (optional) Add this APl to one or more existing preducts.
Contoso Developers Starter Linlimited
=

FIGURE 4-76 Completing the Response action form for the logic app

Add an operation to your API

Before you can use your new API, you must add one or more operations. These
operations do things like enable service documentation, the interactive API
console, set per operation limits, set request/response validation, and configure
operation-level statistics.

1.
2.
3.

Navigate to your API Management service on the portal.
Select Publisher Portal on the top of the overview blade.

Select APIs on the left-hand menu, select your API from the list, and then
select the Operations tab.

Click + Add Operation.

. By default, the Signature tab will be selected. The Signature is the URL

template used to send requests to the underlying API. Here you select
(Figure 4-77):

The HTTP verb (GET, POST, etc.).

Type in the URL template (e.g. contacts{id}).

Type in a display name, and description.

cSorP»

You can also add a rewrite URL template to call the backend with a

converted URL.

MNew operation

Signature
. HTTF warb® UEL template®
Caching
GET fooniacts/Ted}
RECLIEST
Parameters REewrite LIRL template
RESPOMSES
Code 200
Code 404 Dplay name*
feontacts
Description
Returns all contacts

[sare
FIGURE 4-77 Adding a new operation to a managed API

. Select the Parameters tab. New query parameters are automatically
generated based on the URL template defined in the signature. In our case,
an id template parameter was generated because the URL template of our
signature for this operation is contacts{id}. Specify the type (string,

number, etc.) and provide a description for each query parameter (Figure 4-
78).

URL template parameters
Signature : ;
These parameters are generated based on the URL template and have to be edited on the "Signature”

Caching tab. *

MAME* DESCRIPTION TYPE WVALUES

REQUEST id The contact Id number

Query parameters
RESPOMSES

FIGURE 4-78 URL template parameters

7. You can optionally use the other tabs to specify caching and responses for
the operation. Click Save when finished.

Publish your product to make your API available

The last step to making your API available to other developers is to publish your
product to which this and any other APIs have been added.

To publish your product, follow these steps:

1. Navigate to your API Management service on the portal.
2. Select Publisher portal on the top of the overview blade.

3. Select Products on the left-hand menu, and then click select your product
from the list.

4. The summary tab will indicate whether your product has been published,
and any associated APIs. You must have at least one API added before you
can publish. Click the Publish link.

5. When the confirmation appears, click Yes, and then publish it.

6. After publishing, select the Visibility tab. Choose which roles, such as
developers, you want to be able to see the product on the developer portal
and subscribe to the product. Click Save when finished.

More Info: Add and Publish an Api Product

To learn more about creating and publishing a product in API

Management see https://docs.microsoft.com/azure/api-
management/api-management-howto-add-products.

Configure API Management policies

https://docs.microsoft.com/azure/api-management/api-management-howto-add-products

API Management policies allow you, as the publisher, to determine the behavior
of your APIs through configuration, requiring no code changes. You define a
policy definition, which is a collection of statements that are executed
sequentially on the request or response of your API. There are many policies you
can select from, such as whether to allow cross domain calls, how to authenticate
requests, find and replace strings in the body, setting rate limits, and many more.

More Info: Full List of Policy Statements

See the Policy Reference for a full list of policy statements and their

settings at https://docs.microsoft.com/azure/api-management/api-
management-policy-reference.

Because the API gateway receives all requests to your APIs, the policies you
defined are applied at this level. The policies statements you choose affect both
inbound requests and outbound responses. Policies can be applied globally, or
scoped to the Product, API, or Operation level.

To configure a policy, follow these steps:

1. Navigate to your API Management service on the portal.
2. Select Publisher Portal on the top of the overview blade.
3. Select Policies on the left-hand menu.
4

. At the top of the policies page, you will find select lists to define the policy
scope at the Product, API, and Operations levels. If you do not select a
specific operation, all operations are included in this policy. To create a
policy scoped globally, simply deselect any options from these select lists

(Figure 4-79).

https://docs.microsoft.com/azure/api-management/api-management-policy-reference

Policy scope

Product APl of Contoso Developers

Contoso Developers T | Contoso Contacts v
Operations of Contoso Contacts
Select operation i
Contoso Developers Contose Contacts

Pr:.lr:,.' definitan G FULL SCREEN P y statermnents

Corvert XML to JSOMN -
CORS
Fired aned replace string n body
Forward request 1o backend service
Get fram cache
© oo poucy Get value from cache
JSOMP

Limit call rate per key

Lirmit call rate pér subscription

View effective policy for selected scope

FIGURE 4-79 Policies page for an APl Management service in the
Publisher portal

. To add a new policy to the selected policy scope, select + Add Policy link
in the Policy definition area.

. The policy definition will appear in XML format. To add an inbound policy
that limits the call rate per key, place your cursor just inside the content of
the inbound XML element, and then click the Limit Call Rate Per Key
policy statement on the right. This adds the statement to rate limit inbound
requests to the number of calls you specify within your defined period of
time in seconds, and any other conditions you desire (Figure 4-80).

Palicy definition O FULL SCREEN Policy statements
] @ Forward request to backend service -

Q Get from cache
© Get value from cache
Q@ ssonp

© Limit call rate per key

i Limit call rate per subscription
13 - <policies»
14 ~ <inbound>
15~ <rate-limit-by-key calls="5"
16 increment-condition="@{context.Response . StatusCode ==
17 counter-key="§{ context.Request . IpAddress)” © Log to EventHub
18 I
19 <base /3 - a Mask URLs in content

3
View effective policy for selected scope

FIGURE 4-80 Editing the policy definition for an API Management
service in the Publisher portal

€ Limit request processing concurrency level

renewal -period="120"

7. When you are finished, click Save. Your changes will be immediately
applied to the API Management gateway.

More Info: Applying Policies in Api Management

For more information about how to apply policies in API
Management see: https://docs.microsoft.com/azure/api-
management/api-management-howto-policies.

Protect APIs with rate limits

Protecting your published APIs by throttling incoming requests is one of the
most attractive offerings of API Management. When you open up your API for
others to use, it is difficult to guarantee a promised level of service if you cannot
control the demand on your resources. Or, you may be interested in controlling
your resource costs by limiting requests, preventing you from unnecessarily
scaling up your services to meet unexpected demand. Rate limiting, or throttling,
is common practice when providing APIs. Oftentimes, API publishers offer
varying levels of access to their APIs. For instance, you may choose to offer a
free tier with very restrictive rate limits, and various paid tiers offering higher
request rates. This is where API Management’s products come into play. Define
products for your varying service levels, and apply rate limiting policies to each
product, accordingly.

Create a nroduct to scone rate limits to a sroun of APIs

https://docs.microsoft.com/azure/api-management/api-management-howto-policies

- - -~ " " " r-T-T——T-TT ~TfT TT"Tr- -TTT TTTf777T TT TOTTTK TT - ~—%

The following steps show how to create a free trial, adding APIs that developers
can use on a rate-limited free trial basis:

1.

Eal e\

© R NS w

10.

11.

12.

Navigate to your API Management service on the portal.
Select Publisher Portal on the top of the Overview blade.
Create a new product named Free Trial.

Set the description to Subscribers Will Be Able To Run 10 Calls/Minute
Up To A Maximum Of 200 Calls/Week.

Set the visibility to Developers.

Add your APIs to the product and publish it.

Go to Policies and set the policy scope to the free trial product.
Click + Add Policy.

Position the cursor within the inbound element.

Scroll through the list of policy statements and select Limit Call Rate Per
Subscription. Modify the XML to set calls to 10 and renewal-period to 60.
You can delete the API and operation elements because they are not needed
in this scenario.

Position your cursor immediately below the rate-limit element you added.
Select Set Usage Quota Per Subscription in the list of policy statements.
Modify the XML to set calls to 200 and renewal-period to 604800. You can
delete the API and operation elements because they are not needed in this
scenario.

Save your changes. In the end, your inbound policy should look as follows
(Figure 4-81):

Policy definition © FuLL screeN
7 - To add a policy position the cursor at the desired insertior o
8 - To remove a policy, delete the corresponding policy stateme
Q - Position the <base> element within a section element to inh

19 - Remove the <base> element to prevent inheriting policies fm
11 - Policies are applied in the order of their appearance, from
12 -->

13 -~ <policies>

14 - <inbound:

15 <rate-limit calls="18" renewal-period="68">

16 </rate-limit>

17 - <quota calls="28@" renewal-period="6B4888" >

18 </quota:

19 <base [»

28

21 </inbound>

22 - <backend>

23

24 <base f»

25 -
2 :

FIGURE 4-81 Editing the policy definition to set rate limits on a product

Advanced rate limiting

In its simplest implementation, you can control the rate of requests or the total
requests/data transferred. These constraints do not help when individual end-
users of your API consume exponentially more of the quota than other users. If
you want to avoid having high-usage consumers limit access to occasional users,
by using up the pool of available resources, consider using the new rate-limit-by-
key and quota-by-key policies. These are more flexible rate limit ing policies
that allow you to define expressions to track traffic usage by user-level
information, such as IP address and user identity.

Here is an example of rate and quota limiting by IP address:

Click here to view code image

<rate-limit-by-key calls="10"
renewal -period="60"
counter-key="@(context.Request.IpAddress)" />

<quota-by-key calls="1000000"
bandwidth="10000"
renewal-period="2629800"
counter-key="@(context.Request.IpAddress)" />

More Info: Advanced Rate Limiting

For more information about advanced rate limiting through

flexible request throttling see https://docs.microsoft.com/azure/api-
management/api-management-sample-flexible-throttling.

Add caching to improve performance

Caching is a great way to limit your resource consumption, like bandwidth, as
well as reduce latency for infrequently changing data. API Management allows
you to configure response caching on operations.

Follow these steps to add response caching for your API (Figure 4-82), and
review caching policies:

1. Navigate to your API Management service on the portal.

2. Select Publisher portal on the top of the overview blade.
3. Select APIs on the left-hand menu.
4

. Select the ECHO API, which is automatically added to new API
Management services.

5. Select the Operations tab, and then select GET Retrieve Resource (Cached)
from the list.

https://docs.microsoft.com/azure/api-management/api-management-sample-flexible-throttling

Summary Settings Operations Security

Operations

Define service operations to enable service documentation,

and operation-level statistics.

B ADD OPERATION

POST Create resource

PUT Modify Resource
DELETE Remove resource
HEAD Retrieve header only
GET Retrieve resource

GET Retrieve resource (cached)

FIGURE 4-82 The API operations tab

. Select the Caching tab (Figure 4-83) to view the caching settings. To
enable caching on an operation, select the Enable check box. You can
modify the keyed operation responses by setting values in the Vary By
Query String Parameters and Vary By Headers fields. In this case, cache
keys are being computed on two different headers: Accept and Accept-
Charset. Duration sets the cache duration in seconds. Here it is set to 3600
seconds.

Operation - Retrieve resource (cached)

Caching
Signature
3 cl N sk 1ty r lat
REQUEST ¥ Enable
Parameters
Vary by query string parameters

RESPOMSES
Code 200

ary by headers

AcceptAccept-Charset

Curation
3600

FIGURE 4-83 Caching settings for the GET operation of the Echo API

7. Select Policies from the left-hand menu of the publisher portal.

8. Select Echo API from the API select list, and then Retrieve Resource
(Cached) from the Operation select list.

9. Here you see that the caching policies in the policy editor reflect the values
in the Caching tab of the operation. Any changes here are reflected on the
Caching tab, and vice-versa.

More Info: Custom Caching in Api Management

To learn how to implement custom caching see
https://docs.microsoft.com/azure/api-management/api-management-

sample-cache-by-key.

Monitor APIs

API Management provides a few methods by which you can monitor resource
usage, service health, activities, and analytics. If you want real-time monitoring,
as well as richer debugging, you can enable diagnostics on your logic app and
send events to OMS with Log Analytics, or to other services, such as Azure
Storage, and Event Hubs. Select Diagnostics Logs from the left-hand menu of

https://docs.microsoft.com/azure/api-management/api-management-sample-cache-by-key

your API Management service, and then select Turn On Diagnostics to archive
your gateway logs and metrics to a storage account, stream to an event hub, or
send to Log Analytics on OMS.

Activity logs provide insight into the operations that were performed on your
API Management services, so you can determine the “what, who, and when” for
any write operations taken on your API Management services. Select Activity
Log from the left-hand menu to filter and view these logs. From here, you can
select Export to archive these logs in a storage account or send them to an event
hub. You can also select Log Analytics to send the logs to OMS.

m Select Metrics under Monitoring in the left-hand menu of your API
Management service to view the state and health of your APIs in near real-
time. These metrics are emitted every minute. You can monitor gateway
requests, determine which of those were successful or failed, and also view
unauthorized gateway requests. It displays an interactive chart based on the
selected metrics.

m Select Alert rules under Monitoring to create alerts based on metrics (such as
any time failed gateway requests occur over a one-hour period), activity logs
(with categories such as security, service health, autoscale, etc.), and near
real time metrics, based on the data captured by your API Management
service’s metrics, in time periods spanning from one minute to 24 hours.
Alerts can be emailed to one or more recipients, route alerts to a webhook, or
run a logic app.

Open the publisher portal to view Analytics. This shows an overview of usage
by developers, top products, top subscriptions, top APIs, and top operations.
Each of these categories show the number of successful calls versus blocked or
failed calls, as well as bandwidth used and average response time, when
applicable. The usage tab shows number of calls and bandwidth by region,
highlighting countries on a map, corresponding with the origin of the requests.
You can select any continent or country to drill down further into the selected
region. The health tab shows statistics about status codes, caching, API response
time, and Service response time. Finally, the activity tab shows more detailed
information about requests by developers, on products, by subscriptions, for
APIs, and on which operations.

More Info: Monitor Api Management

To learn more about how to monitor an API Management service

see https://docs.microsoft.com/azure/api-management/api-
management-howto-use-azure-monitor.

Customize the developer portal

The API Management developer portal is built on top of a content management
system (CMS), which gives you flexibility on ways you can customize its layout,
content, and styles. Because this is the portal through which developers discover,
subscribe to, and learn more about your APIs, you may wish to alter the look and
feel to more closely match your company’s website, or craft the experience for
your end users in general.

There are three different methods by which you can customize the developer
portal.

Edit static page content and layout elements

The layout of every page of the developer portal is based on small page elements
called widgets (Figure 4-84).

https://docs.microsoft.com/azure/api-management/api-management-howto-use-azure-monitor

FIGURE 4-84 The widget layout of the developer portal

The content area on the page is specific to an individual page’s contents. Any
Contents widget can be edited to modify that page’s content. The page layout
elements are comprised of the remaining widgets. Any edits made to these
layout widgets are applied to all pages within the portal.

To edit the contents of a layout widget, perform the following steps:

1. Navigate to your API Management service on the portal.
2. Select Publisher portal on the top of the overview blade.

3. Select Widgets on the left-hand menu, underneath the DEVELOPER
PORTAL section.

4. Select the widget you wish to edit, such as Banner.

5. The Edit Widget form allows you to select the zone for the widget, layer,
position, title, name (used for CSS), and its HTML.

6. Make changes as desired, and then click Save. You immediately see your
changes on the developer portal.
To edit the contents of a page, perform the following steps:

1. Navigate to your API Management service on the portal.

2. Select Publisher portal on the top of the overview blade.

3. Select Content on the left-hand menu, underneath the DEVELOPER
PORTAL section.

4. Select the page you wish to edit, such as Welcome.

5. The Edit Page form allows you change the page title, select whether you
wish to display the title on the front-end, and its HTML.

6. Make changes as desired, and then click Save. When you are satisfied with
your changes, click Publish Now to make those changes visible to
everyone. You immediately see your changes on the developer portal.

Using these tools, you can add new layout widgets, as well as new pages. Use
the Navigation area to create custom menu links or rearrange their order.

Customize the styling

Change the colors, fonts, spacing, and other styles by altering the style rules in
the developer portal. For instance, change the colors and fonts to match your
company’s website. To change these style rules, you need to be logged in to the
developer portal as an administrator. This requires opening the developer portal

from the pﬁblisher portal.
1.

Navigate to your API Management service on the portal.

2. Select Publisher portal on the top of the overview blade.
3.
4. On the developer portal, hover your mouse over the customization icon to

Select Developer portal from the top-right of the page.

display the customization toolbar (Figure 4-85), and then select Styles from
the toolbar.

APIS
TEMPLATES

A alcnme te
FIGURE 4-85 The customization toolbar in the developer portal

In the list of editable styles that appear, you can either look through the list
and change style values as you see fit, or click the Select An Element On
The Page button, and then select any element on the page to view only its
styles.

When you are finished making edits, click the Publish button at the bottom
of the customization toolbar. This will show a preview of your changes.
When satisfied, click the Publish Customizations button to make your
changes publicly available.

Customize using templates

Use templates to customize the system-generated developer pages, such as API
docs, user authentication, products, etc. Template markup uses the DotLiquid
syntax, based on Ruby’s Liquid markup, to alter the appearance and behavior of
the corresponding page. Dynamic content in the template is controlled through
tokenized strings. When you select a template to edit, there are three panes that
are displayed. The top pane is a preview of the corresponding page. On the
bottom left is the template editing pane where you edit the markup, and on the

bottom right is the template data pane. This pane serves as a guide to the data
model for the entities available in the selected template. You can reference the
template data when adding tokenized strings to the template beside it.

To edit templates, follow these steps:

W=

Navigate to your API Management service on the portal.
Select Publisher portal on the top of the overview blade.
Select Developer portal from the top-right of the page.

On the developer portal, hover your mouse over the customization icon to
display the customization toolbar, and then select Templates from the
toolbar.

Select the template you wish to edit from the list.

Alter the template markup, using the bottom-left template editing pane.
Here you can use a mix of HTML and tokenized strings. Reference the
template data to the right to view tokenized strings you can add to the
template, and the values they will display if you reference them. All
changes will update the preview pane on top in real time.

When finished editing, click the save icon in the template editing pane.

Saved templates can be published either individually, or all together. To
publish an individual template, click Publish in the template editor.

Click Yes to confirm and make your changes to the template live on the
developer portal.

More Info: Edit Static Page Content and Layout Elements

To learn more about editing static page content and layout
elements on the developer portal see
https://docs.microsoft.com/azure/api-management/api-management-

modify-content-layout.

More Info: Customize the Styling

For more information on how customize the styling of the
developer portal, see https://docs.microsoft.com/azure/api-
management/api-management-customize-styles.

https://docs.microsoft.com/azure/api-management/api-management-modify-content-layout
https://docs.microsoft.com/azure/api-management/api-management-customize-styles

More Info: Customize Using Templates

For more information on how to customize the developer portal

using templates see https://docs.microsoft.com/azure/api-
management/api-management-developer-portal-templates.

Skill 4.6: Implement Azure Functions and WebJobs

Azure Functions is a serverless compute service that enables you to run code on-
demand without having to explicitly provision or manage infrastructure. Use
Azure Functions to run a script or piece of code in response to a variety of events
from sources such as:

m HTTP requests

m Timers

= Webhooks

m Azure Cosmos DB

= Blob

m Queues

= Event Hub

When it comes to implementing background processing tasks, the main
options in Azure are Azure Functions and WebJobs. It is important to mention,
however, that Functions are actually built on top of WebJobs. The choice to use
one or the other really depends on the problem you are trying to solve. For
example, if you already have an app service running a website or a web API and

you require a background process to run in the same context, a WebJob makes
the most sense. Here are two examples that may drive you to using a WebJob:

m The Service Plan You want to share compute resources between the website
or API and the WebJob.

m Shared libraries The WebJob should share libraries that run the website or
API.

Otherwise, for situations where you want to externalize a process so that it
runs and scales independently from your web application or API environment, or
you are implementing an event handler in response to some external event (i.e., a
Webhook); Azure Functions are the more modern serverless technology to
choose.

https://docs.microsoft.com/azure/api-management/api-management-developer-portal-templates

More Info: Azure Functions

For a general references on Azure Functions see
https://docs.microsoft.com/en-us/azure/azure-functions/.

This skill covers how to:

= Create Azure Functions

m Implement a webhook function

= Create an event processing function

m Implement an Azure-connected function
m Integrate a Function with storage

m Debug a Function

m Design and implement a custom binding
m Implement and configure proxies

m Integrate with App Service Plan

Create Azure Functions

The Azure portal gives you a quick and easy way to create a functions app, add
functions based on a template and test the function.

Note: Visual Studio 2017

You can also develop, test, and publish functions using Visual
Studio 2017.

To create a function app in the portal follow these steps (Figure 4-86):

1. Navigate to the portal accessed via https://portal.azure.com.

2. Select New on the command bar.
3. Select Compute, and then Function App.
4

. Click Create and supply the app name, subscription, resource group,
hosting plan, location, and storage plan (if you select Consumption plan).

Note: Consumption Plans

https://docs.microsoft.com/en-us/azure/azure-functions/
https://portal.azure.com

Consumption plan means that resources are added
dynamically as required by your function.

Function App

Create

* App name

[sol-newfunctionapp 1:]
- ' .azurewebsites.net
* Subscription

Microsoft Azure Sponsorship bl

* Resource Group @
. P
® Create new O Use ex sting

sol-functionsski W

* Hosting Plan @

Consumption Plan w
* Location
South Central US v

* Storage @

® Create New 'O Select Existing
solnewfunctionapp W

Application Insights @ On [Off

FIGURE 4-86 The Create Function App blade

5. After a few minutes, the Functions App is created (Figure 4-87).

Function Apps

O Bearch l

<7 Function Apps

Al subscriplions

Location: Al bocations

Q

EE Function Apps
b <P sol-newfunctionapp HAME w

sal-neafunctionsgs

FIGURE 4-87 A new function app

More Info: Creating Functions with Azure Cli

You can also create functions using Azure CLI and from Visual
Studio. See these references at: https://docs.microsoft.com/en-
us/azure/azure-functions/functions-create-first-azure-function-azure-
cli and https://docs.microsoft.com/en-us/azure/azure-
unctions/functions-create-your-first-function-visual-studio.

Implement a Webhook function

Visual Studio provides a complete development and debugging environment for
Azure Functions with the addition of Azure Functions Extension. To create a
Webhook function using Visual Studio 2017, follow these steps:

1. Ensure you have the Functions App Visual Studio Extension installed first
(Figure 4-88).

Extensions and Updates ¥ =
4 pstalled Sort by: Mame: Ascending - search (Cirl+ 2 -
Al | Azure Data Lake and Stream Analytics Tools S Craatac by: Micresot
Controls L An integrated development environment for Azwe Data Lake and

Date Inetalled: 70/10,2017

Srream Analytics application dewslcoment
Termplites EE SRR e e Version: 15.0,30921.0
SDKs P Azure Functions and Web Jobs Tools [Dissble | + Autornatically update this extersion
Toals * " Tools for creating ard publishing Azire Functicns \ =
and Web Jobs l ® Ravert | 0 Festart Micresclt Vigial Studio as
F Online 4 administrator to changs this setting,
b Updates 2) ﬂ Bing Maps SDK for C¥, C++, or Visual Basic 0 11k & o b reariat
A Bing Maps contral that provsdes a mapping experience for varslan 150308150
© Roaming Extensicn Manager ‘Windows 8.1 Stone apps created using XABAL with C&, Ce s, or Vi

ﬂ Bing Maps SDK for JavaScript
& Bing Maps control that provsdes a magping expariance for

‘Windows 8.1 Store apps created with JavaSoript.
Cloud Explorer for Visual Studio 2017
Wiew your doud resources, inapect their properties. ard perform key

developer actians fram within Visual Sudia

BN Developer Analytics Tools
]

Talemertry search, CodeLens integration, and other toals far Scheduled For Install;
Application Insights. App deployment toals for Hockeyhpp. Hare
e Dotnet Extensions for Test Explorer SCRRRRIY EOR LR A
=3 Discover and sxecute tests for NET languages with Test Explarer Nare
Scheduled For Uninstall:
. Extensibility Message Bus ¢ Mane

| Close |

FIGURE 4-88 Azure Functions and WebJobs Tools

2. In the New Project dialog, expand Visual C# > Cloud node, select Azure

https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function-azure-cli
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-your-first-function-visual-studio

Functions, type a Name for your project, and click OK (Figure 4-89).

Meew Project

= s5s [i—

¥ Recent MET Frarmewark 4.6.1 = ot byt Defauly

i Installed Wi
ASP.MET Core ‘Wab Application Wisual C¥ Wy R

4 WYigual CF & template to create an Azure Function
‘Windows Universal (: > Azurs Functions Yisual C¥ projecd
Windows Classic Desktop
Wab
MET Core
MET Standard
MAndraoid
Cloud
Crags-Fatform
b s
Tesst

D

Service Fabiie Application Wisiial C¥
ASPMET Web Application [MET Framework] Wisual CH
Arure 'Weblab [MET Frarmewark] Wisual C¥

Azure Cloud Service Wisual C¥

Coddaw

Azure Resource Group Wisual C¥
[e

WCF
¥ Azure Data Lake
F Stream Analytics

¥ Crther Languages

Mot finding what you are leaking for?
Open Visual Studio Installer
Marme: sol-vi-funcliorsapp
Location: samplas), = Browse..

Salubion nams sol v -funciarsapp ._f_ Create directary for salutian

Create new Git repository

oK Cancel

FIGURE 4-89 Selecting Azure Functions from the New Project dialog

3. This creates a new Functions App in your subscription. You may have to
log in to the Azure portal to complete the process.

4. From Visual Studio, go to Solution Explorer, right-click the project node,
and select Add > New Item. Select Azure Function, and click Add.

5. From the New Azure Function dialog, select Generic WebHook, type the
function name, and click OK (Figure 4-90).

Mew Azure Function - GenericWebhookFunction

¥ Blob trigger

f Event Hub trigger

f Service Bus Topic trigger
I

_-" Senvice Bus Queue trigger

f GitHub WebHook

F OQuoue trigger

F Timar trigger

I Http trigger

I Hrtp trigger with pararmsaters

F 5AS woken

F Hatp PUT CRUD

F Hitp GET CRUD

OK Cancel

FIGURE 4-90 Selecting the type of Azure Function

This generates an initial implementation for your function. The
FunctionName attribute sets the name of your function. The
HttpTrigger(WebHookType = “genericJson”) attribute indicates the
message that triggers the function.

Click here to view code image

using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Host;
using Newtonsoft.Json;

using System.Net;

using System.Net.Http;

using System.Threading.Tasks;
namespace SolVsFunctionapp

{

public static class GenericWebhookFunction
{
[FunctionName("GenericWebhookFunction")]
public static async Task<object>
Run([HttpTrigger (WebHookType =
"genericJson")]HttpRequestMessage req, TraceWriter log)

{
log.Info($"Webhook was triggered!");

string jsonContent = await
req.Content.ReadAsStringAsync();

dynamic data =
JsonConvert.DeserializeObject(jsonContent);

if (data.first == null || data.last == null)
{

return req.CreateResponse(HttpStatusCode.BadRequest,

new
{
error = "Please pass first/last properties in the
input
object"
3);
}
return req.CreateResponse(HttpStatusCode.OK, new
{
greeting = $"Hello {data.first} {data.last}!"
3);
}
}
}

7. You ran run the function from Visual Studio directly using Azure
Functions Tools. Press F5 to run. If prompted, accept the download and
install Azure Functions Core tools.

8. You can copy the URL of your function from the Azure Function runtime
output (Figure 4-91).

Http Functions:

Gener ichebhookFunction: hi

lebugger listening on [:: Bod

FIGURE 4-91 The console output after running a Webhook function
from Visual Studio

9. You can now post a JSON payload to the function using any tool that an
issue HTTP requests to test the function.

Create an event processing function
To create an event processing function, please complete these steps:

1. Navigate to the portal accessed via https://portal.azure.com.

2. Go to your Function App, such as the one created in the previous section,
and click the + sign to create a new function (Figure 4-92).

https://portal.azure.com

sol-newfunctonapp o Crhvarney Platfarm features

4
i
E

Configured features

on app settings

FIGURE 4-92 The Function Apps blade where you can create a new
function

3. Select Timer and CSharp, and select Create This Function (Figure 4-93).

<P

Get started quickly with a premade function

1. Choose a scenario

/> ® S

Webhook + AP Timer Data processing

—fhoose a language
® csharp | JavaScript O Fsherp O Java

For PowerShell, Pythvon, and Batch, create your own custom function.

Create this function

FIGURE 4-93 The Function Apps blade where you can choose the type
of function

4. This creates a skeleton function that runs based on a timer. You can edit the

5.

function.json file to adjust settings for the function (Figure 4-94).

o

P onercionee % runco [[>]

All subscriptions 1 using System;
2
EE Furction Apot 3 public static woid Aun(TimerInfe myTimer, TraceWriter log)
Ay
3 - i - i - i P . I AT
N P o f } log.Info($"Cé# Timer trigger function executed at: {DateTime.Mow}™);
&
— 7
w == Functions =

w TimerTriggerCSharp1

_+ Integrate

£ Manage

Q Manitor
- EE Proxies (presiew) +
3 EE Slots [preview) +

FIGURE 4-94 A new timer-based function

You can view the output of the function and any logs emitted as it executes.

Implement an Azure-connected function
To create an Azure-connected function using Azure Queues, follow these steps:

1.
2.

Navigate to the portal accessed via https://portal.azure.com.

Go to your Function App, such as the one used in the previous section, and
click the + sign to create a new function.

Select QueueTrigger - C#, provide a name for the function, provide the
name of the queue and the storage account that it belongs to. Click Create
to create the function (Figure 4-95).

https://portal.azure.com

Choose a template below or go 1o The quidkstan

£ “sol-newturdtanapp”

Language: Al Scananied Core
All subscriptions
EE Functian Apps HipTngger - Ca HitpTrigger - Fo HittpTrigger - JavaSeripd TimesTrigger - {8
pra A C® function thal vl be run AnFE fnctien that will be nun A JawaSoript function that will A O functicn that will be run
w by sol-newfinctionsop &R = -
whenever it receiaes an HTTP wihenever i recesves an HTTP Bk FU WRENEVET I} TED0IVES AN an & specified sconedule
e reqiest request HTTP reguest
w = Fundtions +
w [TimerTrigoenCSharpd
¥ Integrate
© Manage TimerTrigger - F# TimurTriggar - JavaScriot QueueTriggar - CF CuaueTrigger - Fe
G, Monitar An Fa funciion that will be run A JovaScript funciion that widll A O function that will be run Ben F# function that will be nen
on A spedfied schadule be nan an a specified whEnEver 3 mesiage is acded ptenever 3 message is acded
—
w b= Proxies [preview) L o scheciule 12 a specified Azure Cueue o @ speciied Anare Qusue
Starage Etarage
b = Sots [previes) L 3
Marme your function
QueusTriggerCShand
Azure Cueue Starage trigger
Cueus namre Starage account connection € show walug

mycrieus-tems | Aretieniobsstonge s R

FIGURE 4-95 The setup for a QueueTrigger

A skeleton implementation for the function is created. This is triggered for
each message written to the specified queue (Figure 4-96).

using System; P

n |

2

3 public static void Run(string myQueueltem, TracelWiriter log)

a

5 log.Info($"C# Queue trigger function processed: {myQueueItem}”};
6 }

=

FIGURE 4-96 The code behind the QueueTrigger function

To complete the integration, create the storage account and queue that you
specified when creating the function. From the function app definition,
select the Integrate tab, and select the storage queue under Triggers.
Expand the Documentation link and enter the storage account name and

key. The function will use these credentials to connect to the storage
account (Figure 4-97).

D Seaseh 3 Acvanced sditor
Triggers @ Inputs @ Qutputs @
Al subseriptions
= Azure Cueue Sorage += New Input + New Dutput
1— Funition Apps (rvCueusifenm)
- sol-AEafunchionapn 2B
w = Funetians
w f QueueTrigpenCSharm
¥ Integrate Azure Queue Storage trigger = dewste
ﬂ Manage
i Mesiape parsmeter name B Clireie name 8
Q, Moo s tam MyTEUS- (e
p F TenerTriggesCSharpl
Storage socount conmect :ﬁe shaw value
* | Prouies preview] + Azure\Web/obsSiorge W R
» EE Shats {preveen +

= Documartation

Connecting to your Storage Account
Diowariliobd Efu'dlpu axplarer fnom hise: AP ElGrigeeplorer.oom
Conrett using thess credentialy

Account Name: | selaestunctanapp |
Account Key: | &
s T kR et i et |
B e [I a4
You can now view the blobs, gueves and fables associabed with This sborage binging.

Settings for storage queue trigger

= mase :The visiable name used in fundlion code for the quewe or the gueue message.
+ geeushiase : The name of the gueue to poll. For guéue naming nules, see Naming Gueues and Metadats,
crion © Thé name of Bn apgo satting that containg & slorage cannection siring. i you leeve cesnection empty, the trigger will

FIGURE 4-97 The 1ntegrat10n blade for setting up the storage queue trigger
credentials

To test the function, add a message to the queue. After a few seconds the
function log in the portal shows output from processing the message (Figure 4-
98).

Lons I Pause @ Clear [T)Copy logs «"Expand s

2017-198-21T12:33:57 Welcome, you are now connected to log-streaming service.

2017-19-21T12:34:27.646 Function started (Id=F36cfa3d3-az2a5-4ebb-97b7-bfaabdre2502)
2817-18-21T12:34:27.662 C# Queue trigger function processed: Test queue message

2017-19-21T12:34:27.662 Function completed (Success, Id=F36cfa33-a245-4ebb-97b7-bfaabd762502, Duration=2a

FIGURE 4-98 The log output for the function after processing a single
message

Integrate a function with storage
To create a function integrated with Azure Storage Blobs, follow these steps:

1. Navigate to the portal accessed via https://portal.azure.com.

2. Go to your Function App, such as the one used in the previous section, and
click the + sign to create a new function.

3. Select BlobTrigger - C#, provide a name for the function, provide the path
to the blob container item and the storage account that it belongs to. Click
Create to create the function (Figure 4-99).

https://portal.azure.com

O Smaren

Choose a template below or ge to the quickstart
AR subricripthans

Language: Al Seenaioy Care
= Function Apos R T L e AT T R R T
schedule o a specified Azune Queue 1o 8 spacified Azure Queue
Storege Storage
w ¥} sol-newfunctiorapp an i "
- E Functions +
w f QuewaTriggerCShangl
CueueTrigger - JavaSeript BloaTrigger - C# BiobTrigger - Fe BiobTrigger - lavaScript
¥ rntegrate
A Jevascript function that will A CF functicn that il be run An F= fgnclicn tha A JPAascriot function that wa
£ Manage b nun whenewer 2 messape i whenaver a blob (s added toa whenever 8 biob i sdded o be run wherever a blob is
added ta a specified Azure specified container Specifeed comtairer added 10 & spechied continer
0} Monier Quews Starage
b f TimerTriggerciharpl
—
w $= Prozies [previes) -+
» :'E Shate (orevies) + EventHunTrigger - Co EventHubTrigger - F& BventtiubTrigger - lavaScript SenvicefusCueypeTrigges - Co
A C# function that will be run An F# function that will be nun A JavaScript function that w mun
........... A el ik s R an sl hid Ty e pay A dat

Narme yaur functian

BlobTriggerCShampi

Azure Blob Storage trigger

Patn & Storage sccount canreciion L] show value

samples-workibems{rame} AzursilenlobsDiachbosnd o Aew

FIGURE 4-99 The setup for a BlobTrigger

4. A skeleton implementation for the function is created. This is triggered for

each blob written to the specified storage container (Figure 4-100).

run.csx » Run

public static void Run{Stream myBlob, string name, Tracelriter log) [

{

1
2
3 log.Info($"C# Blob trigger fumction Processed blob\n Name:{name} \n 5i
4
5

FIGURE 4-100 The code behind the BlobTrigger function

To complete the integration, create the storage account and blob container
that you specified when creating the function. From the function app
definition, select the Integrate tab, and select Azure Blob Storage under
Triggers. Expand the Documentation link, and enter the storage account

name and key. The function uses these credentials to connect to the storage
account (Figure 4-101).

wiunctionapp - BlobTriggerCSharp!

L Search & Advanced edito
riggers @ Inputs @ Ouiputs @
Al subscriptions
o, Axngre Blob Storage [myBlob) < M Input 4 Maw Sutput
== Function Apgps

- sol-newfunctionapp . I
Mo
w == Functions -+
w [BlobTriggeCSharpl f
Azure Blob Storage trigger = delee
¥ inbegrate
£ Manage Blab parameter name @ Patk oy
a myBlob samgies-warkitems,/Trama}
tioeifor
w f CueveTriggerCihanpl Storage account connection € share valug
AzureWeblobiDpanooand W N
¥ Inbegrale
£ Manage
O Monitor = Documentation
F F TmeTnggerCihanpl

Conmecting to your Storage Account
-
w 1= Prowges [previen) + Download Shorage explorer from Beres Mitpostorageenplorescom
Cormect using these credentials:

¥ EE Slots [pewview) =+
Acrount Name: I solrgwiunciaonang |
s | e D
EU""‘.‘.“W stl'iﬂu' i R LR TR RN T R LR T L R T R R R R PR LR R TR LR Ty t] | ﬂ'l‘
You can now view bhe Blabd, quesss snd 1ables sdocised with his sbarage binding
Settings for storage blob trigger
» nasc ! Tre varialble name used In function code for the Dlab.
FIGURE 4-101 The integration blade for setting up the blob trigger
credentials

6. To test the function, add a file to the blob container. After a few seconds
the function log in the portal shows output from processing the message, as
illustrated in the previous section for Azure storage queues.

Design and implement a custom binding

Function triggers indicate how a function is invoked. There are a number of
predefined triggers, some already discussed in previous sections, including:

m HTTP triggers

m Event triggers

m Queues and topic triggers
m Storage triggers

Every function must have one trigger. The trigger is usually associated with a
data payload that is supplied to the function. Bindings are a declarative way to
map data to and from function code. Using the Integrate tab (as shown in
previous sections to connect a Queue to a function, for example) you can provide
connection settings for such a data binding activity.

More Info: Triggers and Bindings

For additional details on triggers and bindings available to Azure
Functions, and how they work, see https://docs.microsoft.com/en-
us/azure/azure-functions/functions-triggers-bindings.

)

Exam Tip

You can also create custom input and output bindings to assist with
reducing code bloat in your functions by encapsulating reusable,
declarative work into the binding. For details on how to implement
custom bindings see https://github.com/Azure/azure-webjobs-

sdk/wiki/Creating-custom-input-and-output-bindings.

Debug a Function

You can use VS Code or Visual Studio 2017 to debug an Azure Function. For
more information on working with local Functions projects and local debugging,
see: https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local.

Implement and configure proxies

If you have a solution with many functions you’ll find it can become work to
manage given the different URLs, naming, and versioning potentially related to
each function. An API Proxy acts as a single point of entry to functions from the
outside world. Instead of calling the individual function URLSs, you provide a
proxy as a facade to your different function URLs.

Note: Api Proxies

API Proxies make sense in HTTP-bound Azure Functions. They

https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://github.com/Azure/azure-webjobs-sdk/wiki/Creating-custom-input-and-output-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local

may work for other event-driven functions, however, HTTP
triggers are best suited for their functionality. In addition, API
Proxies are in preview at the time of this writing and do not include
any security features. As an alternative, you can use API
Management for a fully featured solution.

To create a simple API Proxy, follow these steps (Figure 4-102):

1. Consider an existing function that includes the function code (API key) and
any query string parameters in the URL such as the following example:

Click here to view code image

https://sol-newfunctionapp.azurewebsites.netapi
AirplanesApi?
code=N8eJPFEkD1Mk0eQngOgRsaLVxeHRQ4QcxacFRdALtMDBdak3eeN/
kNQ==£1d=0099991

2. API proxies require two important pieces of information:

A. The Route Template Provides a template of how the proxies are
triggered, for example a REST-compliant API path that removes the
need for the function code and query string parameters:

apiairplanes/86327

B. The Backend URL The function URL to match to.

New proxy
Mame

AplProoy

Route template Allowed HTTP methods

apiffresthHid} All methods b
Backend URL

pp.azurewebsitesnet/aplfAirplanesApiicode=NEeJPFERKDIMRCeOngOgReaLVIeHROQ4 OO FRILIMDEBg 2k 3eeN/RNO = =&id=0099991

+ Request override

4 Response override

FIGURE 4-102 The settings while creating a new API proxy

. Update the Backend URL too so that it uses the variables provided in the
route template.
Click here to view code image

https://sol-newfunctionapp.azurewebsites.netapi{rest}Api?
code=q/vTyTawdwTzyFuY16wuMOnNUPEhJLzZRFgQKRDXaChGz3/HzSOmyMaNw==&id=

{id}.

. When you request the URL, the variables in the route template (i.e., {rest}
and {id}) are replaced with whatever is passed in the request. For example,
this URL:

Click here to view code image

https://sol-newfunctionapp.azurewebsites.netapiairplanes/3434

Routes to this URL:

Click here to view code image

https://sol-newfunctionapp.azurewebsites.netapiairplanesApi?code=q/
vTyTawdwTzyFuY16wuMOnUPEhJLZRFQKRDXaChGz3/HzSOmyMaNw==&1d=3434

)

Exam Tip

API proxies have the ability to modify the requests and responses
on the fly.

More Info: Api Proxies

For more details about API Proxies see
https://docs.microsoft.com/en-us/azure/azure-functions/functions-

proxies.

Integrate with App Service Plan
Functions can operate in two different modes:

= Consumption Plan Where your function is allocated dynamically to the
amount of compute power required to execute under the current load.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-proxies

= App Service Plan Where your function is assigned a specific app service
hosting plan and is limited to the resources available to that hosting plan.

For more information about the difference between Consumption and App
Service Plans see: https://docs.microsoft.com/en-us/azure/azure-
functions/functions-scale. For more information about setting up an App Service
Plan see: https://docs.microsoft.com/en-us/azure/app-service/azureweb-sites-
web-hosting-plans-in-depth-overview.

Skill 4.7: Design and Implement Azure Service Fabric apps

Azure Service Fabric is a platform that makes it easy to package, deploy, and
manage distributed solutions at scale. It provides an easy programming model
for building microservices solutions with a simple, familiar, and easy to
understand development experience that supports stateless and stateful services,
and actor patterns. In addition, to providing a packaging and deployment
solution for these native components, Service Fabric also supports the
deployment of guest executables and containers as part of the same managed and
distributed system.

The following list summarizes these native and executable components:

m Stateless Services Stateless Fabric-aware services that run without managed
state.

m Stateful Services Stateful Fabric-aware services that run with managed state
where the state is close to the compute.

m Actors A higher level programming model built on top of stateful services.

m Guest Executable Can be any application or service that may be cognizant
or not cognizant of Service Fabric.

m Containers Both Linux and Windows containers are supported by Service
Fabric and may be cognizant or not cognizant of Service Fabric.

This skill provides an overview of the Service Fabric programming
experience.

More Info: Service Fabric Overview

For an overview of Service Fabric see https://docs.microsoft.com/en-
us/azure/service-fabric.

This skill covers how to:

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/app-service/azure-web-sites-web-hosting-plans-in-depth-overview
https://docs.microsoft.com/en-us/azure/service-fabric

m Create a Service Fabric application

= Add a web front end to a Service Fabric application

= Build an Actors-based service

m Monitor and diagnose services

m Deploy an application to a container

= Migrate apps from cloud services

m Scale a Service Fabric app

m Create, secure, upgrade, and scale Service Fabric Cluster in Azure

Create a Service Fabric application

A Service Fabric application can consist of one or more services. The
application defines the deployment package for the services, and each service
can have its own configuration, code, and data. A Service Fabric cluster can host
multiple applications, and each has its own independent deployment and upgrade
lifecycle.

More Info: Service Fabric Applications

The following reference has additional information about the
Service Fabric application and related concepts at
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
application-model.

In this skill you create a new Service Fabric application that has a stateful
service. This service is reachable via RPC and is called by a web front end
created in the next section. The service is called Lead Generator and returns the
current count for the number of leads that have been generated and persisted
with the service. Figure 4-103 illustrates the service endpoint.

Simulator

Stateful
Service

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-model

FIGURE 4-103 A simple stateful service endpoint supporting RPC
communication

To create a new Service Fabric application, follow these steps:

1.
2.

Launch Visual Studio, and then select File > New > Project.

In the New Project dialog, select Service Fabric Application within the
Cloud category. Provide a name and location for your new project, nd then
click OK. In this example the name is LeadGenerator (Figure 4-104).

B Microsoft.ServiceFabric.Services. Remoting by Microsaft, 236K downleads v28219

This package contains the Service Framewerk Remeting APls for building and connecting to reliable services
on Microsoft Service Fabric,

FIGURE 4-104 The New Project dialog where you can select Service
Fabric Application as the project type

Select Stateful Service from the list of service templates and provide a
name, LeadGenerator.Simulator as shown here.

Mew Project 1 *

b Recent .MET Framewerk 461 = | Sort by Default = 3= Search [CHi+E)

4 |nztalled -
f { _,5 Azure Functions Visual C# Type: Visual C#

& Visual C# A preject template for cma:ing an alw:r,'s

Windows Universal @ ASP.NET Core Web Application Visual C¥ an, scalakle, distributed application with
_ Micresoft Azure Service Fabric.

Windows Classic Desktop

Web

Office,/SharePoint

MNET Core

@
@J
o
o

Service Fabric Application Vigual C#

ASP.MET Web Application [MNET Framewaork) Wigual C#
Cloud Azure Weblob (NET Framework] Visual C#
Tast
WCF
[Warkflow
E Azune Data Lake

F Stream Analytics

Azure Cloud Service Visual C#

Azure Resource Group Visual C#

B Other Languages
b Other Project Types

b Cnline

Not finding what you are laoking for?

Opaen Visual Studio Instafles

MNama: :lndt':nnnratul‘: |
Location: o BookC ode =3 Browsa,,

Solution namae: LeadGenerator [+] create directory for salution

[create new Git repasitory

| | QK Cancel

FIGURE 4-105 The New Service Fabric Service dialog where you can
select Stateful Service as the service template

4.

From Solution Explorer, expand the new LeadGenerator.Simulator node
and expand the PackageRoot folder where you’ll find ServiceManifest.xml.
This file describes the service deployment package and related information.
It includes a section that describes the service type that is initialized when
the Service Fabric runtime starts the service:

Click here to view code image

<ServiceTypes>

<StatefulServiceType ServiceTypeName="SimulatorType"
HasPersistedState="true" />
</ServiceTypes>

A service type is created for the project; in this case the type is defined in
the Simulator.cs file. This service type is registered when the program
starts, in Program.cs, so that the Service Fabric runtime knows which type
to initialize when it creates an instance of the service.

Click here to view code image

private static void Main()
{
try
{
ServiceRuntime.RegisterServiceAsync("SimulatorType",
context => new
Simulator(context)).GetAwaiter().GetResult();
ServiceEventSource.Current.ServiceTypeRegistered(Process.
GetCurrentProcess().Id,
typeof(Simulator).Name);
Thread.Sleep(Timeout.Infinite);

}

catch (Exception e)

{
ServiceEventSource.Current.ServiceHostInitializationFailed(e
throw;

}

}

The template produces a default implementation for the service type, with a
RunAsync method that increments a counter every second. This counter
value is persisted with the service in a dictionary using the StateManager,
available through the service base type StatefulService. This counter is
used to represent the number of leads generated for the purpose of this
example.

Click here to view code image

protected override async Task RunAsync(CancellationToken
cancellationToken)

{
var myDictionary = await
this.StateManager.GetOrAddAsync<IReliableDictionary<s
tring, long>>("myDictionary");
while (true)
{
cancellationToken.ThrowIfCancellationRequested();
using (var tx = this.StateManager.CreateTransaction())
{
var result = await myDictionary.TryGetValueAsync(tx,

"Counter");
ServiceEventSource.Current.ServiceMessage(this.Context,

"Current
Counter Value: {0}",
result.HasValue ? result.Value.ToString() : "Value
does not
exist.");

await myDictionary.AddOrUpdateAsync(tx, "Counter", O,
(key, value)
=> ++value);

await tx.CommitAsync();

}

await Task.Delay(TimeSpan.FromSeconds(1),
cancellationToken);

}
}

This service will run, and increment the counter as it runs persisting the
value, but by default this service does not expose any methods for a client
to call it. Before you can create an RPC listener you add the required nuget
package, Microsoft.ServiceFabric.Services.Remoting.

Create a new service interface using the IService marker interface from the
Microsoft.ServiceFabric.Services.Remoting namespace, that indicates this
service can be called remotely:

Click here to view code image

using Microsoft.ServiceFabric.Services.Remoting;
using System.Threading.Tasks;
public interface ISimulatorService : IService

{
Task<long> GetLeads();

}

Implement this interface on the Simulator service type, and include an
implementation of the GetLeads method to return the value of the counter:

Click here to view code image
public async Task<long> GetlLeads()

{

var myDictionary = await
StateManager .GetOrAddAsync<IReliableDictionary<stri
ng, long>>("myDictionary"),

using (var tx = StateManager.CreateTransaction())

{

var result = await myDictionary.TryGetValueAsync(tx,

"Counter");
await tx.CommitAsync();
return result.HasValue ? result.value : 0;

}

10. To expose this method to clients, add an RPC listener to the service.
Modify the CreateServiceReplicaListeners() method in the Simulator
service type implementation, to add a call to
CreateServiceReplicaListeners() as shown here:

Click here to view code image

protected override IEnumerable<ServiceReplicalistener>

CreateServiceReplicalisteners() {
yield return new ServiceReplicalistener(this.

CreateServiceRemotinglListener);

}

More Info: Service Fabric Communication

For more information related to setting up listeners for Service
Fabric stateful services see https://docs.microsoft.com/en-
us/azure/service-fabric/service-fabric-reliable-services-
communication.

Add a web front end to a Service Fabric application

The previous section reviewed creating a simple stateful service that returns the
value of a counter over RPC. To illustrate calling this service from a client
application, this section reviews how to create a web front end and call a stateful
service endpoint, as illustrated in Figure 4-106.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-communication

fGaetleads

Simulator

HTTE Listener 3 : _ RPC Listener

FIGURE 4-106 An HTTP listener-based web app calling a stateful service
over RPC

Follow these steps to add a web app to an existing Service Fabric application:

1. From the Solution Explorer in Visual Studio, expand the Service Fabric
application node. Right-click the Services node, and select New Service
Fabric Service (Figure 4-107).

m Solution ‘LeadGenerator’ (2 projects)
4 AP LeadGenerator

Mew Service Fabric Service...

Existing Service Fabric Service in Solution... Scope to This

—

; Mew Solution Explorer View

| packages.config
4 T LeadGenerator.WebApp
&% Connected Services
[=8 Dapendencies

FIGURE 4-107 The context menu for adding a new Service Fabric
service to the existing application services

2. From the New Service Fabric Service dialog, select Stateless ASP.NET
Core for the service template. Supply the service name
LeadGenerator.WebApp, and click OK (Figure 4-108).

http://ASP.NET

Mew Service Fabric Service X

Select a Template:

A project template for creating a stateless reliable
senvice with ASP.NET Core. Use a stateless service if

your service has no persistent state or if you intend to
ﬁ ﬁ ﬁ Q Q Q manage state in an external store, such as Azure

DocumentDB or a S0L database

Service Templates

Srateless Stateful Actor Service Guest Container Stateless
Service Service Executable ASPMNET

Care

Stateful
ASP MET
Core

Getting Started Sample
Additional Samples
Service Mame:

LeadGenerator. Weblpp

QK | Cancel

FIGURE 4-108 The New Service Fabric Service dialog where you can
choose the Stateless ASP.NET Core template

. From the New ASP.NET Core Web Application dialog select Web
Application (Model-View-Controller) template. Click OK.

. From Solution Explorer, expand the new LeadGenerator.WebApp node,
and expand the PackageRoot folder where you’ll find ServiceManifest.xml.
Alongside the service type definition there is a section that describes the
HTTP endpoint where the web app will listen for requests:

Click here to view code image

<Endpoints>"

<Endpoint Protocol="http" Name="ServiceEndpoint" Type="Input"
Port="8168" />
</Endpoints>

. The new WebApp type is defined in WebApp.cs, which inherits
StatelessService. For the service to listen for HTTP requests, the
CreateServicelnstanceListeners() method sets up the WebListener as shown
in this listing for the type:

http://ASP.NET
http://ASP.NET

Click here to view code image

internal sealed class WebApp : StatelessService

{

public WebApp(StatelessServiceContext context) : base(context)
{1

protected override IEnumerable<ServiceInstancelListener>
CreateServiceInstancelListeners()

{

return new ServiceInstancelListener([]
{
new ServicelInstancelListener(serviceContext =>
new WebListenerCommunicationListener(serviceContext,
"ServiceEndpoint", (url, listener) =>

{
ServiceEventSource.Current.ServiceMessage(serviceCor
$"Starting WebListener on {url}");
return new WebHostBuilder().UseWebListener ()
.ConfigureServices(services =>
services
.AddSingleton<StatelessServiceConte>
(serviceCon
text))
.UseContentRoot(Directory.GetCurrentDire
.UseStartup<Startup>()
.UseApplicationInsights()
.UseServiceFabricIntegration(listener,
ServiceFabricIntegrationOptions.None)
.UseUrls(url)
.Build();
1))
iy

}
}
Next you call the stateful service that returns the leads counter value, from the

stateless web application just created.

1. Make a copy of the service interface defined for the service type, in this
case ISimulatorService:

Click here to view code image

public interface ISimulatorService : IService

{
Task<long> GetLeads();

}

2. Modify the ConfigureServices instruction in WebApp.cs to inject an
instance of the FabricClient type (change shown in bold):

Click here to view code image

return new WebHostBuilder().UseWebListener ()
.ConfigureServices(services => {
services
.AddSingleton<StatelessServiceContext>(serviceContext)
.AddSingleton(new FabricClient());

})

3. Now that FabricClient is available for dependency injection, modify the
HomeController to use it:
Click here to view code image

private FabricClient _fabricClient;
public HomeController(FabricClient client) { _fabricClient =
client; }

4. Modify the Index method in the HomeController to use the FabricClient
instance to call the Simulator service:

Click here to view code image

public async Task<IActionResult> Index()
{
ViewData['"Message"] = "Your home page.";
var model = new Dictionary<Guid, long>();
var serviceUrl = new Uri("fabric:/LeadGenerator/Simulator");
foreach (var partition in await
_fabricClient.QueryManager.GetPartitionListAsync(serviceUrl))

{
var partitionKey = new ServicePartitionKey
(((Int64RangePartitionInformation)partition.PartitionInformation). Lc
var proxy = ServiceProxy.Create<ISimulatorService>
(serviceUlrl,
partitionKey);
var leads = await proxy.GetlLeads();
model.Add(partition.PartitionInformation.Id, leads);

}

return View(model);

}
5. Update Index.cshtml to display the counter for each partition:
Click here to view code image

@model IDictionary<Guid, long>
<h2>@viewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>
<table class="table-bordered">
<tr>
<td>PARTITION ID</td>

<td># LEADS</td>
</tr>
@foreach (var partition in Model)

{

<tr>
<td>@partition.Key.ToString()</td>
<td>@partition.Value</td>

</tr>

}
</table>

. To run the web app and stateful service, you can publish it to the local
Service Fabric cluster. Right-click the Service Fabric application node from
the Solution Explorer and select Publish. From the Publish Service Fabric
Application dialog, select a target profile matching one of the local cluster
options, and click Publish (Figure 4-109).

Publish Service Fabric Application X

Target profile:
PublishProfilesiLocal. SNode.xml \'

Connection Endpoint:
Local Cluster 0

@ Advanced Connection Parameters
How to configure secure connections

Application Parameters File:

ApplicationParameters\Local 5SNodexml 2 Edlit...

[] Upgrade the Application

Configure Upgrade Settings

‘Manifest\-’ersions... [Publish l Cancel

FIGURE 4-109 The Publish Service Fabric Application dialog

. Once the application is deployed, you can access the web app at
http://localhost:8162 (or, whatever the indicated port is in the service
manifest for the web app. The home page triggers a call to the stateful
service, which will increment as the counter is updated while it runs.

http://localhost:8162

Build an Actors-based service

The actor model is a superset of the Service Fabric stateful model. Actors are
simple POCO objects that have many features that make them isolated,
independent unit of compute and state with single-thread execution.

To create a new Service Fabric application based on the Actor service
template, follow these steps:
1. Launch Visual Studio, then select File > New > Project.

2. In the New Project dialog, select Service Fabric Application within the
Cloud category. Provide a name and location for your new project, and
then click OK.

3. Select Actor Service from the list of service templates and provide a name,
such as SimpleActor.

4. This generates a default implementation of the Actor Service.

MORE INFO: Service Fabric Reliable Actors

For more information on the implementation of the actor pattern
in Service Fabric see https://docs.microsoft.com/en-us/azure/service-
fabric/service-fabric-reliable-actors-introduction.

Monitor and diagnose services

All applications benefit from monitoring and diagnostics to assist with
troubleshooting issues, evaluating performance or resource consumption, and
gathering useful information about the application at runtime. For more
information about Service Fabric specific approaches to this, see
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-
overview.

Deploy an application to a container

Service Fabric can run processes and containers side by side, and containers can
be Linux or Windows based containers. If you have an existing container image
and wish to deploy this to an existing Service Fabric cluster, you can follow
these steps to create a new Service Fabric application and set it up to deploy and
run the container in your cluster:

1. Launch Visual Studio, nd then select File > New > Project.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-overview

2. In the New Project dialog, select Service Fabric Application within the
Cloud category. Provide a name and location for your new project, and
then click OK.

3. From the New Service Fabric Service dialog, choose Container for the list
of templates and supply a container image and name for the guest
executable to be created (Figure 4-110).

Mew Service Fabric Service

Select a Template:
A service termplate for adding a guest container. Use a
guest container to leverage the portability, secunty, and

: : : : : : isolation of a Docker image as a stateless service.
Learn More

Stateless Stateful Actor Senvice Guest Container Stateless

Service Templates

Service Service Executable ASP.MET et ams:
Core microsoftfiis:nanoserver
I The local cluster cannot nun guest containers
because it requires Windows Zerver 2016,
Stateful Setup a machine for containers
ASPMNET
W Core

Getting Started Sample
Additional Samples
Service Mame:

115Guest

| (8] 4 | | Cancel |

FIGURE 4-110 The New Service Fabric Service dialog with Container
selected, and an image name specified

4. From Solution Explorer, open the ServiceManifest.xml file and modify the
<Resources> section to provide a UriScheme, Port and Protocol setting for
the service endpoint.

Click here to view code image

<Resources>
<Endpoints>
<Endpoint Name="IISGuestTypeEndpoint" UriScheme="http"
Port="80"
Protocol="http"/>

</Endpoints>
</Resources>

5. From Solution Explorer, open the ApplicationManifest.xml file. Create a
policy for container to host <PortBinding> policy by adding this <Policies>
section to the <ServiceManifestiImports> section. Indicate the container
port for your container. In this example the container port is 80.

Click here to view code image

<ServiceManifestImport>
<ServiceManifestRef ServiceManifestName="IISGuestPkg"
ServiceManifestVersion="1.0.0" />
<ConfigOverrides />
<Policies>
<ContainerHostPolicies CodePackageRef="Code">
<PortBinding ContainerPort="80"
EndpointRef="IISGuestTypeEndpoint"/>
</ContainerHostPolicies>
</Policies>
</ServiceManifestImport>

6. Now that you have the application configured, you can publish and run the
service.

)

Exam Tip

Currently, you cannot run containers in the local Service Fabric
cluster because it requires Windows Server 2016 with container
support.

More Info: Windows Containers

For more information regarding working with Windows containers
both locally and in Windows Server environments see
https://docs.microsoft.com/en-
us/virtualization/windowscontainers/index.

Migrate apps from cloud services
You can migrate your existing cloud services, both web and worker roles, to

https://docs.microsoft.com/en-us/virtualization/windowscontainers/index

Service Fabric applications following instructions in the following reference at
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cloud-
services-migration-worker-role-stateless-service.

Scale a Service Fabric app

In order to scale a Service Fabric app, the following terms are important to
understand: Instances, Partitions, and Replicas.

By default, the Service Fabric tooling produces three publish profiles that you
can use to deploy your application:

m Local.1Node.xml To deploy against the local 1-node cluster.
m Local.5Node.xml To deploy against the local 5-node cluster.
® Cloud.xml To deploy against a Cloud cluster.

These publish profiles indicate the settings for the number of instances and
partitions for each service. Consider this example of the parameters to a
Local.5Node.xml:

Click here to view code image

<Parameters>
<Parameter Name="WebApp_InstanceCount" Value="3" />
<Parameter Name="Simulator_PartitionCount" Value="3" />
<Parameter Name="Simulator_MinReplicaSetSize" Value="3" />
<Parameter Name="Simulator_TargetReplicaSetSize" Value="3" />
</Parameters>

= WebApp_InstanceCount Specifies the number of instances the WebApp
service must have within the cluster.

m Simulator_PartitionCount Specifies the number of partitions (for the
stateful service) the Simulator service must have within the cluster.

= Simulator_MinReplicaSetSize Specifies the minimum number of replicas
required for each partition that the WebApp service should have within the
cluster.

» Simulator_TargetReplicaSetSize Specifies the number of target replicas
required for each partition that the WebApp service should have within the
cluster.

Consider the following diagram illustrating the instances and partitions
associated with the stateless Web App and stateful simulator service, as shown
in the Local.5Node.xml configuration (Figure 4-111).

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cloud-services-migration-worker-role-stateless-service

- Lead Generator Web App
Instanse 1

Faititios
Lead Generator Web dpp Partsiion key Lead Ganerator Smulster
imitanca 1 =1 Partitinn 1
Load Balancer " Luad Genarator Web App wratar Smul
Instance 3

FIGURE 4-111 The instances for a stateless service, and partitions for a
stateful service

= The Web App instance count is set to 3. As the diagram illustrates, when
published to a Service Fabric cluster in Azure requests would be load
balanced across those three instances.

m The Simulator service is assigned three partitions, each of which have
replicas to ensure durability of each instance’s state.

0

Exam Tip

Sometimes the terms instances and replicas are used
interchangeably, however, instances are for stateless services
whereas replicas are for stateful services.

Create, secure, upgrade, and scale Service Fabric Cluster in
Azure

To publish your Service Fabric application to the Azure in production, you’ll
create a cluster, learn how to secure it, learn how to upgrade applications with
zero downtime, and configure the application to scale following some of the
practices already discussed. The following references will start you off with
these topics:

m For an introduction to creating a Service Fabric Cluster see:
m https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-
started-azure-cluster
m https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
deploy-anywhere
m For details on securing Azure Service Fabric Clusters in production, see this
reference:

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started-azure-cluster
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-deploy-anywhere

m https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
cluster-security

m For details on upgrading clusters, see this reference:

m https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
cluster-upgrade

® You can scale clusters manually or programmatically as described in these
references:

m https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
cluster-scale-up-down

m https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
cluster-programmatic-scaling

Skill 4.8: Design and implement third-party Platform as a Service
(PaaS)

Azure supports many third-party PaaS offerings and services through the Azure
Marketplace. These can be deployed through the Azure portal, using ARM, or
using other CLI tools. This skill helps you navigate those offerings.

This skill covers how to:

» Implement Cloud Foundry

» Implement OpenShift

m Provision applications by using Azure Quickstart Templates

m Build applications that leverage Azure Marketplace solutions and
services

Implement Cloud Foundry

Cloud Foundry is an open-source PaaS for building, deploying, and operating
12-factor applications developed in various languages and frameworks. It is a
mature container-based application platform allowing you to easily deploy and
manage production-grade applications on a platform that supports continuous
delivery and horizontal scale, and supports hybrid and multi-cloud scenarios.

There are two forms of Cloud Foundry available to run on Azure:

= Open-source Cloud Foundry (OSS CF) An entirely open-source version of
Cloud Foundry managed by the Cloud Foundry Foundation.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-security
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-upgrade
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-scale-up-down
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-programmatic-scaling

m Pivotal Cloud Foundry (PCF) An enterprise distribution of Cloud Foundry

from Pivotal Software Inc., which adds on a set of proprietary management
tools and enterprise support.

More Info: Azure Service Principals

Before you can create a Cloud Foundry cluster in Azure you must
first create an Azure Service Principal, following the instructions
found at: https://github.com/cloudfoundry-incubator/bosh-azure-cpi-
release/blob/master/docs/get-started/create-service-principal.md.

To deploy a basic Pivotal Cloud Foundry on Azure from the Azure
Marketplace, follow these steps:

1.
2.
3.

Navigate to the portal accessed via https://portal.azure.com.

Select Marketplace from the Azure Dashboard.

Search for “Pivotal Cloud Foundry,” and select Pivotal Cloud Foundry On
Azure.

From within the Pivotal Cloud Foundry On Azure blade, click Create
(Figure 4-112).

On the Basics blade, provide a storage account name prefix, paste your
SSH public key, upload the azure-credentials.json Service Principal file,

enter the Pivotal Network API token, choose a resource group, and location
for the cluster. Click OK.

https://github.com/cloudfoundry-incubator/bosh-azure-cpi-release/blob/master/docs/get-started/create-service-principal.md
https://portal.azure.com

Create Pivotal Cloud Foundry on... X

" Storage Account Mame Prefix
B
‘I Basics } | — |
Configure basic settings
* S5H public key @
? ma AAAABINzaC 1 yc2 EAAAAEIDAANDEAZD
" - L OfdaC)8PedzkFmLED = Zj+ Xwicdtaddzew
* Cervice Principal
‘j “azure-credentialsjson” E
-

* Pivotal Metwork Token

Subscription
e

* Resource group
Fa= P T
® Create new L7 Use existing

CloudFaundry o
* Location

West US w

FIGURE 4-112 The selections for a new Pivotal Cloud Foundry cluster in
the portal

6. On the Summary blade, wait for the validation to pas,s and click OK.
7. On the Buy blade, click Purchase.

To deploy the open-sourced version of Cloud Foundry on Azure, you deploy
BOSH and then Cloud Foundry. The steps can be performed manually, or via
Azure Resource Manager (ARM) templates. Detailed instructions can be found
at https.//github.com/cloudfoundry-incubator/bosh-azure-cpi-
release/tree/master/docs.

More Info: SSH Keys

For more information about creating SSH keys for creating
clusters see: https://docs.microsoft.com/en-us/azure/virtual-
machines/linux/ssh-from-windows.

More Info: Deploying an App to Cloud Foundry

https://github.com/cloudfoundry-incubator/bosh-azure-cpi-release/tree/master/docs
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/ssh-from-windows

For more information about deploying apps to your Cloud
Foundry cluster see: https://docs.microsoft.com/azure/virtual-

machines/linux/cloudfoundry-deploy-your-first-app.

Implement OpenShift

The OpenShift Container Platform is a PaaS offering from Red Hat built on
Kubernetes. It brings together Docker and Kubernetes, and provides an API to
manage these services. OpenShift simplifies the process of deploying, scaling,
and operating multi-tenant applications onto containers.

There are two forms of OpenShift that you can deploy to Azure:
m The open-source OpenShift Origin
m The enterprise-grade Red Hat OpenShift Container Platform

Both are built on the same open source technologies, with the Red Hat
OpenShift Container Platform offering enterprise-grade security, compliance,
and container management.

Prerequisites for installing both forms of OpenShift include:

1. Generate an SSH key pair (Public / Private), ensuring that you do not
include a passphrase with the private key.

2. Create a Key Vault to store the SSH Private Key.

3. Create an Azure Active Directory Service Principal.

4. Install and configure the OpenShift CLI to manage the cluster.

Some specific prerequisites for deploying Red Hat OpenShift Container
Platform include:

5. OpenShift Container Platform subscription eligible for use in Azure. You
need to specify the Pool ID that contains your entitlements for OpenShift.

6. Red Hat Customer Portal login credentials. You may use either an
Organization ID and Activation Key, or a Username and Password. It is
more secure to use the Organization ID and Activation Key.

You can deploy both from the Azure Marketplace templates, or using ARM
templates.

To deploy Red Hat OpenShift Container Platform on Azure from the Azure
Marketplace, perform the following steps (Figure 4-113):

1. Navigate to the portal accessed via https://portal.azure.com.

https://docs.microsoft.com/azure/virtual-machines/linux/cloudfoundry-deploy-your-first-app
https://portal.azure.com

. Select Marketplace from the Azure Dashboard.

. Search for “OpenShift,” and select Red Hat OpenShift Container Platform
(BYOL).

. From within the Red Hat OpenShift Container Platform (BYOL) blade,
click Create.

. On the Basics blade, provide the VM Admin user name, paste the SSH

public key, choose a resource group and location for the platform. Click
OK.

Create Red Hat OpenShift Conta...

* Y Admin User Name @

Basics >)
. ! ! clusteradmin
Configure basic settings

* S2H Public Key for VM Admin User @
qze0GhYxELelgZnc 1S VLALIFUVEGYM ~

;’5 > tATMouYV2IhOMKBU T YwiUd2jM+ngzk
e 8Fg+Dd8n0BzbalQ== rsa-key- -
Subscription

* Resource group

& Create new Use existing
4. ; Cpanshift o]
* Location
Weest US 2 W

|y n
-

FIGURE 4-113 The selections in the Basics blade for a new Red Hat
OpenShift Container Platform

. On the Infrastructure Settings blade, provide an OCP cluster name prefix,
select a cluster size, provide the resource group name for your Key Vault,
as well as the Key Vault name and its secret name you specified in the
prerequisites. Click OK (Figure 4-114).

Create Red Hat OpenShift Conta... X

Infrastructure Settings

1 Basics o
Done
2 Infrastructure Settings b3

{'Q|1Fi|:_|urr' Infrastruciure ﬁr-l!:ing-:

* OCP Chuster Mame Prefic @

ocpcluster

Openshift Cluster Size @

small |Med|um] Large

Medium Cluster Configuration &

1 Bastion Node of size Standard D52v2

3 Master Modes of size Standard DS53v2

2 Infra Modes of size Standard D53v2

4 App Nodes of size Standard D532

256 GB Data Disk for Docker Volume per VM
Total Cores Required: 38

* Key Vault Resource Group Name @

| OpenShift v |

* Kay Vault Name @
|_ osKY .,J

¥ Secret Mame @

|_ OpenShiftkey ,_.»]

FIGURE 4-114 The selections in the Infrastructure Settings blade for a
new Red Hat OpenShift Container Platform in the portal

On the OpenShift Container Platform Settings blade, provide an OpenShift
Admin user password, enter your Red Hat subscription manager
credentials, specify whether you want to configure an Azure Cloud
Provider, and select your default router subdomain. Click OK (Figure 4-

115).

Create Red Hat OpenShift Conta... X OpenShift Container Platfor.. B X

* DpenShift Admin User Password @
1 Basics W | z|
Done -
* Confirm OpenShift Admin User Password
— 7]
2 Infrastructure Settings v,
Done * Red Hat Subscription Manager User Mame @
| V]
3 Openshift Container Platform 5, > * Red Hat Subscription Manager User Password
Configure Openshift Container... o
/-E * Red Hat Subscription Manager Pool ID @
-T F & | _/|
Configure Azure Cloud Provider @
Yes | Mo
Default Router Subdomain @
nipio w

FIGURE 4-115 The selections in the- OpenShift Container Platform
Settings blade for a new Red Hat OpenShift Container Platform in the
portal

8. On the Summary blade, wait for the validation to pass, and click OK.
9. On the Buy blade, click Purchase.

More Info: Openshift Container Platform Prerequisites

For an alternative method to deploy the OpenShift Container
Platform using ARM templates instead of the marketplace, as well
as detailed steps to complete the prerequisites see

https://github.com/Microsoft/openshift-container-platform.

More Info: Deploying Openshift Origin on Azure

For step-by-step instructions on how to deploy OpenShift Origin
on Azure, including completing the prerequisites see
https://docs.microsoft.com/en-us/azure/virtual-
machines/linux/openshift-get-started.

https://github.com/Microsoft/openshift-container-platform
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/openshift-get-started

Provision applications by using Azure Quickstart Templates

Azure Quickstart Templates are community-contributed Azure Resource
Manager (ARM) templates that help you quickly provision applications and
solutions with minimal effort. You can search available Quickstart Templates in
the gallery located at https://azure.microsoft.com/resources/templates.

Resources that are deployed as part of a Quickstart template can be thought of
as related and interdependent parts of a single entity. ARM templates allow you
to deploy, update, or delete all of the resources within the solution in a single,
coordinated operation. You use a template for deployment and that template can
work for different environments such as testing, staging, and production, while
ensuring your resources are deployed in a consistent state.

Depending on the Quickstart Template you select, you will provide a set of
parameters that get passed into the deployment command.

You can deploy a Quickstart Template using one of these methods (based on
the example at https://azure.microsoft.com/resources/templates/101-hdinsight-
hbase-replication-geo):

1. Using PowerShell, use the New-AzureRmResourceGroupDeployment
cmdlet. You are prompted to supply values for the parameters. For
example:

Click here to view code image

New-AzureRmResourceGroupDeployment -Name <deployment-name> -
ResourceGroupName

<resource-group-name> -TemplateUri
https://raw.githubusercontent.com/azure/azure-
quickstart-templates/master/101-hdinsight-hbase-replication-
geo/azuredeploy.json

2. Using the Azure Command-Line Interface (CLI), use the group deployment
create command. You are prompted to supply values for the parameters.
For example:

Click here to view code image

azure config mode arm

azure group deployment create <my-resource-group> <my-deployment-
name> --template-

uri https://raw.githubusercontent.com/azure/azure-quickstart-
templates/master/101-
hdinsight-hbase-replication-geo/azuredeploy.json

https://azure.microsoft.com/resources/templates
https://azure.microsoft.com/resources/templates/101-hdinsight-hbase-replication-geo

3. Click the Deploy to Azure button, if provided. This opens a form for the
Quickstart template in Azure, allowing you to enter the parameter values
from within the portal (Figure 4-116).

geo replication

kstart temp |ate

TEMPLATE

mmm 101-hdinsight-hbase-replication-geo > »
== g P g Y 4 4 O
12 resources Edit template Edit parameters Learn more

BASICS

* Subscription W

* Resource group & Create new Use existing

* Location Wast US 2 b

SETTINGS

* Cluster Name Prefix @

* Cluster Login User Mame @
* Cluster Login Passward @
* 5sh User Name @

* Ssh Password @

D Pin to dashboard

FIGURE 4-116 An Azure Quickstart Template form in the Azure Portal after
clicking a Deploy to Azure button

More Info: Azure Quickstart Template Gallery

Browse and search Quickstart Templates contributed by the
community at https://azure.microsoft.com/resources/templates.

https://azure.microsoft.com/resources/templates

Build applications that leverage Azure Marketplace solutions and
services

The Azure Marketplace is an online applications and services marketplace that
enables startups and independent software vendors (ISVs) to offer their solutions
to Azure customers around the world. The marketplace makes it easier for
consumers to search, purchase, and deploy a wide range of applications and
services in just a few clicks. Some such applications and services include virtual
machine images and extensions, APIs, applications, Machine Learning services,
and data services.

You can subscribe to and deploy a product from the Azure Marketplace by
visiting https://azuremarketplace.microsoft.com/ or by clicking the Marketplace
tile on the Azure Portal dashboard.

Pricing varies based on product types. ISV software charges and Azure
infrastructure costs are charged separately through your Azure subscription.
Pricing models include:

= BYOL Model Bring-your-own-license. You obtain outside of the Azure
Marketplace the right to access or use the offering and are not charged Azure
Marketplace fees for use of the offering in the Azure Marketplace.

m Free Free SKU. Customers are not charged Azure Marketplace fees for use
of the offering.

m Free Software Trial (Try it now) Full-featured version of the offer that is
promotionally free for a limited period of time. You are not charged Azure
Marketplace fees for use of the offering through a trial period. Upon
expiration of the trial period, customers are automatically be charged based
on standard rates for use of the offering.

m Usage-Based You are charged or billed based on the extent of your use of
the offering. For Virtual Machines Images, you are charged an hourly Azure
Marketplace fee. For Data Services, Developer services, and APIs, you are
charged per unit of measurement as defined by the offering.

m Monthly Fee You are charged or billed a fixed monthly fee for a
subscription to the offering (from date of subscription start for that particular
plan). The monthly fee is not prorated for mid-month cancellations or unused
services.

You can find the offer-specific pricing details on the solution details page.

Skill 4.9: Design and implement DevOps

™ - N -0 TY™____V_ _ . /T~__ N _ A _OC_____ _u*_ e VM _

https://azuremarketplace.microsoft.com/

DevuUps 1S a COmDINation 0T Jevelopment (JeV) and Inrormarion 1ecnnoiogy
Operations (Ops). It describes a set of practices emphasizing the collaboration
between both teams, while automating software delivery and infrastructure
changes with the ultimate goal of reliability and repeatability of these processes.
Automation and repeatability allows for increased deployment frequency, as the
manual burden of tending to all of the steps involved in deploying to one or
more target environments has been removed. Some organizations use DevOps
practices to deploy hundreds of times a day, which would otherwise be nearly
impossible. DevOps improves reliability by ensuring each step of the software
delivery or infrastructure change process is monitored, and any automated tests
successfully pass.

This skill covers how to:
m Instrument an application with telemetry
m Discover application performance issues by using Application Insights

m Deploy Visual Studio Team Services with Continuous integration (CI)
and Continuous development (CD)

= Deploy CI/CD with third-party platform tools (Jenkins, GitHub, Chef,
Puppet, TeamCity)

Instrument an application with telemetry

Application Insights is an extensible analytics service for application developers
on multiple platforms that helps you understand the performance and usage of
your live applications. With it, you can monitor your web application, collect
custom telemetry, automatically detect performance anomalies, and use its
powerful analytics tools to help you diagnose issues and understand what users
actually do with your app. It works with web applications hosted on Azure, on-
premises, or in another cloud provider. You can use it from web applications
developed on multiple platforms, like .NET, Node.js, and J2EE. To get started,
you just need to provision an Application Insights resource in Azure, and then
install a small instrumentation package in your application. The things you can
instrument are not limited just to the web application, but also any background
components, and JavaScript within its web pages. You can also pull telemetry
from host environments, such as performance counters, Docker logs, or Azure
diagnostics.

Here is a comprehensive list of telemetry that can be collected by Application
Insights.

From server web apps:
m HTTP requests

m Dependencies such as calls to SQL Databases; HTTP calls to external
services; Azure Cosmos DB, table, blob storage, and queue

m Exceptions and stack traces

m Performance Counters, if you use Status Monitor, Azure monitoring, or the
Application Insights collected writer

m Custom events and metrics that you code

m Trace logs if you configure the appropriate collector
From client web pages:

= Page view counts

m AJAX calls requests made from a running script
m Page view load data

m User and session counts

m Authenticated user IDs

From other sources, if you configure them:

m Azure diagnostics

m Docker containers

m Import tables to Analytics

= OMS (Log Analytics)

m Logstash

The standard telemetry modules that run “out of the box” when using the
Application Insights SDK send load, performance and usage metrics, exception
reports, client information such as IP address, and calls to external services. If
you install the SDK in development, this allows you to send your own telemetry,
in addition to the standard modules. This custom telemetry can include any data
you wish to send.

More Info: About Application Insights

For additional information about Application Insights see

https://docs.microsoft.com/azure/application-insights.

More Info: Setting up Application Insights

https://docs.microsoft.com/azure/application-insights

For more information about setting up Application Insights on the
portal and within your application see

create-new-resource.

More Info: Collect Custom Events and Metrics in Application
Insights

A good resource for collecting custom event and metrics telemetry
in Application Insights see

api-custom-events-metrics.

Discover application performance issues by using Application
Insights

System performance depends on several factors. Each factor is typically
measured through key performance indicators (KPIs), such as the number of
database transactions per second or the volume of network requests your
application can handle within a specified time frame. You can gather your
application’s KPIs through specific performance measures, or a combination of
metrics.

Application Insights can help you quickly identify any application failures. It
also tells you about any performance issues and exceptions. With the right
configuration and tooling, Application Insights can also help you find and
diagnose the root causes of slowdowns and failures.

When you open any Application Insights resource you see basic performance
data on the overview blade. Clicking on any of the charts allows you to drill
down into the related data to see more detail and related requests, as well as
viewing different time ranges.

Note: Performance Metrics

Earlier in this chapter performance metrics were discussed for API
Apps and Logic Apps - and these are also similar across other
resource blades in the Azure Portal.

Application Insights offers a full-screen, interactive performance investigator

https://docs.microsoft.com/azure/application-insights/app-insights-create-new-resource
https://docs.microsoft.com/azure/application-insights/app-insights-api-custom-events-metrics

through the Performance blade. The dashboard arranges a set of performance-
related metrics that you can use to quickly explore possible performance
bottlenecks, and adds additional insights, such as common properties of selected
requests. The common properties are the users’ location, performance bucket (in
milliseconds), and cloud role of the resource. This information can help you find
common variables that affect groups of users, such as response times being
lengthier for users coming from certain countries or regions (Figure 4-117).

(8 InsightfulApplication - Performance (preview)
App on Irsdght
Time range = Last 24 hours | [Rales # (2)
@ Crverview . - ; = ovie A fosdba afilo Refrenty
Chrervi Operations Dependencies Bl viewindmsiytes v | |[A Feedback v | £F profiler) Refre
= g TR ETTR T :
Qpiration times: 2006 into & Rnge i l Crerall
M Access control (1AM
R - Distribution of durati... (M
& Tan
INVESTIGATE 3
:
= . & =a _Z
Appikcati] 8
= Request count g
-
q Smart Detection
u
v & : |
L
0% u 12 .4 2 Ji L |
=] e] G20 j 1 1
| 1.0rm: | E=s3
: ration
D seaich Select operalio _
Insights {2)
ik CPERATION MAME DURATION BWGE ~ COUNT Pid
Awailatility
I Crverall 1.21 ms 10,23k - % 45% COMBAON PROPERTIES
. lures [¢ e ! resultCods, client_City, clie...
GET /owlsite.cos 19.5 ms 2
o [pr
: GET it . 157 me z resuliCodi: 304
SO dien Oyt 5an Jase
1 GET Sibfqueny/distiquery.js 568 ms F 5
: ¥ chent CountryCrRegion: United States
H Seourwt GET Heenefndo 4,86 ms 150k i
cliens_Stateln Province: Califionnia
ET Sebibaatsirapidntijubos Fy 2
USAGE (FRERIEW) I - performanceBucket: <250ms
: GET Movicondoo 318 ms 16 dioud_RoleManme:
= . MyDotNatCora\WabAgg
T fsile <RI 2
i Setgions 1 thaud Rolelrstaroe:
GLT femagesfbannerd.sig .55 ms | 40 mydotnetcorewebappazurewebsites.net
s
GET femagesibanner].ovg 127 ms | 541
= Funneh i - - £y 20 COMRON PROPERTILS
GET fibboatsirapddsones/.. [1.23 ms ¢ i reailtCode, dient Gity, che.. ¥

FIGURE 4-117 The A“[-)plicati-on Iﬁéights Performance blade

If your web application is built on ASP.NET or ASP.NET Core, you can turn
on Application Insight’s profiling tool to view detailed profiles of live requests.
In addition to displaying ‘hot paths’ that are using the most response times, the
Profiler shows which lines in the application code slowed down performance.
You can view the profile request details to see trace informa tion, showing the
call stack through your application. This level of detail allows you to quickly

http://ASP.NET
http://ASP.NET

pinpoint issues and address them faster than digging through logs alone. There is
little overhead running the profiler because it executes for two minutes per hour,
but should provide a satisfactory sample set of data.

To enable the Profiler, follow these steps:

1.

From the Application Insights resource in Azure, select Performance from
the left-hand menu.

Select Profiler Rules from the top of the Performance blade.

Select Add Linked Apps from the top of the Configure Application Insights
Profiler blade.

Select the application you wish to link to see all its available slots. Click
Add to link them to the current Application Insights resource.

After linking your desired apps, select Enable Profiler from the top of the
Configure Application Insights Profiler blade. Note, linked applications
require Basic or above service plans to enable the profiler (Figure 4-118).

v Configure Application Insights Profiler

P Enable Profiler & Add linked apps

FIGURE 4-118 The Application Insights Profiler actions to add linked
apps and enable the Profiler

More Info: About Application Insights Profiler

For additional information about using the Application Insights
Profiler, see this reference:

More Info: Monitor Performance in Web Applications

For more information about using Application Insights to monitor
performance in your web applications see

web-monitor-performance.

https://docs.microsoft.com/azure/application-insights/app-insights-profiler
https://docs.microsoft.com/azure/application-insights/app-insights-web-monitor-performance

Deploy Visual Studio Team Services with continuous integration
(CI) and continuous development (CD)

Visual Studio Team Services (VSTYS) is a collection of hosted DevOps services
for application developers, including Build and Release services, which help you
manage continuous integration and delivery of your applications.

Continuous Integration (CI) is a practice by which the development team
members integrate their work frequently, usually daily. An automated build
verifies each integration, typi cally along with tests to detect integration errors
quickly, when it’s easier and less costly to fix. Output, or artifacts, generated by
the CI systems are fed to the release pipelines to streamline and enable frequent
deployments. The Build service in VSTS helps you set up and manage CI for
your applications.

Continuous Delivery (CD) is a process where the full software delivery
lifecycle is automated, including tests, and deployed to one or more test and
production environments. Azure App Services supports deployment slots, into
which you can deploy development, staging, and production builds from the CD
process. Automated release pipelines consume the artifacts that the CI systems
produce, and deploys them as new versions and fixes to existing systems.
Monitoring and alerting systems run continually to drive visibility into the entire
CD process. The Release service in VSTS helps you set up and manage CD for
your applications.

Because a key component of the Build system is integrating code changes and
automating builds, you must host your source code in a version control system.
VSTS provides two different version control systems:

m Git
m Team Foundation Version Control

You can also host your source code in GitHub, Subversion, Bitbucket, or any
other Git repository. The Build service can integrate with any one of these
options.

VSTS build services provide preconfigured tasks to build many application
types, such as .NET, Java, Node, Android, XCode, and C++. You can also run
command line, PowerShell, or Shell scripts in your automation to support almost
any type of application.

Azure App Services was mentioned earlier as a deployment target for the
VSTS Release service. VSTS Release services can deploy to virtual machines,

containers, on-premises and cloud platforms, or PaaS services. You can also
nithlish vonr mohile annlicatinng tn a store

P aaoan J TVRL AIAL ULAT M ALt LU S s Uta e

The following steps show one way to configure the CI/CD pipeline from the
Azure portal (Figure 4-119):

1. Navigate to the portal accessed via https://portal.azure.com.

2. Select New on the command bar.
3. Select Web + Mobile, and then Web App.

1

MNew — >
A4 Search the Marketplace

Dashboard
Azure Marketplace Seeall Featured

Resource groups

Get started @ Web App
All resources Quickstart tutorial

Compute
fee MNetworking Mobile App
Learn more
App Services Storage
& sQLdatab e Ll o Logic App
5 atabases
Databases {‘q‘] Learn more

FIGURE 4-119 Completing the Response action form for the new
condition’s “If true” block in the Logic App Designer

4. Provide a unique name for your web app, and then click Create (Figure 4-
120).

https://portal.azure.com

Web App

Create

* App name
MyCICDApP W

azurewebsites.net

* Subscription

v
* Resource Group @

®) Create new Lse existing

MyCICDApp W
* 0S |Windows | Linux
* App Service plan/Location S

Application Insights @ on Off

|:| Pin to dashboard

Create Automation options

FIGURE 4-120 The create Web App blade

5. After the new web app is provisioned open it in Azure portal, and then
select Continuous Delivery from the left-hand menu. Click Configure on
the Continuous Delivery blade (Figure 4-121).

Continuous Delivery (Preview)

c

S22 Soarch (Cirde/]
R Overview Depm}" with confidence

| Activity ¥
E ppidet S Q Automate your build, test and deployment

:& Arcess conmtrod .:|_|‘.".1_| a n:'p]wf 1S & 151 emaronmeant De forg e goINg 10 ::lll:)-dllﬂ 100
& Taos a Setup approvals for deployment to production
ﬂ Extend and customize your deployment automation

X Diagnose and solve problems

DERPLOYMENT

e 0-0-0

Code Build Test
i Deployment credentials

n I'.'-t";.‘|r:ym|‘|1r'..:|'.'.
Continuous Delivery in Visual Stedio Team Services simplifies setting up a robust deploymant pipeline h
& Deployment options builds, runs load tests and deplays to staging shat and then to production

Mewd 1o run additional functional tests to validate features, provision additional Azuwre resources, run sc

% Cont Delivery [Preview) i o L .
N Coninious Lisfivery [Fres can 1'.‘:<.||}' @atend this deplayment automatian to handle Ay Ol OPErationg your application requires

SETTINGS

POTR— | Congms |

FIGURE 4-121 The Continuous Delivery blade on the provisioned web
app

6. Select Choose repository, and then select VSTS for the code repository.
Select the VSTS account, project, repository, and source code branch from
which you wish to deploy. Click OK (Figure 4-122).

Configure Continuous Delivery X Source

PREVIEW PREVIEW
 Source code > * Code repository
Choose repository Wisual Studio Team Service W
F Build S * Visual Studio Team Services account &
Configure Continuous Delivery | v |
Tast * Project
Setup load test :) | MyDotMNetCoreWebApp w |
* Repository
Deploy > o
Configure deployment | MyDothetCoreWebApp v |
* Branch
| master T |

FIGURE 4-122 The Continuous Delivery source code configuration
options

Select Configure Continuous Delivery, and then your web application
framework. In our example, we selected ASP.NET Core. Click OK. Skip
the other two steps for now, and then click OK to complete the

configuration (Figure 4-123).

http://ASP.NET

Configure Continuous Delivery X

PREVIEW
F Source code S Web Application framework @
Visual Studio Team Services | ASP.NET Core W |
ASPMET
I Build 5
Configure Continuous Delivery ASPNET Core
Test b Node/s
Setup load test PHP
Deploy S Python
Configure deployment Static Webapp

FIGURE 4-123 The Continuous Deli\-/ery build options

8. At this point, Azure Continuous Delivery configures and executes a build
and deployment in VSTS. After the build completes, the deployment is
automatically initiated. When you commit a change to the source code
repository, the automated deployment appears in the Continuous Delivery
application logs on your web app, as shown in Figure 4-124.

Q) Refresh Logs e Disconnect " Edit £ Syne
Production
di Build 201710121 @ Release 1
000
Code Bl Deploy
Activity logs
1012/ 2017
Deployed successfully to Production L
e Lo e Ehifiasclaia. 7:25 FM
¢ Source Version al2eeddded wli Build 201710121 @ Release 1
Successfully triggered Continuous Delivery with latest source code from repository T34 PM
Successfully setup Continuous Delivery and triggered build 231 P
; ; 721 PM
Build Definition Release Definition Build triggered

FIGURE 4-124 The Continuous Delivery blade with activity logs
showing the initial build

More Info: About Vsts Build and Release Services

For additional information about the VSTS Build and Release
services see https://docs.microsoft.com/vsts/build-release.

More Info: The MultiStage Continuous Deployment (CD) Process

VSTS supports releasing to multiple environments, such as
development, staging, QA, and production. To learn more about
defining your multistage CD process see
https://docs.microsoft.com/vsts/build-release/actions/define-
multistage-release-process.

More Info: Tutorial on Creating a CI Pipeline with Vsts and Iis

To follow a tutorial showing how to create a continuous integration
(CI) pipeline with VSTS and IIS on a VM see
https://docs.microsoft.com/azure/virtual-machines/windows/tutorial-

https://docs.microsoft.com/vsts/build-release
https://docs.microsoft.com/vsts/build-release/actions/define-multistage-release-process
https://docs.microsoft.com/azure/virtual-machines/windows/tutorial-vsts-iis-cicd

vsts-iis-cicd.

Deploy CI/CD with third-party platform tools (Jenkins, GitHub,
Chef, Puppet, TeamCity)

Azure allows you to continuously integrate and deploy with any of the leading
DevOps tools, targeting any Azure service. Whether you are following your
organization’s established CI/CD procedures, or just getting started with
DevOps, use the tools best-suited for your team.

If you are using VSTS to host your source code or as your CI service, you can
use various build services, like Jenkins, through service hooks. In this way, you
can use Jenkins for your continuous integration builds, or use both VSTS and
Jenkins as for building parts of your solution. Refer to this tutorial for more
information: https://docs.microsoft.com/vsts/service-hooks/services/jenkins.

In addition, Table 4-5 lists some popular DevOps tools that work with Azure.
TABLE 4-5 References for using third-party DevOps tools with Azure

Tool Description More Information and Tutorials

Chef Use Chef to https://www.chef.io/implementations/azure/
automate https://docs.microsoft.com/azure/virtual-machine
workloads on
Azure,
whether
IaaS, PaaS,
cloud or
hybrid,
Windows or
Linux

Puppet Use Puppet https://azuremarketplace.microsoft.com/marketp
to aqtomate https://puppet.com/resources/whitepaper/getting-
the lifecycle microsoft-azure
of your
entire Azure
infrastructure

Jenkins The Jenkins https://docs.microsoft.com/azure/virtual-maching
and Azure cicd

https://docs.microsoft.com/vsts/service-hooks/services/jenkins
https://www.chef.io/implementations/azure/
https://docs.microsoft.com/azure/virtual-machines/windows/chef-automation
https://azuremarketplace.microsoft.com/marketplace/apps/PuppetLabs.PuppetEnterprise37
https://puppet.com/resources/whitepaper/getting-started-deploying-puppet-enterprise-microsoft-azure
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-jenkins-github-docker-cicd

teams have https://docs.microsoft.com/azure/jenkins/

been

collaborating | https://docs.microsoft.com/azure/storage/commc
on making integration-solution

tighter

integrations

between the
two. Benefit
from the
extensive
tooling as a
result

TeamCity | Use https://confluence.jetbrains.com/display/TW/Mi

TeamCity https://blog.jetbrains.com/teamcity/2016/11/tean
with Azure

for a variety
of DevOps
processes,
such as
deploying
Azure
services or
scaling out
your build
farm by
having it
automatically
start agents
on Azure
when you
need more
power, and
stop them,
when they
are no longer
needed

Out of the box, Azure App Services integrates with source code repositories
anich ac GGitHih tn enahle a continniniie denlavment wnrkflaw Thic ic the

https://docs.microsoft.com/azure/jenkins/
https://docs.microsoft.com/azure/storage/common/storage-java-jenkins-continuous-integration-solution
https://confluence.jetbrains.com/display/TW/Microsoft+Azure+cloud
https://blog.jetbrains.com/teamcity/2016/11/teamcity-dotnet-core/

UL UU DAL A UL LU VUUAC W UL U WY UL I Y LIC AL VY ULIMLAU VY e L LAY LU b

simplest way to integrate a CD process without the need for installing and
configuring additional tools and services. Follow these simple steps to enable
continuous deployment from a GitHub repository:

1. Publish your application source code to GithHub.

2. Open your app’s Menu blade in the Azure portal, and then select
Deployment Options under Deployment in the left-hand menu.

3. In the Deployment option blade, select Choose Source, and then select
GitHub from the list of sources.

4. Select Authorization, and then click the Authorize button to enter your
GitHub credentials. When authorized, click OK.

5. In the Deployment Option blade, select your project and branch from
which you wish to deploy your app, and click OK.

App Service creates an association with the selected repository, pulls in the
files from the specified branch, and maintains a clone of your repository for your
App Service app. Now, when you push a change to your repository, your app is
automatically updated with the latest changes. More information about this
process can be found at: https://docs.microsoft.com/azure/app-service/app-
service-continuous-deployment.

Thought experiment

In this thought experiment, apply what you’ve learned about implementing App
Services, Azure Functions, Azure Service Fabric, third-party PaaS, and DevOps
to evaluate and determine a recommended set of features to use in a particular
solution implementation.

You can find answers to this thought experiment in the next section. The
following paragraphs describe the solution and the questions to answer.

You are designing a solution that issues certificates of insurance for end users.
You are expecting insurance companies who you partner with to provide this
service to their clients, your end user, through your solution. The following
describes core components in the solution, and other requirements:

m Insurance companies can sign up with your service so that they can call your
Policy Sync APIs and send insurance policy data using the X12 EDI
standard. Their license with your API determines how much policy data they
can upload to your service. This policy data is what supports certificate
issuance to the end user owning the policy.

https://docs.microsoft.com/azure/app-service/app-service-continuous-deployment

m Insurance companies can manage access to those policies through a Policy
Management web application that allows them to create users who can later
login and request certificates of insurance for their policy data.

m End users will, once invited by the insurance company, be able to login to
the Certificate Issuance web application to request certificates of insurance
on demand for their policies.

m When a certificate is requested, a workflow should be kicked off to generate
a PDF from the policy data, save the PDF to a secure location from where it
can be securely shared, and email a secure link to the PDF to a specified
email address.

m While this is a new service, it is possible that many 100,000s of requests can
be processed by a single insurance company per week so there is potential for
large scale growth and the design must be ready to grow with demand.

® You are expecting to use a third-party Java-based executable component for
PDF generation, alongside the other work, which will be based on ASP.NET
Core.

m As a startup, you are looking for a solution that allows you to contain costs
now, but grow into an architecture that can scale with your business growth.

Consider how you would answer the following questions for this solution:
1. How would you evaluate the core platform tools and hosting environment
that you will use for the web apps and APIs? Consider these aspects:
A. Cost containment early on with potential for growth.
B. Manageability with a small team.
C. Support for polyglot development and third-party application
components.
2. How will you control the onboarding process to use your Policy Sync APIs
and subsequent throttling of their use by license?

3. How will you handle the inbound EDI requests and store those for the
partner?

4. How will you prepare to scale the requests for certificates of insurance
based on the potential growth?

Thought experiment answers

This section contains the solution to the thought experiment.

http://ASP.NET

1. Consider the following:

m deploying the application to Web Apps on an App Service Plan that can
scale as needed.

m Consider if the main components of the application can be deployed as
containers—in particular verifying that the Java component can be
containerized. If so, standardizing around container deployments to Web
Apps will keep things consistent and enable a future deployment to a
container orchestration platform. If not, traditional Web App
deployments for the ASP.NET Core applications will still reduce
management overhead. The Java application may require a VM if it
cannot be deployed to a Linux-based Web App due to underlying
requirements.

m Consider moving to a container orchestration platform, or Service Fabric
cluster as the application needs to scale. Keep in mind the Service Fabric
can support deployment of both ASP.NET Core applications alongside
guest executables such as the Java application.

2. Consider using API Management for onboarding partners, setting up
licensing, throttling access to the EDI process through licensing, and
providing statistics on usage.

3. Consider using Logic App to handle X12 EDI transforms from API
Management initiated calls. The Logic App can convert this payload to the
target data format required for the application.

4. Look to scale out the requests for certificates of insurance by writing
requests to a queue that triggers a Logic App to handle calls to generate
PDFs and send emails through a workflow. Make sure the Java component
is deployed to a tier that can scale independently given the potential for
scale.

Chapter summary

m Azure App Services provide a simple PaaS solution for deploying,
managing, and scaling web applications, APIs, API Apps, Logic Apps, and
Mobile Apps.

= API Apps and API Management both provide ways to publish APIs for
partner integration. API Management provides richer features for partner
management, licensing, throttling, security, and related management tools.

m Logic Apps provide an easy way to create workflows, modern integrations,

http://ASP.NET
http://ASP.NET

and even legacy integration with EDI formats.

m Azure Functions provide an easy way to trigger workloads that can scale
based on consumption or a hosting plan. There are many integration points
for triggering functions including queues, HTTP requests, and data triggers.

m Azure Service Fabric is a modern orchestration platform that can support
native services that leverage unique features such as stateful services and
actor patterns, in addition to guest and container processes.

m Azure supports several third-party PaaS platforms for containers and
microservices including Cloud Foundry and OpenShift.

® You have many choices for DevOps and CI/CD workflows in Azure
including Application Insights for diagnostics, monitoring and alerts; and
VSTS, Jenkins, Chef, Puppet and more for CI/CD integration.

Index

A

access control
anonymous access 133
Azure Key Vault 228-232
blobs 115-116
DevTest Labs 95-100
role-based 95-96
shared access signatures 132—135
storage 132-136
stored access policies 135
access keys 111-112, 179
access policies 113, 262
Active Directory (AD) 176-177
activity logs 362
actors 379, 387388
AD. See Active Directory
ADE. See Azure Disk Encryption
Advanced Message Queuing Protocol (AMQP) 239
advanced rate limiting 359-360
alerts
configuration 55
AMQP. See Advanced Message Queuing Protocol
anonymous access 127, 133
anonymous logs 141-142
API Apps 305-318
client code generation 314-316
creating and deploying 305-310
diagnostic logs 317-318
discovery automation using Swashbuckle 310-314
enabling CORS 314

metrics 316, 318
monitoring 316-318
quotas 316
API Management 281, 351-366
adding product 353-354
APIs
adding operation to 355-356
creating 352-356
monitoring 362—-363
publishing 356
rate limits 358—-360
caching 360-362
components 351-352
developer portal 363-366
overview 351-352
policies 356358
service creation 352—-353
API Proxies 377-378
append blobs 115
Application Insights 400—403
performance issues and 401-403
Profiler 403
telemetry 400—401
application logs 49, 52, 56-57
applications
ASP.NET 181
availability of 57-66
Azure Marketplace and 398-399
Azure Service Fabric 379-392
directory queries 207-216
enterprise 265
instrumenting, with telemetry 400401
integration with Azure AD 191-216
directory creation 194-195
preparation for 192—-198

http://ASP.NET

querying directory 207-216
viewing endpoints 197-198
with OAuth 202-203
with OpenID Connect 199-202
with SAML-P 206207
with WS-Federation 203-206
listener 242-245
Microsoft Application Registry 208—-209
mobile 343-351
multi-tier 58
passwords 209
performance issues 401-403
provisioning, with Azure Quickstart Templates 397-398
registering 195-197, 221-223
remote debugging 16
sender 245-246
single page 192
using Azure AD B2B 225
using Azure AD B2C 216-225
using social identity provider authentication 217-225
web 281
Web/API 195-196
application tiers 58
App Service plans 282-287
creating 283-285
function integration with 379
pricing tiers 282
settings 286287
A records 291-292, 293-294
ARM. See Azure Resource Manager
ARR affinity settings 288
ASP.NET 306
ASP.NET applications 181
asynchronous polling 340-341
asynchronous webhooks 341

http://ASP.NET
http://ASP.NET

authenticated logs 141-142
authentication
Azure AD 192-193
mobile apps 343, 346-348
multi-factor 210-216, 225
scenarios 193
social identity provider 217-225
storage account 135-136
users 203-206
authorization
mobile apps 343
authorization protocols
202-203
automatic asynchronous replication 150
automatic failover 172-173
Autoscale
configuration 25-29
AutoScale 18
auto-shutdown policy 87-89
auto-start policy 90-91
Auto Swap settings 289
availability
high 59
sets 19
application tiers and 58
configuration 58-60
Load Balancer and 60-66
virtual machines 57-66
AZCopy 44
Azure Active Directory (Azure AD)
application integration 191-216
directory creation 194-195
preparation for 192—-198
querying directory 207-216
registering application 195-197

viewing endpoints 197-198
with OAuth 202-203
with OpenID Connect 199-202
with SAML-P 206207
WS-Federation 203—206
B2B 225
B2C 216225
code samples 194
documentation 192
PowerShell with 192
uses of 191
Azure AD B2B 225
Azure AD B2C 216225
application registration 221-223
identity provider configuration 223-224
policy configuration 224
tenant creation 218-221
Azure AD Connect 195
Azure AD Graph API 207
Azure App Services 281, 404
API Apps 305-318
integration with source code repositories 409
Logic Apps 318-342
Mobile Apps 343-351
plans 282-287
quotas 296
Web Apps 282-305
Azure Autoscale. See Autoscale
Azure Command Line Interface (Azure CLI) 7-8
Web Apps and 296
Azure-connected functions 372-374
Azure Cosmos DB accounts
creating 164
Azure Cosmos DB DocumentDB 160, 162-177
accessing from REST API 174

choosing surface 163
consistency 170
database and collections creation 164-167
Graph API database creation 168
GraphDB API queries 168
MongoDB database and 169
multiple regions, managing 171-173
query documents 167—168
scaling 169171
security 174-176
stored procedures 173-174
users and permissions 175
Azure Cosmos DB Table API 131, 163
Azure Disk Encryption (ADE) 46-47
Azure Files 109
connections to 120-121
storage 119
Azure File storage 41-45
Azure Functions 281, 366-379
Azure-connected functions 372-374
creating 367-368
custom bindings 376-377
debugging 377
event processing 371-372
integration with App Service plan 379
integration with storage 374-376
overview 366—-367
proxies 377-378
triggers 376377
webhook function, implementing 369-371
Azure Key Vault 46, 225-236
access management 228232
configuration 226-228
HSM protected keys 232233
key rotation 235-236

logging implementation 233-235
uses of 225
Azure Marketplace 2, 398-399
Azure Portal
adding owners and users to lab with 97-98
API app creation from 306
Autoscale configuration with 25-29
custom image creation with 74-75
load balancing with 61-66
metrics monitoring with 55-56
monitoring configuration with 49-54
Scale Set deployment using 19-21
scaling VMs using 17
VM configuration using 14-15
Azure queues 253
Azure Queues 372-373
Azure Quickstart Templates 281, 397-398
Azure Relay 236, 239-253
Hybrid Connections 240-247
namespaces 240
scaling 273-274
WCF Relay 247-253
Azure Resource Manager (ARM)
deployment 111
templates 2, 22, 100-104, 393, 397-398
virtual machines
availability 57-66
configuration management 7—16
DevTest Labs 67—-104
load balancing 61-67
monitoring 47-57
scaling 16-29
storage 29-47
workload deployment 1-7
Web Apps and 296

Azure Samples 210
Azure Search 182-186

adding data 183-184
index search 185
search results 186
service indexes 182-183
Azure Service Fabric 281, 379-392
actors-based service 387-388
applications
adding web front end to 383387
creating 380-383
deployment to container 388—390
migration from cloud services 390
scaling 390-391
clusters 391-392
monitoring and diagnose services 388
overview 379-380
Azure SQL Database 123
backups 147
database tiers, choosing 144-147
geo-replication 149-150
graph database functionality in 160-161
implementation 144-161
managed elastic pools 157-159
performance level, choosing 144-147
point in time recovery 147-149
scaling 155157
schema and data, import and export 151-155
secondary databases
offline 150
online 150-151
SQL Data Sync 159-160
vs. Azure Tables 123
Azure Storage. See storage
Azure Storage accounts 42

Azure Storage Analytics 132
Azure Storage Queue 128-131

adding messages to 128—12

batch message retrieval 130
processing messages 129-130
scaling queues 130-131

Azure Storage Tables 48-49

Azure Tables 122128
creating 123-124
CRUD operations 123-127
deleting records 127
inserting multiple records 125-126
partitions 123—-124, 128-129
querying, usnig OData 127
record insertion 124-125
records in partitions 126
transactions 125126
updating records 126-127
vs. Azure Cosmos DB Table API 131
vs. Azure SQL Database 123

Azure Virtual Machine Agent. See VM Agent

B

back off polling 131
backups

Azure SQL Database 147
BACPAC files 151-155
batch messages 130
blobs 30, 42, 109-122

about 110

access control 132

append 115

block 115, 141

containers 112—-113, 117, 122

copying 116

geo-replication for 41
hierarchies 117-118
integration of function with 374-376
leasing 119-120
metadata 113-114
page 115
partition keys 122
read and change data 112113
SAS tokens 133
scaling 119-120
secure access 115-116
storage account creation 110-112
streaming 115
types of 115
URIs 113
Blob storage 30, 111
Content Delivery Network with 116-117
naming requirements 42
block blobs 115, 141
boot diagnostic logs 57
BrokeredMessage type 257
business-to-business (B2B) workflows
Logic Apps supporting 322—331

C

cache
CDN 116-117
configuration 39-41
expiry period 117
host 39-41
local 39-41
providers 181
Redis 177-182
tiers 177-178
caching

adding 360-362
capacity metrics 137
CDN. See Content Delivery Network
certificate authority (CA) 291
certificate permissions 230
certificates
SSL 291, 294-295
Chef 408
cifs-utils package 121
CLI. See Azure Command Line Interface
client-side logging 141
Cloud Foundry 392—-393
cloud services 390
clusters
Redis 180
Service Fabric 391-392
CNAME records 291, 292, 294
collections
Cosmos DB API 164-167, 169-170
compute resources 282
compute time 119, 123
configuration
alerts 55
API Management policies 356-358
Autoscale 25-29
availability sets 58-60
Azure AD B2C policies 224
Azure Key Vault 226-228
Content Delivery Network 116-117
custom domains 118, 292-294
DevTest Labs
cost management 92-95
policies and procedures 83-91
diagnostics 49-54
disk caching 39-41

endpoint monitoring 300-303
geo-replication 41
identity providers 223224
Load Balancer 61-67
Mobile Apps 345-346
monitoring 49-54
proxies 377-378
shared storage 41-45
SSL certificates 294-295
Storage Analytics Logging 140-141
Storage Analytics Metrics 137-140
storage pools 32-39
Web Apps 287-295
Configuration keyword 11-12
configuration management
virtual machines 7-16
using Azure Portal 14-15
using DSC 13-15
with Custom Script Extension 8—10
with DSC 11-12
configuration scripts 13
connection strings
accessing 290
settings 289
connectivity issues 239
consistency 131, 170, 171
consumer groups 269
Consumption plans 379
containers 112-113, 117, 122, 379
Service Fabric application deployment to 388-390
Windows 390
Content Delivery Network (CDN) 116-117
continuous development (CD)
VSTS with 404-409
with third-party platform tools 408—409

continuous integration (CI)
VSTS with 404-409
with third-party platform tools 408—409
CORS 314
cost by resource 95
cost management
DevTest Labs 92-95
Cost Trend chart 92
crash dumps 49, 53-54
Create Alert Rule dialog box 146-147
CreateServiceReplicalListeners() 383
credentials
Event Hub 267
Service Bus queue 255-25
Service Bus topic 262
WCF Relay 249-250
Cross-Origin Resource Sharing (CORS) 136-141
CRUD operations 348
custom actions
in Logic Apps 340-341
custom domains
configuration 118, 292-294
mapping names 291-292
custom images
creating 72-76
from provisioned VM 72-74
with Azure Portal 74-75
with PowerShell 76
deleting 77
pros and cons of 72
Scale Set deployment using 22—24
custom resources 12
Custom Script Extension

VM configuration with 8-10

()]

D

data
consistency 170, 171
import and export 151-155
loading into storage account 112
logging. See logs
persistence 178—-179
read and change 112—-113
redundancy 149
replication 111, 171-172
storing
using blobs 115
streaming 115
validation 135
data access 343
databases
Cosmos DB API 164-167
graph 163, 168
graph database functionality 160—161
relational 161, 171
sharding 156
database throughput units (DTUs) 144-146, 157-159
data products 109
datasets
sharding large 122-123
dead letter queues 259
deployment
API Apps 305-310
ARM templates 22
Azure Relay namespaces 240
Azure Resource Manager 111
Hybrid Connection 240-241
Mobile Apps 345
Service Fabric applications 388-390

Virtual Machine Scale Sets 18-24
WCF Relay 248-249
Desired State Configuration (DSC) 7
Configuration keyword 11-12
configuration management 78, 11-15
custom resources 12
Local Configuration Manager 12—13
resources 11
developer portal 363-366
DevOps 399-409
Application Insights 400-403
overview 399
telemetry 400—401
third-party platform tools 408—409
Visual Studio Team Services 403—408
DevTest Labs 67-104
adding owner or user 97-99
adding VM 70-71
ARM templates 100-104
configuration
cost management 92-95
policies and procedures 83-91
custom images
creating 72—-76
deleting 77
environments 100-104
formulas
creating 77-81
deleting 83
modifying 81-82
pros and cons of 77
lab creation 67—70
lab settings 99—100
policies and procedures
auto-shutdown policy 87-89

auto-start policy 90-91
per lab policy 86-87
per user policy 85-86
set expiration date policy 91
virtual machine sizes policy 83—-85
security access 95-100
diagnostic infrastructure logs 49, 54, 56-57
diagnostic logs 317-318, 362
diagnostics 48-50
boot 57
configuration 49-54
services 388
Web Apps 296-300
Diagnostics extension 48
differential backups 147
directories
creating 194-195
premium 195
querying 207-216
disaster recovery 149-150
disk caching
configuration 3941
disks
encryption 4647
managed 30-31
premium 30-31, 45
standard 30-31, 45
storage 30—32
unmanaged 30-31
Docker 394
DocumentDB API 173
documents
retrieving from Azure Cosmos DB DocumentDB 167-168
searching 185
domain name system (DNS) records 291

domains

custom 118, 291-294

fault 58

update 58
domain specific language (DSL) 161
DSC. See Desired State Configuration
dump files 49
duplicate logs 140

E

easy tables 348
eDTUs 157-159
Elastic Database Tools 156—-157
elastic Database Transaction Units (eDTUs) 157-159
elastic pools 157-159
encryption
atrest 174
Azure Disk Encryption 46-47
disk 46-48
in flight 174
storage service 111
Storage Service Encryption 4647
endpoints
HTTP 338-339

listener 250-252

monitoring 300-303

OAuth 202

relay 250-252

SAML-P 207

WS-Federation 206
enterprise applications 265
Enterprise Integration Pack 322-323, 331, 333. See also integration accounts
environments

DevTest Lab 100-104

error message logs 297

ETag 124

Event Hubs 237, 265-270
connection strings 268
creating 266267
credentials 267
monitoring 276277
overview 265
pricing tiers 272
properties 266
receiving messages from consumer groups 269-270
scaling 275
sending messages to 268
when to use 277-278

EventProcessorHost 270, 278
event tracing 49

external users
adding to DevTest Labs 97-99

F

failed request trace logs 297
fault domains 58
file locking 43
files. See also Azure Files
accessing 42
BACPAC 151-155
connections to 120-121
file shares 42-45
accessing files 44-45
creating 43
mounting 4344
file storage. See storage
firewalls
network 175
First In First Out (FIFO) buffer 253

formulas
creating 77-81
deleting 83
modifying 81-82
pros and cons of 77
full backups 147
full text search 182
functions 164. See Azure Functions

G

General Purpose storage 111
geo-replication 149-150
configuration 41
Get-AzureRmAdUser cmdlet 99
Get-AzureRmResource cmdlet 76, 99
GetContainerReference() 114
GetMessage() 129
GetMessages() 130
Git 404
GitHub 409
Graph API databases
creating 168
graph databases 160-161, 163
GraphDB API queries 168
Gremlin 161, 163, 168
guest executables 379

H

Hardware Security Module (HSM) protected keys 232-233
HDD disks 30

high availability 59

high availability/disaster recovery (HADR) scenarios 171
host cache 3941

HTTP endpoints 338-339

HTTP protocol 239, 248

HTTP requests 115

HTTPS requests 115, 174

Hybrid Connections 240-247
Azure Relay namespace deployment 240
configuration retrieval 241-242
deployment 240241
listener application creation 242245
running applications 246-247
sender application creation 245-246

I

laaSDiagnostics extension 48
identity providers 223-224. See also social identity provider authentication
I1S logs 49, 57
IIS settings 290
ImageToUpload variable 112
incremental log backups 147
Infrastructure-as-a-Service (IaaS) 1
InsertOrReplace() 126
integration accounts
adding agreements 325-326
adding maps to 332-333
adding partners to 324-325
adding schemas to 332
creating 322-324
linking Logic app to 326-327
Internet of Things (IoT) 265, 278
IP addresses

changes in 294

J

Jenkins 408, 409
JSON document storage 160, 162—-163, 171. See also Azure Cosmos DB
DocumentDB

K

key performance indicators (KPIs) 401
key permissions 229

key-value stores 160, 177

Key Vault 46, 225-236

Kubernetes 394

Kudu 299, 300

L

lambda LINQ 167
leases
blob 119-120
LINQ queries 167
Linux virtual machines
creating 6
metrics data 48
listener applications 24224
listener endpoints 250-252
Load Balancer
availability sets and 60-66
local cache 39-41
Local Configuration Manager 12—13
locally redundant replication 41
Locally Redundant Storage (LRS) 111
Logic App Designer 318
Logic Apps 318342
creating
connecting SaaS services 319-322
with B2B capabilities 322—331
with XML capabilities 331-337
custom and long-running actions 340-341
HTTP endpoints for 338-339
integration accounts
adding agreement 325-326
adding maps to 332-333

"~
(O]

adding partners to 324-325
adding schemas to 332
creating 322-324
linking to 326327
metric 341-342
monitoring 341-342
overview 318
receiving data in 327-331
triggering from another app 337-339
Login-AzureRmA ccount cmdlet 98
logs
activity 362
analyzing 141-143
anonymous 141
API Apps 317-318
application 49, 52, 56-57
authenticated 141
boot diagnostics 57
client-side 141
configuration 49-54
diagnostic 297-300, 317-318, 362
diagnostic infrastructure 49, 54, 56-57
duplicate 140
error message 297

failed request tracing 297
finding 142-143

1IS 49, 57

Key Vault 233-235

metadata 143

operation 142

retention 140

status messages 142

storage 140-143

Storage Analytics 132, 140-141

system 48
viewing 5657
viewing, with Microsoft Excel 143
Web Apps 296-300
web server 297, 318
long-running actions 340-341
LRS. See Locally Redundant Storage

M

managed disks 30
managed elastic pools 157-159
maps
adding to integration account 332—333
XML 331
messages
adding to queue 128-129
batch 130
batching 264, 274
duplicate 259
filtering 264-265
identifiers 129
invisibility 129
pre-fetching 274
processing 129
receiving
from consumer group 269-270
from queues 257-259
from subscriptions 263—264
sending
through relay 252
to a topic 262-263
to Event Hubs 268
to queues 256257
messaging protocols 238-239
messaging strategy 236278

Azure Relay 236, 239-253
Event Hubs 237, 265-270
Hybrid Connections 240-247
Notification Hubs 237, 270-271
scaling and monitoring 271-277
Service Bus queues 237, 253-259
Service Bus topics and subscriptions 259-265
WCF Relay 247-253
metadata
log 143
reading 114
setting 113114
system properties 113, 114
user-defined 113114
WS-Federation 206
metrics 48, 132
analyzing 139
API Apps 316, 318
capacity 137
levels of 137-138, 138
Logic Apps 341-342
monitoring 55-57, 139
performance 402
retention 138
storage 137-140
transaction 137
Web Apps 300-303
MFA. See multi-factor authentication
Microsoft Application Registry 208—-209
Microsoft Azure Traffic Manager 304
Microsoft Excel
viewing logs with 143
Microsoft Graph API 207-210
Microsoft SQL Server 164
minidumps 49

Mobile Apps 343-351

authentication 346-348

client application 346

configuration 345-346

creating 343-346

deployment 345

development environment 344—345

offline sync for 348-350

overview 343

push notifications 350-351

target device platforms 344
MongoDB database 163, 169
monitoring

alerts 55

API Apps 316-318

APIs 362-363

diagnostics 47-49

Event Hubs 276-277

Logic Apps 341-342

metrics 55-57

Notification Hubs 277

Service Bus features 275-277

services 388

storage metrics 139

viewing logs 5657

virtual machines 47-57

configuration 49-54

Web Apps 296
Monthly Estimated Cost Trend chart 92
multi-factor authentication (MFA) 210-216, 225
multi-tier applications 58

N

namespaces 274
Azure Relay 240

Event Hubs 275
Service Bus 237-238, 273
.NET Storage Client Library 141
NetTcpRelayBinding relay 248
network firewalls 175
network isolation 179-180
New-AzureRmResourceGroupDeployment cmdlet 76
New-AzureRmRoleAssignment cmdlet 99
Newtonsoft.Json 307
Node.js 310
nodes 160-161
Notification Hubs 237, 270-271, 272
monitoring 277
when to use 277-278

(0]

OAuth 2.0 198, 202203
OData

querying using 127
offline secondary databases 150
offline sync 343, 348-350
online secondary databases 150—151
OpenAPI Specification (OAS) 310
OpenID Connect 192-193, 198, 199-202, 217
OpenShift Container Platform 394-396
OpenShift Origin 394, 396
Open-source Cloud Foundry (OSS CF) 392
operation logs 142
owners

adding to DevTest Labs 97-98

P

page blobs 115
partition keys 123-125, 126-128, 170, 269
partitions 128—-129, 169-170, 269, 274, 275

partner-managed identities 225
passwords
application 209
PeekLock mode 257
Performance Counters 51
performance metrics 402
permissions 95
certificate 230
Cosmos DB 175
key 229
secret 230
Pivotal Cloud Foundry (PCF) 392-393
Placement groups 19
plain-old CLR objects (POCOs) 166
Platform-as-a-Service (PaaS) 1, 281
Azure Marketplace 398—-399
Azure Quickstart Templates 397-398
Cloud Foundry 392—-393
OpenShift Container Platform 394-396
third-party 392-399
point in time restores 147-149
PowerShell
accessing file share using 44
adding external users to lab with 98-99
availability set configuration using 60
Azure AD management with 192
custom image creation with 76
disk encryption using 46-47
scaling VMs with 17
Web Apps and 296
PowerShell Desired State Configuration. See Desired State Configuration
pre-fetching messages 274
premium directories 195
premium disks 30-31, 45
premium storage 45

pricing tier 271-272, 282

primary keys 132

proxies 377-378
Publish-AzureRMVmDscConfiguration cmdlet 13
Publish-AzureVMDscConfiguration cmdlet 14
Puppet 408

push notifications 343, 350-351

Q
queues 128-131

Azure 253

SAS tokens for 134-135

Service Bus 237, 253-259
QueueSender 256
Quickstart Templates 397-398
quotas

API Apps 316

R

rate limits
for APIs 358-360
RBAC. See Role-Based Access Control
ReceiveAndDelete mode 257
ReceiveBatch() 264
ReceiveBatchAsync() 264
receiver keys 250
records
deleting 127
in partitions 126
inserting, into tables 124-125
inserting multiple 125-126
updating 126
Redis caching 177-182
Redis clusters 180
relational databases 161, 171

relationships 160—161

relays 237. See also Azure Relay; See also WCF Relay scaling 27327

relay service endpoints 250—252
remote debugging 16, 289
Remote Desktop (RDP) 44
replication
automatic asynchronous 150
data 111, 171-172
geo-replication 41, 149-150
locally redundant 41
options 111
Request Units (RUs) 131
resilience
Web Apps 303-305
resources
custom 12
DSC 11
REST API 174
REST APIs 43, 45
RESTful APIs 296, 305, 310, 340
restores
point in time 147-149
REST services 24

retention
backups 147
Role-Based Access Control (RBAC) 95-96
roles 95, 96
row keys 123, 124
RPC listeners 383
RUs. See Request Units

S

SAML 2.0 Protocol (SAML-P) 192, 198, 206207
SAS. See secure access signature
SBMP. See Service Bus Messaging Protocol

Scale Sets 18-24
scaling
Azure Cosmos DB DocumentDB 169-171
Azure SQL Database 155-157
blob storage 119-120
Event Hubs 275
queues 130
relays 273-274
Service Bus features 272-273
Service Bus queues 274
Service Bus topics 274
Service Fabric apps 390-391
Web Apps 303-305
schema
import and export 151-155
schemas
adding to integration account 332
XML 331
scopes 95
search
Azure Search 182-186
full text 182
Search Units (SUs) 182
secondary databases
offline 150
online 150-151
secondary keys 132
secret permissions 230
secrets
managing, with Key Vault 225-236
secure access signature (SAS)
data validation 135
tokens
recommendations for 135
renewing 135

Secure Socket Layer (SSL) 291
security. See also access control; See also authentication
Cosmos DB 174-176
DevTest Labs 95-100
Redis 179-180
Select-AzureRmSubscription cmdlet 76, 98
sender applications 245-246
sender keys 250
Server Manager 32
Server Message Block (SMB) protocol 42
Service Bus
messaging protocols 238-239
monitoring 275-277
namespaces 237-238, 273
pricing tier 271-272
quotas 273
scaling features 272273
when to use 277-278
Service Bus Messaging Protocol (SBMP) 239
Service Bus queues 237, 253259, 278
connection strings 256
creating 255
credentials 255-256
dead letter 259
duplicate messages and 259
monitoring 275
properties of 254
receiving messages 257—259
scaling 274
sending messages to 256—257
Service Bus subscriptions 237, 259-265, 278
creating 261
filtering messages 264265
properties 260
receiving messages from 263-264

Service Bus topics 237, 259-265, 278
creating 261
credentials 262
filtering messages 264265

monitoring 276

properties 260

scaling 274

sending messages to 262—263
Service Fabric. See Azure Service Fabric
Service Tiers 144-147
session state 181
SetAzureRmVmDscExtension cmdlet 13
set expiration date policy 91
shard maps 156
shared access signatures 116
Shared Access Signature (SAS) 127
shared access signatures (SAS) 132135
Shared Key 116
Shared Key Lite 116
shared storage

configuration 41-45
single page applications (SPAs) 192
Site Control Management (SCM) website 300
SOAP protocol 248
social identity provider authentication 217-225
Software as a Service (SaaS) 319-322
SQL Data Sync 159-160
SQL queries 167
SQL Server

virtual machines

creating 7

SQL Server Management Studio (SSMS) 151-155
SSD disks 30
SSH keys 393
SSH public keys

generation of 6
SSL certificates 291, 294295
standard disks 30-31, 45
standard storage 45
stateful Fabric-aware services 379
stateless Fabric-aware services 379
status messages 142
storage
access control 132-136
access policies 113
accounts 42
blob 110-112
CDN configuration 116-117
geographic location 111
key regneration 135-136
read and change data 112—-113
types 111
Azure File 41-45
Azure Files 119
Azure Storage Queue 128-131
Azure Tables 122128
blob 30, 42
blobs 109-122
append 115
block 115
copying 116
hierarchies 117-118
leasing 119-120
metadata 113-114
page 115
read and change data 112—-113
scaling 119-120
secure access 115 116
streaming data 115
types of 115

containers 112-113, 117, 122
Cross-Origin Resource Sharing 136-141
custom domains 118
disk caching 39-41
disk encryption 4648
geo-replication 41
integration of function with 374-376
locally redundant 111
logs 140-143
metrics 132
pools 32—-39
shared 41-45
virtual machines 29-47
capacity planning 30-32
premium 45
standard 45
storage access signatures (SAS)
tokens
creating 133-134
Storage Analytics Logging 140—141
Storage Analytics Metrics 132
analysis 139
configuration 137-140
monitoring 139
Storage API 114
Storage Client Library 44-45, 133
Storage Service Encryption (SSE) 46-47
stored access policies 135
stored procedures 164, 170, 173—-174
Stream Analytics 278
Swagger 308-310, 312-316, 340
Swagger Specification 310
Swashbuckle 308, 310-314, 340
Sync Groups 159
Sync Schemas 159

SyncTable 348

Syslog 48

system logs 48

system properties
metadata 113
reading 114

T

tables. See also Azure Tables
easy 348
SAS tokens for 134
TeamCity 409
Team Foundation Version Control 404
telemetry 400—401
temp drive 30
third-party Platform-as-a-Service (PaaS) 392—-399
Azure Marketplace 398-399
Azure Quickstart Templates 397-398
Cloud Foundry 392-393
OpenShift Container Platform 394—-396
throughput units 275
tiered pricing 144
Timestamp 124
Time-to-Live (TTL) 117, 265
tokens 203
transaction metrics 137
transforms 331
Transform XML 334-336
Transport Layer Security (TLS) 291
triggers 164, 173, 373-374, 376-377
for Logic Apps 337-339
T-SQL 161

U

UDFs. See user-defined functions

Universal Naming Convention (UNC) 41

unmanaged disks 30

update domains 58

URIs 111, 113

user defined functions (UDFs) 173

user-defined metadata 113114

users
adding to DevTest Labs 97-99
authentication of 192, 203-206
Cosmos DB 175

\"

vent processing functions 371-372
version control 404
virtual hard disks (VHDs) 30, 72
custom image creation from 74-76
virtual machine disks 30
Virtual Machine Scale Sets (VMSS)
configuring Autoscale on existing 27—29

configuring Autoscale when provisioning 25-2

deployment 18-24
virtual machines (VMs) 1-108
alerts, configuration 55
auto-shutdown policy 87-89
auto-start policy 90-91
availability 57-66
configuration management 7—16
with Azure Portal 14-15
with Custom Script Extension 8—1

with VM Agent 7-8
creating

Linux 6

SQL Server 7

Windows Server 3-5

DevTest Labs 67-104
adding VM to lab 70-71
cost management 92-95
custom images 72—-78
environments 100-104
formulas 77-83
lab creation 67-70
policies and procedures 83-91
security access 95—-100

disks
creating generalized 22

extensions 7—8

images 2

load balancing 61-67

monitoring 47-57
configuration 49-54
diagnostics 47-49
metrics 55-57

per lab policy 86-87

per user policy 85-86

remote debugging 16

scaling 16-29

set expiration date policy 91

sizes 17

sizes policy 83-85

storage 29-47
capacity planning 30—32
disk caching 39-41
disk encryption 4648
geo-replication 41
pools 32—-39
premium 45
shared 41-45
standard 45

workload deployment 1-7

virtual networks (VNet) 179
Visual Studio 2017
API app creation with 306-310
Visual Studio Server Explorer 300
Visual Studio Team Services (VSTS) 403—408
VM Agent 7, 47
configuration management using 7—8
VM Depot 2

W

WADDiagnosticInfrastructureLogsTable 49
WADETWEventTable 49
WADLogsTable 49
WADPerformanceCountersTable 48
WCEF Relay 240, 247-253

credentials 249-250

deployment 248-249

protocols 247

relay and listener endpoints 250-252

sending messages 252—253
Web/API applications 195-196
web applications 281
Web Apps 282-305

analytics 296

configuration

certificates 291, 294
settings 287-290

creating 284-285

custom domains 291-294

diagnostics 296-300

managing 295-296

monitoring 296, 300-303

resilience 303-305

scaling 303—305
webhook functions 369-371

Webhooks 94, 341
WeblJobs 366-367
web server logs 297, 318
web services 281
WebSockets 239
Windows containers 390
Windows virtual machines
creating 3-5, 45
metrics data 48
remote debugging 16
workloads
deployment, on ARM VMs 1-7
identifying supported 2—3
requirements 3—4
WS-Federation 192, 198, 203-206

X

XML capabilities

Logic Apps with 331-337
XML documents 331
XML Validation 333-334
XplatCLI 296

About the authors

ZOINER TEJADA has more than 18 years of experience in the software
industry as a software architect, CTO, and start-up CEO, with particular
expertise in cloud computing, big data, analytics, and machine learning. He was
among the first to receive a Microsoft Azure MVP (“Most Valuable
Professional”) designation and has since been awarded the MVP for six
consecutive years, and most recently a dual MVP award for Azure and Data
Platform. Additionally, he was recently recognized by Microsoft as a Microsoft
Regional Director.

MICHELE LEROUX BUSTAMANTE is cofounder / CIO of Solliance, a
Microsoft Regional Director and Azure MVP, has been awarded Azure Elite and
Azure Insider status as well as the ASP.NET Insider designation. Michele is a
respected technology executive / thought leader, who builds high performance
teams and infrastructure. With over 20 years of experience Michele has held
senior executive positions, assembled software development teams and
implemented processes for all aspects of the software development lifecycle, and
actively facilitated large-scale enterprise application deployments. Michele is a
recognized expert in many fields including distributed systems architecture,
cloud computing and identity and access management — the latter, an area with
very few deep technical experts. Today, Michele specializes in delivering cloud-
enabled solutions at scale, cloud migration, security, compliance, and micro-
services platforms.

IKE ELLIS is a data architect who stays current on many database
technologies. He specializes in the Microsoft Data Platform, including
DocumentDB, Azure SQL Datawarehouse, and Azure Data Lake. He also loves
visualizing data using Microsoft tools like Power BI, SQL Server Reporting
Services, and mobile dashboarding. Ike is a current Microsoft MVP for the data
platform team.

http://ASP.NET

Code Snippets

Many titles include programming code or configuration examples. To optimize
the presentation of these elements, view the eBook in single-column, landscape
mode and adjust the font size to the smallest setting. In addition to presenting
code and configurations in the reflowable text format, we have included images
of the code that mimic the presentation found in the print book; therefore, where
the reflowable format may compromise the presentation of the code listing, you
will see a “Click here to view code image” link. Click the link to view the print-
fidelity code image. To return to the previous page viewed, click the Back button
on your device or app.

Configuration EnableIIS

{
Node WebServer
{
WindowsFeature IIS {
Ensure = "Present",
Name = "Web-Server"
I
}

configuration DeployWebPage

i
node ("localhost™)
{
WindowsFeature IIS
{
Ensure = "Present”
Name = "Web-Server"
+
File WebPage
{
Ensure = "Present”
DestinationPath = "C:\inetpub‘\wwwroot\index.html"
Force = %true
Type = "File"
Contents = '<html><body><hl>Hello Web Page!</hl></body></html>"
}
}
£ . X
configuration IISInstall
{
node "localhost"
i
WindowsFeature IIS
{
Ensure = "Present”
Name = "Web-Server™
}
}

#Load the Azure PowerShell cmdlets

Import-Module Azure

#Login to your Azure Account and select your subscription (if your account has multiple
subscriptions)

Login-AzureRmAccount

Set-AzureRmContext -SubscriptionId <YourSubscriptionIds

$resourceGroup = "dscdemogroup”
SvmName = "myWM"
$storageMName = "demostorage"

#Publish the configuration script into Azure storage
Publish-AzureRmVMDscConfiguration -ConfigurationPath .\iisInstall.psl
-ResourceGroupName $resourceGroup -StorageAccountName $storageName -force
#Configure the VM to run the DSC configuration
Set-AzureRmVmDscExtension -Version 2.21
-ResourceGroupName $resourceGroup -VMName $vmName
-ArchiveStorageAccountName $storageName
-ArchiveBlobName iisInstall.psl.zip -AutoUpdate:$true -ConfigurationName

IISInstall
Pub%?sh—AzureVMDscConFiguration AisInstall.psl -ConfigurationArchivePath .\iisInstall.

psl.zip
$ResourceGroupName = "examref"

$VMName = "vmname"

$NewVMSize = "Standard_A5"

$vm = Get-AzureRmVM -ResourceGroupName $ResourceGroupName -Name $VMName
$vm.HardwareProfile.vmSize = $NewVMSize

Update-AzureRmVM -ResourceGroupName $ResourceGroupName -VM $wvm
Get-AzureRmVmSize -Location "East US" | Sort-Object Name |

ft Name, NumberOfCores, MemoryInMB, MaxDataDiskCount -AutoSize

L1

{
"$schema": "http://schema.management.azure.com/schemas/
2015-01-01/deploymentTemplate.json",
"contentVersion": "1.0.0.0",
"parameters”: {
"adminUsername"”: {
"type": "string"
I

"adminPassword": {
"type™: "securestring"
I,
"sogurceImageVhdUri": {
"type": "string",
"metadata”: {
"description™: "The source of the generalized blob containing the custom image"
1
I
1.
"variables": {},
"resources”: [
"type": "Microsoft.Compute/images”,
"apivVersion”: "2016-04-30-preview",
"name": "myCustomImage",
"location"”: "[resourceGroup().location]”,
"properties”: {
"storageProfile": {
"osDisk™: {

"OST)fI'JE" : " L_I nuxu f

"osState": "Generalized",
"blobUri™: "[parameters('sourceImageVhdUri')]",
"storageAccountType": "Standard_LRS"
}
}
1
I,

{
"type": "Microsoft.Network/virtualNetworks",
“name": "myVnet",
"location": "[resourceGroup().location]"”,
"apiVersion": "2016-12-01",
"properties”: {
"addressSpace”: {
"addressPrefixes": [
"10.0.0.0/16"
]
T,
"subnets": [
{
“name": “"mySubnet",
"properties": {
“addressPrefix": "10.0.0.0/16"
i
1

}s
{

"type™: "Microsoft.Compute/virtualMachineScaleSets",

"name": "myScaleSet",
"location”: "[resourceGroup().location]”,
"apiVersion": "2016-04-30-preview",
"dependsOn": [
"Microsoft.Network,/virtualNetworks/myvnet",
"Microsoft.Compute/images/myCustomImage”
1,
"sku": {
"name": "Standard_Al",
"capacity": 2
}l
"properties": {
"upgradePolicy": {
"mode": "Manual"
+
"wvirtualMachineProfile™: {
"storageProfile”: {
"imageReference": {

"id": "[resourceld("Microsoft.Compute/images"',

1

b,

"osProfile”: {
“computerNamePrefix":

vm,

"myCustomImage')}]"

"adminUsername”: "[parameters('adminUsername’')]",
"adminPassword": "[parameters('adminPassword')]"
1,
"networkProfile": {
"networkInterfaceConfigurations™: [
{
"name": "myNic",
"properties": {
"primary”: "true",
"ipConfigurations": [
{
"name": “"myIpConfig"”,
"properties”: {
"subnet": {
"id": "[concat(resourceld('Microsoft.Network/virtualNetworks',
"myVnet'), '/subnets/mySubnet')]"

New-AzureStorageContext <5torage-AccountMName= <5torage-Accountkey=

New-AzureStorageShare <ShareName= -Context Sctx

cmdkey /add:<Storage-AccountNames.file.core.windows.net /user:<Storage-
AccountName> /pass:<Storage-AccountKeys

net use z: \\<Storage-AccountName>.file.core.windows.net\<ShareName>
net use z: \\<Storage-AccountName>.file.core.windows.net\<5hareName>
/Persistent: YES

Login to your subscription
Login-AzureRmAccount

Select the subscription to work within
Select-AzureRmSubscription -SubscriptionName "<subscription name="

Identify the VM you want to encrypt by name and resource group name
$rgName = '<resourceGroupName=";
$vmName = '<vmname>';

Provide the Client ID and Client Secret
$aadClientID = <aad-client-id>;
$aadClientSecret = <aad-client-secret>;

Get a reference to your Key Vault and capture its URL and Resource ID

SKeyVaultName = '<keyVaultNames':

$KeyVault = Get-AzureRmKeyVault -VaultName $KeyVaultMame -ResourceGroupMame
Srgname;

fdiskEncryptionkKeyVaultUrl = $KeyVault.VaultUri;

$KeyVaultResourceld = $KeyVault.Resourceld;

Enable Azure to access the secrets in your Key Vault to boot the encrypted VM.
Set-AzureRmKeyVaultAccessPolicy -VaultName $KeyVaultName -ResourceGroupName
$rgname -

EnabledForDiskEncryption

Encrypt the WM

Set-AzureRmVMDiskEncryptionExtension -ResourceGroupName $rgname -VMName 3$SvmName -
AadClientID $aadClientID -AadClientSecret $aadClientSecret -
DiskEncryptionKeyVaultUrl

$diskEncryptionKeyVaultUrl -DiskEncryptionKeyVaultId SKeyVaultResourceld;
Get-AzureRmVmDiskEncryptionStatus -ResourceGroupMame $rgname -VMName S$SwvmName
New-AzureRmAvailabilitySet -ResourceGroupName "<ResourceGroupNames>"

-Name "<AvailabilitySetName>" -Location "<Location>"

SAvailabilitySet = Get-AzureRmAvailabilitySet -ResourceGroupName "<ResourceGroupNames"
-Name "<AvailabilitySetNames>"

$VirtualMachine = New-AzureRmyMConfig -VMName "<VirtualMachineName>"

-VMSize "<VM_Size>" —Avaﬁ1abi11ty5e§;ﬂ $Avai1abi11ty5et.1d1.
Start-AzureRmVM -ResourceGroupMName "<ResourceGroupMName:

-Name "<VirtualMachineName>" o
$subscriptionld = '<Specify your subscription ID heres'

Select-AzureRmSubscription -5Subscriptionld $subscriptionId
$labRg = '<Specify your Tlab resource group name heres'

$TabName = '<Specify your Tab name here:'
$1ab = Get-AzureRmResource -Resourceld ('/subscriptions/' + 3%subscriptionId +
'/resourceGroups/' + $labRg + '/providers/Microsoft.DevTestLab/1abs/' + $1abName)

$labStorageAccount = Get-AzureRmResource -Resourceld
$lab.Properties.defaultStorageAccount

$labStorageAccountKey = (Get-AzureRmStorageAccountKey -ResourceGroupName
$1abStorageAccount.ResourceGroupName -Name

$1abStorageAccount.ResourceName) [0] .Value
$vhdUri = '<Specify the VHD URI here>'
$customImageName = '<Specify the custom image name:'

$customImageDescription = '<Specify the custom image description>'

$parameters = @{existingLabName="%(%1ab.Name)"; existingVhdUri=$vhdUri;
imagelsType="windows'; isVhdSysPrepped=%false; imageName=%customImageName:
imageDescription=%customImageDescription}

New-AzureRmResourceGroupDeployment -ResourceGroupName $1ab.ResourceGroupName
-Name CreateCustomImage -TemplateUri 'https://raw.githubusercontent.com/
Azure/azure-devtestlab/master/Samples/201-dt]-create-customimage-from
-vhd/azuredeploy.json' -TemplateParameterObject $parameters

$subscriptionld = '<Specify your subscription ID here>'
Select-AzureRmSubscription -Subscriptionld $subscriptionId
SuserDisplayName = "<Specify the User's Display Name here>"

$adObject = Get-AzureRmADUser -SearchString SuserDisplayName
$1abRg = '<Specify your lab resource group name heres'

$labName = '<Specify your lab name heres>'
$lab = Get-AzureRmResource -Resourceld ('/subscriptions/' + $subscriptionld +

'/resourceGroups/' + $1abRg + '/providers/Microsoft.DevTestLab/labs/' + $1abName)
New-AzureRmRoTleAssignment -ObjectId $adObject.Id -RoleDefinitionName 'DevTest

%abs User' -Scope $labId

"itemDisplayName™: "<your template names",
"description": "<description of the template>"

}

CloudStorageAccount storageAccount;

storageAccount =
CloudStorageAccount.Parse("DefaultEndpointsProtocol=https;AccountName={your
storage account name};AccountKey={your storage keyl");

CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient();

CloudBlobContainer container = blobClient.GetContainerReference("democontainerblo
ckblob™);

try

(

await container.CreatelfNotExistsAsync();

}

catch (StorageException ex)

i

Console.WriteLine(ex.Message);

Console,ReadLine();

throw;

}
const string ImageTolpload = @"C:“temp\HelloWorld.png";
CloudBlockBlob blockBlob = container.GetBlockBlobReference("HelloWorld.png");
// Create or overwrite the “"myblob" blob with contents from a local file.
using (var fileStream = System.I0.File.OpenRead(ImageTolpload))
{
blockBlob.UploadFromStream(fileStream);

%Dreach (IListBlobItem blob in container.ListBlobs())

{
Console.WriteLine("- {0} (type: {1})", blob.Uri, blob.GetType());

}

CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient();
CloudBlobContainer container =
blobClient.GetContainerReference("democontainerblockblob");

container.Metadata.Add("counter”, "100");container.SetMetadata();
container.FetchAttributes();

foreach (var metadataltem in container.Metadata)

{
Console.WriteLine("\tKey: {0}", metadataltem.Key);
Console.WriteLine("\tValue: {0}", metadataltem.Value);

}

container = blobClient.GetContainerReference("democontainerblockblob™);
container.FetchAttributes();

Console.WriteLine("LastModifiedUTC: " + container.Properties.LastModified);
Console.WriteLine("ETag: " + container.Properties.ETag);

string pageBlobName = "random”;
CloudPageBlob pageBlob = container.GetPageBlobReference(pageBlobName);
await pageBlob.CreateAsync(512 * 2 /¥*size*/); // size needs to be multiple of 512 bytes

byte[] samplePagedata = new byte[512];
Random random = new Random();
random.NextBytes (samplePagedata);

await pageBlob.UploadFromByteArrayAsync(samplePagedata, 0, samplePagedata.Length);
int bytesRead = await pageBlob.DownloadRangeToByteArrayAsync(samplePagedata,

0, 0, samplePagedata.Count());
string accountName = "ACCOUNTNAME";

string accountKey = "ACCOUNTKEY";
CloudStorageAccount storageAccount = new CloudStorageAccount(new

StorageCredentials(accountName, accountKey), true);
Error! Hyperlink reference not valid.>
TimeSpan? leaseTime = TimeSpan.FromSeconds(60);

string leaseID = blockBlob.AcquirelLease(leaseTime, null);
$acctKey = ConvertTo-SecureString -5tring "<storage-account-key=" -AsPlainText

-Force
fcredential = New-Object System.Management.Automation.P5Credential -Argumentlist
"Azure\<storage-account-name>", S$acctKey
New-PSDrive -Name <desired-drive-letter> -PSProvider FileSystem -Root
"\\<storage-account-name>.file.core.windows.net\<share-name>" -Credential Scredential
net use <desired-drive-letter>: ‘\\<storage-account-name>.file.core.windows.net
‘<share-name> <storage-account-key> /user:Azure\<storage-account-name>

sudo mount -t cifs //<storage-account-name=.file.core.windows.net/<share-name=
JSmymountpoint -o vers=Z2.1,username=<storage-account-name:,password=<storage-

accouqt—key;sdir_mnde=ﬂ???,FiTe_mode=0???,serv&r1no
<configuration>

<appSettings>
<add key="StorageConnectionString" value="DefaultEndpointsProtocol=
https;AccountName=<your account name:;AccountKey=<your account key=" />

</appSettings>

</configuration>
using Microsoft.WindowsAzure.Storage;

using Microsoft.WindowsAzure.Storage.Auth;
using Microsoft.WindowsAzure.Storage.Table;
using Microsoft.WindowsAzure;

using System.Configuration;
var storageAccount =CloudStorageAccount.Parse

(ConfigurationManager.AppSettings["StorageConnectionString”]);
CloudTableClient tableClient = storageAccount.CreateCloudTableClient(};

CloudTable table = tableClient.GetTableReference("orders");
table.CreatelIfNotExists();

using System;
using Microsoft.WindowsAzure.Storage.Table;
public class OrderEntity : TableEntity
]
public OrderEntity(string customerName, string orderDate)
{
this.PartitionKey = customerName,
this.RowKey = orderDate;
}
public OrderEntity() { }
public string OrderNumber { get; set; }
public DateTime RequiredDate { get; set; }
public DateTime ShippedDate { get; set; }
public string Status { get; set; }

CloudTableClient tableClient = storageAccount.CreateCloudTableClient(};

CloudTable table = tableClient.GetTableReference("orders");

OrderEntity newOrder = new OrderEntity("Archer”, "20141216");

newlrder.OrderNumber "101";

newOrder.ShippedDate = Convert.ToDateTime("12/18/2017");

newOrder.RequiredDate = Convert.ToDateTime("12,/14,/2017")};
newOrder.Status = "shipped";
TableOperation insertOperation = TableOperation.Insert(newOrder);

table.Execute(insertOperation);

TableBatchOperation batchOperation = new TableBatchOperation(};

OrderEntity newOrderl
newOrderl.OrderNumber = "102";

newOrderl.ShippedDate Convert.ToDateTime("1/1/1900");
newOrderl.RequiredDate = Convert.ToDateTime("1/1/1900"});
newOrderl.5tatus = "pending”;

OrderEntity newOrder2 = new OrderEntity("Lana", "20141218");
newlrder2.0rderNumber = "103";

newOrder2.ShippedDate = Convert.ToDateTime("1/1/1900");
newOrderd.RequiredDate = Convert.ToDateTime("12/25/2014");
newOrder2.S5tatus = "open”;

OrderEntity newOrder3 = new OrderEntity("Lana", "20141219");
newlrder3.0rderNumber = "103";

newOrder3.ShippedDate = Convert.ToDateTime("12/17/2014");
newOrder3.RequiredDate = Convert.ToDateTime("12/17,/2014™);
newOrder3.5tatus = "shipped”;
batchOperation.Insert(newdrderl);
batchOperation.Insert(newOrder2);
batchOperation.Insert(newOrder3);
table.ExecuteBatch(batchOperation);

new OrderEntity("Lana"™, "20141217");

TableQuery<OrderEntity> query = new TableQuery<OrderEntity=().Where(
TableQuery.GenerateFilterCondition("PartitionKey", QueryComparisons.Equal, "Lana"));

foreach (OrderEntity entity in table.ExecuteQuery(query))

{

Console.WritelLine(" {0}, {1}\tf{2}\t{3}", entity.PartitionKey, entity.RowKey,
entity.5tatus, entity.RequiredDate);

}
Console.ReadKey();

TableOperation retrieveOperation = TableOperation.Retrieve<OrderEntity=("Lana",
"20141217");

TableResult retrievedResult = table.Execute(retrieveOperation);

OrderEntity updateEntity = (OrderEntity)retrievedResult.Result;

it (updateEntity !'= null)

{

updateEntity.Status = "shipped"”;

updateEntity.ShippedDate = Convert.ToDateTime("12/20/2014");

TableOperation insertOrReplaceOperation = TableOperation.
InsertOrReplace(updateEntity);

table.Execute(insertOrReplace0peration);

}

TableOperation deleteOperation = TableOperation.Delete(deleteEntity);
table.Execute(deleteOperation);
Console.WriteLine("Entity deleted.");

https://myaccount.table.core.windows.net/Tables

https://<your account name>.table.core.windows.net/<your table
name> (PartitionKey='<partition-key>’,RowKey='<row-key>') ?$select=
<comma separated

property names:>
CloudQueueClient queueClient = storageAccount.CreateCloudQueueClient();

//This code assumes you have a queue called "queue" already. If you don't have one, you
should call queue.CreateIfNotExists();

CloudQueue queue = queueClient.GetQueueReference("queue”);

queue.AddMessage(new CloudQueueMessage("Queued message 1"));
gqueue.AddMessage (new CloudQueueMessage("Queued message 2"));
gqueue.AddMessage(new CloudQueueMessage("Queued message 3"));

CloudQueueMessage message = queue.GetMessage(new TimeSpan{0, 5, 0));
if (message !'= null)

{

string theMessage = message.As5tring;
// your processing code goes here

}

IEnumerable<CloudQueueMessage> batch = queue.GetMessages (10, new TimeSpan(0, 5, 0));
foreach (CloudQueueMessage batchMessage in batch)

&

Console.Writeline(batchMessage.AsString);

}

SharedAccessBlobPolicy sasPolicy = new SharedAccessBlobPolicy();
sasPolicy.SharedAccessExpiryTime = DateTime.UtcNow.AddHours(1);
sasPolicy.SharedAccessStartTime = DateTime.UtcNow.Subtract(new TimeSpan(0, 5, 0));
sasPolicy.Permissions = SharedAccessBlobPermissions.Read | SharedAccessBlobPermissions.
Write | SharedAccessBlobPermissions.Delete | SharedAccessBlobPermissions.List;
CloudBlobContainer files = blobClient.GetContainerReference("files");

string sasContainerToken = files.GetSharedAccessSignature(sasPolicy);

7sv=2014-02-14&sr=c&sig=B6bi4xKkdgOXhWg3RWIDOSpeekg®*2FRijvnuoSo41lhjlpAk3D&st=2014
-12-24T14%3A16%3A07 78&5e=2014-12-24T15%3A21%3A07 Z&sp=rwd

StorageCredentials creds = new StorageCredentials(sasContainerToken};
CloudStorageAccount accountWithSAS = new CloudStorageAccount(accountSAS, "account-name",
endpointSuffix: null, useHttps: true);

CloudBlobClientCloudBlobContainer sasFiles = sasClient.GetContainerReference("files"):

CloudQueueClient queueClient = account.CreateCloudQueueClient();

CloudQueue queue = queueClient.GetQueueReference("queue™);

SharedAccessQueuePolicy sasPolicy = new SharedAccessQueuePolicy();
sasPolicy.SharedAccessExpiryTime = DateTime.UtcNow.AddHours(1):
sasPolicy.Permissions = SharedAccessQueuePermissions.Read |
SharedAccessQueuePermissions.Add | SharedAccessQueueFPermissions.Update |
SharedAccessQueuePermissions.ProcessMessages;

sasPolicy.SharedAccessStartTime = DateTime.UtcNow.Subtract(new TimeSpan(0, 5, 0));
string sasToken = queue.GetSharedAccessSignature(sasPolicy);
7sv=2014-02-14&s1g=wE50AUYHcGI8chwyZZd3Byp5jK1Po8uku2t%2FYzQsIhY%3D&st=2014-12-2
4T14%3A23%3A2228&s5e=2014-12-24T15%3A28%3A22Z&sp=raup

StorageCredentials creds = new StorageCredentials(sasContainerToken);
CloudQueueClient sasClient = new CloudQueueClient(new
Uri("https://dataikel.queue.core.windows.net/"), creds);

CloudQueue sasQueue = sasClient.GetQueueReference("queue™);
sasQueue.AddMessage (new CloudQueueMessage("new message"));
Console.ReadKey();

SharedAccessTablePolicy sasPolicy = new SharedAccessTablePolicy();
sasPolicy.SharedAccessExpiryTime = DateTime.UtcNow.AddHours(1);
sasPolicy.Permissions = SharedAccessTablePermissions.Query |
SharedAccessTablePermissions.Add | SharedAccessTableFPermissions.Update |
SharedAccessTablePermissions.Delete;

sasPolicy.SharedAccessStartTime = DateTime.UtcNow.Subtract(new TimeSpan(0, 5, 0));
string sasToken = table.GetSharedAccessSignature(sasPolicy);

7sv=2014-02-14&tn=%2410g5&51g=dsnI7RBAIxYQVr#2FT1pDEZMOZHBY tSGwtyUUntVmxstA%3D&s
t=2014-12-24T14%3A48%3A0972&s5e=2014-12-24T15%3A53%3A09Z2&s p=raud

using (MultiShardConnection conn = new MultiShardConnection(
myShardMap.GetShards (),
myShardConnectionString)

{
using (MultiShardCommand cmd = conn.CreateCommand())
{
cmd.CommandText = "SELECT ¢l, ¢2, ¢3 FROM ShardedTable™;
cmd.CommandType = CommandType.Text;
cmd.ExecutionOptions = MultiShardExecutionOptions.IncludeShardNameColumn;
cmd.ExecutionPolicy = MultiShardExecutionPolicy.PartialResults;

using (MultiShardDataReader sdr = cmd.ExecuteReader())
{
while (sdr.Read())
{

var clField
var c2Field
var c3Field

sdr.GetS5tring(0);
sdr.GetFieldValue<int=(1);
sdr.GetFieldvalue<Int64=(2);

}

1
CREATE TAELE Person (ID INTEGER PRIMARY KEY, Wame VARCHAR(100Q), Age INT) AS NODE;

CREATE TABLE friends (StartDate date) AS EDGE;
SELECT Restaurant.name

FROM Person, likes, Restaurant
WHERE MATCH (Person-(likes)-=Restaurant)
AND Person.name = 'John';

“glossary”: {
“title”: “example glossary”,
“GlossDiv": {
“£itle®: “S8%
“GlossList™: {
“GlossEntry™: {
“ID": “SGML”,
“SortAs”: “SCML",
“GlossTerm”: “Standard Generalized Markup Language”,
“Acronym’: “SCML",
“Abbrev”: "IS0 8879:1986",
*GlossDef": {
“para”: “"A meta-markup language, used to create markup
languages such as DocBook.”,
*GlossSeeAlso”: [“CGML", “XML"]
}s
“GlossSee”: “markup”

}

t
using Microsoft.Azure.Documents.Client;

using Microsoft.Azure.Documents;

using Newtunaﬂft.gaun;
private const string account = "<your account URI=";

private const gtring_ke% = "zyour key>";
static void Main(string[] args)

{
TestDocDb () . Wait();

private static async Task TestDocDb()

{

string id = "SalesDB";

var database = _client.CreateDatabaseQuery().Where(db => db.Id == id).AsEnumerable().
FirstOrDefault();

if (database == null)

{

database = await client.CreateDatabaseAsync(new Database { Id = id 1});

%tring collectionName = "Customers":

var collection = client.CreateDocumentCollectionQuery(database.CollectionsLink).

Where(c => c.Id == collectionName).AsEnumerable().FirstOrDefault();

if (collection == null)

i

collection = await client.CreateDocumentCollectionAsync(database.CollectionsLink,
new DocumentCollection { Id = collectionNamel);

public class PhoneNumber

{

public string CountryCode { get; set; }
public string AreaCode { get; set; }
public string MainNumber { get; set; }

public class Customer
{
public string CustomerName { get; set; }
public PhoneNumber[] PhoneMumbers { get; set; }

var contoso = new Customer

i

CustomerName = "Contoso Corp",
PhoneMumbers = new PhoneNumber([]

{
new PhoneNumber
{
CountryCode = "1",
AreaCode = "619",
MainNumber = "555-1212" ¥,
new PhoneNumber
{
CountryCode = "1",
AreaCode = "760",
MainNumber = "555-2442" h

1
};

var wwi = new Customer

i
CustomerName = "World Wide Importers”,
PhoneMumbers = new PhoneNumber([]

{
new PhoneNumber
{
CountryCode = "1",
AreaCode = "858",
MainNumber = "555-7756" ¥,
new PhoneNumber
{
CountryCode = "1,
AreaCode = "BS58",
MainNumber = "555-9142" |

1
}:
await client.CreateDocumentAsync(collection.DocumentsLink, contoso);
await _client.CreateDocumentAsync(collection.DocumentsLink, wwi);
var customers = client.CreateDocumentQuery<Customer=(collection.DocumentsLink).

Where(c == c.CustomerName == "Contoso Corp").ToList();

var linqCustomers = from c in
client.CreateDocumentQuery<Customers>{collection.DocumentsLink)

select c;
var customers = client.CreateDocumentQuery<Customer=(collection.DocumentsLink,

"SELECT * FROM Customers ¢ WHERE c.CustomerName = 'Contoso Corp'");
using (DocumentClient client = new DocumentClient(

new Uri(endpoint),
authKey,
new ConnectionPolicy { ConnectionMode = ConnectionMode.Direct, ConnectionProtocol

= Protocol.Tcp }))
Database database = await client.CreateDatabaseIfNotExistsAsync(new Database

{ Id = "graphdb" });

DocumentCollection graph = await client.CreateDocumentCollectionIfNotExistsAsync(
UriFactory.CreateDatabaselri ("graphdb"),
new DocumentCollection { Id = “graph" },

new RequestOptions { OfferThroughput = 1000 });
IDocumentQuery<dynamic> query = client. Createﬂrem11nDuery<dynam1c>

(graph, "g.V(Q.count()");
while (guery.HasMoreResults)

]

foreach (dynamic result in await query.ExecuteNextAsync())

{

Console.WriteLine($"\t {JsonConvert.SerializeObject(result)}");
}

ConnectionPolicy connectionPolicy = new ConnectionPolicy();

//Setting read region selection preference
connectionPolicy.PreferredLocations.Add(LocationNames.WestUS); // first preference
connectionPolicy.PreferredLocations.Add(LocationNames.EastUS); // second preference
connectionPolicy.PreferredLocations.Add(LocationNames . NorthEurope); // third preference

// initialize connection

DocumentClient docClient = new DocumentClient(
accountEndPoint,
accountKey,

connectionPoTicg);
var mySproc = new StoredProcedure

{
Id = "createDocs",
Body = "function({documentToCreate) {" +
"var context = getContext(};" +
"var collection = context.getCollection();" +
"war accepted = collection.createDocument({collection.getSelfLink()," +
"documentToCreate," +
"function (err, documentCreated) {" +
"if (err) throw new Error('Error oh ' + documentToCreate.Name +
'- ' 4+ err.message);" +
"context.getResponse () .setBody (documentCreated.id)" +
"D+
"if (laccepted) return;™ +
"y
-
var response = await client.CreateStoredProcedureAsync(conferenceCollection.
SelfLink, mySproc);

<add name="MySessionStateStore"
host = "127.0.0.1"

port = ""
accessKey =
ss1 = "false"
throwOnError = "true”
retryTimeoutInMilliseconds = "0"
databaseId = "0"
applicationName =
connectionTimeoutInMilliseconds = "5000"
operationTimeoutInMilliseconds = "5000"

i

LR 1]

/>
<add name="MySessionStateStore"” type="Microsoft.Web.Redis.RedisSessionStateProvider”

host="127.0.0.1" accessKey="" ssl="false"/> .
string searchServiceName = "your search service name;

string accesskey = "your access key"
SearchServiceClient serviceClient = new SearchServiceClient(searchServiceName,

new SearchCredentials(accesskey));
using System;

using Microsoft.Azure.Search;

using Microsoft.Azure.Search.Models;
using Microsoft.Spatial;

using Newtonsoft.Jlson;

// The SerializePropertyNamesAsCamelCase attribute is defined in the Azure
/4 Search .NET SDK.
// It ensures that Pascal-case property names in the model class are mapped to
// camel-case field names in the index.
[SerializePropertyNamesAsCamelCase]
public partial class Home
{
[System.ComponentModel .DataAnnotations.Key]
[IsFilterable]
public string HomeID { get; set; }

[IsFilterable, IsSortable, IsFacetable]
public double? RetailPrice { get; set; }

[IsFilterable, IsSortable, IsFacetable]
public int? SquareFootage { get; set; }

[IsSearchable]
public string Description { get; set; }

[IsFilterable, IsSortable]
public GeographyPoint Location { get; set; }

var definition = new Index()
{

Name = "homes™,

Fields = FieldBuilder.BuildForType<Homes>()
f 2-

serviceClient.Indexes.Create(definition):
var homes = new Homel[]

{

new Home()
{
RetailPrice = Convert.ToDouble("459999.00"),
SquareFootage = 3200,
Description = "Single floor, ranch style on 1 acre of property. 4 bedroom,
lTarge Tiving room with open kitchen, dining area.”,
Location = GeographyPoint.Create(47.678581, -122.131577)

E;
ISearchIndexClient indexClient = serviceClient.Indexes.GetClient("homes");

var batch = IndexBatch.Upload(homes);

indexClient.Documents.Index(batch);
SearchParameters parameters;

DocumentSearchResult<Home> searchResults:
parameters =

new SearchParameters()
{

Select = new[] { "SquareFootage" }
};

searchResults = indexClient.Documents.Search<Home>("3200", parameters);
foreach (SearchResult<Home> result in searchResults.Results)

{

Console.WriteLine(result.Document);

"AzureAd": { "Instance": "https://login.microsoftonline.com/",
"Domain": "solaaddirectory.onmicrosoft.com",
"TenantId": "cbhcad604-0f11-4clc-bdc0-44150037bFfd9",
"ClientId": "483db32c-f517-495d-a7b5-03d6453c939c",
"CallbackPath": "/signin-oidc”

¥

class Program

{
private const string RelayNamespace = "<namespace>.servicebus.windows.net";
private const string ConnectionName = “<hybridconnectionname>";

private const string KeyName = "<sharedaccesskeyname> ";
private const string Key = "<sharedaccesskeyvalue>";

static void Main(string[] args)

{
RunAsync () .GetAwaiter().GetResult();

private static async void ProcessMessagesOnConnection(
HybridConnectionStream relayConnection,
CancellationTokenSource cts)

Console.WriteLine("New session™);

// The connection is a fully bidrectional stream, enabling the Listener
to echo the text from the Sender.
var reader = new StreamReader{(relayConnection);
var writer = new StreamwWriter(relayConnection) { AutoFlush = true };
while (!cts.IsCancellationRequested)
{
try
{
// Read a Tline of dinput until a newline is encountered
var line = await reader.ReadLineAsync();

if (string.IsNullOrEmpty(Tine})

{
await relayConnection.ShutdownAsync(cts.Token);
break;

}

Console.WriteLine(line);

// Echo the line back to the client
await writer.WriteLineAsync($"Echo: {1ine}");
T
catch (IOException)
{
Console.WriteLine("Client closed connection");
break;

Console.WriteLine("End session");

// Close the connection
await relayConnection.CloseAsync(cts.Token);

private static async Task RunAsync()

i
var cts = new CancellationTokenSource();
var tokenProvider =

TokenProvider.CreateSharedAccessSignatureTokenProvider (KeyNa
me, Key);

var listener = new HybridConnectionListener(
new Uri(string.Format("sb://{0}/{1}",
RelayNamespace, ConnectionName)),
tokenProvider);

// Subscribe to the status ewvents

listener.Connecting += (o, e) => { Console.WriteLine("Connecting”); };

Tistener.0ffline += (o, e) => { Console.WriteLine("Offline"); };
Tistener.Online += (o, e) => { Console.WriteLine("Online™); I};

// Establish the control channel to the Azure Relay service
await listener.OpenAsync(cts.Token);
Console.WriteLine("Server listening");

// Providing callback for cancellation token that will close the Tlistener.
cts.Token.Register(() => listener.CloseAsync(CancellationToken.None));

J// Start a new thread that will continuously read the console.
new Task(() == Console.In.ReadLineAsync().ContinueWith((s) => {
cts.Cancel (); })).Start();

// Accept the next available, pending connection request.
while (true)

{
var relayConnection = await listener.AcceptConnectionAsync();
it (relayConnection == null)
{
break;
}
ProcessMessagesOnConnection(relayConnection, cts);
}

// Close the listener after we exit the processing loop
await Tistener.CloseAsync{cts.Token);

using System;

using System.IO;

using System.Threading;

using System.Threading.Tasks;

using Microsoft.Azure.Relay;

Replace the Program class with the following:
class Program

{
private const string RelayMamespace = "<namespace>.servicebus.windows.net";
private const string ConnectionName = "<hybridconnectionnames>";
private const string KeyName = "<sharedaccesskeyname> ";
private const string Key = "<sharedaccesskeyvalue>";
static void Main(string[] args)
{
RunAsync () .CetAwaiter() .GetResult();
}
private static async Task RunAsync()
{
Console.WriteLine("Enter Tines of text to send to the server with
ENTER™) ;

// Create a new hybrid connection client

var tokenProvider = TokenProvider.CreateSharedAccessSignatureTokenProv
ider(KeyName, Key);

var client = new HybridConnectionClient(new
Uri(String.Format("sh://{0}/{1}", RelayNamespace, ConnectionName)),
tokenProvider);

// Initiate the connection
var relayConnection = await client.CreateConnectionAsync();
var reads = Task.Run(async () => {
var reader = new StreamReader(relayConnection);
var writer = Console.Out;
do
{
// Read a full Tine of UTF-8 text up to newline
string line = await reader.ReadlLineAsync();
J/ if the string is empty or null, we are done.
if (5tring.IsNullOrEmpty(line))
break;
// Write to the console
await writer.WriteLineAsync(line);
}
while (true);

15

// Read from the console and write to the hybrid connection
var writes = Task.Run(async () => {
var reader = Console.In;
var writer = new StreamwWriter(relayConnection) { AutoFlush = true

do
{
// Read a line form the console
string line = await reader.ReadlLineAsync();
await writer.WriteLineAsync(line);
if (String.IsNullOrEmpty(line))
break;
}

while (true);
b
await Task.whenAll(reads, writes);
await relayConnection.CloseAsync(CancellationToken.MNone);

using System.ServiceModel;
[ServiceContract]
public interface IrelayService
{
[OperationContract]
string EchoMessage(string message);

}

public class RelayService:IrelayService
{
public string EchoMessage(string message)
{
Console.WritelLine(message);
return message;
1
}

using System.ServiceModel;
using Microsoft.ServiceBus;
class Program
{
static void Main(string[] args)
{
string serviceBusNamespace = "<namespace>";
string listenerPolicyName = "<sharedaccesspolicykeynames";
string listenerPolicyKey = "<sharedaccesspolicykeyvalue>";
string serviceRelativePath = "<relayname>";
ServiceHost host = new ServiceHost(typeof(RelayService));

host.AddServiceEndpoint(typeof(IrelayService), new
NetTcpRelayBinding(){ IsDynamic = false },
ServiceBusEnvironment.CreateServiceUri("sb", serviceBusNamespace,
serviceRelativePath))
.Behaviors.Add(new TransportClientEndpointBehavior

{
TokenProvider = TokenProvider. CreateSharedAccessSignatureToke
nProvider(listenerPolicyName, listenerPolicykey)

i3 -

host.0Open();

Console.WriteLine("Service is running. Press ENTER to stop the
service.");
Console.ReadlLine();

host.Close();
}

usiﬁ% System.ServiceModel;
[ServiceContract]
public interface IrelayService
i

[OperationContract]

string EchoMessage(string message);
}

public interface IrelayServiceChannel:IrelayService,IClientChannel {}

using Microsoft.ServiceBus;
using System.ServiceModel;
class Program

{
static void Main(string[] args)
{
string serviceBusNamespace = "<namespace>";
string senderPolicyName = "<sharedaccesspolicykeynames";

string senderPolicyKey = "<sharedaccesspolicykeyvalue=";
string serviceRelativePath = "<relayname>";

var client = new ChannelFactory<IrelayServiceChannel:>(
new NetTcpRelayBinding(){ IsDynamic = false },
new EndpointAddress(
ServiceBusEnvironment.CreateServiceUri("sb",

serviceBusNamespace, serviceRelativePathl));

client.Endpoint.Behaviors.Add(
new TransportClientEndpointBehavior { TokenProvider =
TokenProvider.CreateSharedAccess5ignatureTokenProvider(senderPolicyName,
senderPolicyKey) });

client.CreateChannel())

using (wvar channel
{

string message = channel.EchoMessage("hello from the relay!");
Console.WriteLine(message);

}

Console.ReadLine();
}

Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccesskKeyName=<policyname:;5Share

dAccessﬁey=B2wa15EErkuF2NHJl?w1NKUiCHrerchagD?lKOUSw:;
Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyName=

Receiver;SharedAccessKey=N1Qt3CQyhalBxVFpTTIXMCkG/00h14WTIbel+M84tho=;
TransportType=Amqgp.

using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Messaging;
class Program
{
static void Main(string[] args)
{
string queueName = "<queuenames>";
string connection = "Endpoint=sb://<namespace>.servicebus.windows.net/;
SharedAccessKeyName=<sharedaccesskeyname>;
SharedAccessKey=<sharedaccesskeyvalue>;TransportType=Amgp";
MessagingFactory factory = MessagingFactory.CreateFromConnectionString(
connection);
QueueClient gueue = factory.CreateQueueClient{queueName);
string message = "queue message over amgp";
BrokeredMessage bm = new BrokeredMessage(message);
queue . SendCbm) ;

using System;
using Microsoft.ServiceBus.Messaging;
class Program
{
static void Main(string[] args)
{
string queueName = "<queuename>";
string connection = "Endpoint=sb://<namespace>.servicebus.windows.net/;
SharedAccessKeyName=<sharedaccesskeyname>;
SharedAccessKey=<sharedaccesskeyvalue>=;TransportType=Amgp";

MessagingFactory factory = MessagingFactory.CreateFromConnectionString(
connection);

QueueClient queue = factory.CreateQueueClient(queueName);

while (true)

{
BrokeredMessage message = queue.Receive();
it (message != null)
{
try
{
Console.WriteLine("Messageld {0}", message.Messageld);
Console.WriteLine("Delivery {0}", message.DeliveryCount);
Console.WriteLine("5ize {0}", message.5ize);
Console.WriteLine(message.GetBody<string>(}));
message.Complete();
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
message .Abandon();
}
1
}

}
| 3 . : :
using Microsoft.ServiceBus.Messaging;
string topicName = "<topicnames";
string connection =
"Endpoint=sb://<namespace>.servicebus.windows.net/;5haredAccessKeyName=
<sharedaccesskeyname>;SharedAccessKey=<shareaccesskeyvalue>";
MessagingFactory factory =
MessagingFactory.CreateFromConnectionString(connection);
TopicClient topic = factory.CreateTopicClient(topicName);

topic.Send(new BrokeredMessage("topic message"));
using Microsoft.ServiceBus.Messaging;

string topicName = "<topicname>";

string subA = "<subscriptionames";

string connection = "Endpoint=sb://<namespace>.servicebus.windows.
net/:SharedAccessKeyName=
<sharedaccesskeyname>;SharedAccessKey=<sharedaccesskeyvalue>";

MessagingFactory factory =
MessagingFactory.CreateFromConnectionString(connection);

SubscriptionClient clientA = factory.CreateSubscriptionClient(topicName, subA);
while (true)

{
BrokeredMessage message = clientA.Receive();
if (message !'= null)}
{
try
{
Console.WriteLine("Messageld {0}", message.Messageld);
Console.WriteLine("Delivery {0}", message.DeliveryCount);
Console.WriteLine("Size {0}", message.Size);
Console.WriteLine(message.GetBody<string=());
message.Complete();
1
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
message .Abandon(} ;
}
string topicName = "<topicname>";
string connection = "Endpoint=sbh://<namespace>.servicebus.windows.

net,/;SharedAccessKeyName=

<sharedaccesskeynames;

SharedAccessKey=<sharedacceskeyvalue>";

var ns = NamespaceManager.CreateFromConnectionString(connectionString);
SqlFilter filter = new SqlFilter("Priority == 1");
ns.CreateSubscription(topicName, "PrioritySubscription”, filter);

To send messages to the topic, targeting the priority subscription, set
the Priority property to one on each message:

BrokeredMessage message = new BrokeredMessage("priority message");
message.Properties["Priority"] = 1;

string ehName = "<eventhubnames";

string connection =
"Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyName=

<sharedaccesskeyname>;SharedAccessKey=<sharedaccesskeyvalue>;TransportType=Amqp";

MessagingFactory factory =
MessagingFactory.CreateFromConnectionString(connection);

EventHubCTient client = factory.CreateEventHubCTlient(ehName)

string message = "event hub message”;

EventData data = new EventData(Encoding.UTF8.CGetBytes(message));

client.Send(data):
string ehName = "<ewventhubnames=";

string connection =
"Endpoint=sh://<namespace>.servicebus.windows.net/;SharedAccessKeyName=

<sharedaccesskeynames;SharedAccessKey=<sharedaccesskeyvalue>;TransportType=Amgp";

MessagingFactory factory =
MessagingFactory.CreateFromConnectionString(connection);

EventHubCTient client = factory.CreateEventHubCTlient(ehName)

string message = "event hub message”;

EventData data = new EventData(Encoding.UTF8.CetBytes(message));

client.Send(data);
using Microsoft.ServiceBus.Messaging;

string ehName = "<eventhubname>";
string connection =
"Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyName=
<sharedaccesskeynames>;
SharedAccessKey=<sharedaccesskeyvalue>;TransportType=Amgp";
MessagingFactory factory =
MessagingFactory.CreateFromConnectionString(connection);
EventHubClient ehub = factory.CreateEventHubClient(ehName);
EventHubConsumerGroup group = ehub.GetDefaultConsumerGroup();
EventHubReceiver receiver = group.CreateReceiver("0");
while (true)
{

EventData data = receiver.Receive();

if (data !'= null)

]
try
{
string message = Encoding.UTF8.GetString(data.GetBytes());
Console.WriteLine("EnqueuedTimeUtc: {0}", data.EnqueuedTimeUtc);
Console.WriteLine("PartitionKey: {0}", data.PartitionKey);
Console.WriteLine("5equenceNumber: {0}", data.SequenceNumber);
Console.WriteLine(message);
}
catch (Exception ex)
{
Console.WriteLine{ex.ToString(});
};
}

public static void Register()
{
var thisAssembly = typeof(SwaggerConfig).Assembly;
GlobalConfiguration.Configuration
.EnableSwagger(c ==

{

// Set this flag to omit descriptions for any actions
decorated with the Obsolete attribute
c.IgnoreObsoleteActions();

B

A/ <summarys
/// Gets the list of contacts
S/ </summarys>
/// <returns>The contacts</returns>
[HttpGet]
[SwaggerResponse (HttpStatusCode. 0K,
Type = typeof(IEnumerable<Contact=))]
[Route("~/contacts")]
public async Task<IEnumerable<Contact>> Get()

{

A/ <summarys

/// Gets a specific contact

/7 </summarys>

/// <param name="id">Identifier for the contact</param=>
/// <returns>The requested contact</returns=

[HttpGet]

[SwaggerResponse(HttpStatusCode. OK,

Description = "OK",

Type = typeof(IEnumerable<Contact>))]
[SwaggerResponse(HttpStatusCode.NotFound,

Description = "Contact not found",

Type = typeof(IEnumerable<Contact>))]
[SwaggerOperation("GetContactById")]
[Route("~/contacts/{i1d}")]
public async Task<Contact> Get([FromUri] int id)
4

J// <summary:

/// Creates a new contact
S0 </ summary s
/// <param name="contact">=The new contact</param:
A =returns=The saved contact</returns:>
[HttpPost]
[SwaggerResponse(HttpStatusCode.Created,
Description = "Created”,
Type = typeof(Contact))]
[Route("~/contacts")]
public async Task<Contact> Post([FromBody] Contact contact)

{

EAuthDrize]

public class TodoItemController : TableController<TodoItem=
table.access = 'authenticated';
<rate-limit-by-key calls="10"

renewal-period="60"
counter-key="@(context.Request.IpAddress}" />

<quota-by-key calls="1000000"
bandwidth="10000"
renewal-period="2629800"
counter-key="@(context.Request.IpAddress)" />

using Microsoft.Azure.Weblobs;
using Microsoft.Azure.WebJobs.Host;
using Mewtonsoft.lson;
using System.Net;
using System.Net.Http;
using System.Threading.Tasks;
namespace SolVsFunctionapp
{
public static class GenericWebhookFunction
{
[FunctionName ("GenericWebhookFunction")]
public static async Task<object> Run([HttpTrigger(WebHookType =
"genericlson")]JHttpRequestMessage req, TraceWriter Tog)
i
lTog.Info($"Webhook was triggered!");

string jsonContent = await req.Content.ReadAsStringAsync();
dynamic data = JsonConvert.DeserializeObject(jsonContent);

if (data.first == null || data.last == null)

return req.CreateResponse(HttpStatusCode.BadRequest, new
{
error = "Please pass first/last properties in the input
object”

15

return req.CreateResponse(HttpStatusCode.OK, new
{

greeting = $"Hello {data.first} {data.last}!"
i

}

}
https://sol-newfunctionapp.azurewebsites.net/api/
AirplanesApi?code=N8e]PFEkKDIMkOeQngOqRsalVxeHRQ4QcxacFRALtMDBdak3eeN/

kNQ==&1 d=0099991 . .) .
https://sol-newfunctionapp.azurewehsites.net/api/{rest}Api7code=q/

uTyTaw4sz¥FquEquDnUPEhJLzRFqKRDXthﬂzSIHzSﬂmyMan&=&id={id}.
https://sol-newfunctionapp.azurewebsites.net/api/airplanes/3434
https://sol-newfunctionapp.azurewebsites.net/api/airplanesApi?code=q/

vTyTawdwTzyFuY16wuMOnUPEhJLZRFgKRDXaChGz3/HzS0myMaNw==&1id=3434

<ServiceTypes=>
<StatefulServiceType ServiceTypeName="SimulatorType" HasPersistedState="true" />

</ServiceTypes>)
private static wvoid Main()

{
try
i
ServiceRuntime.RegisterServiceAsync("SimulatorType",
context => new Simulator(context)).GetAwaiter().GetResult();
ServiceEventSource,Current.ServiceTypeRegistered(Process.
GetCurrentProcess().Id,
typeof(Simulator) .Name);
Thread.Sleep(Timeout.Infinite);

1

catch (Exception e)

{
ServiceEventSource.Current.ServiceHostInitializationFailed(e.To5tring(}));
throw;

}

grotected override async Task RunAsync{CancellationToken cancellationToken)
{
var myDictionary = await this.StateManager.GetOrAddAsync<IReliableDictionary<s
tring, long>>("myDictionary");
while (true)
i
cancellationToken.ThrowIfCancellationRequested();
using (var tx = this.StateManager.CreateTransaction())
i
var result = await myDictionary.TryGetValueAsync(tx, "Counter");
ServiceEventSource.Current.ServiceMessage(this.Context, "Current
Counter Value: {0}",
result.HasValue ? result.Value.ToString() : "Value does not
exist.");
await myDictionary.AddOrUpdateAsync(tx, "Counter”, 0, (key, wvalue)
=> ++value);
await tx.CommitAsync();
}
await Task.Delay(TimeSpan.FromSeconds(1l), cancellationToken);
}

P, . . : . :
using Microsoft.ServiceFabric.Services.Remoting;

using System.Threading.Tasks;

pubTlic interface ISimulatorService : IService
{

Task<long> GetlLeads();

}

public async Task<long> GetlLeads()
{

var myDictionary = await StateManager.GetOrAddAsync<IReliableDictionary<stri
ng, long=>("myDictionary");

using (var tx = StateManager.CreateTransaction())

{
var result = await myDictionary.TryGetValueAsync(tx, "Counter");
await tx.CommitAsync();
return result.HasValue ? result.Value : 0;
}
}

protected override IEnumerable<ServiceReplicalisteners
CreateServiceReplicaListeners() {
vield return new ServiceReplicalistener(this.
CreateServiceRemotinglistener);

}
<Endpoints=>"
<Endpoint Protocol="http" MName="ServiceEndpoint" Type="Input”™ Port="8168" />
</Endpoints>

internal sealed class WebApp : StatelessService

{

public WebApp(StatelessServiceContext context) : base(context)
{1}
protected override IEnumerable<SerwvicelnstancelListeners>
CreateServiceInstancelisteners(}
{
return new ServicelInstancelistener[]
{
new ServiceInstancelistener(serviceContext =>
new WeblListenerCommunicationListener(serviceContext,
"ServiceEndpoint”, (url, Tistener) =>
i
ServiceEventSource.Current.ServiceMessage(serviceContext,
$"Starting WebListener on {furl}");
return new WebHostBuilder().UseWebListener()
.ConfigureServices(services =>
sarvices
.AddSingleton<StatelessServiceContext>(serviceCon
text))
.UseContentRoot(Directory.CetCurrentDirectory())
.UseStartup<Startup>()
.UseApplicationInsights()
.UseServiceFabricIntegration(listener,
ServiceFabricIntegrationOptions.None)

UseUrlsCurl)
Build()
13D
};

}

P . . ,

public interface ISimulatorService : IService

{

Task<long> GetlLeads();
i

return new WebHostBuilder() .UseWebListener()
.ConfigureServices(services => {
services
.AddSingleton<StatelessServiceContext>(serviceContext)
.AddSingleton(new FabricClient());

1)
private FabricClient _fabricClient;

public HomeController(FabricClient client) { _fabricClient = client; }

public async Task<IActionResult> Index()
{
ViewData["Message"] = "Your home page.";
var model = new Dictionary<Guid, long=();
var servicelrl = new Uri("fabric:/LeadGenerator/Simulator");
foreach (var partition in await
fabricClient.QueryManager.GetPartitionListAsync(servicelrl))
{

var partitionkey = new ServicePartitionKey
(((Int64RangePartitionInformation)partition.PartitionInformation).LowKey);
var proxy = ServiceProxy.Create<ISimulatorService>(servicelUrl,
partitionKey);
var leads = await proxy.GetLeads();
model.Add(partition.PartitionInformation.Id, Tleads);
}

return View(model);

%mude1 IDictionary<Guid, long>
<h2=@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>
<table class="table-bordered":
<tr=
<td><strong=PARTITION ID</strong=</td>
<td># LEADS</td>
</tr>
@foreach (var partition in Model)
{

<tr= L. .
<td>@partition.Key.ToString()</td>

<td>@partition.Value</td>
</tr>
ks

</table=
<Resources>

<Endpoints>
<Endpoint Name="I1I5GuestTypeEndpoint" UriScheme="http" Port="80"
Protocol="http"/>
</Endpoints>
</Resources>

<ServiceManifestImports>
<ServiceManifestRef ServiceManifestName="IISGuestPkg"
ServiceManifestVersion="1.0.0" />
<ConfigOverrides />
<Policies>
<ContainerHostPolicies CodePackageRef="Code">
<PortBinding ContainerPort="80" EndpointRef="IISGuestTypeEndpoint"/>
</ContainerHostPoliciess>
</Policies>

</ServiceManifestImports
<Parameters>

<Parameter Name="WebApp_InstanceCount” Value="3" />
<Parameter Name="Simulator_PartitionCount” Value="3" />
<Parameter MName="Simulator_MinReplicaSetSize" Value="3" />
<Parameter Mame="Simulator_TargetReplicaSet5ize" Value="3" />

</Parameters>
New-AzureRmResourceGroupDeployment -Name <deployment-names> -ResourceGroupName

<resource-group-name> -TemplateUri https://raw.githubusercontent.com/azure/azure-

quickstart-templates/master/101-hdinsight-hbase-replication-geo/azuredeploy.json
azure config mode arm

azure group deployment create <my-resource-group> <my-deployment-names> --template-
uri https://raw.githubusercontent.com/azure/azure-quickstart-templates/master,/101-
hdinsight-hbase-replication-geo/azuredeploy. json

	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Introduction
	Organization of this book
	Microsoft certifications
	Acknowledgments
	Microsoft Virtual Academy
	Quick access to online references
	Errata, updates, & book support
	We want to hear from you
	Stay in touch

	Preparing for the exam
	Chapter 1 Create and manage virtual machines
	Skill 1.1: Deploy workloads on Azure ARM virtual machines
	Identify supported workloads
	Create a Windows Server VM
	Create a Linux VM
	Create a SQL Server VM

	Skill 1.2: Perform configuration management
	Automate configuration management by using PowerShell Desired State Configuration (DSC) and the VM Agent (using custom script extensions)
	Configure VMs with Custom Script Extension
	Use PowerShell DSC
	Configure VMs with DSC
	Enable remote debugging

	Skill 1.3: Scale ARM VMs
	Scale up and scale down VM sizes
	Deploy ARM VM Scale Sets (VMSS)
	Configure Autoscale

	Skill 1.4: Design and implement ARM VM storage
	Plan for storage capacity
	Configure storage pools
	Configure disk caching
	Configure geo-replication
	Configure shared storage using Azure File storage
	Implement ARM VMs with Standard and Premium Storage
	Implement Azure Disk Encryption for Windows and Linux ARM VMs

	Skill 1.5: Monitor VMs
	Configure monitoring and diagnostics for a new VM
	Configure monitoring and diagnostics for an existing VM
	Configure alerts
	Monitor metrics

	Skill 1.6: Manage ARM VM Availability
	Configure availability sets
	Combine the Load Balancer with availability sets

	Skill 1.7: Design and implement DevTest Labs
	Create a lab
	Add a VM to a lab
	Create and manage custom images and formulas
	Configure a lab to include policies and procedures
	Configure cost management
	Secure access to labs
	Use environments in a lab

	Thought experiment
	Thought experiment answer
	Chapter summary

	Chapter 2 Design and implement a storage and data strategy
	Skill 2.1: Implement Azure Storage blobs and Azure files
	Azure Storage blobs
	Create a blob storage account
	Read and change data
	Set metadata on a container
	Setting user-defined metadata
	Reading user-defined metadata
	Store data using block and page blobs
	Stream data using blobs
	Access blobs securely
	Implement Async blob copy
	Configure a Content Delivery Network with Azure Blob Storage
	Design blob hierarchies
	Configure custom domains
	Scale blob storage
	Azure files
	Implement blob leasing
	Create connections to files from on-premises or cloudbased Windows or, Linux machines
	Shard large datasets

	Skill 2.2: Implement Azure Storage tables, queues, and Azure Cosmos DB Table API
	Azure Table Storage
	Using basic CRUD operations
	Querying using ODATA
	Designing, managing, and scaling table partitions
	Azure Storage Queues
	Adding messages to a queue
	Processing messages
	Retrieving a batch of messages
	Scaling queues
	Choose between Azure Storage Tables and Azure Cosmos DB Table API

	Skill 2.3: Manage access and monitor storage
	Generate shared access signatures
	Create stored access policies
	Regenerate storage account keys
	Configure and use Cross-Origin Resource Sharing
	Analyze logs

	Skill 2.4: Implement Azure SQL databases
	Choosing the appropriate database tier and performance level
	Configuring and performing point in time recovery
	Enabling geo-replication
	Creating an offline secondary database
	Creating an online secondary database
	Creating an online secondary database
	Import and export schema and data
	Scale Azure SQL databases
	Managed elastic pools, including DTUs and eDTUs
	Implement Azure SQL Data Sync
	Implement graph database functionality in Azure SQL Database

	Skill 2.5: Implement Azure Cosmos DB DocumentDB
	Choose the Cosmos DB API surface
	Create Cosmos DB API Database and Collections
	Query documents
	Run Cosmos DB queries
	Create Graph API databases
	Execute GraphDB queries
	Implement MongoDB database
	Manage scaling of Cosmos DB, including managing partitioning, consistency, and RUs
	Manage multiple regions
	Implement stored procedures
	Access Cosmos DB from REST interface
	Manage Cosmos DB security

	Skill 2.6: Implement Redis caching
	Choose a cache tier
	Implement data persistence
	Implement security and network isolation
	Tune cluster performance
	Integrate Redis caching with ASP.NET session and cache providers

	Skill 2.7: Implement Azure Search
	Create a service index
	Add data
	Search an index
	Handle Search results

	Thought experiment
	Thought experiment answers
	Chapter summary

	Chapter 3 Manage identity, application and network services
	Skill 3.1: Integrate an app with Azure AD
	Preparing to integrate an app with Azure AD
	Develop apps that use WS-Federation, SAML-P, OpenID Connect and OAuth endpoints
	Query the directory using Microsoft Graph API, MFA and MFA API

	Skill 3.2: Develop apps that use Azure AD B2C and Azure AD B2B
	Design and implement apps that leverage social identity provider authentication
	Leverage Azure AD B2B to design and implement applications that support partner-managed identities and enforce multi-factor authentication

	Skill 3.3: Manage Secrets using Azure Key Vault
	Configure Azure Key Vault
	Manage access, including tenants
	Implement HSM protected keys
	Implement logging
	Implement key rotation

	Skill 3.4: Design and implement a messaging strategy
	Develop and scale messaging solutions using Service Bus queues, topics, relays and Notification Hubs
	Scale and monitor messaging
	Determine when to use Event Hubs, Service Bus, IoT Hub, Stream Analytics and Notification Hubs

	Thought experiment
	Thought experiment answers
	Chapter summary

	Chapter 4 Design and implement Azure PaaS compute and web and mobile services
	Skill 4.1: Design Azure App Service Web Apps
	Define and manage App Service plans
	Configure Web App settings
	Configure Web App certificates and custom domains
	Manage Web Apps by using the API, Azure PowerShell, and Xplat-CLI
	Implement diagnostics, monitoring, and analytics
	Design and configure Web Apps for scale and resilience

	Skill 4.2: Design Azure App Service API Apps
	Create and deploy API Apps
	Automate API discovery by using Swashbuckle
	Use Swagger API metadata to generate client code for an API app
	Monitor API Apps

	Skill 4.3: Develop Azure App Service Logic Apps
	Create a Logic App connecting SaaS services
	Create a Logic App with B2B capabilities
	Create a Logic App with XML capabilities
	Trigger a Logic App from another app
	Create custom and long-running actions
	Monitor Logic Apps

	Skill 4.4: Develop Azure App Service Mobile Apps
	Create a mobile app
	Add authentication to a mobile app
	Add offline sync to a mobile app
	Add push notifications to a mobile app

	Skill 4.5: Implement API Management
	Create managed APIs
	Configure API Management policies
	Protect APIs with rate limits
	Add caching to improve performance
	Monitor APIs
	Customize the developer portal

	Skill 4.6: Implement Azure Functions and WebJobs
	Create Azure Functions
	Implement a Webhook function
	Create an event processing function
	Implement an Azure-connected function
	Integrate a function with storage
	Design and implement a custom binding
	Debug a Function
	Implement and configure proxies
	Integrate with App Service Plan

	Skill 4.7: Design and Implement Azure Service Fabric apps
	Create a Service Fabric application
	Add a web front end to a Service Fabric application
	Build an Actors-based service
	Monitor and diagnose services
	Deploy an application to a container
	Migrate apps from cloud services
	Scale a Service Fabric app
	Create, secure, upgrade, and scale Service Fabric Cluster in Azure

	Skill 4.8: Design and implement third-party Platform as a Service (PaaS)
	Implement Cloud Foundry
	Implement OpenShift
	Provision applications by using Azure Quickstart Templates
	Build applications that leverage Azure Marketplace solutions and services

	Skill 4.9: Design and implement DevOps
	Instrument an application with telemetry
	Discover application performance issues by using Application Insights
	Deploy Visual Studio Team Services with continuous integration (CI) and continuous development (CD)
	Deploy CI/CD with third-party platform tools (Jenkins, GitHub, Chef, Puppet, TeamCity)

	Thought experiment
	Thought experiment answers
	Chapter summary

	Index
	About the authors
	Code Snippets

