

Exam	Ref	70-532	Developing
Microsoft	Azure	Solutions

2nd	Edition

Zoiner	Tejada
Michele	Leroux	Bustamante

Ike	Ellis

Exam	Ref	70-532	Developing	Microsoft	Azure	Solutions,	2nd	Edition

Published	with	the	authorization	of	Microsoft	Corporation	by:	
Pearson	Education,	Inc.

Copyright	©	2018	by	Pearson	Education

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is
protected	by	copyright,	and	permission	must	be	obtained	from	the	publisher
prior	to	any	prohibited	reproduction,	storage	in	a	retrieval	system,	or
transmission	in	any	form	or	by	any	means,	electronic,	mechanical,
photocopying,	recording,	or	likewise.	For	information	regarding	permissions,
request	forms,	and	the	appropriate	contacts	within	the	Pearson	Education	Global
Rights	&	Permissions	Department,	please	visit
www.pearsoned.com/permissions/.	No	patent	liability	is	assumed	with	respect	to
the	use	of	the	information	contained	herein.	Although	every	precaution	has	been
taken	in	the	preparation	of	this	book,	the	publisher	and	author	assume	no
responsibility	for	errors	or	omissions.	Nor	is	any	liability	assumed	for	damages
resulting	from	the	use	of	the	information	contained	herein.

ISBN-13:	978-1-5093-0459-2
ISBN-10:	1-5093-0459-X

Library	of	Congress	Control	Number:	2017953300
1	18

Trademarks

Microsoft	and	the	trademarks	listed	at	https://www.microsoft.com	on	the
“Trademarks”	webpage	are	trademarks	of	the	Microsoft	group	of	companies.	All
other	marks	are	property	of	their	respective	owners.

Warning	and	Disclaimer

Every	effort	has	been	made	to	make	this	book	as	complete	and	as	accurate	as
possible,	but	no	warranty	or	fitness	is	implied.	The	information	provided	is	on	an
“as	is”	basis.	The	authors,	the	publisher,	and	Microsoft	Corporation	shall	have
neither	liability	nor	responsibility	to	any	person	or	entity	with	respect	to	any	loss
or	damages	arising	from	the	information	contained	in	this	book	or	programs
accompanying	it.

Special	Sales

http://www.pearsoned.com/permissions/
https://www.microsoft.com

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales
opportunities	(which	may	include	electronic	versions;	custom	cover	designs;	and
content	particular	to	your	business,	training	goals,	marketing	focus,	or	branding
interests),	please	contact	our	corporate	sales	department	at
corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact
governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	intlcs@pearson.com.

Editor-in-Chief
Greg	Wiegand

Acquisitions	Editor
Laura	Norman

Development	Editor
Troy	Mott

Managing	Editor
Sandra	Schroeder

Senior	Project	Editor
Tracey	Croom

Editorial	Production
Backstop	Media

Copy	Editor
Liv	Bainbridge

Indexer
Julie	Grady

Proofreader
Christina	Rudloff

Technical	Editor
Jason	Haley

Cover	Designer
Twist	Creative,	Seattle

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Contents	at	a	glance

Introduction

Preparing	for	the	exam

CHAPTER	1	Create	and	manage	virtual	machines

CHAPTER	2	Design	and	implement	a	storage	and	data	strategy

CHAPTER	3	Manage	identity,	application	and	network	services

CHAPTER	4	Design	and	implement	Azure	PaaS	compute	and	web	and	mobile
services

Index

Contents

Introduction
Organization	of	this	book
Microsoft	certifications
Acknowledgments
Microsoft	Virtual	Academy
Quick	access	to	online	references
Errata,	updates,	&	book	support
We	want	to	hear	from	you
Stay	in	touch
Preparing	for	the	exam

Chapter	1	Create	and	manage	virtual	machines

Skill	1.1:	Deploy	workloads	on	Azure	ARM	virtual	machines
Identify	supported	workloads
Create	a	Windows	Server	VM
Create	a	Linux	VM
Create	a	SQL	Server	VM

Skill	1.2:	Perform	configuration	management
Automate	configuration	management	by	using	PowerShell	Desired
State	Configuration	(DSC)	and	the	VM	Agent	(using	custom	script
extensions)
Configure	VMs	with	Custom	Script	Extension
Use	PowerShell	DSC
Configure	VMs	with	DSC
Enable	remote	debugging

Skill	1.3:	Scale	ARM	VMs
Scale	up	and	scale	down	VM	sizes

Deploy	ARM	VM	Scale	Sets	(VMSS)
Configure	Autoscale

Skill	1.4:	Design	and	implement	ARM	VM	storage
Plan	for	storage	capacity
Configure	storage	pools
Configure	disk	caching
Configure	geo-replication
Configure	shared	storage	using	Azure	File	storage
Implement	ARM	VMs	with	Standard	and	Premium	Storage
Implement	Azure	Disk	Encryption	for	Windows	and	Linux	ARM
VMs

Skill	1.5:	Monitor	VMs
Configure	monitoring	and	diagnostics	for	a	new	VM
Configure	monitoring	and	diagnostics	for	an	existing	VM
Configure	alerts
Monitor	metrics

Skill	1.6:	Manage	ARM	VM	Availability
Configure	availability	sets
Combine	the	Load	Balancer	with	availability	sets

Skill	1.7:	Design	and	implement	DevTest	Labs
Create	a	lab
Add	a	VM	to	a	lab
Create	and	manage	custom	images	and	formulas
Configure	a	lab	to	include	policies	and	procedures
Configure	cost	management
Secure	access	to	labs
Use	environments	in	a	lab

Thought	experiment

Thought	experiment	answer

Chapter	summary

Chapter	2	Design	and	implement	a	storage	and	data	strategy

Skill	2.1:	Implement	Azure	Storage	blobs	and	Azure	files
Azure	Storage	blobs
Create	a	blob	storage	account
Read	and	change	data
Set	metadata	on	a	container
Setting	user-defined	metadata
Reading	user-defined	metadata
Store	data	using	block	and	page	blobs
Stream	data	using	blobs
Access	blobs	securely
Implement	Async	blob	copy
Configure	a	Content	Delivery	Network	with	Azure	Blob	Storage
Design	blob	hierarchies
Configure	custom	domains
Scale	blob	storage
Azure	files
Implement	blob	leasing
Create	connections	to	files	from	on-premises	or	cloudbased
Windows	or,	Linux	machines
Shard	large	datasets

Skill	2.2:	Implement	Azure	Storage	tables,	queues,	and	Azure	Cosmos
DB	Table	API
Azure	Table	Storage
Using	basic	CRUD	operations
Querying	using	ODATA
Designing,	managing,	and	scaling	table	partitions
Azure	Storage	Queues
Adding	messages	to	a	queue

Processing	messages
Retrieving	a	batch	of	messages
Scaling	queues
Choose	between	Azure	Storage	Tables	and	Azure	Cosmos	DB
Table	API

Skill	2.3:	Manage	access	and	monitor	storage
Generate	shared	access	signatures
Create	stored	access	policies
Regenerate	storage	account	keys
Configure	and	use	Cross-Origin	Resource	Sharing
Analyze	logs

Skill	2.4:	Implement	Azure	SQL	databases
Choosing	the	appropriate	database	tier	and	performance	level
Configuring	and	performing	point	in	time	recovery
Enabling	geo-replication
Creating	an	offline	secondary	database
Creating	an	online	secondary	database
Creating	an	online	secondary	database
Import	and	export	schema	and	data
Scale	Azure	SQL	databases
Managed	elastic	pools,	including	DTUs	and	eDTUs
Implement	Azure	SQL	Data	Sync
Implement	graph	database	functionality	in	Azure	SQL	Database

Skill	2.5:	Implement	Azure	Cosmos	DB	DocumentDB
Choose	the	Cosmos	DB	API	surface
Create	Cosmos	DB	API	Database	and	Collections
Query	documents
Run	Cosmos	DB	queries
Create	Graph	API	databases
Execute	GraphDB	queries

Implement	MongoDB	database
Manage	scaling	of	Cosmos	DB,	including	managing	partitioning,
consistency,	and	RUs
Manage	multiple	regions
Implement	stored	procedures
Access	Cosmos	DB	from	REST	interface
Manage	Cosmos	DB	security

Skill	2.6:	Implement	Redis	caching
Choose	a	cache	tier
Implement	data	persistence
Implement	security	and	network	isolation
Tune	cluster	performance
Integrate	Redis	caching	with	ASP.NET	session	and	cache	providers

Skill	2.7:	Implement	Azure	Search
Create	a	service	index
Add	data
Search	an	index
Handle	Search	results

Thought	experiment

Thought	experiment	answers

Chapter	summary

Chapter	3	Manage	identity,	application	and	network	services

Skill	3.1:	Integrate	an	app	with	Azure	AD
Preparing	to	integrate	an	app	with	Azure	AD
Develop	apps	that	use	WS-Federation,	SAML-P,	OpenID	Connect
and	OAuth	endpoints
Query	the	directory	using	Microsoft	Graph	API,	MFA	and	MFA
API

Skill	3.2:	Develop	apps	that	use	Azure	AD	B2C	and	Azure	AD	B2B
Design	and	implement	apps	that	leverage	social	identity	provider

authentication
Leverage	Azure	AD	B2B	to	design	and	implement	applications	that
support	partner-managed	identities	and	enforce	multi-factor
authentication

Skill	3.3:	Manage	Secrets	using	Azure	Key	Vault
Configure	Azure	Key	Vault
Manage	access,	including	tenants
Implement	HSM	protected	keys
Implement	logging
Implement	key	rotation

Skill	3.4:	Design	and	implement	a	messaging	strategy
Develop	and	scale	messaging	solutions	using	Service	Bus	queues,
topics,	relays	and	Notification	Hubs
Scale	and	monitor	messaging
Determine	when	to	use	Event	Hubs,	Service	Bus,	IoT	Hub,	Stream
Analytics	and	Notification	Hubs

Thought	experiment

Thought	experiment	answers

Chapter	summary

Chapter	4	Design	and	implement	Azure	PaaS	compute	and	web	and	mobile
services

Skill	4.1:	Design	Azure	App	Service	Web	Apps
Define	and	manage	App	Service	plans
Configure	Web	App	settings
Configure	Web	App	certificates	and	custom	domains
Manage	Web	Apps	by	using	the	API,	Azure	PowerShell,	and
Xplat-CLI
Implement	diagnostics,	monitoring,	and	analytics
Design	and	configure	Web	Apps	for	scale	and	resilience

Skill	4.2:	Design	Azure	App	Service	API	Apps

Create	and	deploy	API	Apps
Automate	API	discovery	by	using	Swashbuckle
Use	Swagger	API	metadata	to	generate	client	code	for	an	API	app
Monitor	API	Apps

Skill	4.3:	Develop	Azure	App	Service	Logic	Apps
Create	a	Logic	App	connecting	SaaS	services
Create	a	Logic	App	with	B2B	capabilities
Create	a	Logic	App	with	XML	capabilities
Trigger	a	Logic	App	from	another	app
Create	custom	and	long-running	actions
Monitor	Logic	Apps

Skill	4.4:	Develop	Azure	App	Service	Mobile	Apps
Create	a	mobile	app
Add	authentication	to	a	mobile	app
Add	offline	sync	to	a	mobile	app
Add	push	notifications	to	a	mobile	app

Skill	4.5:	Implement	API	Management
Create	managed	APIs
Configure	API	Management	policies
Protect	APIs	with	rate	limits
Add	caching	to	improve	performance
Monitor	APIs
Customize	the	developer	portal

Skill	4.6:	Implement	Azure	Functions	and	WebJobs
Create	Azure	Functions
Implement	a	Webhook	function
Create	an	event	processing	function
Implement	an	Azure-connected	function
Integrate	a	function	with	storage
Design	and	implement	a	custom	binding

Debug	a	Function
Implement	and	configure	proxies
Integrate	with	App	Service	Plan

Skill	4.7:	Design	and	Implement	Azure	Service	Fabric	apps
Create	a	Service	Fabric	application
Add	a	web	front	end	to	a	Service	Fabric	application
Build	an	Actors-based	service
Monitor	and	diagnose	services
Deploy	an	application	to	a	container
Migrate	apps	from	cloud	services
Scale	a	Service	Fabric	app
Create,	secure,	upgrade,	and	scale	Service	Fabric	Cluster	in	Azure

Skill	4.8:	Design	and	implement	third-party	Platform	as	a	Service
(PaaS)
Implement	Cloud	Foundry
Implement	OpenShift
Provision	applications	by	using	Azure	Quickstart	Templates
Build	applications	that	leverage	Azure	Marketplace	solutions	and
services

Skill	4.9:	Design	and	implement	DevOps
Instrument	an	application	with	telemetry
Discover	application	performance	issues	by	using	Application
Insights
Deploy	Visual	Studio	Team	Services	with	continuous	integration
(CI)	and	continuous	development	(CD)
Deploy	CI/CD	with	third-party	platform	tools	(Jenkins,	GitHub,
Chef,	Puppet,	TeamCity)

Thought	experiment

Thought	experiment	answers

Chapter	summary

Index

What	do	you	think	of	this	book?	We	want	to	hear	from	you!
Microsoft	is	interested	in	hearing	your	feedback	so	we	can	continually
improve	our	books	and	learning	resources	for	you.	To	participate	in	a	brief
online	survey,	please	visit:
https://aka.ms/tellpress

https://aka.ms/tellpress

Introduction

The	70-532	exam	focuses	the	skills	necessary	to	develop	software	on	the
Microsoft	Azure	Cloud.	It	covers	Infrastructure-as-a-Service	(IaaS)	offerings
like	Azure	VMs	and	Platform-as-a-Service	(PaaS)	offerings	like	Azure	Storage,
Azure	CosmosDB,	Azure	Active	Directory,	Azure	Service	Bus,	Azure	Event
Hub,	Azure	App	Services,	Azure	Service	Fabric,	Azure	Functions	and	other
relevant	marketplace	applications.	This	book	will	help	get	started	with	these	and
other	features	of	Azure	so	that	you	can	begin	developing	and	deploying	Azure
applications.
This	book	is	geared	toward	cloud	application	developers	who	focus	on	Azure

as	the	target	host	environment.	It	covers	choosing	from	Azure	compute	options
for	IaaS	and	Paas,	incorporating	storage	and	data	platforms.	It	will	help	you
choose	when	to	use	features	such	as	Web	Apps,	API	Apps,	API	Management,
Logic	Apps	and	Mobile	Apps.	It	will	explain	your	data	storage	options	between
Azure	CosmosDB,	Azure	Redis	Cache,	Azure	Search,	and	Azure	SQL	Database.
It	also	covers	how	to	secure	applications	with	Azure	Active	Directory	using	B2C
and	B2B	features	for	single	sign-on	based	on	OpenID	Connect,	OAuth2	and
SAML-P	protocols,	and	how	to	use	Azure	Vault	to	protect	secrets.
This	book	covers	every	major	topic	area	found	on	the	exam,	but	it	does	not

cover	every	exam	question.	Only	the	Microsoft	exam	team	has	access	to	the
exam	questions,	and	Microsoft	regularly	adds	new	questions	to	the	exam,
making	it	impossible	to	cover	specific	questions.	You	should	consider	this	book
a	supplement	to	your	relevant	real-world	experience	and	other	study	materials.	If
you	encounter	a	topic	in	this	book	that	you	do	not	feel	completely	comfortable
with,	use	the	“Need	more	review?”	links	you’ll	find	in	the	text	to	find	more
information	and	take	the	time	to	research	and	study	the	topic.	Great	information
is	available	on	MSDN,	TechNet,	and	in	blogs	and	forums.

Organization	of	this	book
This	book	is	organized	by	the	“Skills	measured”	list	published	for	the	exam.	The
“Skills	measured”	list	is	available	for	each	exam	on	the	Microsoft	Learning
website:	https://aka.ms/examlist.	Each	chapter	in	this	book	corresponds	to	a
major	topic	area	in	the	list,	and	the	technical	tasks	in	each	topic	area	determine	a
chapter’s	organization.	If	an	exam	covers	six	major	topic	areas,	for	example,	the

https://aka.ms/examlist

book	will	contain	six	chapters.

Microsoft	certifications
Microsoft	certifications	distinguish	you	by	proving	your	command	of	a	broad	set
of	skills	and	experience	with	current	Microsoft	products	and	technologies.	The
exams	and	corresponding	certifications	are	developed	to	validate	your	mastery
of	critical	competencies	as	you	design	and	develop,	or	implement	and	support,
solutions	with	Microsoft	products	and	technologies	both	on-premises	and	in	the
cloud.	Certification	brings	a	variety	of	benefits	to	the	individual	and	to
employers	and	organizations.

More	Info	All	Microsoft	Certifications

For	information	about	Microsoft	certifications,	including	a	full	list
of	available	certifications,	go	to	https://www.microsoft.com/learning.

Acknowledgments

Zoiner	Tejada	A	book	of	this	scope	takes	a	village,	and	I’m	honored	to	have
received	the	support	of	one	in	making	this	second	edition	happen.	My	deepest
thanks	to	the	team	at	Solliance	who	helped	make	this	possible:	my	co-authors
Michele	Leroux	Bustamante	and	Ike	Ellis	and	the	hidden	heroes,	and	Joel	Hulen
and	Kyle	Bunting	helped	us	with	research	and	coverage	on	critical	topics	as	the
scope	of	the	book	grew	with	the	fast	pace	of	Azure.	Laura	Norman,	our	editor,
thank	you	for	helping	us	navigate	the	path	to	completion	with	structure	and
compassion.	To	my	wife	Ashley	Tejada,	my	eternal	thanks	for	supporting	me	in
this	effort,	the	little	things	count	and	they	don’t	go	unnoticed.

Michele	Leroux	Bustamante	I	want	to	thank	Joel	Hulen,	Virgilio	Esteves	and
Khaled	Hikmat	–	who	have	been	part	of	key	Solliance	projects	in	Azure,
including	this	book	–	and	this	work	and	experience	reflects	in	the	guidance
shared	in	the	book.	Thank	you	for	being	part	of	this	journey!	Thank	you	also	to,
Laura	Norman,	our	editor	–	who	was	very	supporting	during	challenging
deadlines.	A	level	head	keeps	us	all	sane.	To	my	husband	and	son	–	thank	you
for	tolerating	the	writing	schedule	–	again.	I	owe	you	-	again.	Much	love.

Ike	Ellis	First	and	foremost,	I’d	like	to	thank	my	wife,	Margo	Sloan,	for	her
support	in	taking	care	of	all	the	necessities	of	life	while	I	wrote.	Our	editor,

https://www.microsoft.com/learning

Laura	Norman,	had	her	hands	full	in	wrangling	three	busy	co-authors,	and	I’m
very	grateful	for	her	diligence.	I’m	very	grateful	to	my	co-authors,	Zoiner	and
Michele.	It’s	a	joy	to	work	with	them	on	all	of	our	combined	projects.

Microsoft	Virtual	Academy
Build	your	knowledge	of	Microsoft	technologies	with	free	expert-led	online
training	from	Microsoft	Virtual	Academy	(MVA).	MVA	offers	a	comprehensive
library	of	videos,	live	events,	and	more	to	help	you	learn	the	latest	technologies
and	prepare	for	certification	exams.	You’ll	find	what	you	need	here:
https://www.microsoftvirtualacademy.com

Quick	access	to	online	references
Throughout	this	book	are	addresses	to	webpages	that	the	author	has
recommended	you	visit	for	more	information.	Some	of	these	addresses	(also
known	as	URLs)	can	be	painstaking	to	type	into	a	web	browser,	so	we’ve
compiled	all	of	them	into	a	single	list	that	readers	of	the	print	edition	can	refer	to
while	they	read.

Download	the	list	at	https://aka.ms/examref5322E/downloads.

The	URLs	are	organized	by	chapter	and	heading.	Every	time	you	come	across
a	URL	in	the	book,	find	the	hyperlink	in	the	list	to	go	directly	to	the	webpage.

Errata,	updates,	&	book	support
We’ve	made	every	effort	to	ensure	the	accuracy	of	this	book	and	its	companion
content.	You	can	access	updates	to	this	book—in	the	form	of	a	list	of	submitted
errata	and	their	related	corrections—at:

https://aka.ms/examref5322E/errata

If	you	discover	an	error	that	is	not	already	listed,	please	submit	it	to	us	at	the
same	page.

If	you	need	additional	support,	email	Microsoft	Press	Book	Support	at
mspinput@microsoft.com.

Please	note	that	product	support	for	Microsoft	software	and	hardware	is	not
offered	through	the	previous	addresses.	For	help	with	Microsoft	software	or
hardware,	go	to	https://support.microsoft.com.

https://www.microsoftvirtualacademy.com
https://aka.ms/examref5322E/downloads
https://aka.ms/examref5322E/errata
mailto:mspinput@microsoft.com
https://support.microsoft.com

We	want	to	hear	from	you
At	Microsoft	Press,	your	satisfaction	is	our	top	priority,	and	your	feedback	our
most	valuable	asset.	Please	tell	us	what	you	think	of	this	book	at:

https://aka.ms/tellpress

We	know	you’re	busy,	so	we’ve	kept	it	short	with	just	a	few	questions.	Your
answers	go	directly	to	the	editors	at	Microsoft	Press.	(No	personal	information
will	be	requested.)	Thanks	in	advance	for	your	input!

Stay	in	touch
Let’s	keep	the	conversation	going!	We’re	on	Twitter:
http://twitter.com/MicrosoftPress.

https://aka.ms/tellpress
http://twitter.com/MicrosoftPress

Preparing	for	the	exam

Microsoft	certification	exams	are	a	great	way	to	build	your	resume	and	let	the
world	know	about	your	level	of	expertise.	Certification	exams	validate	your	on-
the-job	experience	and	product	knowledge.	Although	there	is	no	substitute	for
on-the-job	experience,	preparation	through	study	and	hands-on	practice	can	help
you	prepare	for	the	exam.	We	recommend	that	you	augment	your	exam
preparation	plan	by	using	a	combination	of	available	study	materials	and
courses.	For	example,	you	might	use	the	Exam	ref	and	another	study	guide	for
your	“at	home”	preparation,	and	take	a	Microsoft	Official	Curriculum	course	for
the	classroom	experience.	Choose	the	combination	that	you	think	works	best	for
you.
Note	that	this	Exam	Ref	is	based	on	publicly	available	information	about	the

exam	and	the	author’s	experience.	To	safeguard	the	integrity	of	the	exam,
authors	do	not	have	access	to	the	live	exam.

Chapter	1.	Create	and	manage	virtual	machines

Virtual	machines	(VMs)	are	part	of	the	Microsoft	Azure	Infrastructure-as-a-
Service	(IaaS)	offering.	With	VMs,	you	can	deploy	Windows	Server	and	Linux-
based	workloads	and	have	greater	control	over	the	infrastructure,	your
deployment	topology,	and	configuration	as	compared	to	Platform-as-a-Service
(PaaS)	offerings	such	as	Web	Apps	and	API	Apps.	That	means	you	can	more
easily	migrate	existing	applications	and	VMs	without	modifying	code	or
configuration	settings,	but	still	benefit	from	Azure	features	such	as	management
through	a	centralized	web-based	portal,	monitoring,	and	scaling.

Important:	Have	you	read	page	xvii

It	contains	valuable	information	regarding	the	skills	you	need	to	pass	the
exam.

Skills	in	this	chapter:
	Skill	1.1:	Deploy	workloads	on	Azure	ARM	virtual	machines
	Skill	1.2:	Perform	configuration	management
	Skill	1.3:	Scale	ARM	VMs
	Skill	1.4:	Design	and	implement	ARM	VM	storage
	Skill	1.5:	Monitor	ARM	VMs
	Skill	1.6:	Manage	ARM	VM	availability
	Skill	1.7:	Design	and	implement	DevTest	Labs

Skill	1.1:	Deploy	workloads	on	Azure	ARM	virtual	machines
Microsoft	Azure	ARM	VMs	can	run	more	than	just	Windows	and	.NET
applications.	They	provide	support	for	running	many	forms	of	applications	using
various	operating	systems.	This	section	describes	where	and	how	to	analyze
what	is	supported	and	how	to	deploy	three	different	forms	of	VMs.

This	skill	covers	how	to:
	Identify	supported	workloads

	Create	a	Windows	Server	VM
	Create	a	Linux	VM
	Create	a	SQL	Server	VM

Identify	supported	workloads
A	workload	describes	the	nature	of	a	solution,	including	consideration	such	as:
whether	it	is	an	application	that	runs	on	a	single	machine	or	it	requires	a
complex	topology	that	prescribes	the	operating	system	used,	the	additional
software	installed,	the	performance	requirements,	and	the	networking
environment.	Azure	enables	you	to	deploy	a	wide	variety	of	VM	workloads,
including:

	“Bare	bones”	VM	workloads	that	run	various	versions	of	Windows	Client,
Windows	Server	and	Linux	(such	as	Debian,	Red	Hat,	SUSE	and	Ubuntu)
	Web	servers	(such	as	Apache	Tomcat	and	Jetty)
	Data	science,	database	and	big-data	workloads	(such	as	Microsoft	SQL
Server,	Data	Science	Virtual	Machine,	IBM	DB2,	Teradata,	Couchbase,
Cloudera,	and	Hortonworks	Data	Platform)
	Complete	application	infrastructures	(for	example,	those	requiring	server
farms	or	clusters	like	DC/OS,	SharePoint,	SQL	Server	AlwaysOn,	and	SAP)
	Workloads	that	provide	security	and	protection	(such	as	antivirus,	intrusion
detection	systems,	firewalls,	data	encryption,	and	key	management)
	Workloads	that	support	developer	productivity	(such	as	the	Windows	10
client	operating	system,	Visual	Studio,	or	the	Java	Development	Kit)
There	are	two	approaches	to	identifying	supported	Azure	workloads.	The	first

is	to	determine	whether	the	workload	is	already	explicitly	supported	and	offered
through	the	Azure	Marketplace,	which	provides	a	large	collection	of	free	and
for-pay	solutions	from	Microsoft	and	third	parties	that	deploy	to	VMs.	The
Marketplace	also	offers	access	to	the	VM	Depot,	which	provides	a	large
collection	of	community	provided	and	maintained	VMs.	The	VM	configuration
and	all	of	the	required	software	it	contains	on	the	disk	(or	disks)	is	called	a	VM
image.	The	topology	that	deploys	the	VM	and	any	supporting	infrastructure	is
described	in	an	Azure	Resource	Manager	(ARM)	template	that	is	used	by	the
Marketplace	to	provision	and	configure	the	required	resources.
The	second	approach	is	to	compare	the	requirements	of	the	workload	you

want	to	deploy	directly	to	the	published	capabilities	of	Azure	VMs	or,	in	some
cases,	to	perform	proof	of	concept	deployments	to	measure	whether	the

cases,	to	perform	proof	of	concept	deployments	to	measure	whether	the
requirements	can	be	met.	The	following	is	a	representative,	though	not
exhaustive,	list	of	the	requirements	you	typically	need	to	take	into	consideration:

	CPU	and	RAM	memory	requirements
	Disk	storage	capacity	requirements,	in	gigabytes	(GBs)
	Disk	performance	requirements,	usually	in	terms	of	input/output	operations
per	second	(IOPS)	and	data	throughput	(typically	in	megabytes	per	second)
	Operating	system	compatibility
	Networking	requirements
	Availability	requirements
	Security	and	compliance	requirements
This	section	covers	what	is	required	to	deploy	the	“bare	bones”	VM	(that	is,

one	that	has	the	operating	system	and	minimal	features	installed)	that	can	serve
as	the	basis	for	your	more	complex	workloads,	and	describes	the	options	for
deploying	a	pre-built	workload	from	the	Marketplace.

Create	a	Windows	Server	VM
Fundamentally,	there	are	two	approaches	to	creating	a	new	VM.	You	can	upload
a	VM	that	you	have	built	on-premises,	or	you	can	instantiate	one	from	the	pre-
built	images	available	in	the	Marketplace.	This	section	focuses	on	the	latter	and
defers	coverage	of	the	upload	scenario	until	the	next	section.
To	create	a	bare	bones	Windows	Server	VM	in	the	portal,	complete	the

following	steps:

1.	 Navigate	to	the	portal	accessed	via	https://manage.windowsazure.com.
2.	 Select	New	on	the	command	bar.
3.	 Within	the	Marketplace	list,	select	the	Compute	option.
4.	 On	the	Compute	blade,	select	the	image	for	the	version	of	Windows	Server

you	want	for	your	VM	(such	as	Windows	Server	2016	VM).
5.	 On	the	Basics	blade,	provide	a	name	for	your	VM,	the	Disk	Type,	a	User

Name	and	Password,	and	choose	the	Subscription,	Resource	Group	and
Location	into	which	you	want	to	deploy	(Figure	1-1).

https://manage.windowsazure.com

FIGURE	1-1	The	Basics	blade

6.	 Select	OK.
7.	 On	the	Choose	A	Size	Blade,	select	the	desired	tier	and	size	for	your	VM

(Figure	1-2).

FIGURE	1-2	The	Choose	A	Size	blade

8.	 Choose	Select.
9.	 On	the	Settings	blade,	leave	the	settings	at	their	defaults	and	select	OK.
10.	 On	the	Purchase	blade,	review	the	summary	and	select	Purchase	to	deploy

the	VM.

Create	a	Linux	VM
To	create	a	bare	bones	Linux	VM	in	the	portal,	complete	the	following	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	New	on	the	command	bar.
3.	 Within	the	Marketplace	list,	select	the	Compute	option.
4.	 On	the	Compute	blade,	select	the	image	for	the	version	of	Ubuntu	Server

(Figure	1-3)	you	want	for	your	VM	(such	as	Ubuntu	Server	16.04	LTS).

FIGURE	1-3	The	Ubuntu	Server	option

5.	 Select	Create.
6.	 On	the	Basics	blade,	provide	a	name	for	your	VM,	the	Disk	Type,	a	User

Name	and	Password	(or	SSH	public	key	if	preferred),	and	choose	the
Subscription,	Resource	Group	and	Location	into	which	you	want	to	deploy.

7.	 Select	OK.
8.	 On	the	Choose	a	size	blade,	select	the	desired	tier	and	size	for	your	VM.
9.	 Choose	select.

https://portal.azure.com

10.	 On	the	Settings	blade,	leave	the	settings	at	their	defaults	and	select	OK.
11.	 On	the	Purchase	blade,	review	the	summary	and	select	Purchase	to	deploy

the	VM.

More	Info:	SSH	Key	Generation

To	create	the	SSH	public	key	that	you	need	to	provision	your
Linux	VM,	run	ssh-keygen	on	a	Mac	OSX	or	Linux	terminal,	or,	if
you	are	running	Windows,	use	PuTTYgen.	A	good	reference,	if	you
are	not	familiar	with	using	SSH	from	Windows,	is	available	at:
https://docs.microsoft.com/azure/virtual-machines/linux/ssh-from-
windows.

Create	a	SQL	Server	VM
The	steps	for	creating	a	VM	that	has	SQL	Server	installed	on	top	of	Windows
Server	are	identical	to	those	described	earlier	for	provisioning	a	Windows	Server
VM	using	the	portal.	The	primary	differences	surface	in	the	fourth	step:	instead
of	selecting	a	Windows	Server	from	the	Marketplace	list,	select	a	SQL	Server
option	(such	as	SQL	Server	2016	SP1	Enterprise)	and	follow	the	prompts	to
complete	the	configuration	(such	as	the	storage	configuration,	patching	schedule
and	enablement	of	features	like	SQL	Authentication	and	R	Services)	of	the	VM
with	SQL	Server	and	to	deploy	the	VM.

Skill	1.2:	Perform	configuration	management
A	number	of	configuration	management	tools	are	available	for	provisioning,
configuring,	and	managing	your	VMs.	In	this	section,	you	learn	how	to	use
Windows	PowerShell	Desired	State	Configuration	(DSC)	and	the	VM	Agent
(via	custom	script	extensions)	to	perform	configuration	management	tasks,
including	automating	the	process	of	provisioning	VMs,	deploying	applications	to
those	VMs,	and	automating	configuration	of	those	applications	based	on	the
environment,	such	as	development,	test,	or	production.

This	skill	covers	how	to:
	Automate	configuration	management	by	using	PowerShell	Desired
State	Configuration	(DSC)	and	the	VM	Agent	(using	custom	script
extensions)
	Configure	VMs	with	Custom	Script	Extension

https://docs.microsoft.com/azure/virtual-machines/linux/ssh-from-windows

	Use	PowerShell	DSC
	Configure	VMs	with	DSC
	Enable	remote	debugging

Automate	configuration	management	by	using	PowerShell
Desired	State	Configuration	(DSC)	and	the	VM	Agent	(using
custom	script	extensions)
Before	describing	the	details	of	using	PowerShell	DSC	and	the	Custom	Script
Extension,	this	section	provides	some	background	on	the	relationship	between
these	tools	and	the	relevance	of	the	Azure	Virtual	Machine	Agent	(VM	Agent)
and	Azure	virtual	machine	extensions	(VM	extensions).
When	you	create	a	new	VM	in	the	portal,	the	VM	Agent	is	installed	by

default.	The	VM	Agent	is	a	lightweight	process	used	for	bootstrapping
additional	tools	on	the	VM	by	way	of	installing,	configuring,	and	managing	VM
extensions.	VM	extensions	can	be	added	through	the	portal,	but	they	are	also
commonly	installed	with	Windows	PowerShell	cmdlets	or	through	the	Azure
Cross	Platform	Command	Line	Interface	(Azure	CLI).

More	Info:	Azure	CLI

Azure	CLI	is	an	open	source	project	providing	the	same
functionality	as	the	portal	via	the	command	line.	It	is	written	in
JavaScript	and	requires	Node.js	and	enables	management	of	Azure
resources	in	a	cross-platform	fashion	(from	macOS,	Windows	and
Linux).	For	more	details,	see
https://docs.microsoft.com/cli/azure/overview.

With	the	VM	Agent	installed,	you	can	add	VM	extensions.	Popular	VM
extensions	include	the	following:

	PowerShell	Desired	State	Configuration	(for	Windows	VMs)
	Custom	Script	Extension	(for	Windows	or	Linux)
	Team	Services	Agent	(for	Windows	or	Linux	VMs)
	Microsoft	Antimalware	Agent	(for	Windows	VMs)
	Network	Watcher	Agent	(for	Windows	or	Linux	VMs)
	Octopus	Deploy	Tentacle	Agent	(for	Windows	VMs)

https://docs.microsoft.com/cli/azure/overview

	Docker	extension	(for	Linux	VMs)
	Puppet	Agent	(for	Windows	VMs)
	Chef	extension	(for	Windows	or	Linux)
You	can	add	VM	extensions	as	you	create	the	VM	through	the	portal,	as	well

as	run	them	using	the	Azure	CLI,	PowerShell	and	Azure	Resource	Manager
templates.

More	Info:	Additional	Extensions

There	are	additional	extensions	for	deployment,	debugging,
security,	and	more.	For	more	details,	see
https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/extensions-features#common-vm-extensions-
reference.

Configure	VMs	with	Custom	Script	Extension
Custom	Script	Extension	makes	it	possible	to	automatically	download	files	from
Azure	Storage	and	run	Windows	PowerShell	(on	Windows	VMs)	or	Shell	scripts
(on	Linux	VMs)	to	copy	files	and	otherwise	configure	the	VM.	This	can	be	done
when	the	VM	is	being	created	or	when	it	is	already	running.	You	can	do	this
from	the	portal	or	from	a	Windows	PowerShell	command	line	interface,	the
Azure	CLI,	or	by	using	ARM	templates.

Configuring	a	new	VM	with	Custom	Script	Extension
Create	a	Windows	Server	VM	following	the	steps	presented	in	the	earlier
section,	“Creating	a	Windows	Server	VM.”	After	creating	the	VM,	complete	the
following	steps	to	set	up	the	Custom	Script	Extension:

1.	 Navigate	to	the	blade	for	your	VM	in	the	portal	accessed	via
https://portal.azure.com.

2.	 From	the	menu,	scroll	down	to	the	Settings	section,	and	select	Extensions
(Figure	1-4).

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/extensions-features#common-vm-extensions-reference
https://portal.azure.com

FIGURE	1-4	The	Extensions	option

3.	 On	the	Extensions	blade,	select	Add	on	the	command	bar.
4.	 From	the	New	Resource	blade,	select	Custom	Script	Extension	(Figure	1-

5).

FIGURE	1-5	The	New	Resource	blade

5.	 On	the	Custom	Script	blade,	select	Create.
6.	 On	the	Install	Extension	blade	(Figure	1-6),	select	the	Folder	button	and

choose	the	.ps1	file	containing	the	script	you	want	to	run	when	the	VM
starts.	Optionally,	provide	arguments.	The	Version	of	DSC	is	required,	for
example	2.21.

FIGURE	1-6	The	Install	Extenson	blade

7.	 Select	OK.

More	Info:	Configuring	the	Custom	Script	Extension

You	can	also	configure	the	Custom	Script	Extension	using	the	Set-
AzureRmVMCustomScriptExtension	Windows	PowerShell	cmdlet
(see	https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/extensions-customscript#powershell-deployment)
or	via	the	“az	vm	extension	set”	Azure	CLI	command	(see
https://docs.microsoft.com/en-us/azure/virtual-
machines/linux/extensions-customscript#azure-cli).

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/extensions-customscript#powershell-deployment
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/extensions-customscript#azure-cli

Use	PowerShell	DSC
PowerShell	Desired	State	Configuration	(DSC)	is	a	management	platform
introduced	with	Windows	PowerShell	4.0,	available	as	a	Windows	feature	on
Windows	Server	2012	R2.	PowerShell	DSC	is	implemented	using	Windows
PowerShell.	You	can	use	it	to	configure	a	set	of	servers	(or	nodes)	declaratively,
providing	a	description	of	the	desired	state	for	each	node	in	the	system	topology.
You	can	describe	which	application	resources	to	add,	remove,	or	update	based
on	the	current	state	of	a	server	node.	The	easy,	declarative	syntax	simplifies
configuration	management	tasks.
With	PowerShell	DSC,	you	can	instruct	a	VM	to	self-provision	to	a	desired

state	on	first	deployment	and	then	have	it	automatically	update	if	there	is
“configuration	drift.”	Configuration	drift	happens	when	the	desired	state	of	the
node	no	longer	matches	what	is	described	by	DSC.

DSC	resources
Resources	are	core	building	blocks	for	DSC.	A	script	can	describe	the	target
state	of	one	or	more	resources,	such	as	a	Windows	feature,	the	Registry,	the	file
system,	and	other	services.	For	example,	a	DSC	script	can	describe	the	following
intentions:

	Manage	server	roles	and	Windows	features
	Manage	registry	keys
	Copy	files	and	folders
	Deploy	software
	Run	Windows	PowerShell	scripts

More	Info:	DSC	Built-in	Resources

For	a	more	extensive	list	of	DSC	resources	for	both	Windows	and
Linux,	see:	https://msdn.microsoft.com/en-
us/powershell/dsc/resources.

Configuration	keyword
DSC	extends	Windows	PowerShell	4.0	with	a	Configuration	keyword	used	to
express	the	desired	state	of	one	or	more	target	nodes.	For	example,	the	following
configuration	indicates	that	a	server	should	have	IIS	enabled	during
provisioning:

https://msdn.microsoft.com/en-us/powershell/dsc/resources

Click	here	to	view	code	image

Configuration	EnableIIS

{

					Node	WebServer

				{

												WindowsFeature	IIS	{

																				Ensure	=	"Present",

																				Name	=	"WebServer"

												}

				}

}

The	Configuration	keyword	can	wrap	one	or	more	Node	elements,	each
describing	the	desired	configuration	state	of	one	or	more	resources	on	the	node.
In	the	preceding	example,	the	server	node	is	named	WebServer,	the	contents	of
which	indicate	that	the	Windows	Feature	“IIS”	should	be	configured,	and	that
the	WebServer	component	of	IIS	should	be	confirmed	present	or	installed	if
absent.

Exam	Tip

After	the	DSC	runs,	a	Managed	Object	Format	(MOF)	file	is
created,	which	is	a	standard	endorsed	by	the	Distributed
Management	Task	Force	(DTMF).	See:
http://www.dmtf.org/education/mof.

Custom	resources
Many	resources	are	predefined	and	exposed	to	DSC;	however,	you	may	also
require	extended	capabilities	that	warrant	creating	a	custom	resource	for	DSC
configuration.	You	can	implement	custom	resources	by	creating	a	Windows
PowerShell	module.	The	module	includes	a	MOF	schema,	a	script	module,	and	a
module	manifest.

More	Info:	Custom	DSC	Resources

For	more	information	on	building	custom	DSC	resources,	see
https://msdn.microsoft.com/en-us/powershell/dsc/authoringResource.

http://www.dmtf.org/education/mof
https://msdn.microsoft.com/en-us/powershell/dsc/authoringResource

More	Info:	DSC	Resources	in	the	Powershell	Gallery

The	Windows	PowerShell	team	released	a	number	of	DSC
resources	to	simplify	working	with	Active	Directory,	SQL	Server,
and	IIS.	See	the	PowerShell	Gallery	at
http://www.powershellgallery.com/items	and	search	for	items	in	the
DSC	Resource	category.

Local	Configuration	Manager
Local	Configuration	Manager	is	the	engine	of	DSC,	which	runs	on	all	target
nodes	and	enables	the	following	scenarios	for	DSC:

	Pushing	configurations	to	bootstrap	a	target	node
	Pulling	configuration	from	a	specified	location	to	bootstrap	or	update	a	target
node
	Applying	the	configuration	defined	in	the	MOF	file	to	the	target	node,	either
during	the	bootstrapping	stage	or	to	repair	configuration	drift
Local	Configuration	Manager	runs	invoke	the	configuration	specified	by	your

DSC	configuration	file.	You	can	optionally	configure	Local	Configuration
Manager	to	apply	new	configurations	only,	to	report	differences	resulting	from
configuration	drift,	or	to	automatically	correct	configuration	drift.

More	Info:	Local	Configuration	Manager

For	additional	details	on	the	configuration	settings	available	for
Local	Configuration	Manager,	see	https://msdn.microsoft.com/en-
us/powershell/dsc/metaConfig.

Configure	VMs	with	DSC
To	configure	a	VM	using	DSC,	first	create	a	Windows	PowerShell	script	that
describes	the	desired	configuration	state.	As	discussed	earlier,	this	involves
selecting	resources	to	configure	and	providing	the	appropriate	settings.	When
you	have	a	configuration	script,	you	can	use	one	of	a	number	of	methods	to
initialize	a	VM	to	run	the	script	on	startup.

Creating	a	configuration	script
Use	any	text	editor	to	create	a	Windows	PowerShell	file.	Include	a	collection	of
resources	to	configure,	for	one	or	more	nodes,	in	the	file.	If	you	are	copying	files
as	part	of	the	node	configuration,	they	should	be	available	in	the	specified	source

http://www.powershellgallery.com/items
https://msdn.microsoft.com/en-us/powershell/dsc/metaConfig

as	part	of	the	node	configuration,	they	should	be	available	in	the	specified	source
path,	and	a	target	path	should	also	be	specified.	For	example,	the	following
script	ensures	IIS	is	enabled	and	copies	a	single	file	to	the	default	website:
Click	here	to	view	code	image

configuration	DeployWebPage

{

				node	("localhost")

				{

								WindowsFeature	IIS

								{

												Ensure	=	"Present"

												Name	=	"WebServer"

								}

									File	WebPage

								{

												Ensure										=	"Present"

												DestinationPath	=	"C:\inetpub\wwwroot\index.html"

												Force											=	$true

												Type												=	"File"

												Contents					=	'<html><body><h1>Hello	Web	Page!</h1></body>

</html>'

								}

				}

}

Deploying	a	DSC	configuration	package
After	creating	your	configuration	script	and	allocating	any	resources	it	requires,
you	need	to	produce	a	compressed	zip	file	containing	the	configuration	script	in
the	root,	along	with	any	resources	needed	by	the	script.	You	create	the	zip	and
copy	it	up	to	Azure	Storage	in	one	command	using	Publish-
AzureRMVmDscConfiguration	using	Windows	PowerShell	and	then	apply	the
configuration	with	SetAzureRmVmDscExtension.
Assume	you	have	the	following	configuration	script	in	the	file	iisInstall.ps1	on

your	local	machine:
Click	here	to	view	code	image

configuration	IISInstall

{	

				node	"localhost"

				{	

								WindowsFeature	IIS	

								{	

												Ensure	=	"Present"	

												Name	=	"WebServer"

								}	

				}	

}

You	would	then	run	the	following	PowerShell	cmdlets	to	upload	and	apply	the
configuration:
Click	here	to	view	code	image

#Load	the	Azure	PowerShell	cmdlets

Import-Module	Azure

#Login	to	your	Azure	Account	and	select	your	subscription	(if	your

account	has	multiple

	subscriptions)

Login-AzureRmAccount

Set-AzureRmContext	-SubscriptionId	<YourSubscriptionId>

$resourceGroup	=	"dscdemogroup"

$vmName	=	"myVM"

$storageName	=	"demostorage"

#Publish	the	configuration	script	into	Azure	storage

Publish-AzureRmVMDscConfiguration	-ConfigurationPath	.\iisInstall.ps1	

				-ResourceGroupName	$resourceGroup	-StorageAccountName	$storageName

-force

#Configure	the	VM	to	run	the	DSC	configuration

SetAzureRmVmDscExtension	-Version	2.21	

				-ResourceGroupName	$resourceGroup	-VMName	$vmName	

				-ArchiveStorageAccountName	$storageName	

				-ArchiveBlobName	iisInstall.ps1.zip	-AutoUpdate:$true	-

ConfigurationName

"IISInstall"

Configuring	an	existing	VM	using	the	Azure	Portal
Before	configuring	an	existing	VM	using	the	Azure	Portal,	you	will	need	to
create	a	ZIP	package	around	your	PowerShell	script.	To	do	so,	run	the	Publish-
AzureVMDscConfiguration	cmdlet	providing	the	path	to	your	PowerShell	script
and	the	name	of	that	destination	zip	file	to	create,	for	example:
Click	here	to	view	code	image

Publish-AzureVMDscConfiguration	.\iisInstall.ps1	-

ConfigurationArchivePath	.\iisInstall.

ps1.zip

Then	you	can	proceed	in	the	Azure	Portal.	To	configure	an	existing	VM	in	the
portal,	complete	the	following	steps:

1.	 Navigate	to	the	blade	for	your	VM	in	the	portal	accessed	via

https://portal.azure.com.
2.	 From	the	menu,	scroll	down	to	the	Settings	section,	and	select	Extensions.
3.	 On	the	Extensions	blade,	select	Add	on	the	command	bar.
4.	 From	the	New	Resource	blade,	select	PowerShell	Desired	State

Configuration.
5.	 On	the	PowerShell	Desired	State	Configuration	blade,	select	Create.
6.	 On	the	Install	Extension	blade,	select	the	folder	button	and	choose	the	zip

file	containing	the	DSC	configuration.
7.	 Provide	the	module-qualified	name	of	the	configuration	in	your	.ps1	that

you	want	to	apply.	This	value	is	constructed	from	the	name	of	your	.ps1
file	including	the	extension,	a	slash	(\)	and	the	name	of	the	configuration	as
it	appears	within	the	.ps1	file.	For	example,	if	your	file	is	iisInstall.ps1	and
you	have	a	configuration	named	IISInstall,	you	would	set	this	to
“iisInstall.ps1\IISInstall”.

8.	 Optionally	provide	any	Data	PSD1	file	and	configuration	arguments
required	by	your	script.

9.	 Specify	the	version	of	the	DSC	extension	(Figure	1-7)	you	want	to	install
(e.g.,	2.21).

https://portal.azure.com

FIGURE	1-7	Using	the	Install	Extension

10.	 Select	OK.

Enable	remote	debugging
You	can	use	remote	debugging	to	debug	applications	running	on	your	Windows

You	can	use	remote	debugging	to	debug	applications	running	on	your	Windows
VMs.	Server	Explorer	in	Visual	Studio	shows	your	VMs	in	a	list,	and	from	there
you	can	enable	remote	debugging	and	attach	to	a	process	following	these	steps:

1.	 In	Visual	Studio,	open	Cloud	Explorer.
2.	 Expand	the	node	of	the	subscription	containing	your	VM,	and	then	expand

the	Virtual	Machines	node.
3.	 Right-click	the	VM	you	want	to	debug	and	select	Enable	Debugging.	Click

Yes	in	the	dialog	box	to	confirm.
4.	 This	installs	a	remote	debugging	extension	to	the	VM	so	that	you	can

debug	remotely.	The	progress	will	be	shown	in	the	Microsoft	Azure
Activity	Log.	After	the	debugging	extension	is	installed,	you	can	continue.

5.	 Right-click	the	virtual	machine	again	and	select	Attach	Debugger.	This
presents	a	list	of	processes	in	the	Attach	To	Process	dialog	box.

6.	 Select	the	processes	you	want	to	debug	on	the	VM	and	click	Attach.	To
debug	a	web	application,	select	w3wp.exe,	for	example.

More	Info:	Debugging	Processes	in	Visual	Studio

For	additional	information	about	debugging	processes	in	Visual
Studio,	see	this	reference:	https://docs.microsoft.com/en-
us/visualstudio/debugger/debug-multiple-processes.

Skill	1.3:	Scale	ARM	VMs
Similar	to	Azure	Web	Apps,	Azure	Virtual	Machines	provides	the	capability	to
scale	in	terms	of	both	instance	size	and	instance	count	and	supports	autoscale	on
the	instance	count.	However,	unlike	Websites	that	can	automatically	provision
new	instances	as	a	part	of	scale	out,	Virtual	Machines	on	their	own	must	be	pre-
provisioned	in	order	for	autoscale	to	turn	instances	on	or	off	during	a	scaling
operation.	To	achieve	scale-out	without	having	to	perform	any	pre-provisioning
of	VM	resources,	Virtual	Machine	Scale	Sets	should	be	deployed.

This	skill	covers	how	to:
	Scale	up	and	scale	down	VM	sizes
	Deploy	ARM	VM	Scale	Sets	(VMSS)
	Configure	autoscale	on	ARM	VM	Scale	Sets

https://docs.microsoft.com/en-us/visualstudio/debugger/debug-multiple-processes

Scale	up	and	scale	down	VM	sizes
Using	the	portal	or	Windows	PowerShell,	you	can	scale	VM	sizes	up	or	down	to
alter	the	capacity	of	the	VM,	which	collectively	adjusts:

	The	number	of	data	disks	that	can	be	attached	and	the	total	IOPS	capacity
	The	size	of	the	local	temp	disk
	The	number	of	CPU	cores
	The	amount	of	RAM	memory	available
	The	network	performance
	The	quantity	of	network	interface	cards	(NICs)	supported

More	Info:	Limits	by	VM	Size

To	view	the	detailed	listing	of	limits	by	VM	size,	see
https://docs.microsoft.com/azure/virtual-machines/windows/sizes.

Scaling	up	and	scaling	down	VM	size	using	the	Portal
To	scale	a	VM	up	or	down	in	the	portal,	complete	these	steps:

1.	 Navigate	to	the	blade	of	your	VM	in	the	portal	accessed	via
https://portal.azure.com.

2.	 From	the	menu,	select	Size.
3.	 On	the	Choose	a	size	blade,	select	the	new	size	you	would	like	for	the	VM.
4.	 Choose	Select	to	apply	the	new	size.

Scaling	up	and	scaling	down	VM	size	using	Windows	PowerShell
The	instance	size	can	also	be	adjusted	using	the	following	Windows	PowerShell
script:
Click	here	to	view	code	image

$ResourceGroupName	=	"examref"

$VMName	=	"vmname"

$NewVMSize	=	"Standard_A5"

$vm	=	Get-AzureRmVM	-ResourceGroupName	$ResourceGroupName	-Name	$VMName

$vm.HardwareProfile.vmSize	=	$NewVMSize

Update-AzureRmVM	-ResourceGroupName	$ResourceGroupName	-VM	$vm

In	the	previous	script,	you	specify	the	name	of	the	Resource	Group	containing
your	VM,	the	name	of	the	VM	you	want	to	scale,	and	the	label	of	the	size	(for
example,	“Standard_A5”)	to	which	you	want	to	scale	it.

https://docs.microsoft.com/azure/virtual-machines/windows/sizes
https://portal.azure.com

example,	“Standard_A5”)	to	which	you	want	to	scale	it.
You	can	get	the	list	of	VM	sizes	available	in	each	Azure	region	by	running	the

following	PowerShell	(supplying	the	Location	value	desired):
Click	here	to	view	code	image

Get-AzureRmVmSize	-Location	"East	US"	|	Sort-Object	Name	|

ft	Name,	NumberOfCores,	MemoryInMB,	MaxDataDiskCount	-AutoSize

Deploy	ARM	VM	Scale	Sets	(VMSS)
Virtual	Machine	Scale	Sets	enable	you	to	automate	the	scaling	process.	During	a
scale-out	event,	a	VM	Scale	Set	deploys	additional,	identical	copies	of	ARM
VMs.	During	a	scale-in	it	simply	removes	deployed	instances.	No	VM	in	the
Scale	Set	is	allowed	to	have	any	unique	configuration,	and	can	contain	only	one
size	and	tier	of	VM,	in	other	words	each	VM	in	the	Scale	Set	will	also	have	the
same	size	and	tier	as	all	the	others	in	the	Scale	Set.
VM	Scale	Sets	support	VMs	running	either	Windows	or	Linux.	A	great	way

to	understand	Scale	Sets	is	to	compare	them	to	the	features	of	standalone	Virtual
Machines:

	In	a	Scale	Set,	each	Virtual	Machine	must	be	identical	to	the	other,	as
opposed	to	stand	alone	Virtual	Machines	where	you	can	customize	each	VM
individually.
	You	adjust	the	capacity	of	Scale	Set	simply	by	adjusting	the	capacity
property,	and	this	in	turn	deploys	more	VMs	in	parallel.	In	contrast,	scaling
out	stand	alone	VMs	would	mean	writing	a	script	to	orchestrate	the
deployment	of	many	individual	VMs.
	Scale	Sets	support	overprovisioning	during	a	scale	out	event,	meaning	that
the	Scale	Set	will	actually	deploy	more	VMs	than	you	asked	for,	and	then
when	the	requested	number	of	VMs	are	successfully	provisioned	the	extra
VMs	are	deleted	(you	are	not	charged	for	the	extra	VMs	and	they	do	not
count	against	your	quota	limits).	This	approach	improves	the	provisioning
success	rate	and	reduces	deployment	time.	For	standalone	VMs,	this	adds
extra	requirements	and	complexity	to	any	script	orchestrating	the
deployment.	Moreover,	you	would	be	charged	for	the	extra	standalone	VM’s
and	they	would	count	against	your	quota	limits.
	Scale	Set	can	roll	out	upgrades	using	an	upgrade	policy	across	the	VMs	in
your	Scale	Set.	With	standalone	VMs	you	would	have	to	orchestrate	this
update	process	yourself.
	Azure	Autoscale	can	be	used	to	automatically	scale	a	Scale	Set,	but	cannot

be	used	against	standalone	VMs.
	The	Networking	of	Scale	Sets	is	similar	to	standalone	VMs	deployed	in	a
Virtual	Network.	Scale	Sets	deploy	the	VMs	they	manage	into	a	single
subnet	of	a	Virtual	Network.	To	access	any	particular	Scale	Set	VM	you
either	use	an	Azure	Load	Balancer	with	NAT	rules	(e.g.	where	each	external
port	can	map	to	a	Scale	Set	instance	VM)	or	you	deploy	a	publicly	accessible
“jumpbox”	VM	in	the	same	Virtual	Network	subnet	as	the	Scale	Set	VMs,
and	access	the	Scale	Set	VMs	via	the	jumpbox	(to	which	you	are	either	RDP
or	SSH	connected).
The	maximum	number	of	VMs	to	which	a	VM	Scale	Set	can	scale,	referred	to

as	the	capacity,	depends	on	three	factors:
	Support	for	multiple	placement	groups
	The	use	of	managed	disks
	If	the	VM’s	use	an	image	from	the	Marketplace	or	are	created	from	a	user
supplied	image
Placement	groups	are	a	Scale	Set	specific	concept	that	is	similar	to

Availability	Sets,	where	a	Placement	group	is	implicitly	an	Availability	Set	with
five	fault	domains	and	five	update	domains,	and	supports	up	to	100	VM’s.	When
you	deploy	a	Scale	Set	you	can	restrict	to	only	allow	a	single	placement	group,
which	will	effectively	limit	your	Scale	Set	capacity	to	100	VM’s.	However,	if
you	allow	multiple	placement	groups	during	deployment,	then	your	Scale	Set
may	support	up	to	1,000	VM’s,	depending	on	the	other	two	factors	(managed
disks	and	image	source).
During	Scale	Set	deployment,	you	can	also	choose	whether	to	use	unmanaged

(for	example,	the	traditional	disks	in	an	Azure	Storage	Account	you	control)	or
managed	disks	(where	the	disk	itself	is	the	resource	you	manage,	and	the	Storage
Account	is	no	longer	a	concern	of	yours).	If	you	choose	unmanaged	storage,	you
will	also	need	to	be	limited	to	using	a	single	placement	group,	and	therefore	the
capacity	of	your	Scale	Set	limited	to	100	VMs.	However,	if	you	opt	to	use
managed	disks	then	your	Scale	Set	may	support	up	to	1,000	VMs	subject	only	to
our	last	factor	(the	image	source).
The	final	factor	affecting	your	Scale	Set’s	maximum	capacity	is	the	source	of

the	image	used	when	the	Scale	Set	provisions	the	VMs	it	manages.	If	the	image
source	is	a	Marketplace	image	(like	any	of	the	baseline	images	for	Windows
Server	or	Linux)	then	your	Scale	Set	supports	up	to	1,000	VMs.	However,	if
your	VMs	will	be	based	off	of	a	custom	image	you	supply	then	your	Scale	Set
will	have	a	capacity	of	100	VMs.

Deploy	ARM	VM	Scale	Sets	using	the	Portal
To	deploy	a	Scale	Set	using	the	Azure	Portal,	you	deploy	a	Scale	Set	and	as	a
part	of	that	process	select	the	Marketplace	image	to	use	for	the	VMs	it	will
manage.	You	cannot	select	a	VM	Marketplace	image	and	then	choose	to	include
it	in	a	Scale	Set	(as	you	might	when	selecting	a	Resource	Group).	To	deploy	a
Scale	Set	in	the	portal,	complete	these	steps	(Figure	1-8):

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	+	New	and	in	the	Search	the	Marketplace	box,	enter	“scale	sets”	and

select	the	“Virtual	machine	scale	set”	item	that	appears.
3.	 On	the	Virtual	machine	scale	set	blade,	select	Create.
4.	 In	the	Basics	property	group,	provide	a	name	for	the	scale	set.
5.	 Select	the	OS	type	(Window	or	Linux).
6.	 Choose	your	Subscription,	Resource	group	and	Location.	Note	that	the

Resource	group	you	select	for	the	Scale	Set	must	either	be	empty	or	be
created	new	with	Scale	Set.

7.	 Enter	a	user	name	and	password	(for	Windows),	an	SSH	user	name	and
password	(for	Linux)	or	an	SSH	public	key	(for	Linux).

https://portal.azure.com

FIGURE	1-8	The	Basics	properties	for	the	VM	Scale	Set

8.	 In	the	Instances	and	Load	Balancer	property	group,	set	the	instance	count
to	the	desired	number	of	instances	to	deploy	initially.

9.	 Select	the	virtual	machine	instance	size	for	all	machines	in	the	Scale	Set.
10.	 Choose	whether	to	limit	to	a	single	placement	group	or	not	by	selecting	the

option	to	Enable	scaling	beyond	100	instances.	A	selection	of	“No”	will
limit	your	deployment	to	a	single	placement	group.

11.	 Select	to	use	managed	or	unmanaged	disks.	If	you	chose	to	sue	multiple

placement	groups,	then	managed	disks	are	the	only	option	and	will	be
automatically	selected	for	you.

12.	 If	you	chose	to	use	a	single	placement	group,	configure	the	public	IP
address	name	you	can	use	to	access	VMs	via	a	Load	Balancer.	If	you
allowed	multiple	placement	groups,	then	this	option	is	unavailable.

13.	 Similarly,	if	you	chose	to	use	a	single	placement	group,	configure	the
public	IP	allocation	mode	(which	can	be	Dynamic	or	Static)	and	provide	a
label	for	your	domain	name.	If	you	allowed	multiple	placement	groups,
then	this	option	is	unavailable	(Figure	1-9).

FIGURE	1-9	The	Instances	And	Load	Balancer	properties	for	a	VM
Scale	Set

14.	 In	the	Autoscale	property	group,	leave	Autoscale	set	to	Disabled.
15.	 Select	Create.

More	Info:	Deploying	a	Scale	set	Using	Powershell	or	Azure	CLI

You	can	also	deploy	a	Scale	Set	using	PowerShell	or	the	Azure

CLI.	For	the	detailed	step	by	step	instructions,	see
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-
machine-scale-sets-create.

Deploying	a	Scale	Set	using	a	Custom	Image
To	deploy	a	Scale	Set	where	the	VMs	are	created	from	custom	or	user-supplied
image	you	must	perform	the	following:

1.	 Generalize	and	capture	an	unmanaged	VM	disk	from	a	standalone	VM.
The	disk	is	saved	in	an	Azure	Storage	Account	you	provide.

More	Info:	Creating	a	Generalized	VM	Disk

To	generalize	and	capture	a	VM	from	a	VM	you	have	already
deployed	in	Azure,	see	https://docs.microsoft.com/azure/virtual-
machines/windows/sa-copy-generalized.

2.	 Create	an	ARM	Template	that	at	minimum:

A.	 Creates	a	managed	image	based	on	the	generalized	unmanaged	disk
available	in	Azure	Storage.	Your	template	needs	to	define	a	resource
of	type	“Microsoft.Compute/images”	that	references	the	VHD	image
by	its	URI.	Alternately,	you	can	pre-create	the	managed	image	(which
allows	you	to	specify	the	VHDs	for	the	OS	Disk	and	any	Data	Disks),
for	example	by	creating	an	image	using	the	Portal,	and	omit	this
section	in	your	template.

B.	 Configures	the	Scale	Set	to	use	the	managed	image.	Your	template
needs	to	defines	a	resource	of	type
“Microsoft.Compute/virtualMachineScaleSets”	that,	in	its
“storageProfile”	contains	a	reference	to	the	image	you	defined
previously.

3.	 Deploy	the	ARM	template.	Deploy	the	ARM	template	using	the	approach
of	your	choice	(for	example,	Portal,	PowerShell	or	by	using	the	Azure
CLI).

More	Info:	Deploying	ARM	Templates

For	instructions	on	deploying	an	ARM	template,	see
https://docs.microsoft.com/azure/azure-resource-manager/resource-

https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-create
https://docs.microsoft.com/azure/virtual-machines/windows/sa-copy-generalized
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-template-deploy-portal#deploy-resources-from-custom-template

group-template-deploy-portal#deploy-resources-from-custom-
template.

The	following	code	snippet	shows	an	example	of	a	complete	ARM	template
for	deploying	a	VM	Scale	Set	that	uses	Linux	VMs,	where	the	authentication	for
the	VM’s	is	username	and	password	based,	and	the	VHD	source	is	a	generalized,
unmanaged	VHD	disk	stored	in	an	Azure	Storage	Account.	When	the	template	is
deployed,	the	user	needs	to	specify	the	admin	username	and	password	to
establish	on	all	VMs	in	the	Scale	Set,	as	well	as	the	URI	to	the	source	VHD	in
Azure	Storage	blobs.
Click	here	to	view	code	image

{

		"$schema":	"http://schema.management.azure.com/schemas/

2015-01-01/deploymentTemplate.json",

		"contentVersion":	"1.0.0.0",

		"parameters":	{

				"adminUsername":	{

						"type":	"string"

				},

				"adminPassword":	{

						"type":	"securestring"

				},

				"sourceImageVhdUri":	{

						"type":	"string",

						"metadata":	{

								"description":	"The	source	of	the	generalized	blob	containing

the	custom	image"

						}

				}

		},

		"variables":	{},

		"resources":	[

				{

						"type":	"Microsoft.Compute/images",

						"apiVersion":	"2016-04-30-preview",

						"name":	"myCustomImage",

						"location":	"[resourceGroup().location]",

						"properties":	{

								"storageProfile":	{

										"osDisk":	{

												"osType":	"Linux",

												"osState":	"Generalized",

												"blobUri":	"[parameters('sourceImageVhdUri')]",

												"storageAccountType":	"Standard_LRS"

										}

								}

						}

				},

				{

						"type":	"Microsoft.Network/virtualNetworks",

						"name":	"myVnet",

						"location":	"[resourceGroup().location]",

						"apiVersion":	"2016-12-01",

						"properties":	{

								"addressSpace":	{

										"addressPrefixes":	[

												"10.0.0.0/16"

]

								},

								"subnets":	[

										{

												"name":	"mySubnet",

												"properties":	{

														"addressPrefix":	"10.0.0.0/16"

												}

										}

]

						}

				},

				{

						"type":	"Microsoft.Compute/virtualMachineScaleSets",

						"name":	"myScaleSet",

						"location":	"[resourceGroup().location]",

						"apiVersion":	"2016-04-30-preview",

						"dependsOn":	[

								"Microsoft.Network/virtualNetworks/myVnet",

								"Microsoft.Compute/images/myCustomImage"

],

						"sku":	{

								"name":	"Standard_A1",

								"capacity":	2

						},

						"properties":	{

								"upgradePolicy":	{

										"mode":	"Manual"

								},

								"virtualMachineProfile":	{

										"storageProfile":	{

												"imageReference":	{

														"id":	"[resourceId('Microsoft.Compute/images',

'myCustomImage')]"

												}

										},

										"osProfile":	{

												"computerNamePrefix":	"vm",

												"adminUsername":	"[parameters('adminUsername')]",

												"adminPassword":	"[parameters('adminPassword')]"

										},

										"networkProfile":	{

												"networkInterfaceConfigurations":	[

														{

																"name":	"myNic",

																"properties":	{

																		"primary":	"true",

																		"ipConfigurations":	[

																				{

																						"name":	"myIpConfig",

																						"properties":	{

																								"subnet":	{

																										"id":	"

[concat(resourceId('Microsoft.Network/virtualNetworks',

																											'myVnet'),	'subnetsmySubnet')]"

																								}

																						}

																				}

]

																}

														}

]

										}

								}

						}

				}

]

}

More	Info:	Template	Source

You	can	download	the	ARM	template	shown	from:
https://github.com/gatneil/mvss/blob/customimage/azuredeploy.json.

Configure	Autoscale
Autoscale	is	a	feature	of	the	Azure	Monitor	service	in	Microsoft	Azure	that
enables	you	to	automatically	scale	resources	based	on	rules	evaluated	against
metrics	provided	by	those	resources.	Autoscale	can	be	used	with	Virtual
Machine	Scale	Sets	to	adjust	the	capacity	according	to	metrics	like	CPU
utilization,	network	utilization	and	memory	utilization	across	the	VMs	in	the
Scale	Set.	Additionally,	Autoscale	can	be	configured	to	adjust	the	capacity	of	the
Scale	Set	according	to	metrics	from	other	services,	such	as	the	number	of
messages	in	an	Azure	Queue	or	Service	Bus	queue.

https://github.com/gatneil/mvss/blob/custom-image/azuredeploy.json

messages	in	an	Azure	Queue	or	Service	Bus	queue.

Configuring	Autoscale	when	provisioning	VM	Scale	Set	using	the	Portal
You	can	configure	a	Scale	Set	to	autoscale	when	provisioning	a	new	Scale	Set	in
the	Azure	Portal.	When	configuring	it	during	provisioning,	the	only	metric	you
can	scale	against	is	CPU	utilization.	To	provision	a	Scale	Set	with	CPU	based
autoscale,	complete	the	following	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	+	New	and	in	the	Search	the	Marketplace	box,	enter	“scale	sets”	and

select	the	“Virtual	machine	scale	set”	item	that	appears.
3.	 On	the	Virtual	machine	scale	set	blade,	select	Create.
4.	 In	the	Basics	property	group,	provide	a	name	for	the	scale	set.
5.	 Select	the	OS	type	(Window	or	Linux).
6.	 Choose	your	Subscription,	Resource	group	and	Location.	Note	that	the

Resource	group	you	select	for	the	Scale	Set	must	either	be	empty	or	be
created	new	with	Scale	Set.

7.	 Enter	a	user	name	and	password	(for	Windows),	an	SSH	user	name	and
password	(for	Linux)	or	an	SSH	public	key	(for	Linux).

8.	 In	the	Instances	and	Load	Balancer	property	group,	set	the	instance	count
to	the	desired	number	of	instances	to	deploy	initially.

9.	 Select	the	virtual	machine	instance	size	for	all	machines	in	the	Scale	Set.
10.	 Choose	whether	to	limit	to	a	single	placement	group	or	not	by	selecting	the

option	to	Enable	scaling	beyond	100	instances.	A	selection	of	“No”	will
limit	your	deployment	to	a	single	placement	group.

11.	 Select	to	use	managed	or	unmanaged	disks.	If	you	chose	to	sue	multiple
placement	groups,	then	managed	disks	are	the	only	option	and	will	be
automatically	selected	for	you.

12.	 If	you	chose	to	use	a	single	placement	group,	configure	the	public	IP
address	name	you	can	use	to	access	VMs	via	a	Load	Balancer.	If	you
allowed	multiple	placement	groups,	then	this	option	is	unavailable.

13.	 Similarly,	if	you	chose	to	use	a	single	placement	group,	configure	the
public	IP	allocation	mode	(which	can	be	Dynamic	or	Static)	and	provide	a
label	for	your	domain	name.	If	you	allowed	multiple	placement	groups,
then	this	option	is	unavailable.

14.	 In	the	Autoscale	property	group,	chose	to	enable	autoscale.	If	you	enable

https://portal.azure.com

autoscale,	provide	the	desired	VM	instance	count	ranges,	the	scale	out	or
scale	in	CPU	thresholds	and	instance	counts	to	scale	out	or	scale	in	by
(Figure	1-10).

FIGURE	1-10	The	Autoscale	settings	for	a	VM	Scale	Set

15.	 Select	Create.

Configuring	Autoscale	on	an	existing	VM	Scale	Set	using	the	Portal
You	can	configure	a	Scale	Set	to	Autoscale	after	it	is	deployed	using	the	Portal.
When	configuring	this	way,	you	can	scale	according	to	any	of	the	available
metrics.	To	further	configure	Autoscale	on	an	existing	Scale	Set	with	Autoscale
already	enabled,	complete	the	following	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Navigate	to	your	Virtual	machine	scale	set	in	the	Portal.
3.	 From	the	menu,	under	Settings,	select	Scaling.
4.	 Select	Add	Default	Scale	Condition	or	Add	A	Scale	Condition.	The	default

scale	condition	(Figure	1-11)	will	run	when	none	of	the	other	scale
conditions	match.

5.	 For	the	scale	condition,	choose	the	scale	mode.	You	can	scale	based	on	a
metric	or	scale	to	a	specific	instance	count.

FIGURE	1-11	The	Default	scale	condition

6.	 When	choosing	to	scale	based	on	a	metric	(Figure	1-12):
	Select	Add	rule	to	define	the	metric	source	(e.g.,	the	Scale	Set	itself	or
another	Azure	resource),	the	Criteria	(e.g.,	the	metric	name,	time	grain
and	value	range),	and	the	Action	(e.g.,	to	scale	out	or	scale	in).

https://portal.azure.com

FIGURE	1-12	Adding	a	Scale	Rule

7.	 When	choosing	to	scale	to	a	specific	instance	count:
	For	the	default	scale	condition,	you	can	only	specify	the	target	instance
count	to	which	the	Scale	Set	capacity	will	reset.
	For	non-default	scale	conditions,	you	specify	the	desired	instance	count
and	a	time	based	schedule	during	which	that	instance	count	will	apply.
Specify	the	time	by	using	a	start	and	end	dates	or	according	to	a	recurring
schedule	that	repeats	during	a	time	range	on	selected	days	of	the	week
(Figure	1-13).

FIGURE	1-13	Adding	a	Scale	Condition

8.	 Select	Save	in	the	command	bar	to	apply	your	Autoscale	settings.

More	Info:	VM	Scale	set	and	Autoscale	Deployment	with
Powershell

For	an	end-to-end	example	walking	thru	of	the	steps	to	create	a
VM	Scale	Set	configured	with	Autoscale	showing	how	to	deploy
with	PowerShell,	see:	https://docs.microsoft.com/azure/virtual-
machine-scale-sets/virtual-machine-scale-sets-windows-autoscale.

Skill	1.4:	Design	and	implement	ARM	VM	storage
There	is	more	to	managing	your	VM	storage	than	attaching	data	disks.	In	this
skill,	you	explore	multiple	considerations	that	are	critical	to	your	VM	storage
strategy.

This	skill	covers	how	to:

https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-windows-autoscale

	Plan	for	storage	capacity
	Configure	storage	pools
	Configure	disk	caching
	Configure	geo-replication
	Configure	shared	storage	using	Azure	File	storage
	Implement	ARM	VMs	with	Standard	and	Premium	Storage
	Implement	Azure	Disk	Encryption	for	Windows	and	Linux	ARM	VMs

Plan	for	storage	capacity
VMs	leverage	a	local	disk	provided	by	the	host	machine	for	the	temp	drive	(D:
on	Windows	and	devsdb1	on	Linux)	and	Azure	Storage	for	the	operating	system
and	data	disks	(collectively	referred	to	as	virtual	machine	disks),	wherein	each
disk	is	a	VHD	stored	as	a	blob	in	Blob	storage.	The	temp	drive,	however,	uses	a
local	disk	provided	by	the	host	machine.	The	physical	disk	underlying	this	temp
drive	may	be	shared	among	all	the	VMs	running	on	the	host	and,	therefore,	may
be	subject	to	a	noisy	neighbor	that	competes	with	your	VM	instance	for
read/write	IOPS	and	bandwidth.
For	the	operating	system	and	data	disks,	use	of	Azure	Storage	blobs	means

that	the	storage	capacity	of	your	VM	in	terms	of	both	performance	(for	example,
IOPS	and	read/write	throughput	MB/s)	and	size	(such	as	in	GBs)	is	governed	by
the	capacity	of	a	single	blob	in	Blob	storage.
When	it	comes	to	storage	performance	and	capacity	of	your	disks	there	are

two	big	factors:

1.	 Is	the	disk	standard	or	premium?
2.	 Is	the	disk	unmanaged	or	managed?

When	you	provision	a	VM	(either	in	the	portal	or	via	PowerShell	or	the	Azure
CLI),	it	will	ask	for	the	disk	type,	which	is	either	HDD	(backed	by	magnetic
disks	with	physical	spindles)	or	SSD	(backed	by	solid	state	drives).	Standard
disks	are	stored	in	a	standard	Azure	Storage	Account	backed	by	the	HDD	disk
type.	Premium	disks	are	stored	in	a	premium	Azure	Storage	Account	backed	by
the	SSD	disk	type.
When	provisioning	a	VM,	you	will	also	need	to	choose	between	using

unmanaged	disks	or	managed	disks.	Unmanaged	disks	require	the	creation	of	an
Azure	Storage	Account	in	your	subscription	that	will	be	used	to	store	all	of	the
disks	required	by	the	VM.	Managed	disks	simplify	the	disk	management	because
they	manage	the	associated	Storage	Account	for	you,	and	you	are	only

they	manage	the	associated	Storage	Account	for	you,	and	you	are	only
responsible	for	managing	the	disk	resource.	In	other	words,	you	only	need	to
specify	the	size	and	type	of	disk	and	Azure	takes	care	of	the	rest	for	you.	The
primary	benefit	to	using	managed	disks	over	unmanaged	disks	is	that	you	are	no
longer	limited	by	Storage	Account	limits.	In	particular,	the	limit	of	20,000	IOPS
per	Storage	Account	means	that	you	would	need	to	carefully	manage	the
creation	of	unmanaged	disks	in	Azure	Storage,	limiting	the	number	of	disks
typically	to	20-40	disks	per	Storage	Account.	When	you	need	more	disks,	you
need	to	create	additional	Storage	Accounts	to	support	the	next	batch	of	20-40
disks.
The	following	summarizes	the	differences	between	standard	and	premium

disks	in	both	unmanaged	and	managed	scenarios,	shown	in	Table	1-1.

TABLE	1-1	Comparing	Standard	and	Premium	disks

Feature Standard
(unmanaged)

STANDARD
(MANAGED)

Premium
(UNMANGED)

PREMIUM
(MANAGED)

Max	IOPS
for	storage
account

20k	IOPS N/A 60k	-127.5k
IOPS

N/A

Max
bandwidth
for	storage
account

N/A N/A 50	Gbps N/A

Max
storage
capacity
per
storage
account

500	TB N/A 35	TB N/A

Max	IOPS
per	VM

Depends	on
VM	Size

Depends	on
VM	Size

Depends	on	VM
Size

Depends	on
VM	Size

Max
throughput
per	VM

Depends	on
VM	Size

Depends	on
VM	Size

Depends	on	VM
Size

Depends	on
VM	Size

Max	disk 4TB 32GB	-	4TB 32GB	-	4TB 32GB	-	4TB

Max	disk
size

4TB 32GB	-	4TB 32GB	-	4TB 32GB	-	4TB

Max	8	KB
IOPS	per
disk

300	-	500
IOPS

500	IOPS 500	-	7,500
IOPS

120	-	7,500
IOPS

Max
throughput
per	disk

60	MB/s 60	MB/s 100	MB/s	-	250
MB/s

25	MB/s	-	250
MB/s

More	Info:	IOPS

An	IOPS	is	a	unit	of	measure	counting	the	number	of	input/output
operations	per	second	and	serves	as	a	useful	measure	for	the
number	of	read,	write,	or	read/write	operations	that	can	be
completed	in	a	period	of	time	for	data	sets	of	a	certain	size	(usually
8	KB).	To	learn	more,	you	can	read	about	IOPS	at
http://en.wikipedia.org/wiki/IOPS.

Given	the	scalability	targets,	how	can	you	configure	a	VM	that	has	an	IOPS
capacity	greater	than	500	IOPS	or	60	MB/s	throughput,	or	provides	more	than
one	terabyte	of	storage?	One	approach	is	to	use	multiple	blobs,	which	means
using	multiple	disks	striped	into	a	single	volume	(in	Windows	Server	2012	and
later	VMs,	the	approach	is	to	use	Storage	Spaces	and	create	a	storage	pool	across
all	of	the	disks).	Another	option	is	to	use	premium	disks	at	the	P20	size	or
higher.

More	Info:	Storage	Scalability	Targets

For	a	detailed	breakdown	of	the	capabilities	by	storage	type,	disk
type	and	size,	see:	https://docs.microsoft.com/azure/storage/storage-
scalability-targets.

For	Azure	VMs,	the	general	rule	governing	the	number	of	disks	you	can
attach	is	twice	the	number	of	CPU	cores.	For	example,	an	A4-sized	VM	instance
has	8	cores	and	can	mount	16	disks.	Currently,	there	are	only	a	few	exceptions	to
this	rule	such	as	the	A9	instances,	which	map	on	one	times	the	number	of	cores
(so	an	A9	has	16	cores	and	can	mount	16	disks).	Expect	such	exceptions	to
change	over	time	as	the	VM	configurations	evolve.	Also,	the	maximum	number

http://en.wikipedia.org/wiki/IOPS
https://docs.microsoft.com/azure/storage/storage-scalability-targets

change	over	time	as	the	VM	configurations	evolve.	Also,	the	maximum	number
of	disks	that	can	currently	be	mounted	to	a	VM	is	64	and	the	maximum	IOPS	is
80,000	IOPS	(when	using	a	Standard	GS5).

More	Info:	How	Many	Disks	can	you	Mount?

As	the	list	of	VM	sizes	grows	and	changes	over	time,	you	should
review	the	following	web	page	that	details	the	number	of	disks	you
can	mount	by	VM	size	and	tier:
http://msdn.microsoft.com/library/azure/dn197896.aspx.

Configure	storage	pools
Storage	Spaces	enables	you	to	group	together	a	set	of	disks	and	then	create	a
volume	from	the	available	aggregate	capacity.	Assuming	you	have	created	your
VM	and	attached	all	of	the	empty	disks	you	want	to	it,	the	following	steps
explain	how	to	create	a	storage	pool	from	those	disks.	You	next	create	a	storage
space	in	that	pool,	and	from	that	storage	space,	mount	a	volume	you	can	access
with	a	drive	letter.

1.	 Launch	Remote	Desktop	and	connect	to	the	VM	on	which	you	want	to
configure	the	storage	space.

2.	 If	Server	Manager	(Figure	1-14)	does	not	appear	by	default,	run	it	from	the
Start	screen.

3.	 Click	the	File	And	Storage	Services	tile	near	the	middle	of	the	window.

http://msdn.microsoft.com/library/azure/dn197896.aspx

FIGURE	1-14	The	Server	Manager

4.	 In	the	navigation	pane,	click	Storage	Pools	(Figure	1-15).

FIGURE	1-15	Storage	Pools	in	the	Server	Manager

5.	 In	the	Storage	Pools	area,	click	the	Tasks	dropdown	list	and	select	New
Storage	Pool	(Figure	1-16).

FIGURE	1-16	New	Storage	Pools	in	Server	Manager

6.	 In	the	New	Storage	Pool	Wizard,	click	Next	on	the	first	page.
7.	 Provide	a	name	for	the	new	storage	pool,	and	click	Next.
8.	 Select	all	the	disks	you	want	to	include	in	your	storage	pool,	and	click	Next

(Figure	1-17).

FIGURE	1-17	Select	Physical	Disks	For	The	Storage	Pool

9.	 Click	Create,	and	then	click	Close	to	create	the	storage	pool.

After	you	create	a	storage	pool,	create	a	new	virtual	disk	that	uses	it	by
completing	the	following	steps:

1.	 In	Server	Manager,	in	the	Storage	Pools	dialog	box,	right-click	your	newly
created	storage	pool	and	select	New	Virtual	Disk	(Figure	1-18).

FIGURE	1-18	Create	a	New	Virtual	Disk	in	Storage	Pools

2.	 Select	your	storage	pool,	and	select	OK	(Figure	1-19).

FIGURE	1-19	The	Select	The	Storage	Pool	dialog

3.	 Click	Next	on	the	first	page	of	the	wizard.
4.	 Provide	a	name	for	the	new	virtual	disk,	and	click	Next.
5.	 On	the	Specify	enclosure	resiliency	page,	click	Next.

6.	 Select	the	simple	storage	layout	(because	your	VHDs	are	already	triple
replicated	by	Azure	Storage,	you	do	not	need	additional	redundancy),	and
click	Next	(Figure	1-20).

FIGURE	1-20	The	New	Virtual	Disk	Wizard	with	the	Select	The	Storage
Layout	page

7.	 For	the	provisioning	type,	leave	the	selection	as	Fixed.	Click	Next	(Figure
1-21).

FIGURE	1-21	Specify	The	Provisioning	Type	page	in	the	New	Virtual
Disk	Wizard

8.	 For	the	size	of	the	volume,	select	Maximum	(Figure	1-22)	so	that	the	new
virtual	disk	uses	the	complete	capacity	of	the	storage	pool.	Click	Next.

FIGURE	1-22	The	Specify	The	Size	Of	The	Virtual	Disk	page	in	the
New	Virtual	Disk	Wizard

9.	 On	the	Summary	page,	click	Create.
10.	 Click	Close	when	the	process	completes.

When	the	New	Virtual	Disk	Wizard	closes,	the	New	Volume	Wizard	appears.
Follow	these	steps	to	create	a	volume:

1.	 Click	Next	to	skip	past	the	first	page	of	the	wizard.
2.	 On	the	Server	And	Disk	Selection	page,	select	the	disk	you	just	created

(Figure	1-23).	Click	Next.

FIGURE	1-23	The	Select	The	Server	And	Disk	page	in	the	New	Volume
Wizard

3.	 Leave	the	volume	size	set	to	the	maximum	value	and	click	Next	(Figure	1-
24).

FIGURE	1-24	The	Specify	The	Size	Of	The	Volume	page	in	the	New
Volume	Wizard

4.	 Leave	Assign	A	Drive	Letter	selected	and	select	a	drive	letter	to	use	for
your	new	drive.	Click	Next	(Figure	1-25).

FIGURE	1-25	The	Assign	To	A	Drive	Letter	Or	Folder	in	the	New
Volume	Wizard

5.	 Provide	a	name	for	the	new	volume,	and	click	Next	(Figure	1-26).

FIGURE	1-26	The	Select	File	System	Settings	in	the	New	Volume
Wizard

6.	 Click	Create.
7.	 When	the	process	completes,	click	Close.
8.	 Open	Windows	Explorer	to	see	your	new	drive	listed.

Applications	running	within	your	VM	can	use	the	new	drive	and	benefit	from
the	increased	IOPS	and	total	storage	capacity	that	results	from	having	multiple
blobs	backing	your	multiple	VHDs	grouping	in	a	storage	pool.

More	Info:	Configuring	Striped	Logical	Volumes	in	Linux	VMS

Linux	Virtual	Machines	can	use	the	Logical	Volume	Manager
(LVM)	to	create	volumes	that	span	multiple	attached	data	disks,
for	step	by	step	instructions	on	doing	this	for	Linux	VMs	in	Azure,
see:	https://docs.microsoft.com/en-us/azure/virtual-
machines/linux/configure-lvm.

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/configure-lvm

Configure	disk	caching
Each	disk	you	attach	to	a	VM	has	a	host	cache	preference	setting	for	managing	a
local	cache	used	for	read	or	read/write	operations	that	can	improve	performance
(and	even	reduce	storage	transaction	costs)	in	certain	situations	by	averting	a
read	or	write	to	Azure	Storage.	This	local	cache	does	not	live	within	your	VM
instance;	it	is	external	to	the	VM	and	resides	on	the	machine	hosting	your	VM.
The	local	cache	uses	a	combination	of	memory	and	disk	on	the	host	(outside	of
your	control).	There	are	three	cache	options:

	None	No	caching	is	performed.
	Read	Only	Assuming	an	empty	cache	or	the	desired	data	is	not	found	in	the
local	cache,	reads	read	from	Azure	Storage	and	are	then	cached	in	local
cache.	Writes	go	directly	to	Azure	Storage.
	Read/Write	Assuming	an	empty	cache	or	the	desired	data	is	not	found	in	the
local	cache,	reads	read	from	Azure	Storage	and	are	then	cached	in	local
cache.	Writes	go	to	the	local	cache	and	at	some	later	point	(determined	by
algorithms	of	the	local	cache)	to	Azure	Storage.
When	you	create	a	new	VM,	the	default	is	set	to	Read/Write	for	operating

system	disks	and	Read-only	for	data	disks.	Operating	system	disks	are	limited	to
read	only	or	read/write,	data	disks	can	disable	caching	using	the	None	option.
The	reasoning	for	this	is	that	Azure	Storage	can	provide	a	higher	rate	of	random
I/Os	than	the	local	disk	used	for	caching.	For	predominantly	random	I/O
workloads,	therefore,	it	is	best	to	set	the	cache	to	None	and	let	Azure	Storage
handle	the	load	directly.	Because	most	applications	will	have	predominantly
random	I/O	workloads,	the	host	cache	preference	is	set	to	None	by	default	for
the	data	disks	that	would	be	supporting	the	applications.
For	sequential	I/O	workloads,	however,	the	local	cache	will	provide	some

performance	improvement	and	also	minimize	transaction	costs	(because	the
request	to	storage	is	averted).	Operating	system	startup	sequences	are	great
examples	of	highly	sequential	I/O	workloads	and	why	the	host	cache	preference
is	enabled	for	the	operating	system	disks.
You	can	configure	the	host	cache	preference	when	you	create	and	attach	an

empty	disk	to	a	VM	or	change	it	after	the	fact.

Configuring	disk	caching
To	configure	disk	caching	using	the	portal,	complete	the	following	steps:

1.	 Navigate	to	the	blade	for	your	VM	in	the	portal	accessed	via

https://portal.azure.com.
2.	 From	the	menu,	select	Disks	(Figure	1-27).

FIGURE	1-27	The	Disks	option	from	the	VM	menu

3.	 On	the	Disks	blade,	select	Edit	from	the	command	bar.
4.	 Select	the	Host	Caching	drop	down	for	the	row	representing	the	disk	whose

setting	you	want	to	alter	and	select	the	new	value	(Figure	1-28).

FIGURE	1-28	Data	disk	dropdown

5.	 Select	Save	in	the	command	bar	to	apply	your	changes.

Configure	geo-replication
With	Azure	Storage,	you	can	leverage	geo-replication	for	blobs	to	maintain

https://portal.azure.com

With	Azure	Storage,	you	can	leverage	geo-replication	for	blobs	to	maintain
replicated	copies	of	your	VHD	blobs	in	multiple	regions	around	the	world	in
addition	to	three	copies	that	are	maintained	within	the	datacenter.	Note	that	geo-
replication	is	not	synchronized	across	blob	files	and,	therefore,	VHD	disks.	This
means	writes	for	a	file	that	is	spread	across	multiple	disks,	as	happens	when	you
use	storage	pools	in	Windows	VMs	or	striped	logical	volumes	in	Linux	VMs,
could	be	replicated	out	of	order.	As	a	result,	if	you	mount	the	replicated	copies
to	a	VM,	the	disks	will	almost	certainly	be	corrupt.	To	avoid	this	problem,
configure	the	disks	to	use	locally	redundant	replication,	which	does	not	add	any
additional	availability	and	reduces	costs	(since	geo-replicated	storage	is	more
expensive).

Configure	shared	storage	using	Azure	File	storage
If	you	have	ever	used	a	local	network	on-premises	to	access	files	on	a	remote
machine	through	a	Universal	Naming	Convention	(UNC)	path	like
\\server\share,	or	if	you	have	mapped	a	drive	letter	to	a	network	share,	you	will
find	Azure	File	storage	familiar.
Azure	File	storage	enables	your	VMs	to	access	files	using	a	share	located

within	the	same	region	as	your	VMs.	It	does	not	matter	if	your	VMs’	data	disks
are	located	in	a	different	storage	account	or	even	if	your	share	uses	a	storage
account	that	is	within	a	different	Azure	subscription	than	your	VMs.	As	long	as
your	shares	are	created	within	the	same	region	as	your	VMs,	those	VMs	will
have	access.
Azure	File	storage	provides	support	for	most	of	the	Server	Message	Block

(SMB)	2.1	and	3.0	protocols,	which	means	it	supports	the	common	scenarios
you	might	encounter	accessing	files	across	the	network:

	Supporting	applications	that	rely	on	file	shares	for	access	to	data
	Providing	access	to	shared	application	settings
	Centralizing	storage	of	logs,	metrics,	and	crash	dumps
	Storing	common	tools	and	utilities	needed	for	development,	administration,
or	setup
Azure	File	storage	is	built	upon	the	same	underlying	infrastructure	as	Azure

Storage,	inheriting	the	same	availability,	durability,	and	scalability
characteristics.

More	Info:	Unsupported	SMB	Features

Azure	File	storage	supports	a	subset	of	SMB.	Depending	on	your

application	needs,	some	features	may	preclude	your	usage	of	Azure
File	storage.	Notable	unsupported	features	include	named	pipes
and	short	file	names	(in	the	legacy	8.3	alias	format,	like
myfilen~1.txt).

For	the	complete	list	of	features	not	supported	by	Azure	File
storage,	see:	http://msdn.microsoft.com/en-
us/library/azure/dn744326.aspx.

Azure	File	storage	requires	an	Azure	Storage	account.	Access	is	controlled
with	the	storage	account	name	and	key;	therefore,	as	long	as	your	VMs	are	in	the
same	region,	they	can	access	the	share	using	your	storage	credentials.	Also,
while	Azure	Storage	provides	support	for	read-only	secondary	access	to	your
blobs,	this	does	not	enable	you	to	access	your	shares	from	the	secondary	region.

More	Info:	Naming	Requirements

Interestingly,	while	Blob	storage	is	case	sensitive,	share,	directory,
and	file	names	are	case	insensitive	but	will	preserve	the	case	you
use.	For	more	information,	see:	http://msdn.microsoft.com/en-
us/library/azure/dn167011.aspx.

Within	each	Azure	Storage	account,	you	can	define	one	or	more	shares.	Each
share	is	an	SMB	file	share.	All	directories	and	files	must	be	created	within	this
share,	and	it	can	contain	an	unlimited	number	of	files	and	directories	(limited	in
depth	by	the	length	of	the	path	name	and	a	maximum	depth	of	250
subdirectories).	Note	that	you	cannot	create	a	share	below	another	share.	Within
the	share	or	any	directory	below	it,	each	file	can	be	up	to	one	terabyte	(the
maximum	size	of	a	single	file	in	Blob	storage),	and	the	maximum	capacity	of	a
share	is	five	terabytes.	In	terms	of	performance,	a	share	has	a	maximum	of	1,000
IOPS	(when	measured	using	8-KB	operations	and	a	throughput	of	60	MB/s).
A	unique	feature	of	Azure	File	storage	is	that	you	can	manage	shares,	such	as

to	create	or	delete	shares,	list	shares,	get	share	ETag	and	LastModified
properties,	get	or	set	user-defined	share	metadata	key	and	value	pairs.	You	can
get	share	content,	for	example	list	directories	and	files,	create	directories	and
files,	get	a	file,	delete	a	file,	get	file	properties,	get	or	set	user-defined	metadata,
and	get	or	set	ranges	of	bytes	within	a	file.	This	is	accomplished	using	REST
APIs	available	through	endpoints	named
https://<accountName>.file.core.windows.net/<shareName>	and	through	the

http://msdn.microsoft.com/en-us/library/azure/dn744326.aspx
http://msdn.microsoft.com/en-us/library/azure/dn167011.aspx

SMB	protocol.	In	contrast	to	Azure	Storage,	Azure	File	storage	only	allows	you
to	use	a	REST	API	to	manage	the	files.	This	can	prove	beneficial	to	certain
application	scenarios.	For	example,	it	can	be	helpful	if	you	have	a	web
application	(perhaps	running	in	an	Azure	website)	receiving	uploads	from	the
browser.	Your	web	application	can	upload	the	files	through	the	REST	API	to	the
share,	but	your	backend	applications	running	on	a	VM	can	process	those	files	by
accessing	them	using	a	network	share.	In	situations	like	this,	the	REST	API	will
respect	any	file	locks	placed	on	files	by	clients	using	the	SMB	protocol.

More	Info:	File	Lock	Interaction	Between	SMB	and	Rest

If	you	are	curious	about	how	file	locking	is	managed	between	SMB
and	REST	endpoints	for	clients	interacting	with	the	same	file	at	the
same	time,	the	following	is	a	good	resource	for	more	information:
https://docs.microsoft.com/en-us/rest/api/storageservices/Managing-
File-Locks.

Creating	a	file	share
The	following	cmdlet	first	creates	an	Azure	Storage	context,	which	encapsulates
your	Storage	account	name	and	key,	and	then	uses	that	context	to	create	the
share	with	the	name	of	your	choosing:
Click	here	to	view	code	image

$ctx	=	New-AzureStorageContext	<StorageAccountName>	<StorageAccountKey>

New-AzureStorageShare	<ShareName>	-Context	$ctx

With	a	share	in	place,	you	can	access	it	from	any	VM	that	is	in	the	same
region	as	your	share.

Mounting	the	share
To	access	the	share	within	a	VM,	you	mount	it	to	your	VM.	You	can	mount	a
share	to	a	VM	so	that	it	will	remain	available	indefinitely	to	the	VM,	regardless
of	restarts.	The	following	steps	show	you	how	to	accomplish	this,	assuming	you
are	using	a	Windows	Server	guest	operating	system	within	your	VM.

1.	 Launch	Remote	Desktop	to	connect	to	the	VM	where	you	want	to	mount
the	share.

2.	 Open	a	Windows	PowerShell	prompt	or	the	command	prompt	within	the
VM.

https://docs.microsoft.com/en-us/rest/api/storageservices/Managing-File-Locks

3.	 So	they	are	available	across	restarts,	add	your	Azure	Storage	account
credentials	to	the	Windows	Credentials	Manager	using	the	following
command:
Click	here	to	view	code	image

cmdkey	add:<StorageAccountName>.file.core.windows.net	user:

<Storage-

AccountName>	/pass:<StorageAccountKey>

4.	 Mount	the	file	share	using	the	stored	credentials	by	using	the	following
command	(which	you	can	issue	from	the	Windows	PowerShell	prompt	or	a
command	prompt).	Note	that	you	can	use	any	available	drive	letter	(drive	Z
is	typically	used).
Click	here	to	view	code	image

net	use	z:	\\<StorageAccountName>.file.core.windows.net\<ShareName>

5.	 The	previous	command	mounts	the	share	to	drive	Z,	but	if	the	VM	is
restarted,	this	share	may	disappear	if	net	use	was	not	configured	for
persistent	connections	(it	is	enabled	for	persistent	connection	by	default,
but	that	can	be	changed).	To	ensure	a	persistent	share	that	will	survive	a
restart,	use	the	following	command	that	adds	the	persistent	switch	with	a
value	of	yes.
Click	here	to	view	code	image

net	use	z:	\\<StorageAccountName>.file.core.windows.net\<ShareName>

/Persistent:	YES

6.	 To	verify	that	your	network	share	was	added	(or	continues	to	exist)	at	any
time,	run	the	following	command:
net	use

After	you	mount	the	share,	you	can	work	with	its	contents	as	you	would	work
with	the	contents	of	any	other	network	drive.	Drive	Z	will	show	a	five-terabyte
drive	mounted	in	Windows	Explorer.

Accessing	files	within	the	share
With	a	share	mounted	within	a	VM,	you	may	next	consider	how	to	get	your	files
and	folders	into	that	share.	There	are	multiple	approaches	to	this,	and	you	should
choose	the	approach	that	makes	the	most	sense	in	your	scenario.

	Remote	Desktop	(RDP)	If	you	are	running	a	Windows	guest	operating

system,	you	can	remote	desktop	into	a	VM	that	has	access	to	the	share.	As	a
part	of	configuring	your	RDP	session,	you	can	mount	the	drives	from	your
local	machine	so	that	they	are	visible	using	Windows	Explorer	in	the	remote
session.	Then	you	can	copy	and	paste	files	between	the	drives	using
Windows	Explorer	in	the	remote	desktop	session.	Alternately,	you	can	copy
files	using	Windows	Explorer	on	your	local	machine	and	then	paste	them
into	the	share	within	Windows	Explorer	running	in	the	RDP	session.
	AZCopy	Using	AZCopy,	you	can	recursively	upload	directories	and	files	to
a	share	from	your	local	machine	to	the	remote	share,	as	well	as	download
from	the	share	to	your	local	machine.	For	examples	of	how	to	do	this,	see:
http://blogs.msdn.com/b/windowsazurestorage/archive/2014/05/12/introducing-
microsoft-azure-file-service.aspx.
	Azure	PowerShell	You	can	use	the	Azure	PowerShell	cmdlets	to	upload	or
download	a	single	file	at	a	time.	You	use	Set-AzureStorageFileContent
(https://docs.microsoft.com/powershell/module/azure.storage/set-
azurestoragefilecontent)	and	Get-AzureStorageFileContent
(https://docs.microsoft.com/powershell/module/azure.storage/get-
azurestoragefilecontent)	to	upload	and	download,	respectively.
	Storage	Client	Library	If	you	are	writing	an	application	in	.NET,	you	can
use	the	Azure	Storage	Client	Library,	which	provides	a	convenience	layer
atop	the	REST	APIs.	You	will	find	all	the	classes	you	need	below	the
Microsoft.WindowsAzure.Storage.File	namespace,	primarily	using	the
CloudFileDirectory	and	CloudFile	classes	to	access	directories	and	file
content	within	the	share.	For	an	example	of	using	these	classes	see
https://docs.microsoft.com/azure/storage/storage-dotnet-how-to-use-files.
	REST	APIs	If	you	prefer	to	communicate	directly	using	any	client	that	can
perform	REST	style	requests,	you	can	use	REST	API.	The	reference
documentation	for	REST	APIs	is	available	at	https://docs.microsoft.com/en-
us/rest/api/storageservices/File-Service-REST-API.

Implement	ARM	VMs	with	Standard	and	Premium	Storage
As	previously	introduced,	you	can	create	ARM	VMs	that	use	either	Standard	or
Premium	Storage.

Implement	ARM	VMs	with	Standard	and	Premium	Storage	using	the
Portal
The	following	steps	describe	how	to	create	a	Windows	Server	based	Virtual
Machine	using	the	Portal	and	configure	it	to	use	either	Standard	or	Premium

http://blogs.msdn.com/b/windowsazurestorage/archive/2014/05/12/introducing-microsoft-azure-file-service.aspx
https://docs.microsoft.com/powershell/module/azure.storage/set-azurestoragefilecontent
https://docs.microsoft.com/powershell/module/azure.storage/get-azurestoragefilecontent
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.storage.file.aspx
https://docs.microsoft.com/azure/storage/storage-dotnet-how-to-use-files
https://docs.microsoft.com/en-us/rest/api/storageservices/File-Service-REST-API

Machine	using	the	Portal	and	configure	it	to	use	either	Standard	or	Premium
disks	(the	steps	are	similar	for	a	Linux	based	VM):

1.	 Navigate	to	the	portal	accessed	via	https://manage.windowsazure.com.
2.	 Select	New	on	the	command	bar.
3.	 Within	the	Marketplace	list,	select	the	Compute	option.
4.	 On	the	Compute	blade,	select	the	image	for	the	version	of	Windows	Server

you	want	for	your	VM	(such	as	Windows	Server	2016).
5.	 On	the	Basics	blade,	provide	a	name	for	your	VM.
6.	 Select	the	VM	disk	type-a	VM	disk	type	of	SSD	will	use	Premium	Storage

and	a	type	of	HDD	will	use	Standard	Storage.
7.	 Provide	a	user	name	and	password,	and	choose	the	subscription,	resource

group	and	location	into	which	you	want	to	deploy.
8.	 Select	OK.
9.	 On	the	Choose	a	size	blade,	select	the	desired	tier	and	size	for	your	VM.
10.	 Choose	select.
11.	 On	the	Settings	blade,	leave	the	settings	at	their	defaults	and	select	OK.
12.	 On	the	Purchase	blade,	review	the	summary	and	select	Purchase	to	deploy

the	VM.

Implement	Azure	Disk	Encryption	for	Windows	and	Linux	ARM
VMs
Azure	supports	two	different	kinds	of	encryption	that	can	be	applied	to	the	disks
attached	to	a	Windows	or	Linux	VM.	The	first	kind	of	encryption	is	Azure
Storage	Service	Encryption	(SSE)	which	transparently	encrypts	data	on	write	to
Azure	Storage,	and	decrypts	data	on	read	from	Azure	Storage.	The	storage
service	itself	performs	the	encryption/decryption	using	keys	that	are	managed	by
Microsoft.	The	second	kind	of	encryption	is	Azure	Disk	Encryption	(ADE).
With	ADE,	Windows	drives	are	encrypted	with	using	BitLocker	and	Linux
drives	are	encrypted	with	DM-Crypt.	The	primary	benefit	of	ADE	is	that	the
keys	used	for	encryption	are	under	your	control,	and	managed	by	an	instance	of
Azure	Key	Vault	that	only	you	have	access	to.

Implement	Azure	Disk	Encryption	for	Windows	and	Linux	ARM	VMs
using	PowerShell
Currently,	the	only	way	to	enable	Azure	Disk	Encryption	is	by	using	PowerShell
and	targeting	your	deployed	VM.	To	enable	ADE	on	your	Windows	or	Linux
ARM	VM,	follow	these	steps:

https://manage.windowsazure.com

ARM	VM,	follow	these	steps:

1.	 Deploy	an	instance	of	Azure	Key	Vault,	if	you	do	not	have	one	already.
Key	Vault	must	be	deployed	in	the	same	region	as	the	VMs	you	will
encrypt.	For	instructions	on	deploying	and	configuring	your	Key	Vault,
see:	https://docs.microsoft.com/azure/key-vault/key-vault-get-started.

2.	 Create	an	Azure	Active	Directory	application	that	has	permissions	to	write
secrets	to	the	Key	Vault,	and	acquire	the	Client	ID	and	Client	Secret	for
that	application.	For	detailed	instructions	on	this,	see:
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-get-
started#register.

3.	 With	your	VM	deployed,	Key	Vault	deployed	and	Client	ID	and	Secret	in
hand,	you	are	ready	to	encrypt	your	VM	by	running	the	following
PowerShell.
Click	here	to	view	code	image

#	Login	to	your	subscription

Login-AzureRmAccount

#	Select	the	subscription	to	work	within

Select-AzureRmSubscription	-SubscriptionName	"<subscription	name>"

#	Identify	the	VM	you	want	to	encrypt	by	name	and	resource	group

name

$rgName	=	'<resourceGroupName>';

$vmName	=	'<vmname>';

#	Provide	the	Client	ID	and	Client	Secret

$aadClientID	=	<aad-client-id>;

$aadClientSecret	=	<aad-client-secret>;

#	Get	a	reference	to	your	Key	Vault	and	capture	its	URL	and

Resource	ID

$KeyVaultName	=	'<keyVaultName>';

$KeyVault	=	Get-AzureRmKeyVault	-VaultName	$KeyVaultName	-

ResourceGroupName

	$rgname;

$diskEncryptionKeyVaultUrl	=	$KeyVault.VaultUri;

$KeyVaultResourceId	=	$KeyVault.ResourceId;

#	Enable	Azure	to	access	the	secrets	in	your	Key	Vault	to	boot	the

encrypted	VM.

Set-AzureRmKeyVaultAccessPolicy	-VaultName	$KeyVaultName	-

ResourceGroupName	

$rgname	–

EnabledForDiskEncryption

https://docs.microsoft.com/azure/key-vault/key-vault-get-started
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-get-started#register

#	Encrypt	the	VM

Set-AzureRmVMDiskEncryptionExtension	-ResourceGroupName	$rgname	-

VMName	$vmName	-

AadClientID	$aadClientID	-AadClientSecret	$aadClientSecret	-

DiskEncryptionKeyVaultUrl	

$diskEncryptionKeyVaultUrl	-DiskEncryptionKeyVaultId

$KeyVaultResourceId;

You	can	later	verify	the	encryption	status	by	running:
Click	here	to	view	code	image

Get-AzureRmVmDiskEncryptionStatus	-ResourceGroupName	$rgname	-VMName

$vmName

The	output	“OsVolumeEncrypted:	True”	means	the	OS	disk	was	encrypted
and	“DataVolumesEncrypted:	True”	means	the	data	disks	were	encrypted.

More	Info:	Enabling	Encryption	with	the	Azure	CLI

For	a	step	by	step	guide	on	enabling	encryption	using	the	Azure
CLI	https://docs.microsoft.com/azure/security/azure-security-disk-
encryption#disk-encryption-deployment-scenarios-and-user-
experiences.

Skill	1.5:	Monitor	VMs
Monitoring	an	Azure	VM	involves	collecting	and	analyzing	metrics	as	well	as
collecting	log	data	from	system	log	files	and	from	applications	running	within
the	VM.	You	can	configure	an	email	alert	to	an	administrator	that’s	triggered
when	certain	criteria	involving	these	metrics	is	met.	With	monitoring,	you	gain
insight	into	the	status	of	your	VMs,	their	resource	utilization,	their	operational
health,	and	diagnostic	details	that	can	help	you	troubleshoot	problems.

This	skill	covers	how	to:
	Configure	monitoring	and	diagnostics	for	a	new	VM
	Configure	monitoring	and	diagnostics	for	an	existing	VM
	Configure	alerts
	Monitor	metrics

When	you	provision	a	VM,	by	default	you	install	the	Azure	Virtual	Machine
Agent,	which	installs	and	manages	extensions	running	within	your	VM.	Both

https://docs.microsoft.com/azure/security/azure-security-disk-encryption#disk-encryption-deployment-scenarios-and-user-experiences

Agent,	which	installs	and	manages	extensions	running	within	your	VM.	Both
Windows	and	Linux	VMs	collect	the	following	metrics	at	the	host	level.	In	other
words,	no	extension	needs	to	be	installed	to	collect	them	out	of	the	box:

	Disk	read,	disk	write	(in	terms	of	KB/s	or	MB/s)
	CPU	percentage
	Network	in,	network	out	(in	terms	of	KB/s	or	MB/s)
Another	set	of	metrics	is	collected	from	within	the	guest	operating	system	by

an	Azure	Diagnostics	extension.	On	Windows	guest	operating	system	VMs,	the
Azure	Virtual	Machine	Agent	installs	the	IaaSDiagnostics	extension	for
collecting	monitoring	and	diagnostic	data.	On	Linux	VMs,	the
Microsoft.Insights.VMDiagnosticsSettings	extension	provides	the	same
capabilities.
You	can	enable	diagnostics,	and	when	you	do,	the	appropriate	diagnostic

extension	is	installed	and	used	to	collect	additional	metrics.
The	metrics	collected	differs	for	Windows	and	Linux	VMS.	For	Linux	VMs,

the	metrics	data	collection	includes	data	from	the	following	groups	of
performance	counter	data:

	CPU
	Disk
	Memory
	Network
	Packets
	Page
	Swap
For	Windows	VMs,	the	metrics	data	collection	includes	data	from	the

following	groups	of	performance	counter	data:
	CPU
	Disk
	Memory
	Network
	ASP.NET
	SQL	Server
The	metrics	are	stored	in	Azure	Storage	Tables,	which	you	can	view	using	the

Azure	Storage	tool	of	your	choice,	or	visualize	the	data	in	chart	form	using	the
Azure	Portal.	By	default,	all	of	the	above	metrics	are	collected	every	minute	as	a

Azure	Portal.	By	default,	all	of	the	above	metrics	are	collected	every	minute	as	a
new	row	in	the	table.
For	Windows	VMs,	metric	data	is	written	to	the

WADPerformanceCountersTable,	with	aggregates	of	these	performance	counter
metrics	aggregated	to	the	minute	or	to	the	hour	written	to	tables	that	start	with
the	name	WADMetricsPT1M	for	by	minute	and	WADMetricsPT1H	for	by	hour.
In	addition	to	metrics,	system	logs	are	also	collected.	For	Linux	VM’s,	the

Syslog	is	collected	into	the	LinuxsyslogVer2v0	table.	For	Windows	VMs,	all
event	log	entries	for	the	three	event	logs	(application,	security	and	system	logs)
are	written	to	the	WADWindowsEventLogsTable,	where	the	log	is	indicated	by
the	Channels	column	in	the	table,	which	will	have	the	value	System,	Security,	or
Application	to	indicate	the	log	source.
Windows	VMs	can	collect	other	types	of	logs.	Diagnostic	infrastructure	logs

(events	generated	by	the	Azure	Diagnostic	Agent,	such	as	issues	collecting
metrics)	are	written	to	the	WADDiagnosticInfrastructureLogsTable,	and
application	logs	(the	trace	output	from	your	.NET	application	running	in	the
VM)	are	stored	in	the	WADLogsTable.	Windows	VMs	can	also	collect	Event
Tracing	for	Windows	Events.	These	events	are	collected	into	the
WADETWEventTable.
The	Table	1-2	summarizes	the	Azure	Storage	tables	used	for	Linux	and

Windows	VMs.

TABLE	1-2	Storage	Tables	used	for	VM	logs	and	diagnostics.

Linux Windows

LinuxCpuVer2v0 WADMetricsPT1M*

LinuxDiskVer2v0 WADMetricsPT1H*

LinuxMemoryVer2v0 WADPerformanceCountersTable

LinuxsyslogVer2v0 WADWindowsEventLogsTable

	 WADDiagnosticInfrastructureLogsTable

	 WADLogsTable

	 WADETWEventTable

*If	IIS	is	installed	within	the	VM,	IIS	logs	can	also	be	collected.	The	IIS	logs	(requests	and	failed	request

traces)	are	different	from	the	others	in	that	they	are	written	as	blobs	to	Azure	Storage	under	the	wad-iis-
logfiles	container.
*Windows	VMs	can	be	enabled	to	collect	minidumps	or	full	crash	dumps	for	a	configured	process.	The
dump	file	is	stored	in	an	Azure	Storage	container	whose	name	you	specify.

One	final	form	of	diagnostics	that	is	supported	by	both	Windows	and	Linux
VMs	is	boot	diagnostics.	Boot	diagnostics	captures	the	serial	console	output	(for
Linux	VMs)	and	screenshots	(for	both	Windows	and	Linux	VMs)	of	the	machine
running	on	a	host	to	help	diagnose	startup	issues.	The	log	file	and	bitmap
(*.bmp)	screenshots	for	a	VM	with	the	name	vmname	are	stored	in	Azure
Storage	container	named	with	the	prefix	bootdiagnostics-vmname.

Configure	monitoring	and	diagnostics	for	a	new	VM
You	can	enable	monitoring	and	diagnostics	when	deploying	a	VM.	To	configure
monitoring	diagnostics	using	the	portal,	complete	the	following	steps:

1.	 Navigate	to	the	portal	accessed	via	https://manage.windowsazure.com.
2.	 Select	New	on	the	command	bar.
3.	 Within	the	Marketplace	list,	select	the	Compute	option.
4.	 On	the	Compute	blade,	select	the	image	for	the	version	of	Windows	Server

or	Linux	you	want	for	your	VM
5.	 On	the	Basics	blade,	provide	a	name	for	your	VM.
6.	 Select	the	VM	disk	type,	which	is	either	a	VM	disk	type	of	SSD	that	will

use	Premium	Storage	or	a	type	of	HDD	that	will	use	Standard	Storage.
7.	 Provide	a	user	name	and	password	(or	SSH	public	key),	and	choose	the

subscription,	resource	group,	and	location	into	which	you	want	to	deploy.
8.	 Select	OK.
9.	 On	the	Choose	a	size	blade,	select	the	desired	tier	and	size	for	your	VM.
10.	 Choose	select.
11.	 On	the	Settings	blade,	under	the	Monitoring	header,	enable	Boot

diagnostics	by	setting	the	toggle	to	Enabled.
12.	 Similarly,	enable	diagnostics	by	setting	the	Guest	OS	diagnostics	toggle	to

Enabled.
13.	 Optionally,	configure	the	name	of	the	new	Storage	Account	to	use	to	store

the	diagnostics	or	choose	an	existing	Storage	Account	(Figure	1-29).

https://manage.windowsazure.com

FIGURE	1-29	Monitoring	are	of	the	Settings	blade

14.	 Select	OK.
15.	 On	the	Purchase	blade,	review	the	summary	and	select	Purchase	to	deploy

the	VM.

Configure	monitoring	and	diagnostics	for	an	existing	VM
To	enable	and	configure	monitoring	and	diagnostics	for	an	existing	VM,
complete	the	following	steps:

1.	 Navigate	to	the	blade	for	your	VM	in	the	Azure	Portal.
2.	 From	the	menu,	scroll	down	to	the	Monitoring	section	(Figure	1-30)	and

select	Diagnostic	settings.

FIGURE	1-30	The	Monitoring	section

3.	 For	Linux	VMs,	enable	diagnostics	by	setting	the	Status	toggle	to	On	and

selecting	Save	in	the	command	bar	(Figure	1-31).

FIGURE	1-31	Linux	VM	toggling	enable	diagnostics

4.	 For	Windows	VMs,	you	have	more	granular	options:

A.	 On	the	Overview	tab,	select	Enable	guest-level	monitoring	(Figure	1-
32).

FIGURE	1-32	Selecting	the	Enable	Guest-Level	Monitoring	button

B.	 To	adjust	the	Performance	Counters	collected,	select	the	Performance
Counters	tab,	then	select	either	Basic	(to	view	a	summarized	list	of
counters)	or	Custom	(to	view	the	complete	list	of	available	counters).
When	using	the	Custom	view,	you	can	also	set	the	sample	rate,	which
defaults	to	every	minute.	Select	the	desired	counters	by	checking	the
box	next	to	each	(Figure	1-33).

FIGURE	1-33	Performance	Counters

C.	 To	adjust	the	collected	Event	Logs,	IIS	Logs,	and	Application	Logs,
select	the	Logs	tab.	For	Event	Logs,	select	the	Basic	toggle	to	collect
the	default	set	of	Event	Logs	or	select	Custom	to	specify	specific
event	logs	and	levels	to	collect.	For	IIS	Logs,	select	the	desired	logs
and	specify	the	path	the	Azure	Storage	container	name	in	which	to
store	them.	For	Application	Logs,	select	the	Enabled	toggle	and	then
select	the	desired	Log	level.	For	Event	Tracing	for	Windows	events,
set	the	toggle	to	Enabled	and	configure	the	desired	event	sources	by
entering	a	provider	class	and	log	level.	Configure	the	event	manifests
by	entering	the	manifest	GUID	and	log	level	(Figure	1-34).

FIGURE	1-34	Configuring	Logs	for	VM

D.	 To	enable	a	collection	of	crash	dumps,	select	the	Crash	Dumps	tab
and	then	set	the	toggle	to	Enabled.	Enter	the	name	of	the	process	to
monitor	and	select	Add.	Enter	the	name	of	the	Azure	Storage
container	to	use	in	storing	the	dump,	and	select	whether	to	capture	a
full	dump	or	a	minidump	(Figure	1-35).

FIGURE	1-35	Configuring	crash	dumps	for	the	w3wp.exe	process

E.	 To	enable	the	collection	diagnostic	infrastructure	logs,	select	the
Agent	tab.	Under	the	Diagnostic	infrastructure	logs,	set	the	toggle	to
Enabled	and	set	the	desired	log	level	(Figure	1-36).

FIGURE	1-36	Changing	log	levels	using	the	Agent	tab

5.	 Select	Save	in	the	command	bar	to	apply	the	new	settings.

Configure	alerts
After	your	VM	is	configured	to	collect	metrics,	you	can	configure	alert	rules	that

After	your	VM	is	configured	to	collect	metrics,	you	can	configure	alert	rules	that
can	send	an	email,	invoke	a	Webhook,	run	an	Azure	Automation	runbook,	or	run
a	Logic	App	when	certain	conditions	relative	to	a	metric	are	met.	Additionally,
you	can	configure	alert	rules	on	logs	that	can	trigger	an	email,	an	SMS	message,
or	a	Webhook	when	a	particular	log	event	is	encountered.

Configuring	alerts
To	configure	alerts	using	the	portal,	complete	the	following	steps:

1.	 Navigate	to	the	blade	for	your	VM	in	the	Azure	Portal.
2.	 In	the	Menu,	scroll	down	to	the	Monitoring	group	and	select	Alert	rules.
3.	 On	the	Alert	Rules	blade,	select	Add	metric	alert	to	specify	an	alert	rule

that	triggers	based	upon	a	metric.	Provide	a	name	for	the	rule,	select	the
metric	source,	specify	the	condition,	and	then	select	the	desired	action	to
take	when	the	condition	is	met.

4.	 Select	Add	Activity	Log	Alert	to	specify	an	alert	rule	that	triggers	based
upon	an	event	appearing	in	the	activity	log.	Provide	a	name	for	the	rule,
specify	the	criteria	that	described	the	desired	event,	provide	an	action	group
name	and	short	name,	and	then	select	the	desired	action	to	take	when	the
event	is	matched.

5.	 Click	OK	to	create	the	new	rule.

Monitor	metrics
You	can	assess	the	status	and	health	of	your	VM	by	viewing	its	metrics	in	the
portal,	by	querying	table	storage	for	diagnostic	logs,	or	by	downloading	IIS	logs
from	Azure	Storage.

Monitoring	metrics
Using	the	portal	you	can	drill	into	charts	and	change	the	metrics	displayed	in
detail	by	completing	the	following	steps:

1.	 Navigate	to	the	blade	for	your	VM	in	the	Portal.
2.	 From	the	menu,	scroll	down	to	the	Monitoring	group	and	select	Metrics.
3.	 Select	from	the	desired	metrics	from	the	list	of	available	host	and	guest	OS

metrics.
4.	 The	charts	will	update	to	display	the	desired	metrics	(Figure	1-37).

FIGURE	1-37	Selecting	Disk	Read	Bytes	and	Disk	Write	Bytes	metrics

5.	 Use	the	Chart	type	drop	down	to	change	the	visualization	used	and	the
Time	range	drop	down	to	adjust	the	time	period	over	which	the	metric	is
displayed	(Figure	1-38).

FIGURE	1-38	The	Line	Chart	Type

Viewing	event	logs,	diagnostic	infrastructure	logs,	and	application	logs
You	can	view	Windows	event	logs,	the	diagnostic	infrastructure	logs,	and
application	logs	by	querying	their	respective	tables
(WADWindowsEventLogsTable,	WADDiagnosticInfrastructureLogsTable,
WADLogsTable)	in	Table	storage	using	the	tool	of	your	choice.	The	following
steps	demonstrate	how	to	do	this	using	Visual	Studio.

1.	 Launch	Visual	Studio.
2.	 On	the	View	menu,	click	Server	Explorer.

3.	 Expand	the	node	labeled	Azure.	If	prompted	to	do	so,	log	in	with	your
organizational	account	or	the	Microsoft	account	that	is	associated	with	the
website	you	want	to	manage.

4.	 Expand	Storage.
5.	 Expand	the	storage	account	containing	the	logs.
6.	 Expand	Tables.
7.	 Right-click	the	table	you	want	to	query	and	select	View	Table	to	display	its

contents.

Viewing	IIS	logs
IIS	logs	can	be	retrieved	from	Blob	storage	using	the	tool	of	your	choice.	The
following	steps	show	how	to	do	this	using	Visual	Studio.

1.	 Launch	Visual	Studio.
2.	 On	the	View	menu,	click	Server	Explorer.
3.	 Expand	the	node	labeled	Azure.	If	prompted	to	do	so,	log	in	with	your

organizational	account	or	the	Microsoft	account	that	is	associated	with	the
website	you	want	to	manage.

4.	 Expand	Storage.
5.	 Expand	Blobs.
6.	 Right-click	wad-iis-logs	and	select	View	Blob	Container	to	display	its

contents.	Each	log	is	listed,	so	double-click	a	log	to	download	and	open	it.

Viewing	boot	diagnostics
The	collected	boot	diagnostic	logs	or	screenshot	can	be	viewed	using	the	Azure
Portal.

1.	 Navigate	to	the	blade	for	your	VM	in	the	Azure	Portal.
2.	 From	the	menu,	scroll	down	to	then	Support	+	Troubleshooting	section	and

select	Boot	diagnostics.
3.	 For	Linux	VM’s	the	log	will	be	displayed	by	default.	From	the	command

bar,	use	the	Log	button	to	download	the	log	file	or	the	Screenshot	button	to
download	the	latest	screenshot	bitmap.	For	Windows	VM’s,	the	latest
screenshot	will	be	displayed.	Use	the	Screenshot	button	in	the	command
bar	to	download	a	copy	of	the	screenshot.

Skill	1.6:	Manage	ARM	VM	Availability
For	an	application	running	in	Azure	to	remain	highly	available,	it	should	run

For	an	application	running	in	Azure	to	remain	highly	available,	it	should	run
across	multiple	identical	Virtual	Machines	so	that	the	overall	availability	of	the
application	is	not	affected	when	a	small	subset	of	the	Virtual	Machines	are
unavailable	due	to	events	like	updates,	networking	failures	and	power	failures.
The	actual	approach	to	achieving	this	requires	the	proper	configuration	of
availability	sets	and	may	require	the	use	of	the	Azure	Load	Balancer.

This	skill	covers	how	to:
	Configure	availability	sets
	Combine	the	Load	Balancer	with	availability	sets

Configure	availability	sets
Availability	sets	enable	you	to	improve	the	availability	of	VMs	deployed	to	your
cloud	service	by	identifying	to	Azure	a	group	of	VMs	that	should	never	be
brought	down	simultaneously	during	updates	and	that	should	be	physically
separated	(that	is,	connected	to	a	separate	power	source	and	network	switch)	so
that	the	failure	of	a	host	does	not	cause	all	of	the	VMs	in	that	group	to	fail.	In
other	words,	an	availability	set	does	what	it	says,	it	describes	a	set	of	VMs	that
Azure	will	respect	to	ensure	that	the	service	provided	by	the	VMs	remains
available	because	at	no	point	in	time	should	all	VMs	in	the	set	be	offline.
By	defining	an	availability	set,	you	constrain	how	Azure	locates	your	VM	in

update	and	fault	domains.

Update	domains
An	update	domain	constrains	how	Azure	performs	updates	to	the	underlying
host	machine	that	is	running	your	VM.	VMs	located	in	separate	update	domains
will	never	experience	an	update	(or	a	restart	of	the	host	machine)	at	the	same
time.	Azure	uses	five	update	domains	by	default	in	which	it	places	your	VMs	in
a	round-robin	process.	When	you	add	VMs	to	an	availability	set,	Azure	places
the	first	five	VMs	in	separate	update	domains,	then	continues	to	distribute
additional	VMs	across	update	domains	in	a	round-robin	fashion,	assigning	the
sixth	VM	to	the	first	update	domain,	the	seventh	VM	to	the	second	update
domain,	and	so	on	until	all	VMs	have	been	assigned	to	one	of	the	five	update
domains.	The	constraint	on	update	domains	is	that	Azure	will	never	bring	down
more	than	one	update	domain	at	a	time,	effectively	ensuring	that	when	Azure
updates	the	host	machines,	never	more	than	50	percent	of	your	VMs	will	be
affected	(assuming	you	have	two	VMs)	or,	if	you	are	filling	all	update	domains,
20	percent	(assuming	you	have	five	or	more	VMs).

20	percent	(assuming	you	have	five	or	more	VMs).

Fault	domains
Whereas	update	domains	apply	to	the	roll	out	of	host	machine	updates,	fault
domains	consider	isolation	in	terms	of	power	and	network.	When	two	VMs	are
placed	in	separate	fault	domains,	they	will	never	be	located	such	that	they	share
the	power	source	or	network	switch,	which	basically	means	that	they	will	not	be
on	the	same	host	machine	or	even	on	the	same	server	rack	as	one	another.	When
you	add	VMs	to	an	availability	set,	they	are	distributed	between	by	default
between	two	fault	domains	in	round-robin	fashion.
In	short,	the	strategic	placement	of	your	VMs	across	update	and	fault	domains

is	controlled	simply	by	their	membership	in	an	availability	set.

Availability	sets	and	application	tiers
For	multi-tier	applications	(such	as	those	having	separate	front-end,	middle,	and
backend	tiers),	it	is	a	best	practice	to	place	all	the	VMs	belonging	to	a	single	tier
in	a	single	availability	set	and	to	have	separate	availability	sets	for	each
application	tier.	This	helps	ensure	that	at	no	point	are	all	instances	for	a
particular	tier	in	the	solution	down	and,	therefore,	that	the	complete	solution
across	all	tiers	is	available.

Configuring	availability	sets
There	are	multiples	ways	to	define	an	availability	set	and	to	configure	the	VMs
that	belong	to	it.	When	you	are	creating	a	new	VM,	you	can	create	a	new
availability	set	and	add	the	VM	to	it,	or	you	can	specify	an	existing	availability
set	and	add	the	new	VM	to	it.	The	same	options	exist	if	you	have	an	existing
VM.

Configuring	an	availability	set	for	a	new	ARM	VM
To	create	a	new	VM	and	associate	it	with	an	availability	group,	complete	the
following	steps:

1.	 Navigate	to	the	portal	accessed	via	https://manage.windowsazure.com.
2.	 Select	New	on	the	command	bar.
3.	 Within	the	Marketplace	list,	select	the	Compute	option.
4.	 On	the	Compute	blade,	select	the	image	for	the	version	of	Windows	Server

or	Linux	you	want	for	your	VM.
5.	 On	the	Basics	blade,	provide	a	name	for	your	VM.

https://manage.windowsazure.com

6.	 Select	the	VM	disk	type:	a	VM	disk	type	of	SSD	will	use	Premium	Storage
and	a	type	of	HDD	will	use	Standard	Storage.

7.	 Provide	a	user	name	and	password	(or	SSH	public	key),	and	choose	the
subscription,	resource	group	and	location	into	which	you	want	to	deploy.

8.	 Select	OK.
9.	 On	the	Choose	a	size	blade,	select	the	desired	tier	and	size	for	your	VM.
10.	 Choose	select.
11.	 On	the	Settings	blade,	under	the	High	availability	header,	select

Availability	set	(Figure	1-39).

FIGURE	1-39	High	Availability	Set

12.	 Choose	an	existing	Availability	Set	(Figure	1-40),	or	select	the	Create	new
option	to	define	a	new	availability	set.	When	defining	a	new	availability
set,	provide	a	name	for	the	availability	set,	the	desired	number	of	fault
domains	(between	1	and	3),	the	number	of	update	domains	(between	1	and
20).

FIGURE	1-40	Create	New	option

13.	 Select	OK.
14.	 Select	OK	once	more.
15.	 On	the	Purchase	blade,	review	the	summary	and	select	Purchase	to	deploy

the	VM.

Configuring	an	availability	set	for	an	existing	ARM	VM
Once	a	VM	has	been	deployed,	you	cannot	alter	the	availability	set	to	which	it
belongs.	The	availability	set	can	only	be	configured	when	creating	a	virtual
machine.	You	must	recreate	the	virtual	machine	to	move	it	in	or	out	of	an
availability	set.

Configuring	an	availability	set	using	Windows	PowerShell
An	availability	set	can	be	created	using	Windows	PowerShell	only	during	the
process	of	creating	a	new	VM:
Click	here	to	view	code	image

New-AzureRmAvailabilitySet	-ResourceGroupName	"<ResourceGroupName>"	

				-Name	"<AvailabilitySetName>"	-Location	"<Location>"

$AvailabilitySet	=	Get-AzureRmAvailabilitySet	-ResourceGroupName	"

<ResourceGroupName>"	

					-Name	"<AvailabilitySetName>"

$VirtualMachine	=	New-AzureRmVMConfig	-VMName	"<VirtualMachineName>"	

					-VMSize	"<VM_Size>"	-AvailabilitySetID	$AvailabilitySet.Id

After	the	preceding	command,	use	the	following	cmdlet	to	provision	and	start
the	VM:
Click	here	to	view	code	image

Start-AzureRmVM	-ResourceGroupName	"<ResourceGroupName>"	

					-Name	"<VirtualMachineName>"

Combine	the	Load	Balancer	with	availability	sets
The	Azure	Load	Balancer	enables	you	to	distribute	traffic	entering	from	either	a
public	IP	address	or	from	an	internal	IP	to	the	collection	of	VMs	in	an
availability	set	in	a	round	robin	manner.	It	can	also	automatically	remove	non-
responsive	VMs	from	rotation	so	that	they	are	not	routed	traffic	when	they	are
unavailable.

Configuring	a	Load	Balancer	for	VMs	in	an	Availability	Set
Once	you	have	deployed	your	VMs	in	an	availability	set,	you	can	perform	load
balancing	between	them	by	performing	the	following	steps:

1.	 In	the	Azure	Portal,	select	New	and	search	for	Load	Balancer	and	select	the
Load	Balancer	entry.

2.	 On	the	Load	Balancer	select	Create.
3.	 On	the	Create	a	Load	Balancer,	provide	a	name	for	the	new	load	balancer.
4.	 If	you	want	to	load	balance	traffic	from	the	public	Internet:
5.	 For	the	type,	select	Public.
6.	 Select	Public	IP	address	and	select	an	existing	Public	IP	or	create	a	new

one.	If	you	create	a	new	Public	IP,	provide	a	name	for	the	Public	IP	and
select	if	it	should	have	a	dynamically	assigned	IP	or	a	statically	assigned	IP
by	setting	the	Assignment	toggle	to	Dynamic	or	Static	respectively	(Figure
1-41).

FIGURE	1-41	Create	Load	Balancer

7.	 If	you	want	to	load	balance	traffic	only	within	your	Virtual	Network:
8.	 For	the	type,	select	Internal.
9.	 Select	Virtual	network	and	choose	an	existing	Virtual	Network.
10.	 Select	Subnet	and	choose	a	subnet	within	the	Virtual	Network.
11.	 Select	if	the	Load	Balancer	(Figure	1-42)	should	have	a	dynamically

assigned	IP	or	a	statically	assigned	IP	by	setting	the	IP	address	assignment

toggle	to	Dynamic	or	Static	respectively.

FIGURE	1-42	Load	Balancer	within	a	Virtual	Network

12.	 Select	the	Subscription,	Resource	Group	and	Location	as	appropriate.	Your
VMs	should	exist	in	the	same	Location	as	you	select	for	the	Load	Balancer.

13.	 Select	create	to	deploy	the	Load	Balancer.
14.	 When	your	Load	Balancer	is	deployed,	navigate	to	it	in	the	Azure	Portal.
15.	 From	the	menu,	under	the	Settings	header,	select	Backend	Pools	(Figure	1-

43).
16.	 Select	+Add.

FIGURE	1-43	Backend	Pools

17.	 On	the	Add	backend	pool	blade,	provide	a	name	for	the	new	Backend	pool,
and	in	the	Associated	to	dropdown	list,	select	Availability	Set.

18.	 In	the	dropdown	that	appears,	select	the	Availability	Set	that	contains	your
VMs	to	load	balance.

19.	 For	each	VM	that	you	want	to	add	to	backend	pool,	perform	the	following:
20.	 Select	+Add	target	network	IP	configuration.
21.	 Select	the	VM	from	the	Target	virtual	machine	dropdown.
22.	 Select	the	IP	configuration	for	the	VM	from	the	Network	IP	configuration

dropdown.
23.	 Select	OK	(Figure	1-44).

FIGURE	1-44	Add	Backend	Pool

24.	 From	the	menu,	under	the	Setting	header,	select	Health	probes.
25.	 Select	+Add.
26.	 Provide	a	name	for	the	health	probe	(Figure	1-45).
27.	 Choose	protocol	(either	HTTP	or	TCP).
28.	 Provide	the	Port	that	the	probe	will	use	in	testing	the	VMs	availability.
29.	 If	you	chose	the	HTTP	protocol,	also	specify	the	path	on	the	HTTP

endpoint	to	use	when	probing	the	VMs	availability.
30.	 Specify	an	interval	in	seconds	between	probe	attempts	in	the	Interval	field.
31.	 In	the	Unhealthy	threshold,	specify	the	number	of	consecutive	probe

failures	that	must	occur	before	the	VM	is	considered	unhealthy.

FIGURE	1-45	Add	Health	Probe

32.	 Select	OK.
33.	 From	the	menu,	under	the	Setting	header,	select	Load	balancing	rules.
34.	 Select	+Add.
35.	 On	the	Add	load	balancing	rule,	provide	a	name.
36.	 Set	the	protocol	to	TCP	or	UDP	as	desired.
37.	 Specify	the	Port	for	incoming	traffic.
38.	 Specify	the	Backend	port	used	when	communicating	with	the	VMs.
39.	 From	the	Backend	pool	dropdown,	select	the	pool	your	previously	created.
40.	 From	the	Health	probe	dropdown,	select	the	health	probe	you	previously

created	(Figure	1-46).

FIGURE	1-46	Add	Load	Balancing	Rule

41.	 Select	OK	to	apply	load	balancing	rule.

More	Info:	Configuring	a	Load	Balanced	Deployment	with
Powershell

For	a	step	by	step	guide	on	performing	the	previous	steps	using
PowerShell,	see:	https://docs.microsoft.com/en-us/azure/virtual-

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/tutorial-load-balancer

machines/windows/tutorial-load-balancer.

Skill	1.7:	Design	and	implement	DevTest	Labs
Azure	DevTest	Labs	is	a	service	designed	to	help	developers	and	testers	quickly
spin	up	virtual	machines	(VMs)	or	complete	environments	in	Azure,	enabling
rapid	deployment	and	testing	of	applications.	This	allows	you	to	easily	spin	up
and	tear	down	development	and	test	resources,	minimizing	waste	and	providing
better	control	cost.	You	can	test	the	latest	version	of	your	application	by	quickly
provisioning	environments	using	reusable	templates	and	artifacts,	integrate	it
with	your	deployment	pipeline,	or	create	pre-provisioned	environments	for
training	and	demos.

This	skill	covers	how	to:
	Create	and	manage	custom	images	and	formulas
	Configure	a	lab	to	include	policies	and	procedures
	Configure	cost	management
	Secure	access	to	labs
	Use	environments	in	a	lab

Create	a	lab
To	get	started,	complete	the	following	steps	to	create	a	lab:

1.	 Navigate	to	the	Azure	portal,	accessed	via	https://portal.azure.com.
2.	 From	the	main	menu	on	the	left	side,	select	More	services	(at	the	bottom	of

the	list),	and	then	select	DevTest	Labs	(Figure	1-47)	from	the	list	of
available	services.

https://portal.azure.com

FIGURE	1-47	The	DevTest	Labs

3.	 In	the	DevTest	Labs	blade,	select	+Add	(Figure	1-48).

FIGURE	1-48	Add	a	new	DevTest	Labs

4.	 On	the	Create	a	DevTest	Lab	blade:

A.	 Enter	a	Lab	Name	for	the	new	lab.
B.	 Select	the	Subscription	to	associate	with	the	lab.
C.	 Select	a	Location	in	which	to	store	the	lab.
D.	 Select	Auto-shutdown	to	specify	if	you	want	to	enable,	and	define

parameters	for,	the	automatic	shutting	down	of	all	of	the	lab’s	VMs.
The	auto-shutdown	feature	is	mainly	a	cost-saving	feature	whereby
you	can	specify	when	you	want	the	VMs	to	automatically	be	shut
down.	You	can	change	auto-shutdown	settings	after	creating	the	lab
by	following	the	steps	outlined	in	the	Auto-shutdown	section	below.

E.	 Enter	NAME	and	VALUE	information	for	Tags	if	you	want	to	create
custom	tagging	that	is	added	to	every	resource	you	will	create	in	the
lab.	Tags	are	useful	to	help	you	manage	and	organize	lab	resources	by
category.

F.	 Select	Create	(Figure	1-49).

FIGURE	1-49	The	Create	A	DevTest	Lab	blade

The	deployment	of	a	DevTest	lab	creates	a	new	resource	group.	Within	that
resource	group,	you	will	find	the	following	resources:

	The	DevTest	Lab	instance
	A	Key	vault	instance
	A	Storage	account
	A	Virtual	network

Add	a	VM	to	a	lab
Upon	initially	accessing	your	DevTest	Lab,	you	will	want	to	create	your	first

Upon	initially	accessing	your	DevTest	Lab,	you	will	want	to	create	your	first
VM.	This	can	be	accomplished	using	a	custom	image	or	formula,	or	by	using	a
pre-loaded	base	Marketplace	image.	This	section	focuses	on	the	latter,	and
defers	coverage	of	using	custom	images	and	formulas	to	the	Create	and	manage
custom	images	and	formulas	section.

1.	 Navigate	to	the	blade	for	your	DevTest	Lab	in	the	Azure	portal.
2.	 On	the	lab’s	Overview	blade,	select	+Add	(Figure	1-50).

FIGURE	1-50	A	New	VM	to	DevTest	Lab

3.	 On	the	Choose	a	base	blade,	select	a	base	image	for	the	VM.
4.	 On	the	Virtual	Machine	blade:

A.	 Enter	a	name	for	the	new	VM	in	the	Virtual	Machine	Name	text	box.
B.	 Enter	a	User	Name	that	is	granted	administrator	privileges	on	the	VM.
C.	 Enter	a	password	in	the	text	field	labeled	Type	a	value.	We	will	cover

the	Use	a	saved	secret	check	box	in	the	Secure	access	to	your	lab
section	below.

D.	 The	Virtual	machine	disk	type	determines	which	storage	disk	type	is
allowed	for	the	VMs	in	the	lab.	Select	Hard	Drive	Disks	(HDD)	or
Solid-State	Drives	(SSD).

E.	 Select	Virtual	machine	size,	and	select	one	of	the	predefined	items
that	specify	the	processor	cores,	RAM	size,	and	the	hard	drive	size	of
the	VM	to	create.

F.	 Select	Artifacts	and,	from	the	list	of	artifacts,	select	and	configure	the
artifacts	that	you	want	to	add	to	the	base	image.

G.	 Select	Advanced	settings	to	configure	the	VM’s	Network	options,
expiration	policy,	and	Claim	options.	Set	Make	this	machine
claimable	to	Yes	if	you	want	the	machine	to	be	claimable	by	lab	users.

H.	 Select	Create	to	add	the	new	VM	to	the	lab	(Figure	1-51).

FIGURE	1-51	Virtual	Maching	and	Advanced	settings

When	a	VM	is	created,	ownership	is	assigned	to	either	you	(the	creator),	or	it
can	be	made	claimable.	Claimable	VMs	are	unassigned,	and	can	be	claimed	by
lab	user.	To	make	a	VM	claimable	you	can	select	Yes	under	Make	this	machine
claimable	on	the	Advanced	settings	blade	during	the	VM	creation	process.	It	is
also	possible	to	make	a	VM	you	own	claimable,	by	selecting	Unclaim	from	the
VM’s	overview	blade	(Figure	1-52).

FIGURE	1-52	Unclaiming	a	VM

Unclaiming	a	VM	will	result	in	it	being	moved	from	your	My	Virtual
Machines	section	to	the	Claimable	Virtual	Machines	section	on	the	lab’s	blade.

Create	and	manage	custom	images	and	formulas
Custom	images	and	formulas	facilitate	the	rapid	deployment	of	preconfigured
VMs.	The	key	difference	between	custom	images	and	formulas	is	that	a	custom
image	is	simply	an	image	based	on	a	VHD,	while	a	formula	is	an	image	based
on	a	VHD	in	addition	to	preconfigured	settings,	such	as	VM	size,	virtual
network,	subnet,	and	artifacts.	These	preconfigured	settings	are	set	up	with
default	values	that	can	be	overridden	at	the	time	of	VM	creation.	Both	custom
images	and	formulas	can	be	used	as	bases	for	creating	new	VMs.

Creating	custom	images
Custom	images	provide	a	static,	immutable	way	to	create	VMs	from	a	desired
configuration.	They	allow	you	to	pre-install	all	the	software	that	you	need	in	a
Virtual	Hard	Disk	(VHD)	file,	and	then	use	that	VHD	file	to	create	a	VM.
Because	the	software	is	already	installed,	the	VM	creation	time	is	much	quicker.
In	addition,	custom	images	can	be	used	to	clone	VMs	by	creating	a	custom
image	from	a	VM,	and	then	creating	VMs	based	on	that	custom	image.

Pros	of	using	custom	images:
	VM	provisioning	is	fast	as	nothing	changes	after	the	VM	is	spun	up
from	the	image.
	VMs	created	from	a	single	custom	image	are	identical.

Cons	of	using	custom	images:
	If	you	need	to	update	any	aspect	of	the	custom	image,	the	image	must
be	recreated.

There	are	several	ways	to	create	a	custom	image	in	Azure	DevTest	Labs.	You
can	create	an	image	from	an	existing	VM,	or	create	on	from	a	VHD,	using	either
the	Azure	portal	or	PowerShell.	Before	creating	a	custom	image	from	a	VHD,
the	VHD	needs	to	be	uploaded	to	the	storage	account	associated	with	the	lab	in
which	you	are	creating	the	custom	image.

which	you	are	creating	the	custom	image.

Create	a	custom	image	from	a	provisioned	virtual	machine
To	create	a	custom	image	from	a	provisioned	VM,	following	these	steps:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 On	your	lab’s	blade,	select	All	virtual	machines	(Figure	1-53).

FIGURE	1-53	List	of	VMs	in	the	Lab

3.	 On	the	All	virtual	machines	blade,	select	the	VM	from	which	you	want	to
create	the	custom	image.

4.	 On	the	VM’s	blade,	select	Create	custom	image	(Figure	1-54).

FIGURE	1-54	Custom	image	from	a	VM

5.	 On	the	Custom	image	blade	(Figure	1-55),	enter	a	name	and	description	for
your	custom	image.	This	information	is	displayed	in	the	list	of	bases	when
you	create	a	VM.

FIGURE	1-55	Custom	Image

6.	 Select	whether	sysprep	was	run	on	the	VM.	If	the	sysprep	was	not	run	on
the	VM,	specify	whether	you	want	sysprep	run	when	a	VM	is	created	from
this	custom	image.

7.	 Select	OK	when	finished	to	create	the	custom	image.

Create	a	custom	image	from	a	VHD	using	the	Azure	Portal
To	create	a	custom	image	from	a	VHD	using	the	Azure	portal,	complete	the
following	steps:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 From	your	lab’s	Configuration	and	policies	blade,	select	Custom	images

(Figure	1-56).

FIGURE	1-56	Custom	images	in	the	Lab

3.	 On	the	Custom	images	blade,	select	+Add	(Figure	1-57).

FIGURE	1-57	New	Custom	image

4.	 Enter	the	name	of	the	custom	image.	This	will	be	displayed	in	the	list	of
base	images	when	creating	a	VM.

5.	 Enter	a	description	for	the	custom	image.	This	will	be	displayed	in	the	list
base	images.

6.	 Select	an	OS	Type	–	Windows	or	Linux.
7.	 If	Windows	is	selected	as	the	OS	Type,	select	whether	sysprep	has	been

run	on	the	VHD	image.
8.	 Select	a	VHD	image.
9.	 Select	OK	to	create	the	custom	image	(Figure	1-58).

FIGURE	1-58	Custom	VHD	image

Create	a	custom	image	from	a	VHD	using	PowerShell
To	create	a	custom	image	from	a	VHD	using	PowerShell,	complete	these	steps:

1.	 At	a	PowerShell	prompt,	log	into	your	Azure	account	with	the	following
call	to	the	Login-AzureRmAccount	cmdlet.
Login-AzureRmAccount

2.	 Select	the	desired	Azure	subscription	by	calling	the	Select-
AzureRmSubscription	cmdlet.	Replace	the	placeholder	for	$subscriptionId
variable	with	a	valid	Azure	subscription	ID.
Click	here	to	view	code	image

$subscriptionId	=	'<Specify	your	subscription	ID	here>'

Select-AzureRmSubscription	-SubscriptionId	$subscriptionId

3.	 Get	the	lab	object	by	calling	the	Get-AzureRmResource	cmdlet.	Replace
the	following	placeholders	for	the	$labRg	and	$labName	variables	with	the
appropriate	values	for	your	environment.
Click	here	to	view	code	image

$labRg	=	'<Specify	your	lab	resource	group	name	here>'

$labName	=	'<Specify	your	lab	name	here>'

$lab	=	Get-AzureRmResource	-ResourceId	('subscriptions'	+

$subscriptionId	+

'resourceGroups'	+	$labRg	+	'providersMicrosoft.DevTestLab/labs/'	+

$labName)

4.	 Get	the	lab	storage	account	and	lab	storage	account	key	values	from	the	lab
object.
Click	here	to	view	code	image

$labStorageAccount	=	Get-AzureRmResource	-ResourceId	

$lab.Properties.defaultStorageAccount	

$labStorageAccountKey	=	(Get-AzureRmStorageAccountKey	-

ResourceGroupName	

$labStorageAccount.ResourceGroupName	-Name

$labStorageAccount.ResourceName)[0].Value

5.	 Replace	the	following	placeholder	for	the	$vhdUri	variable	with	the	URI	to
your	uploaded	VHD	file.	You	can	get	the	VHD	file’s	URI	from	the	storage
account’s	blob	blade	in	the	Azure	portal.
Click	here	to	view	code	image

$vhdUri	=	'<Specify	the	VHD	URI	here>'

6.	 Create	the	custom	image	using	the	New-
AzureRmResourceGroupDeployment	cmdlet.	Replace	the	following
placeholders	for	the	$customImageName	and	$customImageDescription
variables	to	meaningful	names	for	your	environment.
Click	here	to	view	code	image

$customImageName	=	'<Specify	the	custom	image	name>'

$customImageDescription	=	'<Specify	the	custom	image	description>'

$parameters	=	@{existingLabName="$($lab.Name)";

existingVhdUri=$vhdUri;

imageOsType='windows';	isVhdSysPrepped=$false;

imageName=$customImageName;

imageDescription=$customImageDescription}

New-AzureRmResourceGroupDeployment	-ResourceGroupName

$lab.ResourceGroupName	

$lab.ResourceGroupName	

-Name	CreateCustomImage	-TemplateUri

'https://raw.githubusercontent.com/

Azure/azure-devtestlab/master/Samples/201-dtl-create-customimage-

from

-vhd/azuredeploy.json'	-TemplateParameterObject	$parameters

Delete	a	custom	image
You	may	find	that	there	are	times	when	an	image	is	no	longer	needed,	and
should	be	removed	from	your	lab.	To	delete	a	custom	image,	complete	the
following	steps:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 On	the	lab’s	Overview	blade,	select	Custom	images.
3.	 On	the	Custom	images	blade,	select	the	ellipsis	to	the	right	of	the	custom

image	you	wish	to	delete,	then	select	Delete	on	the	context	menu	(Figure	1-
59).

FIGURE	1-59	Deleting	an	image

4.	 Select	Yes	to	the	deletion	confirmation	dialog.

Creating	formulas
Formulas	are	lists	of	default	property	values,	providing	a	dynamic	way	to	create
VMs	from	a	desired	configuration.	When	creating	a	VM	from	a	formula,	the
default	values	can	be	used	as-is,	or	modified.	Like	custom	and	Marketplace
images,	formulas	provide	a	mechanism	for	fast	VM	provisioning.	Like	custom
images,	they	enable	you	to	create	a	base	image	from	a	VHD	file.	The	base	image
can	then	be	used	to	provision	a	new	VM.

Pros	of	using	formulas
	Changes	in	the	environment	can	be	captured	on	the	fly	via	artifacts.
For	example,	if	you	want	a	VM	installed	with	the	latest	bits	from	your
release	pipeline,	you	can	specify	an	artifact	that	deploys	the	latest	bits
or	enlists	the	latest	code	in	the	formula	together	with	a	target	base
image.	Whenever	this	formula	is	used	to	create	VMs,	the	latest

bits/code	are	deployed/enlisted	to	the	VM.
	Formulas	can	define	default	settings	that	custom	images	cannot
provide.
	The	settings	saved	in	a	formula	are	default	values,	and	can	be	modified
when	the	VM	is	created.

Cons	of	using	formulas
	Creating	a	VM	from	a	formula	can	take	more	time	than	creating	a	VM
from	a	custom	image.

Anyone	in	the	DevTest	Labs	User	role	can	create	VMs	using	a	formula	as	a
base.	There	are	two	ways	to	create	formulas:

	From	a	base	(custom	image,	Marketplace	image,	or	another	formula)—Use
when	you	want	to	define	all	the	characteristics	of	the	formula.
	From	an	existing	lab	VM—Use	when	you	want	to	create	a	formula	based	on
the	settings	of	an	existing	VM.

Create	a	formula	from	a	base
The	following	steps	outline	the	process	of	creating	a	formula	for	a	custom
image,	Marketplace	image,	or	another	formula.

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 From	your	lab’s	blade,	select	Configuration	and	policies	(Figure	1-60).
3.	 On	the	Configuration	and	policies	blade,	select	Formulas	(reusable	bases).

FIGURE	1-60	Navigating	to	formulas

4.	 Select	+Add	on	the	Configuration	and	policies	–	Formulas	(reusable	bases)

blade	(Figure	1-61).

FIGURE	1-61	Add	new	formula

5.	 On	the	Choose	a	base	blade,	select	an	image	to	use	for	the	formula.
6.	 On	the	Create	formula	blade:

A.	 Enter	a	name	for	the	formula	into	the	Formula	name	text	box.	This
value	is	displayed	in	the	list	of	base	images	when	you	create	a	VM.

B.	 Enter	a	description	for	the	formula.	This	value	is	available	from	the
formula’s	context	menu	when	you	create	a	VM.

C.	 Enter	a	User	name,	which	will	have	administrative	privileges	on	the
VM.

D.	 Enter	a	password.
E.	 Specify	either	HDD	(hard-disk	drive)	or	SSD	(solid-state	drive)	to

indicate	which	storage	disk	type	is	allowed	for	the	virtual	machines
provisioned	using	this	base	image.

F.	 Select	one	of	the	predefined	items	that	specify	the	processor	cores,
RAM	size,	and	the	hard	drive	size	of	the	VM	to	create.

G.	 Select	to	open	the	Add	artifacts	blade,	in	which	you	select	and
configure	the	artifacts	that	you	want	to	add	to	the	base	image.

H.	 Select	to	open	the	Advanced	blade	where	you	configure	the	following
settings:
	Virtual	network	-	Specify	the	desired	virtual	network.
	Subnet	-	Specify	the	desired	subnet.
	IP	address	configuration	-	Specify	if	you	want	the	Public,	Private,	or
Shared	IP	addresses.	For	more	information	about	shared	IP
addresses,	see	Understand	shared	IP	addresses	in	Azure	DevTest
Labs.
	Make	this	machine	claimable	-	Making	a	machine	“claimable”
means	that	it	will	not	be	assigned	ownership	at	the	time	of	creation.
Instead	lab	users	will	be	able	to	take	ownership	(“claim”)	the
machine	in	the	lab’s	blade.

I.	 Select	Create	to	create	the	formula	(Figure	1-62).

FIGURE	1-62	Choose	a	base

Create	a	formula	from	a	VM
To	create	a	formula	based	on	an	existing	VM,	complete	the	following	steps:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 From	your	lab’s	Overview	blade,	select	the	VM	from	which	you	wish	to

create	the	formula	(Figure	1-63).

FIGURE	1-63	Claimable	Virtual	Machines

3.	 On	the	VM’s	blade	(Figure	1-64),	select	Create	formula	(reusable	base).

FIGURE	1-64	Custom	image	for	a	VM

4.	 On	the	Create	formula	blade,	enter	a	Name	and	Description	for	your	new
formula	(Figure	1-65).

FIGURE	1-65	Create	a	new	formula	(reusable	base)

5.	 Select	OK	to	create	the	formula.

Modify	a	formula
After	creating	a	formula,	it	is	possible	to	modify	the	properties	of	that	formula.
To	modify	an	existing	formula,	follow	these	steps:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 On	your	lab’s	Overview	blade	(Figure	1-66),	select	Formulas	(reusable

bases).

FIGURE	1-66	Navigating	Formulas

3.	 On	the	Lab	formulas	blade,	select	the	formula	you	wish	to	modify	(Figure
1-67).

FIGURE	1-67	Modify	the	list	of	available	formulas	in	Lab

4.	 On	the	Update	formula	blade,	make	the	desired	edits,	and	select	Update
(Figure	1-68).

FIGURE	1-68	Update	Formula

Delete	a	formula
To	delete	a	formula,	complete	the	steps	below:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.

2.	 On	your	lab’s	Overview	blade,	select	Formulas	(reusable	bases).
3.	 On	the	Lab	formulas	blade,	select	the	ellipsis	to	the	right	of	the	formula

you	wish	to	delete,	then	select	Delete	on	the	context	menu	(Figure	1-69).

FIGURE	1-69	Deleting	from	the	context	menu

4.	 Select	Yes	to	the	deletion	confirmation	dialog.

Configure	a	lab	to	include	policies	and	procedures
In	Azure	DevTest	Labs,	a	lab	is	defined	as	the	infrastructure	that	encompasses	a
group	of	resources,	such	as	VMs.	Labs	enable	you	to	better	manage	those
resources	by	specifying	limits	and	quotas.	For	each	lab	you	create,	you	can
control	cost	and	minimize	waste	by	managing	policies	(settings).

Configure	allowed	virtual	machine	sizes	policy
The	policy	for	setting	the	allowed	VM	sizes	helps	to	minimize	lab	waste	by
enabling	you	to	specify	which	VM	sizes	are	allowed	in	the	lab.	If	this	policy	is
activated,	only	VM	sizes	from	this	list	can	be	used	to	create	VMs,	allowing	you
to	be	very	specific	about	what	size	VMs	can	be	deployed	into	your	lab
environment.	To	configure	the	virtual	machine	sizes	allowed	in	your	lab,
complete	the	following	steps:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 On	your	lab’s	Overview	blade,	select	Configuration	and	policies,	under

Settings	(Figure	1-70).

FIGURE	1-70	The	Configuration	and	Policies	blade

3.	 Select	Allowed	virtual	machine	sizes	under	Settings,	on	the	Configuration
and	policies	blade	(Figure	1-71).

FIGURE	1-71	Allowed	Virtual	Machine	Sizes

4.	 Select	On	to	enable	this	policy,	and	Off	to	disable	it	(Figure	1-72).

FIGURE	1-72	The	allowed	VM	sizes	policy

5.	 If	enabled,	select	one	or	more	VM	sizes	that	you	want	to	be	allowed	the
creation	of	in	your	lab.

6.	 Select	Save.

Configure	virtual	machines	per	user	policy
The	Virtual	machines	per	user	policy	allows	you	to	specify	the	maximum
number	of	VMs	that	can	be	created	or	claimed	by	an	individual	user.	You	can
also	specify	limits	on	the	number	of	VMs	using	premium	OS	disks.	Should	a
user	attempt	to	create	or	claim	a	VM	when	their	user	limit	has	been	met,	an	error
message	indicating	that	the	VM	cannot	be	created/claimed	will	be	displayed.	To
manage	the	virtual	machines	per	user	policy,	follow	the	steps	below:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.

2.	 On	your	lab’s	blade,	select	Configuration	and	policies.
3.	 On	the	Configuration	and	policies	blade,	select	Virtual	machines	per	user

(Figure	1-73).

FIGURE	1-73	Virtual	Machines	Per	User

4.	 Select	Yes	to	enable	limiting	the	number	of	virtual	machines	per	user,	and
No	to	disable	limits.

5.	 If	yes	is	selected,	enter	a	numeric	value	indicating	the	maximum	number	of
VMs	that	can	be	created	or	claimed	by	a	user	(Figure	1-74).

FIGURE	1-74	The	VMs	per	user	policy

6.	 Select	Yes	to	enable	limiting	the	number	of	VMs	using	premium	OS	disks
(SSD),	and	No	to	remove	limits	on	premium	disk	utilization.

7.	 If	Yes	is	selected,	enter	a	numeric	value	to	specify	the	limit	of	VMs	that
can	be	created	using	SSDs.

8.	 Select	Save	to	save	your	policy	settings.

Configure	virtual	machines	per	lab	policy
The	policy	for	Virtual	machines	per	lab	allows	you	to	specify	the	maximum

The	policy	for	Virtual	machines	per	lab	allows	you	to	specify	the	maximum
number	of	VMs	that	can	be	created	for	the	current	lab,	setting	a	limitation	on	the
overall	lab	itself.	Like	the	Virtual	machines	per	user	policy,	you	can	also	set
limitations	on	the	use	of	premium	OS	disks.	If	any	user	attempts	to	create	a	VM
when	the	lab	limit	has	been	met,	an	error	message	indicates	that	the	VM	cannot
be	created.	The	virtual	machines	per	lab	policy	can	be	configured	by	completing
the	following	steps:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 On	the	lab’s	blade,	select	Configuration	and	policies.
3.	 On	the	Configuration	and	policies	menu,	select	Virtual	machines	per	user

(Figure	1-75).

FIGURE	1-75	Virtual	Machines	per	lab

4.	 Select	Yes	to	enable	limiting	the	number	of	virtual	machines	per	user,	and
No	to	disable	limits.

5.	 If	Yes	is	selected,	enter	a	numeric	value	indicating	the	maximum	number
of	VMs	that	can	be	created	in	the	lab	(Figure	1-76).

FIGURE	1-76	The	VMs	per	user	policy

6.	 Select	Yes	to	enable	limiting	the	number	of	virtual	machines	using
premium	OD	disks	(SSD),	and	No	to	disable	limits	on	premium	disk
utilization.

7.	 If	Yes	is	selected,	enter	a	numeric	value	to	specify	the	limit.
8.	 Select	Save	to	save	your	policy	settings.

Configure	auto-shutdown	policy
The	auto-shutdown	policy	in	Azure	DevTest	Labs	is	one	of	the	most

important	policies	for	helping	you	to	minimize	lab	waste	and	control	cost,
allowing	you	to	specify	a	time	that	the	lab’s	VMs	will	automatically	shut	down.
This	helps	to	prevent	incurring	costs	when	the	VMs	are	not	in	use,	and	ensures
VMs	are	shut	down,	even	when	you	forget	to	do	it	at	the	end	of	a	work	day.	To
configure	the	auto-shutdown	policy,	follow	the	below	steps:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 On	the	lab’s	Configuration	and	policies	blade,	select	Auto-shutdown

(Figure	1-77).

FIGURE	1-77	Auto-Shutdown	policies

3.	 Select	On	to	enable	this	policy,	and	Off	to	disable	it	(Figure	1-78).

FIGURE	1-78	The	Auto-Shutdown	Policy

4.	 If	you	enable	this	policy,	specify	the	time	and	time	zone	to	shut	down	all
VMs	in	the	current	lab.

5.	 Specify	Yes	or	No	for	the	option	to	send	a	notification	before	auto-
shutdown.	Notifications	will	be	sent	15	minutes	prior	to	the	specified	auto-
shutdown	time.	If	you	specified	Yes,	enter	either	a	Webhook	URL	endpoint
or	an	email	address	to	receive	the	notifications.

6.	 Select	Save.

By	default,	once	enabled,	the	auto-shutdown	policy	applies	to	all	VMs	in	the
current	lab.	This	policy	can	be	overridden	on	each	individual	VM	in	the	lab,
enabling	more	fine-tuned	management	of	the	policy.	To	alter	this	setting	for	a
specific	VM,	complete	the	steps	below:

1.	 Open	the	target	VM’s	blade.
2.	 Select	the	Auto-shutdown	tile	on	the	VM’s	blade	(Figure	1-79).

FIGURE	1-79	Auto-Shutdown	Tile

3.	 On	the	Auto-shutdown	blade,	select	On	to	enable	the	policy,	or	Off	to
disable	it.	If	On	is	selected,	enter	a	scheduled	shutdown	time,	and	time
zone,	and	specify	if	notifications	should	be	sent	before	auto-shutdown.	If
notifications	are	to	be	sent,	provide	a	Webhook	URL	or	email	address	to
send	notifications	(Figure	1-80).

FIGURE	1-80	Configuring	Aut0-Shutdown	policy

Configure	auto-start	policy
Azure	DevTest	Labs’	auto-start	policy	lets	you	specify	when	the	VMs	in	the
current	lab	should	be	automatically	started,	allowing	all	VMs	to	be	started	at	a
specific	day	and	time.	For	example,	if	you	want	all	your	VMs	to	start	at	7:00
AM	each	weekday,	you	can	set	up	the	policy	to	accommodate	that	configuration.
Complete	the	following	steps	to	configure	the	auto-start	policy:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 On	your	lab’s	Configuration	and	policies	blade,	select	Auto-start	(Figure	1-

81).

FIGURE	1-81	Auto-Start	Policy	settings

3.	 Select	On	to	enable	this	policy,	and	Off	to	disable	it	(Figure	1-82).

FIGURE	1-82	Configuring	the	Autto-Start	policy

4.	 If	you	enable	this	policy,	specify	the	scheduled	start	time,	time	zone,	and
the	days	of	the	week	for	which	the	time	applies.

5.	 Select	Save.

Like	the	auto-shutdown	policy,	the	auto-start	policy	applies	to	all	VMs	in	the
current	lab,	once	enabled.	The	steps	to	modify	this	policy	for	an	individual	VM
are	similar	to	those	for	the	auto-shutdown	policy,	but	you	will	select	the	Auto-
start	tile	on	the	VM’s	blade,	and	modify	the	policy	from	there.

Set	expiration	date	policy
Another	option	for	managing	the	life	of	a	VM	is	the	ability	to	set	an	expiration
date	for	the	VM.	This	option	is	available	when	creating	a	new	VM,	and	could	be
used	if	you	want	to	ensure	the	VM	is	automatically	deleted	at	a	specified	date
and	time.	To	set	the	expiration	date	for	a	VM:

1.	 During	the	VM	creation	process,	select	Advanced	settings	on	the	Virtual
machine	blade.

2.	 Choose	the	calendar	icon	to	specify	a	date	and	time	on	which	the	VM	will

be	automatically	deleted.	By	default,	VMs	never	expire.
3.	 Select	OK	on	the	Advanced	settings	blade	(Figure	1-83).

FIGURE	1-83	Auto-Delete	options

Configure	cost	management
Azure	DevTest	Labs	was	designed	to	help	development	teams	more	effectively
manage	costs	and	resources.	One	of	the	key	features	of	this	is	Cost	Management,
which	allows	you	to	track	the	cost	associated	with	operating	your	lab.	You	can
also	view	trends,	set	cost	targets	and	thresholds,	and	configure	alerts	to	keep	you

also	view	trends,	set	cost	targets	and	thresholds,	and	configure	alerts	to	keep	you
informed	about	your	monthly	costs.	Cost	threshold	targets	allow	you	to	monitor
usage	throughout	the	month,	and	potentially	alter	behavior	accordingly	if	you
see	spending	happening	faster	than	anticipated	during	a	specified	time	period.
To	view	your	Cost	trend	chart,	navigate	to	the	blade	for	your	DevTest	Labs

instance,	and	select	Cost	trend	from	the	Configuration	and	policies	blade	of	your
lab	(Figure	1-84).

FIGURE	1-84	Cost	Trend

Cost	trend
The	Monthly	Estimated	Cost	Trend	chart	displays	the	current	calendar	month’s
estimated	cost-to-date,	and	the	projected	end-of-month	cost	for	the	current
calendar	month	(Figure	1-85).

FIGURE	1-85	Cost	trend	chart

Azure	DevTest	Labs	allows	you	to	modify	the	time	span	displayed	on	the
chart,	specify	target	costs,	and	set	up	notifications.	You	can	configure	these
options	by	completing	the	following	steps:

1.	 From	the	Cost	trend	blade,	select	Manage	target	(Figure	1-86).

FIGURE	1-86	Manage	Target

2.	 On	the	Manage	target	blade:

A.	 Select	the	time	period	you	would	like	displayed	on	the	chart.	Monthly
is	the	default,	and	will	display	the	current	month.	Selecting	Fixed
allows	you	to	specify	a	set	time	period	to	display	on	the	chart	(Figure
1-87).

FIGURE	1-87	Target	Time	Period

B.	 Specify	a	numeric	value	(in	USD)	for	your	target	monthly	cost	(Figure
1-88).

FIGURE	1-88	Target	cost	value

C.	 Select	any	desired	cost	thresholds,	and	on	the	Cost	threshold	blade,
specify	whether	to	send	notifications,	and	if	you	would	like	the
threshold	displayed	on	the	trend	chart,	then	select	OK	(Figure	1-89).

FIGURE	1-89	Target	thresholds

D.	 If	you	chose	to	enable	notifications,	click	to	add	an	integration	of	a
Webhook	under	Cost	integrations.	The	lab	will	post	a	notification	to
the	specified	endpoint	if	lab	spending	reaches	a	threshold	for	which
you	have	opted	to	receive	notification	(Figure	1-90).

FIGURE	1-90	Add	Webhook	integration

E.	 On	the	Configure	notification	blade,	enter	a	Webhook	URL,	and
Select	OK	(Figure	1-91).

FIGURE	1-91	Webhook	URL

F.	 Select	OK	to	save	the	trend	chart	targets.

The	estimated	cost	value	is	the	current	calendar	month’s	estimated	cost-to-
date.	The	projected	cost	is	the	estimated	cost	for	the	entire	calendar	month,
calculated	using	the	lab	cost	for	the	previous	five	days.	These	cost	numbers	are

calculated	using	the	lab	cost	for	the	previous	five	days.	These	cost	numbers	are
rounded	up	the	nearest	whole	number,	and	do	not	reflect	actual	costs.

More	Info:	Webhooks

Webhooks	are	user	defined	HTTP/HTTPS	endpoints	that	are
usually	triggered	by	an	event.	You	must	create	a	Webhook	prior	to
entering	it	here.	For	more	details	on	creating	Webhooks,	see:
https://docs.microsoft.com/azure/azure-functions/functions-create-
github-webhook-triggered-function.

Cost	by	resource
To	provide	you	with	more	insight	into	cost	of	operating	each	individual	resource
in	your	lab,	you	can	also	view	a	breakdown	of	cost	by	resource.	To	view	this
breakdown,	follow	these	steps:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 On	the	Configuration	and	policies	blade	for	your	lab,	select	Cost	by

resource	(Figure	1-92).

FIGURE	1-92	Cost	By	Resource

3.	 View	the	list	of	individual	resources,	and	how	much	money	(in	USD)	is
being	spent	per	resource	(Figure	1-93).

FIGURE	1-93	Viewing	cost	by	resource

https://docs.microsoft.com/azure/azure-functions/functions-create-github-webhook-triggered-function

4.	 The	list	can	be	sorted	to	easier	view	those	resources	which	have	the	most
associated	cost.

Secure	access	to	labs
Security	access	in	DevTest	Labs	is	determined	by	Azure	Role-Based	Access
Control	(RBAC).	To	understand	how	access	works,	it	helps	to	understand	the
differences	between	a	permission,	a	role,	and	a	scope	as	defined	by	RBAC.

	Permission	Defined	access	to	a	specific	action	(e.g.	read-access	to	all	virtual
machines).
	Role	A	set	of	permissions	that	can	be	grouped	and	assigned	to	a	user.	For
example,	the	subscription	owner	role	has	access	to	all	resources	within	a
subscription.
	Scope	A	level	within	the	hierarchy	of	an	Azure	resource,	such	as	a	resource
group,	a	single	lab,	or	the	entire	subscription.
Using	RBAC,	you	can	segregate	duties	within	your	team	into	roles	where	you

grant	only	the	amount	of	access	necessary	to	users	to	perform	their	jobs.	The
three	RBAC	roles	most	relevant	to	Azure	DevTest	Labs	are	Owner,	DevTest
Labs	User,	and	Contributor.
The	Table	1-3	provides	a	breakdown	of	the	actions	that	can	be	performed	by

users	in	each	of	these	roles.

TABLE	1-3	Actions	that	can	be	performed	by	users	in	specified	roles.

Actions	users	in	this	role
can	perform

DevTest	Labs
User

Owner Contributor

LAB	TASKS 	 	 	

Add	users	to	a	lab No Yes No

Update	cost	settings No Yes Yes

VM	BASE	TASKS 	 	 	

Add	and	remove	custom
images

No Yes Yes

Add,	update,	and	delete
formulas

Yes Yes Yes

Whitelist	Azure No Yes Yes

Whitelist	Azure
Marketplace	images

No Yes Yes

VM	TASKS 	 	 	

Create	VMs Yes Yes Yes

Start,	stop,	and	delete
VMs

Only	VMs	created
by	the	user

Yes Yes

Update	VM	policies No Yes Yes

Add/remove	data	disks
to/from	VMs

Only	VMs	created
by	the	user

Yes Yes

ARTIFACT	TASKS 	 	 	

Add	and	remove	artifact
repositories

No Yes Yes

Apply	artifacts Yes Yes Yes

Add	an	owner	or	user	at	the	lab	level
Owners	and	users	can	be	added	at	the	lab	level	via	the	Azure	portal.	This
includes	external	users	with	a	valid	Microsoft	account	(MSA).	The	following
steps	guide	you	through	the	process	of	adding	an	owner	or	user	to	a	lab	in	Azure
DevTest	Labs:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 On	your	lab’s	blade,	select	Configuration	and	policies.
3.	 On	the	Configuration	and	policies	blade	(Figure	1-94),	select	Access

control	(IAM).

FIGURE	1-94	Access	Control	(IAM)

4.	 Select	+Add
5.	 On	the	Add	permission	blade,	select	a	role,	Owner	or	DevTest	Labs	User

(Figure	1-95).

FIGURE	1-95	New	lab	owner	role

6.	 On	the	Add	permissions	blade,	enter	a	name	or	an	email	address,	and	select
the	user	(Figure	1-96).

FIGURE	1-96	Add	permissions	to	users

7.	 Click	Save.

Add	an	external	user	to	a	lab	using	PowerShell
In	addition	to	adding	users	in	the	Azure	portal,	you	can	add	an	external	user	to
your	lab	using	a	PowerShell	script.
The	PowerShell	script	below	assumes	that	the	specified	user	has	been	added

as	a	guest	to	the	Active	Directory,	and	will	fail	if	that	is	not	the	case.	To	add	a
user	not	in	the	Active	Directory	to	a	lab,	use	the	Azure	portal	to	assign	the	user
to	a	role	as	illustrated	in	the	section,	Add	an	owner	or	user	at	the	lab	level,
above.
To	add	an	external	user	to	a	lab,	complete	the	following	steps:

To	add	an	external	user	to	a	lab,	complete	the	following	steps:

1.	 At	a	PowerShell	prompt,	log	into	your	Azure	account	with	the	following
call	to	the	Login-AzureRmAccount	cmdlet.
Login-AzureRmAccount

2.	 Select	the	desired	Azure	subscription	by	calling	the	Select-
AzureRmSubscription	cmdlet.	Replace	the	placeholder	for	$subscriptionId
variable	with	a	valid	Azure	subscription	ID.
Click	here	to	view	code	image

$subscriptionId	=	'<Specify	your	subscription	ID	here>'

Select-AzureRmSubscription	-SubscriptionId	$subscriptionId

3.	 Retrieve	the	user	object	with	the	Get-AzureRmAdUser	cmdlet.	Replace	the
$userDisplayName	placeholder	with	the	appropriate	value.
Click	here	to	view	code	image

$userDisplayName	=	"<Specify	the	User's	Display	Name	here>"

$adObject	=	Get-AzureRmADUser	-SearchString	$userDisplayName

4.	 Get	the	lab	object	by	calling	the	Get-AzureRmResource	cmdlet.	Replace
the	following	placeholders	for	the	$labRg	and	$labName	variables	with	the
appropriate	values	for	your	environment.
Click	here	to	view	code	image

$labRg	=	'<Specify	your	lab	resource	group	name	here>'

$labName	=	'<Specify	your	lab	name	here>'

$lab	=	Get-AzureRmResource	-ResourceId	('subscriptions'	+

$subscriptionId	+

'resourceGroups'	+	$labRg	+	'providersMicrosoft.DevTestLab/labs/'	+

$labName)

5.	 Create	the	role	assignment,	using	the	New-AzureRmRoleAssignment
cmdlet.
Click	here	to	view	code	image

New-AzureRmRoleAssignment	-ObjectId	$adObject.Id	-

RoleDefinitionName	'DevTest	

Labs	User'	-Scope	$labId

Use	lab	settings	to	set	access	rights	to	the	environment
Lab	settings	allow	you	to	modify	the	access	rights	of	your	lab	users	to	the
resource	group	containing	your	lab	resources.	By	giving	your	lab	users
Contributor	access	rights,	you	enable	them	to	edit	resources,	such	as	SQL	Server
or	Cosmos	DB,	in	the	resource	group	that	contains	your	lab	environment.	By

or	Cosmos	DB,	in	the	resource	group	that	contains	your	lab	environment.	By
default,	lab	users	have	Reader	access	rights,	and	cannot	change	the	resources	in
the	resource	group.

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 On	the	DevTest	Lab’s	Overview	blade,	select	Configuration	and	policies.
3.	 On	the	lab’s	Configuration	and	policies	menu,	select	Lab	settings	(Figure

1-97).

FIGURE	1-97	Lab	Settings	blade

4.	 Specify	whether	lab	users	should	have	Contributor	or	Reader	access	rights
on	the	environment	resource	group	(Figure	1-98).

FIGURE	1-98	Access	rights	for	lab	users

5.	 Select	Save.

Use	environments	in	a	lab
The	Azure	portal	enables	you	to	easily	create	and	add	VMs	to	your	lab	one	at	a
time.	Sometimes,	however,	there	is	a	requirement	to	deploy	an	environment
containing	multiple	VMs,	such	as	a	multi-tier	web	app	or	a	SharePoint	farm.	For
this	scenario,	you	can	use	Azure	Resource	Manager	(ARM)	templates	to	spin	up
a	complete	environment	in	DevTest	labs,	allowing	your	infrastructure	to	be	as
complicated	as	it	needs	to	be	for	your	environment.

More	Info:	ARM	Templates

For	more	information	on	the	benefits	of	using	ARM	templates	to
deploy,	update,	or	delete	all	your	lab	resources	in	a	single
operation,	see:	https://docs.microsoft.com/azure/azure-resource-
manager/resource-group-overview#the-benefits-of-using-resource-
manager.

Following	infrastructure-as-code	and	configuration-as-code	best	practices,
environment	templates	are	managed	in	source	control.	Azure	DevTest	Labs
loads	all	ARM	templates	directly	from	your	GitHub	or	VSTS	Git	repositories.
As	a	result,	Resource	Manager	templates	can	be	used	across	the	entire	release
cycle,	from	the	test	environment	to	the	production	environment.

Configure	an	ARM	template	repository
To	provide	the	greatest	flexibility,	Azure	DevTest	Labs	allow	you	to	build	your
own	repositories,	which	can	contain	multiple	environment	templates,	each	in	a
separate	folder.	There	are	a	couple	of	rules	to	follow	for	organizing	your	Azure
Resource	Manager	templates	in	a	repository:

1.	 The	master	template	file	must	be	named	azuredeploy.json.
2.	 If	you	want	to	use	parameter	values	defined	in	a	parameter	file,	the

parameter	file	must	be	named	azuredeploy.parameters.json.
3.	 You	can	use	the	parameters	artifactsLocation	and

artifactsLocationSasToken	to	construct	the	parametersLink	URI	value,
allowing	DevTest	Labs	to	automatically	manage	nested	templates.

4.	 Metadata	can	be	defined	to	specify	the	template	display	name	and
description.	This	metadata	must	be	in	a	file	named	metadata.json.	The
following	example	metadata	file	illustrated	how	to	specify	the	display	name
and	description:
Click	here	to	view	code	image

{

"itemDisplayName":	"<your	template	name>",

"description":	"<description	of	the	template>"

}

With	your	ARM	template	added	to	the	repo,	you	are	now	ready	to	add	the
repository	to	your	lab.	To	add	a	repository	to	your	lab	using	the	Azure	portal,
follow	the	steps	below:

https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#the-benefits-of-using-resource-manager

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 On	your	lab’s	blade,	select	Configuration	and	policies.
3.	 From	the	Configuration	and	policies	blade,	select	Repositories.	The

Repositories	blade	(Figure	1-99)	lists	the	repositories	that	have	been	added
to	the	lab.	A	repository	named	Public	Repo	is	automatically	generated	for
all	labs,	and	connects	to	the	DevTest	Labs	GitHub	repo	that	contains
several	VM	artifacts	for	your	use.

FIGURE	1-99	Repositories	blade

4.	 Select	+Add	to	add	your	Azure	Resource	Manager	template	repository.
5.	 When	the	second	Repositories	blade	opens,	enter	the	necessary	information

as	follows:

A.	 Enter	a	name	for	the	repository.
B.	 Enter	the	GIT	HTTPS	clone	URL	from	GitHub	or	Visual	Studio	Team

Services	account.
C.	 Enter	the	branch	name	to	access	your	Azure	Resource	Manager

template	definitions.
D.	 The	personal	access	token	is	used	to	securely	access	your	repository.

To	get	your	token	from	Visual	Studio	Team	Services,	select
<YourName>	>	My	profile	>	Security	>	Public	access	token.	To	get
your	token	from	GitHub,	select	your	avatar	followed	by	selecting
Settings	>	Public	access	token.

E.	 Using	one	of	the	two	input	fields,	enter	a	folder	path	that	starts	with	a
forward	slash	-	/	-	and	is	relative	to	your	Git	clone	URI	to	either	your
artifact	definitions	(first	input	field)	or	your	Azure	Resource	Manager
template	definitions	(Figure	1-100).

FIGURE	1-100	Repositories	configuration

6.	 Select	Save	(Figure	1-101).

FIGURE	1-101	Available	repositories

Create	an	environment	from	an	ARM	template
Once	an	ARM	template	repository	has	been	configured	in	the	lab,	your	lab	users
can	create	an	environment	using	the	Azure	portal	by	following	the	steps	below:

can	create	an	environment	using	the	Azure	portal	by	following	the	steps	below:

1.	 Navigate	to	the	blade	of	your	DevTest	Labs	instance.
2.	 On	your	lab’s	Overview	blade,	select	+Add.
3.	 On	the	Choose	a	base	blade,	you	will	see	resources	with	a	Type	of	ARM

template	listed	first.	Select	the	desired	ARM	Template.
4.	 On	the	Add	blade,	enter	an	Environment	name	value.	This	is	what	will	be

displayed	to	your	users	in	the	lab.	The	remaining	input	fields	come	from
the	parameters	defined	in	the	ARM	template.	If	default	values	are	defined
in	the	template	or	the	azuredeploy.parameters.json	file	is	present,	default
values	are	displayed	in	those	input	fields.	For	parameter	types	of	secure
string,	you	can	use	the	secrets	store	in	the	lab’s	personal	secret	store
(Figure	1-102).

FIGURE	1-102	New	environment	from	ARM	template

5.	 Select	Add	to	create	the	environment.	The	environment	starts	provisioning
immediately	with	the	status	displaying	in	the	My	Virtual	Machines	list.	A

new	resource	group	is	automatically	created	by	the	lab	to	provision	all	the
resources	defined	in	the	ARM	template	(Figure	1-103).

FIGURE	1-103	My	Virtual	Machines	blade

6.	 Once	the	deployment	of	the	environment	completes,	select	the	environment
in	the	My	Virtual	Machines	list	to	open	the	resource	group	blade,	and
browse	all	the	resources	provisioned	in	the	environment	(Figure	1-104).

FIGURE	1-104	Resource	group	for	a	new	environment

7.	 You	can	also	expand	the	environment	in	the	My	Virtual	Machines	list	to
view	just	the	list	of	VMs	that	are	provisioned	in	the	environment	(Figure	1-
105).

FIGURE	1-105	Viewing	the	VMs

8.	 You	can	select	any	of	the	resources	in	the	environment	to	view	the
available	actions,	such	as	applying	artifacts,	attaching	data	disks,	changing
the	auto-shutdown	time,	and	more	(Figure	1-106).

FIGURE	1-106	Available	actions

Thought	experiment
In	this	thought	experiment,	apply	what	you’ve	learned	about	this	skill.	You	can
find	answers	to	these	questions	in	the	“Answers”	section	at	the	end	of	this
chapter.
Your	solution	architecture	has	two	tiers:	a	front-end	web	tier	that	you	want	to

configure	the	so	that	is	available	and	scales	out	during	the	busiest	times,	which
are	weekdays,	and	a	diagnostics	VM	that	enables	you	to	analyze	any	issues	with
the	web	tier	VM	instances.

1.	 How	would	you	place	the	VMs	within	Scale	Sets	and	what	constraints
would	you	need	to	ensure	you	meet	them?

2.	 How	would	you	configure	scaling?

Thought	experiment	answer
This	section	contains	the	answers	to	the	thought	experiment.

1.	 You	should	ensure	that	you	create	a	Virtual	machine	scale	set	for	the	web
tier	VM’s	The	diagnostic	VM,	since	it	does	not	have	any	scaling	needs,
should	not	be	placed	in	a	Virtual	machine	scale	set,	but	it	should	be
deployed	in	the	same	Virtual	Network	as	used	by	the	Scale	Set	so	that	it
can	reach	the	VM	instances	across	the	network.

2.	 You	should	configure	Autoscale	on	the	Scale	Set	with	a	condition	that
increases	the	VMs	count	to	the	desired	capacity	on	weekdays	and	a	default
condition	that	sets	the	VM	count	that	is	in	effect	at	all	other	times

Chapter	summary
	There	are	two	approaches	to	identifying	supported	workloads	in	Azure:
looking	for	explicit	support	by	a	listing	in	the	Marketplace	and	performing	a
manual	comparison	of	the	workload	requirements	against	the	capacities	of
VMs.
	New	VMs	can	be	created	by	uploading	a	VM	you	have	already	created	on-
premises	or	by	instantiating	one	from	a	selection	of	pre-built	images	that	are
available	in	the	Marketplace.
	Azure	supports	the	creation	of	“bare-bones”	VMs	that	provide	just	Windows
or	Linux	operating	system	from	pre-built	images	available	in	the
Marketplace.
	The	Marketplace	provides	the	ability	to	provision	single	VMs	with
preconfigured	applications.	The	example	shown	in	this	chapter	provisions
SQL	Server	in	a	VM.
	The	Marketplace	use	ARM	templates	to	deploy	and	configure	a	complex
topology	consisting	of	multiple	VMs,	such	as	a	SQL	Server	AlwaysOn	or	a
SharePoint	farm,	the	network	resources	and	any	supporting	resources
required.
	The	VM	Agent	is	a	very	lightweight	process.	When	installed	on	a	VM,	it
makes	it	possible	to	bootstrap	additional	VM	extensions	such	as	DSC.
	The	Custom	Script	Extension	makes	it	possible	to	download	files	from	Azure
Storage,	run	Windows	PowerShell	of	Linux	Shell	scripts,	and	automate
copying	files	and	configuring	a	VM.
	DSC	helps	you	avoid	configuration	drift	by	specifying	the	desired	state	for
VM	provisioning	and	subsequent	updates.
	Azure	VM	sizes	control	the	capacity	of	the	resources	available	to	a	VM
instance.	The	size	can	be	scaled	up	and	scaled	down	using	the	portal	or
Windows	PowerShell.
	Virtual	machine	scale	sets	enable	you	to	easily	manage	the	scale	up	and	scale
down	of	the	number	of	instances	of	a	particular	virtual	machine	image.
	Autoscale	can	be	used	with	Virtual	Machine	Scale	Sets	to	adjust	the	capacity
based	on	resource	metrics	or	according	to	a	schedule.
	Storage	capacity	for	VMs	is	dictated	by	the	scalability	limits	(IOPS,
throughput,	and	maximum	file	size)	of	Azure	Storage	as	well	as	per-VM
limits	that	adjust	with	the	VM	size	(the	number	of	VHD	disks	that	can	be
attached).

	Azure	VMs	support	Standard	Storage	and	Premium	storage	in	both
unmanaged	and	managed	variants.
	Disk	caching	provides	a	cache	on	the	machine	hosting	your	VM	that	can
avert	the	need	to	read	from	or	write	to	Blob	storage.	The	options	are	None,
Read	Only,	and	Read/Write.
	Geo-replication	should	not	be	used	for	Azure	Storage	accounts	that	store
VHDs	because	the	added	redundancy	does	not	provide	additional	protection
against	corrupting	the	data	and	may	in	fact	result	in	data	loss	if	you	attempt
to	restore	from	a	geo-replication.
	Azure	File	storage	enables	you	to	use	network	shares	to	provide	distributed
access	to	files	from	your	VMs.
	A	VM	can	be	configured	to	collect	diagnostics	data	(that	is,	logs)	as	well	as
performance	counter	metrics	(CPU	percentage,	memory	utilization,	and	so
on).
	Endpoint	monitoring	can	be	configured	on	a	VM	to	provide	outside-in
monitoring	of	HTTP	or	HTTPS	endpoints	provided	by	your	VM.
	You	can	monitor	various	metrics	using	the	management	portal,	and	you	can
configure	alerts	on	these	metrics	to	send	out	emails	when	a	metric	threshold
is	exceeded.
	Diagnostic	logs	can	be	retrieved	from	Azure	Storage	(Table	or	Blob	storage,
depending	on	the	specific	type	of	log).
	An	availability	set	defines	both	the	update	domains	and	fault	domains	to
which	VMs	are	assigned.
	VMs	in	the	same	update	domain	will	not	all	be	updated	at	the	same	time.
	VMs	in	the	same	fault	domain	share	either	the	same	power	supply,	network
switch	or	both.
	An	Azure	Load	Balancer	can	be	used	to	load	balance	traffic	between	VMs	in
an	availability	set.
	It	is	a	best	practice	to	deploy	VMs	that	represent	the	same	application	tier	in
the	same	availability	set.
	Azure	DevTest	Labs	allows	you	to	quickly	spin	up	virtual	machines	(VMs)
or	complete	environments	in	Azure.
	Custom	images	and	formulas	facilitate	the	rapid	deployment	of
preconfigured	VMs	in	DevTest	Labs.
	Custom	images	provide	a	static,	immutable	way	to	create	VMs	from	a

desired	configuration,	and	can	be	created	from	a	provisioned	VM,	or	from	a
VDH,	using	either	PowerShell	or	the	Azure	portal.
	Formulas	are	modifiable	lists	of	default	property	values,	providing	a	dynamic
way	to	create	VMs	from	a	desired	configuration,	and	can	be	created	from	a
base	image	or	an	existing	VM.
	DevTest	Labs	enable	you	to	better	manage	resources	by	specifying	limits	and
quotas,	allowing	you	to	better	control	cost	and	minimize	waste	by	managing
policies.
	Security	access	in	DevTest	Labs	is	determined	by	Azure	Role-Based	Access
Control	(RBAC),	mainly	using	the	owner,	DevTest	Labs	user,	and
contributor	roles.
	Azure	Resource	Manager	(ARM)	templates	can	be	used	to	spin	up	complete
environments	in	DevTest	labs,	allowing	your	infrastructure	to	be	as
complicated	as	it	needs	to	be	for	your	environment.

Chapter	2.	Design	and	implement	a	storage	and	data
strategy

In	this	section,	we’ll	look	at	most	of	the	various	methods	of	handling	data	and
state	in	Microsoft	Azure.	All	of	the	different	data	options	can	be	somewhat
overwhelming.	For	the	last	several	decades,	application	state	was	primarily
stored	in	a	relational	database	system,	like	Microsoft	SQL	Server.	Microsoft
Azure	has	non-relational	storage	products,	like	Azure	Storage	Tables,	Azure
CosmosDB,	and	Azure	Redis	Cache.	You	might	ask	yourself	which	data	product
do	you	choose?	What	are	the	differences	between	each	one?	How	do	I	get	started
if	I	have	little	or	no	experience	with	one?	This	chapter	will	explain	the
differences	between	relational	data	stores,	file	storage,	and	JSON	document
storage.	It	will	also	help	you	get	started	with	the	various	Azure	data	products.

Skills	in	this	chapter:
	Skill	2.1:	Implement	Azure	Storage	blobs	and	Azure	files
	Skill	2.2:	Implement	Azure	Storage	tables	and	queues
	Skill	2.3.	Manage	access	and	monitor	storage
	Skill	2.4:	Implement	Azure	SQL	Databases
	Skill	2.5:	Implement	Azure	Cosmos	DB
	Skill	2.6:	Implement	Redis	caching
	Skill	2.7:	Implement	Azure	Search

Skill	2.1:	Implement	Azure	Storage	blobs	and	Azure	files
File	storage	is	incredibly	useful	in	a	wide	variety	of	solutions	for	your
organization.	Whether	storing	sensor	data	from	refrigeration	trucks	that	check	in
every	few	minutes,	storing	resumes	as	PDFs	for	your	company	website,	or
storing	SQL	Server	backup	files	to	comply	with	a	retention	policy.	Microsoft
Azure	provides	several	methods	of	storing	files,	including	Azure	Storage	blobs
and	Azure	Files.	We	will	look	at	the	differences	between	these	products	and
teach	you	how	to	begin	using	each	one.

This	skill	covers	how	to:

	Create	a	blob	storage	account
	Read	data	and	change	data
	Set	metadata	on	a	container
	Store	data	using	block	and	page	blobss
	Stream	data	using	blobs
	Access	blobs	securely
	Implement	async	blob	copy
	Configure	Content	Delivery	Network	(CDN)
	Design	blob	hierarchies
	Configure	custom	domains
	Scale	blob	storage
	Implement	blob	leasing
	Create	connections	to	files	from	on-premises	or	cloudbased	Windows
or	Linux	machines
	Shard	large	datasets

Azure	Storage	blobs
Azure	Storage	blobs	are	the	perfect	product	to	use	when	you	have	files	that
you’re	storing	using	a	custom	application.	Other	developers	might	also	write
applications	that	store	files	in	Azure	Storage	blobs,	which	is	the	storage	location
for	many	Microsoft	Azure	products,	like	Azure	HDInsight,	Azure	VMs,	and
Azure	Data	Lake	Analytics.	Azure	Storage	blobs	should	not	be	used	as	a	file
location	for	users	directly,	like	a	corporate	shared	drive.	Azure	Storage	blobs
provide	client	libraries	and	a	REST	interface	that	allows	unstructured	data	to	be
stored	and	accessed	at	a	massive	scale	in	block	blobs.

Create	a	blob	storage	account
1.	 Sign	in	to	the	Azure	portal.
2.	 Click	the	green	plus	symbol	on	the	left	side.
3.	 On	the	Hub	menu,	select	New	>	Storage	>	Storage	account–blob,	file,

table,	queue.
4.	 Click	Create.
5.	 Enter	a	name	for	your	storage	account.

6.	 For	most	of	the	options,	you	can	choose	the	defaults.
7.	 Specify	the	Resource	Manager	deployment	model.	You	should	choose	an

Azure	Resource	Manager	deployment.	This	is	the	newest	deployment	API.
Classic	deployment	will	eventually	be	retired.

8.	 Your	application	is	typically	made	up	of	many	components,	for	instance	a
website	and	a	database.	These	components	are	not	separate	entities,	but	one
application.	You	want	to	deploy	and	monitor	them	as	a	group,	called	a
resource	group.	Azure	Resource	Manager	enables	you	to	work	with	the
resources	in	your	solution	as	a	group.

9.	 Select	the	General	Purpose	type	of	storage	account.
There	are	two	types	of	storage	accounts:	General	purpose	or	Blob	storage.
General	purpose	storage	type	allows	you	to	store	tables,	queues,	and	blobs
all-in-one	storage.	Blob	storage	is	just	for	blobs.	The	difference	is	that	Blob
storage	has	hot	and	cold	tiers	for	performance	and	pricing	and	a	few	other
features	just	for	Blob	storage.	We’ll	choose	General	Purpose	so	we	can	use
table	storage	later.

10.	 Under	performance,	specify	the	standard	storage	method.	Standard	storage
uses	magnetic	disks	that	are	lower	performing	than	Premium	storage.
Premium	storage	uses	solid-state	drives.

11.	 Storage	service	encryption	will	encrypt	your	data	at	rest.	This	might	slow
data	access,	but	will	satisfy	security	audit	requirements.

12.	 Secure	transfer	required	will	force	the	client	application	to	use	SSL	in	their
data	transfers.

13.	 You	can	choose	several	types	of	replication	options.	Select	the	replication
option	for	the	storage	account.

14.	 The	data	in	your	Microsoft	Azure	storage	account	is	always	replicated	to
ensure	durability	and	high	availability.	Replication	copies	your	data,	either
within	the	same	data	center,	or	to	a	second	data	center,	depending	on	which
replication	option	you	choose.	For	replication,	choose	carefully,	as	this	will
affect	pricing.	The	most	affordable	option	is	Locally	Redundant	Storage
(LRS).

15.	 Select	the	subscription	in	which	you	want	to	create	the	new	storage
account.

16.	 Specify	a	new	resource	group	or	select	an	existing	resource	group.
Resource	groups	allow	you	to	keep	components	of	an	application	in	the
same	area	for	performance	and	management.	It	is	highly	recommended	that

you	use	a	resource	group.	All	service	placed	in	a	resource	group	will	be
logically	organized	together	in	the	portal.	In	addition,	all	of	the	services	in
that	resource	group	can	be	deleted	as	a	unit.

17.	 Select	the	geographic	location	for	your	storage	account.	Try	to	choose	one
that	is	geographically	close	to	you	to	reduce	latency	and	improve
performance.

18.	 Click	Create	to	create	the	storage	account.

Once	created,	you	will	have	two	components	that	allow	you	to	interact	with
your	Azure	Storage	account	via	an	SDK.	SDKs	exist	for	several	languages,
including	C#,	JavaScript,	and	Python.	In	this	module,	we’ll	focus	on	using	the
SDK	in	C#.	Those	two	components	are	the	URI	and	the	access	key.	The	URI
will	look	like	this:	http://{your	storage	account	name	from	step
4}.blob.core.windows.net.
Your	access	key	will	look	like	this:

KEsm421/uwSiel3dipSGGL124K0124SxoHAXq3jk124vuCjw35124fHRIk142WIbxbTmQrzIQdM4K5Zyf9ZvUg==

Read	and	change	data
First,	let’s	use	the	Azure	SDK	for	.NET	to	load	data	into	your	storage	account.

1.	 Create	a	console	application.
2.	 Use	Nuget	Package	Manager	to	install	WindowsAzure.Storage.
3.	 In	the	Using	section,	add	a	using	to	Microsoft.WindowsAzure.Storage	and

Microsoft.WindowsAzure.Storage.Blob.
4.	 Create	a	storage	account	in	your	application	like	this:

Click	here	to	view	code	image

CloudStorageAccount	storageAccount;

storageAccount	=

	CloudStorageAccount.Parse("DefaultEndpointsProtocol=https;AccountName=

{your

	storage	account	name};AccountKey={your	storage	key}");

Azure	Storage	blobs	are	organized	with	containers.	Each	storage	account
can	have	an	unlimited	amount	of	containers.	Think	of	containers	like
folders,	but	they	are	very	flat	with	no	sub-containers.	In	order	to	load	blobs
into	an	Azure	Storage	account,	you	must	first	choose	the	container.

5.	 Create	a	container	using	the	following	code:
Click	here	to	view	code	image

http://blob.core.windows.net

CloudBlobClient	blobClient	=	storageAccount.CreateCloudBlobClient();

CloudBlobContainer	container	=

blobClient.GetContainerReference("democontainerblo

ckblob");

try

{

					await	container.CreateIfNotExistsAsync();

}

catch	(StorageException	ex)

{

					Console.WriteLine(ex.Message);

					Console.ReadLine();

					throw;

}

6.	 In	the	following	code,	you	need	to	set	the	path	of	the	file	you	want	to
upload	using	the	ImageToUpload	variable.
Click	here	to	view	code	image

const	string	ImageToUpload	=	@"C:\temp\HelloWorld.png";

CloudBlockBlob	blockBlob	=

container.GetBlockBlobReference("HelloWorld.png");

//	Create	or	overwrite	the	"myblob"	blob	with	contents	from	a	local

file.

using	(var	fileStream	=	System.IO.File.OpenRead(ImageToUpload))

{

					blockBlob.UploadFromStream(fileStream);

}

7.	 Every	blob	has	an	individual	URI.	By	default,	you	can	gain	access	to	that
blob	as	long	as	you	have	the	storage	account	name	and	the	access	key.	We
can	change	the	default	by	changing	the	Access	Policy	of	the	Azure	Storage
blob	container.	By	default,	containers	are	set	to	private.	They	can	be
changed	to	either	blob	or	container.	When	set	to	Public	Container,	no
credentials	are	required	to	access	the	container	and	its	blobs.	When	set	to
Public	Blob,	only	blobs	can	be	accessed	without	credentials	if	the	full	URL
is	known.	We	can	read	that	blob	using	the	following	code:
Click	here	to	view	code	image

foreach	(IListBlobItem	blob	in	container.ListBlobs())

{

				Console.WriteLine("-	{0}	(type:	{1})",	blob.Uri,

blob.GetType());

}

Note	how	we	use	the	container	to	list	the	blobs	to	get	the	URI.	We	also	have

Note	how	we	use	the	container	to	list	the	blobs	to	get	the	URI.	We	also	have
all	of	the	information	necessary	to	download	the	blob	in	the	future.

Set	metadata	on	a	container
Metadata	is	useful	in	Azure	Storage	blobs.	It	can	be	used	to	set	content	types	for
web	artifacts	or	it	can	be	used	to	determine	when	files	have	been	updated.	There
are	two	different	types	of	metadata	in	Azure	Storage	Blobs:	System	Properties
and	User-defined	Metadata.	System	properties	give	you	information	about
access,	file	types,	and	more.	Some	of	them	are	read-only.	User-defined	metadata
is	a	key-value	pair	that	you	specify	for	your	application.	Maybe	you	need	to
make	a	note	of	the	source,	or	the	time	the	file	was	processed.	Data	like	that	is
perfect	for	user-defined	metadata.
Blobs	and	containers	have	metadata	attached	to	them.	There	are	two	forms	of
metadata:

	System	properties	metadata
	User-defined	metadata
System	properties	can	influence	how	the	blob	behaves,	while	user-defined

metadata	is	your	own	set	of	name/value	pairs	that	your	applications	can	use.	A
container	has	only	read-only	system	properties,	while	blobs	have	both	read-only
and	read-write	properties.

Setting	user-defined	metadata
To	set	user-defined	metadata	for	a	container,	get	the	container	reference	using
GetContainerReference(),	and	then	use	the	Metadata	member	to	set	values.	After
setting	all	the	desired	values,	call	SetMetadata()	to	persist	the	values,	as	in	the
following	example:
Click	here	to	view	code	image

CloudBlobClient	blobClient	=	storageAccount.CreateCloudBlobClient();

CloudBlobContainer	container	=

blobClient.GetContainerReference("democontainerblockblob");

container.Metadata.Add("counter",	"100");container.SetMetadata();

More	Info:	Blob	Metadata

Blob	metadata	includes	both	read-only	and	read-write	properties
that	are	valid	HTTP	headers	and	follow	restrictions	governing
HTTP	headers.	The	total	size	of	the	metadata	is	limited	to	8	KB	for
the	combination	of	name	and	value	pairs.	For	more	information	on

interacting	with	individual	blob	metadata,	see
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-
properties-metadata.

Reading	user-defined	metadata
To	read	user-defined	metadata	for	a	container,	get	the	container	reference	using
GetContainerReference(),	and	then	use	the	Metadata	member	to	retrieve	a
dictionary	of	values	and	access	them	by	key,	as	in	the	following	example:
Click	here	to	view	code	image

container.FetchAttributes();

foreach	(var	metadataItem	in	container.Metadata)

{

					Console.WriteLine("\tKey:	{0}",	metadataItem.Key);

					Console.WriteLine("\tValue:	{0}",	metadataItem.Value);

}

Exam	Tip

If	the	metadata	key	doesn’t	exist,	an	exception	is	thrown.

Reading	system	properties
To	read	a	container’s	system	properties,	first	get	a	reference	to	the	container
using	GetContainerReference(),	and	then	use	the	Properties	member	to	retrieve
values.	The	following	code	illustrates	accessing	container	system	properties:
Click	here	to	view	code	image

container	=	blobClient.GetContainerReference("democontainerblockblob");

container.FetchAttributes();

Console.WriteLine("LastModifiedUTC:	"	+

container.Properties.LastModified);

Console.WriteLine("ETag:	"	+	container.Properties.ETag);

More	Info:	Container	Metadata	and	the	Storage	API

You	can	request	container	metadata	using	the	Storage	API.	For
more	information	on	this	and	the	list	of	system	properties

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-properties-metadata

returned,	see	http://msdn.microsoft.com/en-
us/library/azure/dd179370.aspx.

Store	data	using	block	and	page	blobs
There	are	three	types	of	blobs	used	in	Azure	Storage	Blobs:	Block,	Append,	and
Page.	Block	blobs	are	used	to	upload	large	files.	They	are	comprised	of	blocks,
each	with	its	own	block	ID.	Because	the	blob	is	divided	up	in	blocks,	it	allows
for	easy	updating	or	resending	when	transferring	large	files.	You	can	insert,
replace,	or	delete	an	existing	block	in	any	order.	Once	a	block	is	updated,	added,
or	removed,	the	list	of	blocks	needs	to	be	committed	for	the	file	to	actually
record	the	update.
Page	blobs	are	comprised	of	512-byte	pages	that	are	optimized	for	random

read	and	write	operations.	Writes	happen	in	place	and	are	immediately
committed.	Page	blobs	are	good	for	VHDs	in	Azure	VMs	and	other	files	that
have	frequent,	random	access.
Append	blobs	are	optimized	for	append	operations.	Append	blobs	are	good	for

logging	and	streaming	data.	When	you	modify	an	append	blob,	blocks	are	added
to	the	end	of	the	blob.
In	most	cases,	block	blobs	will	be	the	type	you	will	use.	Block	blobs	are

perfect	for	text	files,	images,	and	videos.
A	previous	section	demonstrated	how	to	interact	with	a	block	blob.	Here’s

how	to	write	a	page	blob:
Click	here	to	view	code	image

string	pageBlobName	=	"random";

CloudPageBlob	pageBlob	=	container.GetPageBlobReference(pageBlobName);

await	pageBlob.CreateAsync(512	2	/size*/);	//	size	needs	to	be	multiple

of	512	bytes

byte[]	samplePagedata	=	new	byte[512];

Random	random	=	new	Random();

random.NextBytes(samplePagedata);

await	pageBlob.UploadFromByteArrayAsync(samplePagedata,	0,

samplePagedata.Length);

To	read	a	page	blob,	use	the	following	code:
Click	here	to	view	code	image

int	bytesRead	=	await

pageBlob.DownloadRangeToByteArrayAsync(samplePagedata,

	0,	0,	samplePagedata.Count());

http://msdn.microsoft.com/en-us/library/azure/dd179370.aspx

Stream	data	using	blobs
You	can	stream	blobs	by	downloading	to	a	stream	using	the
DownloadToStream()	API	method.	The	advantage	of	this	is	that	it	avoids
loading	the	entire	blob	into	memory,	for	example	before	saving	it	to	a	file	or
returning	it	to	a	web	request.

Access	blobs	securely
Secure	access	to	blob	storage	implies	a	secure	connection	for	data	transfer	and
controlled	access	through	authentication	and	authorization.
Azure	Storage	supports	both	HTTP	and	secure	HTTPS	requests.	For	data

transfer	security,	you	should	always	use	HTTPS	connections.	To	authorize
access	to	content,	you	can	authenticate	in	three	different	ways	to	your	storage
account	and	content:

	Shared	Key	Constructed	from	a	set	of	fields	related	to	the	request.
Computed	with	a	SHA-256	algorithm	and	encoded	in	Base64.
	Shared	Key	Lite	Similar	to	Shared	Key,	but	compatible	with	previous
versions	of	Azure	Storage.	This	provides	backwards	compatibility	with	code
that	was	written	against	versions	prior	to	19	September	2009.	This	allows	for
migration	to	newer	versions	with	minimal	changes.
	Shared	Access	Signature	Grants	restricted	access	rights	to	containers	and
blobs.	You	can	provide	a	shared	access	signature	to	users	you	don’t	trust	with
your	storage	account	key.	You	can	give	them	a	shared	access	signature	that
will	grant	them	specific	permissions	to	the	resource	for	a	specified	amount	of
time.	This	is	discussed	in	a	later	section.
To	interact	with	blob	storage	content	authenticated	with	the	account	key,	you

can	use	the	Storage	Client	Library	as	illustrated	in	earlier	sections.	When	you
create	an	instance	of	the	CloudStorageAccount	using	the	account	name	and	key,
each	call	to	interact	with	blob	storage	will	be	secured,	as	shown	in	the	following
code:
Click	here	to	view	code	image

string	accountName	=	"ACCOUNTNAME";

string	accountKey	=	"ACCOUNTKEY";

CloudStorageAccount	storageAccount	=	new	CloudStorageAccount(new

StorageCredentials(accountName,	accountKey),	true);

Implement	Async	blob	copy
It	is	possible	to	copy	blobs	between	storage	accounts.	You	may	want	to	do	this
to	create	a	point-in-time	backup	of	your	blobs	before	a	dangerous	update	or

to	create	a	point-in-time	backup	of	your	blobs	before	a	dangerous	update	or
operation.	You	may	also	want	to	do	this	if	you’re	migrating	files	from	one
account	to	another	one.	You	cannot	change	blob	types	during	an	async	copy
operation.	Block	blobs	will	stay	block	blobs.	Any	files	with	the	same	name	on
the	destination	account	will	be	overwritten.
Blob	copy	operations	are	truly	asynchronous.	When	you	call	the	API	and	get	a

success	message,	this	means	the	copy	operation	has	been	successfully	scheduled.
The	success	message	will	be	returned	after	checking	the	permissions	on	the
source	and	destination	accounts.
You	can	perform	a	copy	in	conjunction	with	the	Shared	Access	Signature

method	of	gaining	permissions	to	the	account.	We’ll	cover	that	security	method
in	a	later	topic.

Configure	a	Content	Delivery	Network	with	Azure	Blob	Storage
A	Content	Delivery	Network	(CDN)	is	used	to	cache	static	files	to	different	parts
of	the	world.	For	instance,	let’s	say	you	were	developing	an	online	catalog	for	a
retail	organization	with	a	global	audience.	Your	main	website	was	hosted	in
western	United	States.	Users	of	the	application	in	Florida	complain	of	slowness
while	users	in	Washington	state	compliment	you	for	how	fast	it	is.	A	CDN
would	be	a	perfect	solution	for	serving	files	close	to	the	users,	without	the	added
latency	of	going	across	country.	Once	files	are	hosted	in	an	Azure	Storage
Account,	a	configured	CDN	will	store	and	replicate	those	files	for	you	without
any	added	management.	The	CDN	cache	is	perfect	for	style	sheets,	documents,
images,	JavaScript	files,	packages,	and	HTML	pages.
After	creating	an	Azure	Storage	Account	like	you	did	earlier,	you	must

configure	it	for	use	with	the	Azure	CDN	service.	Once	that	is	done,	you	can	call
the	files	from	the	CDN	inside	the	application.
To	enable	the	CDN	for	the	storage	account,	follow	these	steps:

1.	 In	the	Storage	Account	navigation	pane,	find	Azure	CDN	towards	the
bottom.	Click	on	it.

2.	 Create	a	new	CDN	endpoint	by	filling	out	the	form	that	popped	up.

A.	 Azure	CDN	is	hosted	by	two	different	CDN	networks.	These	are
partner	companies	that	actually	host	and	replicate	the	data.	Choosing	a
correct	network	will	affect	the	features	available	to	you	and	the	price
you	pay.	No	matter	which	tier	you	use,	you	will	only	be	billed	through
the	Microsoft	Azure	Portal,	not	through	the	third-party.	There	are
three	pricing	tiers:

	Premium	Verizon	The	most	expensive	tier.	This	tier	offers
advanced	real-time	analytics	so	you	can	know	what	users	are	hitting
what	content	and	when.
	Standard	Verizon	The	standard	CDN	offering	on	Verizon’s
network.
	Standard	Akamai	The	standard	CDN	offering	on	Akamai’s
network.

B.	 Specify	a	Profile	and	an	endpoint	name.	After	the	CDN	endpoint	is
created,	it	will	appear	on	the	list	above.

3.	 Once	this	is	done,	you	can	configure	the	CDN	if	needed.	For	instance,	you
can	use	a	custom	domain	name	is	it	looks	like	your	content	is	coming	from
your	website.

4.	 Once	the	CDN	endpoint	is	created,	you	can	reference	your	files	using	a
path	similar	to	the	following:
Click	here	to	view	code	image

Error!	Hyperlink	reference	not	valid.>

If	a	file	needs	to	be	replaced	or	removed,	you	can	delete	it	from	the	Azure
Storage	blob	container.	Remember	that	the	file	is	being	cached	in	the	CDN.	It
will	be	removed	or	updated	when	the	Time-to-Live	(TTL)	expires.	If	no	cache
expiry	period	is	specified,	it	will	be	cached	in	the	CDN	for	seven	days.	You	set
the	TTL	is	the	web	application	by	using	the	clientCache	element	in	the
web.config	file.	Remember	when	you	place	that	in	the	web.config	file	it	affects
all	folders	and	subfolders	for	that	application.

Design	blob	hierarchies
Azure	Storage	blobs	are	stored	in	containers,	which	are	very	flat.	This	means
that	you	cannot	have	child	containers	contained	inside	a	parent	container.	This
can	lead	to	organizational	confusion	for	users	who	rely	on	folders	and	subfolders
to	organize	files.
A	hierarchy	can	be	replicated	by	naming	the	files	something	that’s	similar	to	a

folder	structure.	For	instance,	you	can	have	a	storage	account	named	“sally.”
Your	container	could	be	named	“pictures.”	Your	file	could	be	named
“product1\mainFrontPanel.jpg.”	The	URI	to	your	file	would	look	like	this:
http://sally.blob.core.windows.net/pictures/product1/mainFrontPanel.jpg
In	this	manner,	a	folder/subfolder	relationship	can	be	maintained.	This	might

prove	useful	in	migrating	legacy	applications	over	to	Azure.

http://sally.blob.core.windows.net/pictures/product1/mainFrontPanel.jpg

prove	useful	in	migrating	legacy	applications	over	to	Azure.

Configure	custom	domains
The	default	endpoint	for	Azure	Storage	blobs	is:	(Storage	Account
Name).blob.core.windows.net.	Using	the	default	can	negatively	affect	SEO.	You
might	also	not	want	to	make	it	obvious	that	you	are	hosting	your	files	in	Azure.
To	obfuscate	this,	you	can	configure	Azure	Storage	to	respond	to	a	custom
domain.	To	do	this,	follow	these	steps:

1.	 Navigate	to	your	storage	account	in	the	Azure	portal.
2.	 On	the	navigation	pane,	find	BLOB	SERVICE.	Click	Custom	Domain.
3.	 Check	the	Use	Indirect	CNAME	Validation	check	box.	We	use	this	method

because	it	does	not	incur	any	downtime	for	your	application	or	website.
4.	 Log	on	to	your	DNS	provider.	Add	a	CName	record	with	the	subdomain

alias	that	includes	the	Asverify	subdomain.	For	example,	if	you	are	holding
pictures	in	your	blob	storage	account	and	you	want	to	note	that	in	the	URL,
then	the	CName	would	be	Asverify.pictures	(your	custom	domain
including	the	.com	or	.edu,	etc.)	Then	provide	the	hostname	for	the
CNAME	alias,	which	would	also	include	Asverify.	If	we	follow	the	earlier
example	of	pictures,	the	hostname	URL	would	be
sverify.pictures.blob.core.windows.net.	The	hostname	to	use	appears	in	#2
of	the	Custom	domain	blade	in	the	Azure	portal	from	the	previous	step.

5.	 In	the	text	box	on	the	Custom	domain	blade,	enter	the	name	of	your	custom
domain,	but	without	the	Asverify.	In	our	example,	it	would	be	pictures.
(your	custom	domain	including	the	.com	or	.edu,	etc.)	.

6.	 Select	Save.
7.	 Now	return	to	your	DNS	provider’s	website	and	create	another	CNAME

record	that	maps	your	subdomain	to	your	blob	service	endpoint.	In	our
example,	we	can	make	pictures.(your	custom	domain)	point	to
pictures.blob.core.windows.net.

8.	 Now	you	can	delete	the	azverify	CName	now	that	it	has	been	verified	by
Azure.

Why	did	we	go	through	the	azverify	steps?	We	were	allowing	Azure	to
recognize	that	you	own	that	custom	domain	before	doing	the	redirection.	This
allows	the	CNAME	to	work	with	no	downtime.
In	the	previous	example,	we	referenced	a	file	like	this:

http://sally.blob.core.windows.net/pictures/product1/mainFrontPanel.jpg.

http://sally.blob.core.windows.net/pictures/product1/mainFrontPanel.jpg

With	the	custom	domain,	it	would	now	look	like	this:	http://pictures.(your
custom	domain)/pictures/product1/mainFrontPanel.jpg.

Scale	blob	storage
We	can	scale	blob	storage	both	in	terms	of	storage	capacity	and	performance.
Each	Azure	subscription	can	have	200	storage	accounts,	with	500TB	of	capacity
each.	That	means	that	each	Azure	subscription	can	have	100	petabytes	of	data	in
it	without	creating	another	subscription.
An	individual	block	blob	can	have	50,000	100MB	blocks	with	a	total	size	of

4.75TB.	An	append	blob	has	a	max	size	of	195GB.	A	page	blob	has	a	max	size
of	8TB.
In	order	to	scale	performance,	we	have	several	features	available	to	us.	We

can	implement	an	Azure	CDN	to	enable	geo-caching	to	keep	blobs	close	to	the
users.	We	can	implement	read	access	geo-redundant	storage	and	offload	some	of
the	reads	to	another	geographic	location	(thus	creating	a	mini-CDN	that	will	be
slower,	but	cheaper).
Azure	Storage	blobs	(and	tables,	queues,	and	files,	too)	have	an	amazing

feature.	By	far,	the	most	expensive	services	for	most	cloud	vendors	is	compute
time.	You	pay	for	how	many	and	how	fast	the	processors	are	in	the	service	you
are	using.	Azure	Storage	doesn’t	charge	for	compute.	It	only	charges	for	disk
space	used	and	network	bandwidth	(which	is	a	fairly	nominal	charge).	Azure
Storage	blobs	are	partitioned	by	storage	account	name	+	container	name	+	blob
name.	This	means	that	each	blob	is	retrieved	by	one	and	only	one	server.	Many
small	files	will	perform	better	in	Azure	Storage	than	one	large	file.	Blobs	use
containers	for	logical	grouping,	but	each	blob	can	be	retrieved	by	different
compute	resources,	even	if	they	are	in	the	same	container.

Azure	files
Azure	file	storage	provides	a	way	for	applications	to	share	storage	accessible	via
SMB	2.1	protocol.	It	is	particularly	useful	for	VMs	and	cloud	services	as	a
mounted	share,	and	applications	can	use	the	File	Storage	API	to	access	file
storage.

More	Info:	File	Storage	Documentation

For	additional	information	on	file	storage,	see	the	guide	at:
http://azure.microsoft.com/en-us/documentation/articles/storage-
dotnet-how-to-use-files/.

http://pictures.(yourcustomdomain)/pictures/product1/mainFrontPanel.jpg
http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-files/

Implement	blob	leasing
You	can	create	a	lock	on	a	blob	for	write	and	delete	operations.	The	lock	can	be
between	15	and	60	seconds	or	it	can	be	infinite.	To	write	to	a	blob	with	an	active
lease,	the	client	must	include	the	active	lease	ID	with	the	request.
When	a	client	requests	a	lease,	a	lease	ID	is	returned.	The	client	may	then	use

this	lease	ID	to	renew,	change,	or	release	the	lease.	When	the	lease	is	active,	the
lease	ID	must	be	included	to	write	to	the	blob,	set	any	meta	data,	add	to	the	blob
(through	append),	copy	the	blob,	or	delete	the	blob.	You	may	still	read	a	blob
that	has	an	active	lease	ID	to	another	client	and	without	using	the	lease	ID.
The	code	to	acquire	a	lease	looks	like	the	following	example	(assuming	the

blockBlob	variable	was	instantiated	earlier):
Click	here	to	view	code	image

TimeSpan?	leaseTime	=	TimeSpan.FromSeconds(60);

string	leaseID	=	blockBlob.AcquireLease(leaseTime,	null);

Create	connections	to	files	from	on-premises	or	cloudbased
Windows	or,	Linux	machines
Azure	Files	can	be	used	to	replace	on-premise	file	servers	or	NAS	devices.	You
can	connect	to	Azure	Files	using	Windows,	Linux,	or	MacOS.
You	can	mount	an	Azure	File	share	using	Windows	File	Explorer,

PowerShell,	or	the	Command	Prompt.	To	use	File	Explorer,	follow	these	steps:

1.	 Open	File	Explorer
2.	 Under	the	computer	menu,	click	Map	Network	Drive	(see	Figure	2-1).

FIGURE	2-1	Map	network	Drive

3.	 Copy	the	UNC	path	from	the	Connect	pane	in	the	Azure	portal,	as	shown	in
Figure	2-2.

FIGURE	2-2	Azure	portal	UNC	path

4.	 Select	the	drive	letter	and	enter	the	UNC	path.
5.	 Use	the	storage	account	name	prepended	with	Azure\	as	the	username	and

the	Storage	Account	Key	as	the	password	(see	Figure	2-3).

FIGURE	2-3	Login	credentials	for	Azure	Files

The	PowerShell	code	to	map	a	drive	to	Azure	Files	looks	like	this:
Click	here	to	view	code	image

$acctKey	=	ConvertTo-SecureString	-String	"<storage-account-key>"	-

AsPlainText

-Force

$credential	=	New-Object	System.Management.Automation.PSCredential	-

ArgumentList

	"Azure\<storage-account-name>",	$acctKey

New-PSDrive	-Name	<desired-drive-letter>	-PSProvider	FileSystem	-Root

"\\<storage-account-name>.file.core.windows.net\<share-name>"	-

Credential	$credential

To	map	a	drive	using	a	command	prompt,	use	a	command	that	looks	like	this:
Click	here	to	view	code	image

net	use	<desired-drive-letter>:	\\<storage-account-

name>.file.core.windows.net

\<share-name>	<storage-account-key>	/user:Azure\<storage-account-name>

To	use	Azure	Files	on	a	Linux	machine,	first	install	the	cifs-utils	package.
Then	create	a	folder	for	a	mount	point	using	mkdir.	Afterwards,	use	the	mount

Then	create	a	folder	for	a	mount	point	using	mkdir.	Afterwards,	use	the	mount
command	with	code	similar	to	the	following:
Click	here	to	view	code	image

sudo	mount	-t	cifs	//<storage-account-

name>.file.core.windows.net/<share-name>

	./mymountpoint	-o	vers=2.1,username=<storage-account-name>,password=

<storage-

account-key>,dir_mode=0777,file_mode=0777,serverino

Shard	large	datasets
Each	blob	is	held	in	a	container	in	Azure	Storage.	You	can	use	containers	to
group	related	blobs	that	have	the	same	security	requirements.	The	partition	key
of	a	blob	is	account	name	+	container	name	+	blob	name.	Each	blob	can	have	its
own	partition	if	load	on	the	blob	demands	it.	A	single	blob	can	only	be	served	by
a	single	server.	If	sharding	is	needed,	you	need	to	create	multiple	blobs.

Skill	2.2:	Implement	Azure	Storage	tables,	queues,	and	Azure
Cosmos	DB	Table	API
Azure	Tables	are	used	to	store	simple	tabular	data	at	petabyte	scale	on	Microsoft
Azure.	Azure	Queue	storage	is	used	to	provide	messaging	between	application
components	so	they	can	be	de-coupled	and	scale	under	heavy	load.

This	skill	covers	how	to:
	Implement	CRUD	with	and	without	transactions;
	Design	and	manage	partitions;
	Query	using	OData;
	Designing,	managing,	and	scaling	tablepartitions;
	Add	and	process	queue	messages;
	Retrieve	a	batch	of	messages;
	Scale	queues
	Choose	between	Azure	Storage	Tables	and	Azure	Cosmos	DB	Table
API

Azure	Table	Storage
Azure	Tables	are	simple	tables	filled	with	rows	and	columns.	They	are	a	key-
value	database	solution,	which	references	how	the	data	is	stored	and	retrieved,
not	how	complex	the	table	can	be.	Tables	store	data	as	a	collection	of	entities.

not	how	complex	the	table	can	be.	Tables	store	data	as	a	collection	of	entities.
Each	entity	has	a	property.	Azure	Tables	can	have	255	properties	(or	columns	to
hijack	the	relational	vocabulary).	The	total	entity	size	(or	row	size)	cannot
exceed	1MB.	That	might	seem	small	initially,	but	1MB	can	store	a	lot	of	tabular
data	per	entity.	Azure	Tables	are	similar	to	Azure	Storage	blobs,	in	that	you	are
not	charged	for	compute	time	for	inserting,	updating,	or	retrieving	your	data.
You	are	only	charged	for	the	total	storage	of	your	data.
Azure	Tables	are	stored	in	the	same	storage	account	as	Azure	Storage	blobs

discussed	earlier.	Where	blobs	organize	data	based	on	container,	Azure	Tables
organize	data	based	on	table	name.	Entities	that	are	functionally	the	same	should
be	stored	in	the	same	table.	For	example,	all	customers	should	be	stored	in	the
Customers	table,	while	their	orders	should	be	stored	in	the	Orders	table.
Azure	Tables	store	entities	based	on	a	partition	key	and	a	row	key.	Partition

keys	are	the	partition	boundary.	All	entities	stored	with	the	same	PartitionKey
property	are	grouped	into	the	same	partition	and	are	served	by	the	same	partition
server.	Choosing	the	correct	partition	key	is	a	key	responsibility	of	the	Azure
developer.	Having	a	few	partitions	will	improve	scalability,	as	it	will	increase
the	number	of	partition	servers	handling	your	requests.	Having	too	many
partitions,	however,	will	affect	how	you	do	batch	operations	like	batch	updates
or	large	data	retrieval.	We	will	discuss	this	further	at	the	end	of	this	section.
Later	in	this	chapter,	we	will	discuss	Azure	SQL	Database.	Azure	SQL

Database	also	allows	you	to	store	tabular	data.	Why	would	you	use	Azure	Tables
vs	Azure	SQL	Database?	Why	have	two	products	that	have	similar	functions?
Well,	actually	they	are	very	different.
Azure	Tables	service	does	not	enforce	any	schema	for	tables.	It	simply	stores

the	properties	of	your	entity	based	on	the	partition	key	and	the	row	key.	If	the
data	in	the	entity	matches	the	data	in	your	object	model,	your	object	is	populated
with	the	right	values	when	the	data	is	retrieved.	Developers	need	to	enforce	the
schema	on	the	client	side.	All	business	logic	for	your	application	should	be
inside	the	application	and	not	expected	to	be	enforced	in	Azure	Tables.	Azure
SQL	Database	also	has	an	incredible	amount	of	features	that	Azure	Tables	do
not	have	including:	stored	procedures,	triggers,	indexes,	constraints,	functions,
default	values,	row	and	column	level	security,	SQL	injection	detection,	and
much,	much	more.
If	Azure	Tables	are	missing	all	of	these	features,	why	is	the	service	so	popular

among	developers?	As	we	said	earlier,	you	are	not	charged	for	compute
resources	when	using	Azure	Tables,	and	you	are	charged	in	Azure	SQL	DB.
This	makes	Azure	Tables	extremely	affordable	for	large	datasets.	If	we
effectively	use	table	partitioning,	Azure	Tables	will	also	scale	very	well	without

effectively	use	table	partitioning,	Azure	Tables	will	also	scale	very	well	without
sacrificing	performance.
Now	that	you	have	a	good	overview	of	Azure	Tables,	let’s	dive	right	in	and

look	at	using	it.	If	you’ve	been	following	along	through	Azure	Storage	blobs,
some	of	this	code	will	be	familiar	to	you.

Using	basic	CRUD	operations
In	this	section,	you	learn	how	to	access	table	storage	programmatically.

Creating	a	table

1.	 Create	a	C#	console	application.
2.	 In	your	app.config	file,	add	an	entry	under	the	Configuration	element,

replacing	the	account	name	and	key	with	your	own	storage	account	details:
Click	here	to	view	code	image

<configuration>

		<appSettings>

				<add	key="StorageConnectionString"

value="DefaultEndpointsProtocol=

https;AccountName=<your	account	name>;AccountKey=<your	account

key>"	/>

		</appSettings>

</configuration>

Use	NuGet	to	obtain	the	Microsoft.WindowsAzure.Storage.dll.	An	easy	way
to	do	this	is	by	using	the	following	command	in	the	NuGet	console:

1.	 Install-package	windowsazure.storage
2.	 Add	the	following	using	statements	to	the	top	of	your	Program.cs	file:

Click	here	to	view	code	image

using	Microsoft.WindowsAzure.Storage;

using	Microsoft.WindowsAzure.Storage.Auth;

using	Microsoft.WindowsAzure.Storage.Table;

using	Microsoft.WindowsAzure;

using	System.Configuration;

3.	 Add	a	reference	to	System.Configuration.
4.	 Type	the	following	command	to	retrieve	your	connection	string	in	the	Main

function	of	Program.cs:
Click	here	to	view	code	image

var	storageAccount	=CloudStorageAccount.Parse

(ConfigurationManager.AppSettings["StorageConnectionString"]);

(ConfigurationManager.AppSettings["StorageConnectionString"]);

5.	 Use	the	following	command	to	create	a	table	if	one	doesn’t	already	exist:
Click	here	to	view	code	image

CloudTableClient	tableClient	=

storageAccount.CreateCloudTableClient();

CloudTable	table	=	tableClient.GetTableReference("orders");

table.CreateIfNotExists();

Inserting	records
To	add	entries	to	a	table,	you	create	objects	based	on	the	TableEntity	base	class
and	serialize	them	into	the	table	using	the	Storage	Client	Library.	The	following
properties	are	provided	for	you	in	this	base	class:

	Partition	Key	Used	to	partition	data	across	storage	infrastructure
	Row	Key	Unique	identifier	in	a	partition
	Timestamp	Time	of	last	update	maintained	by	Azure	Storage
	ETag	Used	internally	to	provide	optimistic	concurrency
The	combination	of	partition	key	and	row	key	must	be	unique	within	the	table.

This	combination	is	used	for	load	balancing	and	scaling,	as	well	as	for	querying
and	sorting	entities.
Follow	these	steps	to	add	code	that	inserts	records:

1.	 Add	a	class	to	your	project,	and	then	add	the	following	code	to	it:
Click	here	to	view	code	image

using	System;

using	Microsoft.WindowsAzure.Storage.Table;

public	class	OrderEntity	:	TableEntity

{

	public	OrderEntity(string	customerName,	string	orderDate)

	{

		this.PartitionKey	=	customerName;

		this.RowKey	=	orderDate;

	}

	public	OrderEntity()	{	}

		public	string	OrderNumber	{	get;	set;	}

		public	DateTime	RequiredDate	{	get;	set;	}

		public	DateTime	ShippedDate	{	get;	set;	}

		public	string	Status	{	get;	set;	}

}

2.	 Add	the	following	code	to	the	console	program	to	insert	a	record:
Click	here	to	view	code	image

CloudTableClient	tableClient	=

storageAccount.CreateCloudTableClient();

CloudTable	table	=	tableClient.GetTableReference("orders");

OrderEntity	newOrder	=	new	OrderEntity("Archer",	"20141216");

newOrder.OrderNumber	=	"101";

newOrder.ShippedDate	=	Convert.ToDateTime("12/18/2017");

newOrder.RequiredDate	=	Convert.ToDateTime("12/14/2017");

newOrder.Status	=	"shipped";

TableOperation	insertOperation	=	TableOperation.Insert(newOrder);

table.Execute(insertOperation);

Inserting	multiple	records	in	a	transaction
You	can	group	inserts	and	other	operations	into	a	single	batch	transaction.	All
operations	in	the	batch	must	take	place	on	the	same	partition.	You	can	have	up	to
100	entities	in	a	batch.	The	total	batch	payload	size	cannot	be	greater	than	four
MBs.
The	following	code	illustrates	how	to	insert	several	records	as	part	of	a	single

transaction.	This	is	done	after	creating	a	storage	account	object	and	table.:
Click	here	to	view	code	image

TableBatchOperation	batchOperation	=	new	TableBatchOperation();

OrderEntity	newOrder1	=	new	OrderEntity("Lana",	"20141217");

newOrder1.OrderNumber	=	"102";

newOrder1.ShippedDate	=	Convert.ToDateTime("1/1/1900");

newOrder1.RequiredDate	=	Convert.ToDateTime("1/1/1900");

newOrder1.Status	=	"pending";

OrderEntity	newOrder2	=	new	OrderEntity("Lana",	"20141218");

newOrder2.OrderNumber	=	"103";

newOrder2.ShippedDate	=	Convert.ToDateTime("1/1/1900");

newOrder2.RequiredDate	=	Convert.ToDateTime("12/25/2014");

newOrder2.Status	=	"open";

OrderEntity	newOrder3	=	new	OrderEntity("Lana",	"20141219");

newOrder3.OrderNumber	=	"103";

newOrder3.ShippedDate	=	Convert.ToDateTime("12/17/2014");

newOrder3.RequiredDate	=	Convert.ToDateTime("12/17/2014");

newOrder3.Status	=	"shipped";

batchOperation.Insert(newOrder1);

batchOperation.Insert(newOrder2);

batchOperation.Insert(newOrder3);

batchOperation.Insert(newOrder3);

table.ExecuteBatch(batchOperation);

More	Info:	Entity	Group	Transactions

You	can	batch	transactions	that	belong	to	the	same	table	and
partition	group	for	insert,	update,	merge,	delete,	and	related
actions	programmatically	or	by	using	the	Storage	API.	For	more
information,	see	the	reference	at	http://msdn.microsoft.com/en-
us/library/dd894038.aspx.

Getting	records	in	a	partition
You	can	select	all	of	the	entities	in	a	partition	or	a	range	of	entities	by	partition
and	row	key.	Wherever	possible,	you	should	try	to	query	with	the	partition	key
and	row	key.	Querying	entities	by	other	properties	does	not	work	well	because	it
launches	a	scan	of	the	entire	table.
Within	a	table,	entities	are	ordered	within	the	partition	key.	Within	a	partition,

entities	are	ordered	by	the	row	key.	RowKey	is	a	string	property,	so	sorting	is
handled	as	a	string	sort.	If	you	are	using	a	date	value	for	your	RowKey	property
use	the	following	order:	year,	month,	day.	For	instance,	use	20140108	for
January	8,	2014.
The	following	code	requests	all	records	within	a	partition	using	the

PartitionKey	property	to	query:
Click	here	to	view	code	image

TableQuery<OrderEntity>	query	=	new	TableQuery<OrderEntity>().Where(

TableQuery.GenerateFilterCondition("PartitionKey",

QueryComparisons.Equal,	"Lana"));

foreach	(OrderEntity	entity	in	table.ExecuteQuery(query))

{

	Console.WriteLine("{0},	{1}\t{2}\t{3}",	entity.PartitionKey,

entity.RowKey,

	entity.Status,	entity.RequiredDate);

}

Console.ReadKey();

Updating	records
One	technique	you	can	use	to	update	a	record	is	to	use	InsertOrReplace().	This
creates	the	record	if	one	does	not	already	exist	or	updates	an	existing	record,
based	on	the	partition	key	and	the	row	key.	In	this	example,	we	retrieve	a	record
we	inserted	during	the	batch	insert	example,	change	the	status	and	shippedDate

http://msdn.microsoft.com/en-us/library/dd894038.aspx

we	inserted	during	the	batch	insert	example,	change	the	status	and	shippedDate
property	and	then	execute	an	InsertOrReplace	operation:
Click	here	to	view	code	image

TableOperation	retrieveOperation	=	TableOperation.Retrieve<OrderEntity>

("Lana",

"20141217");

TableResult	retrievedResult	=	table.Execute(retrieveOperation);

OrderEntity	updateEntity	=	(OrderEntity)retrievedResult.Result;

if	(updateEntity	!=	null)

{

		updateEntity.Status	=	"shipped";

		updateEntity.ShippedDate	=	Convert.ToDateTime("12/20/2014");

		TableOperation	insertOrReplaceOperation	=	TableOperation.

InsertOrReplace(updateEntity);

		table.Execute(insertOrReplaceOperation);

}

Deleting	a	record
To	delete	a	record,	first	retrieve	the	record	as	shown	in	earlier	examples,	and
then	delete	it	with	code,	such	as	assuming	deleteEntity	is	declared	and	populated
similar	to	how	we	created	one	earlier:
Click	here	to	view	code	image

TableOperation	deleteOperation	=	TableOperation.Delete(deleteEntity);

table.Execute(deleteOperation);

Console.WriteLine("Entity	deleted.");

Querying	using	ODATA
The	Storage	API	for	tables	supports	OData,	which	exposes	a	simple	query
interface	for	interacting	with	table	data.	Table	storage	does	not	support
anonymous	access,	so	you	must	supply	credentials	using	the	account	key	or	a
Shared	Access	Signature	(SAS)	(discussed	in	“Manage	Access”)	before	you	can
perform	requests	using	OData.
To	query	what	tables	you	have	created,	provide	credentials,	and	issue	a	GET

request	as	follows:
Click	here	to	view	code	image

https://myaccount.table.core.windows.net/Tables

To	query	the	entities	in	a	specific	table,	provide	credentials,	and	issue	a	GET
request	formatted	as	follows:
Click	here	to	view	code	image

			https://<your	account	name>.table.core.windows.net/<your	table

name>(PartitionKey=’<partition-key>’,RowKey=’<row-key>’)?$select=

<comma	separated

property	names>

Note:	Query	Limitations

The	result	is	limited	to	1,000	entities	per	request,	and	the	query	will
run	for	a	maximum	of	five	seconds.

More	Info:	Odata

For	more	information	on	OData,	see	the	reference	at
http://msdn.microsoft.com/en-us/library/azure/dn535600.aspx.

Designing,	managing,	and	scaling	table	partitions
The	Azure	Table	service	can	scale	to	handle	massive	amounts	of	structured	data
and	billions	of	records.	To	handle	that	amount,	tables	are	partitioned.	The
partition	key	is	the	unit	of	scale	for	storage	tables.	The	table	service	will	spread
your	table	to	multiple	servers	and	key	all	rows	with	the	same	partition	key	co-
located.	Thus,	the	partition	key	is	an	important	grouping,	not	only	for	querying
but	also	for	scalability.
There	are	three	types	of	partition	keys	to	choose	from:

	Single	value	There	is	one	partition	key	for	the	entire	table.	This	favors	a
small	number	of	entities.	It	also	makes	batch	transactions	easier	since	batch
transactions	need	to	share	a	partition	key	to	run	without	error.	It	does	not
scale	well	for	large	tables	since	all	rows	will	be	on	the	same	partition	server.
	Multiple	values	This	might	place	each	partition	on	its	own	partition	server.
If	the	partition	size	is	smaller,	it’s	easier	for	Azure	to	load	balance	the
partitions.	Partitions	might	get	slower	as	the	number	of	entities	increases.
This	might	make	further	partitioning	necessary	at	some	point.
	Unique	values	This	is	many	small	partitions.	This	is	highly	scalable,	but
batch	transactions	are	not	possible.
For	query	performance,	you	should	use	the	partition	key	and	row	key	together

when	possible.	This	leads	to	an	exact	row	match.	The	next	best	thing	is	to	have
an	exact	partition	match	with	a	row	range.	It	is	best	to	avoid	scanning	the	entire
table.

http://msdn.microsoft.com/en-us/library/azure/dn535600.aspx

Azure	Storage	Queues
The	Azure	Storage	Queue	service	provides	a	mechanism	for	reliable	inter-
application	messaging	to	support	asynchronous	distributed	application
workflows.	This	section	covers	a	few	fundamental	features	of	the	Queue	service
for	adding	messages	to	a	queue,	processing	those	messages	individually	or	in	a
batch,	and	scaling	the	service.

More	Info:	Queue	Service

For	a	general	overview	of	working	with	the	Queue	service,	see	the
reference	at	http://azure.microsoft.com/en-
us/documentation/articles/storage-dotnet-how-to-use-queues/.

Adding	messages	to	a	queue
You	can	access	your	storage	queues	and	add	messages	to	a	queue	using	many
storage	browsing	tools;	however,	it	is	more	likely	you	will	add	messages
programmatically	as	part	of	your	application	workflow.
The	following	code	demonstrates	how	to	add	messages	to	a	queue.	In	order	to

use	it,	you	will	need	a	using	statement	for
Microsoft.WindowsAzure.Storage.Queue.	You	can	also	create	a	queue	in	the
portal	called,	“queue:”
Click	here	to	view	code	image

CloudQueueClient	queueClient	=	storageAccount.CreateCloudQueueClient();

//This	code	assumes	you	have	a	queue	called	"queue"	already.	If	you

don’t	have	one,	you

should	call	queue.CreateIfNotExists();

CloudQueue	queue	=	queueClient.GetQueueReference("queue");

queue.AddMessage(new	CloudQueueMessage("Queued	message	1"));

queue.AddMessage(new	CloudQueueMessage("Queued	message	2"));

queue.AddMessage(new	CloudQueueMessage("Queued	message	3"));

In	the	Azure	Portal,	you	can	browse	to	your	storage	account,	browse	to
Queues,	click	the	queue	in	the	list	and	see	the	above	messages.

Note:	Message	Identifiers

The	Queue	service	assigns	a	message	identifier	to	each	message

http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-queues/

when	it	is	added	to	the	queue.	This	is	opaque	to	the	client,	but	it	is
used	by	the	Storage	Client	Library	to	identify	a	message	uniquely
when	retrieving,	processing,	and	deleting	messages.

More	Info:	Large	Messages

There	is	a	limit	of	64	KB	per	message	stored	in	a	queue.	It	is
considered	best	practice	to	keep	the	message	small	and	to	store	any
required	data	for	processing	in	a	durable	store,	such	as	SQL
Azure,	storage	tables,	or	storage	blobs.	This	also	increases	system
reliability	since	each	queued	message	can	expire	after	seven	days	if
not	processed.	For	more	information,	see	the	reference	at
https://docs.microsoft.com/en-us/azure/service-bus-
messaging/service-bus-azure-and-service-bus-queues-compared-
contrasted.

Processing	messages
Messages	are	typically	published	by	a	separate	application	in	the	system	from
the	application	that	listens	to	the	queue	and	processes	messages.	As	shown	in	the
previous	section,	you	can	create	a	CloudQueue	reference	and	then	proceed	to
call	GetMessage()	to	de-queue	the	next	available	message	from	the	queue	as
follows:
Click	here	to	view	code	image

CloudQueueMessage	message	=	queue.GetMessage(new	TimeSpan(0,	5,	0));

if	(message	!=	null)

{

	string	theMessage	=	message.AsString;

	//	your	processing	code	goes	here

}

Note:	Invisibility	Setting

By	default,	when	you	de-queue	a	message,	it	is	invisible	to	the
queue	for	30	seconds.	In	the	event	message	processing	exceeds	this
timeframe,	supply	an	alternate	setting	for	this	value	when	creating
or	updating	the	message.	You	can	set	the	timeout	to	a	value
between	one	second	and	seven	days.	Visibility	can	also	exceed	the
message	expiry	time.

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted

Retrieving	a	batch	of	messages
A	queue	listener	can	be	implemented	as	single-threaded	(processing	one
message	at	a	time)	or	multi-threaded	(processing	messages	in	a	batch	on	separate
threads).	You	can	retrieve	up	to	32	messages	from	a	queue	using	the
GetMessages()	method	to	process	multiple	messages	in	parallel.	As	discussed	in
the	previous	sections,	create	a	CloudQueue	reference,	and	then	proceed	to	call
GetMessages().	Specify	the	number	of	items	to	de-queue	up	to	32	(this	number
can	exceed	the	number	of	items	in	the	queue)	as	follows:
Click	here	to	view	code	image

IEnumerable<CloudQueueMessage>	batch	=	queue.GetMessages(10,	new

TimeSpan(0,	5,	0));

foreach	(CloudQueueMessage	batchMessage	in	batch)

{

	Console.WriteLine(batchMessage.AsString);

}

Note:	Parallel	Processing	Overhead

Consider	the	overhead	of	message	processing	before	deciding	the
appropriate	number	of	messages	to	process	in	parallel.	If
significant	memory,	disk	space,	or	other	network	resources	are
used	during	processing,	throttling	parallel	processing	to	an
acceptable	number	will	be	necessary	to	avoid	performance
degradation	on	the	compute	instance.

Scaling	queues
When	working	with	Azure	Storage	queues,	you	need	to	consider	a	few
scalability	issues,	including	the	messaging	throughput	of	the	queue	itself	and	the
design	topology	for	processing	messages	and	scaling	out	as	needed.
Each	individual	queue	has	a	target	of	approximately	20,000	messages	per

second	(assuming	a	message	is	within	1	KB).	You	can	partition	your	application
to	use	multiple	queues	to	increase	this	throughput	value.
As	for	processing	messages,	it	is	more	cost	effective	and	efficient	to	pull

multiple	messages	from	the	queue	for	processing	in	parallel	on	a	single	compute
node;	however,	this	depends	on	the	type	of	processing	and	resources	required.
Scaling	out	compute	nodes	to	increase	processing	throughput	is	usually	also
required.
You	can	configure	VMs	or	cloud	services	to	auto-scale	by	queue.	You	can

You	can	configure	VMs	or	cloud	services	to	auto-scale	by	queue.	You	can
specify	the	average	number	of	messages	to	be	processed	per	instance,	and	the
auto-scale	algorithm	will	queue	to	run	scale	actions	to	increase	or	decrease
available	instances	accordingly.

More	Info:	Back	Off	Polling

To	control	storage	costs,	you	should	implement	a	back	off	polling
algorithm	for	queue	message	processing.	This	and	other	scale
considerations	are	discussed	in	the	reference	at
https://docs.microsoft.com/en-us/azure/storage/common/storage-
performance-checklist.

Choose	between	Azure	Storage	Tables	and	Azure	Cosmos	DB
Table	API
Azure	Cosmos	DB	is	a	cloud-hosted,	NoSQL	database	that	allows	different	data
models	to	be	implemented.	NoSQL	databases	can	be	key/value	stores,	table
stores,	and	graph	stores	(along	with	several	others).	Azure	Cosmos	DB	has
different	engines	that	accommodate	these	different	models.	Azure	Cosmos	DB
Table	API	is	a	key	value	store	that	is	very	similar	to	Azure	Storage	Tables.
The	main	differences	between	these	products	are:
	Azure	Cosmos	DB	is	much	faster,	with	latency	lower	than	10ms	on	reads
and	15ms	on	writes	at	any	scale.
	Azure	Table	Storage	only	supports	a	single	region	with	one	optional	readable
secondary	for	high	availability.	Azure	Cosmos	DB	supports	over	30	regions.
	Azure	Table	Storage	only	indexes	the	partition	key	and	the	row	key.	Azure
Cosmos	DB	automatically	indexes	all	properties.
	Azure	Table	Storage	only	supports	strong	or	eventual	consistency.
Consistency	refers	to	how	up	to	date	the	data	is	that	you	read	and	weather
you	see	the	latest	writes	from	other	users.	Stronger	consistency	means	less
overall	throughput	and	concurrent	performance	while	having	more	up	to	date
data.	Eventual	consistency	allows	for	high	concurrent	throughput	but	you
might	see	older	data.	Azure	Cosmos	DB	supports	five	different	consistency
models	and	allows	those	models	to	be	specified	at	the	session	level.	This
means	that	one	user	or	feature	might	have	a	different	consistency	level	than	a
different	user	or	feature.
	Azure	Table	Storage	only	charges	you	for	the	storage	fees,	not	for	compute

https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-checklist

fees.	This	makes	Azure	Table	Storage	very	affordable.	Azure	Cosmos	DB
charges	for	a	Request	Unit	(RU)	which	really	is	a	way	for	a	PAAS	product	to
charge	for	compute	fees.	If	you	need	more	RUs,	you	can	scale	them	up.	This
makes	Cosmos	DB	significantly	more	expensive	than	Azure	Storage	Tables.

Skill	2.3:	Manage	access	and	monitor	storage
We	have	already	learned	how	Azure	Storage	allows	access	through	access	keys,
but	what	happens	if	we	want	to	gain	access	to	specific	resources	without	giving
keys	to	the	entire	storage	account?	In	this	topic,	we’ll	introduce	security	issues
that	may	arise	and	how	to	solve	them.
Azure	Storage	has	a	built-in	analytics	feature	called	Azure	Storage	Analytics

used	for	collecting	metrics	and	logging	storage	request	activity.	You	enable
Storage	Analytics	Metrics	to	collect	aggregate	transaction	and	capacity	data,	and
you	enable	Storage	Analytics	Logging	to	capture	successful	and	failed	request
attempts	to	your	storage	account.	This	section	covers	how	to	enable	monitoring
and	logging,	control	logging	levels,	set	retention	policies,	and	analyze	the	logs.

This	skill	covers	how	to:
	Generate	shared	access	signatures,	including	client	renewal	and	data
validation
	Create	stored	access	policies
	Regenerate	storage	account	keys
	Configure	and	use	Cross-Origin	Resource	Sharing	(CORS)
	Set	retention	policies	and	logging	levels
	Analyze	logs

Generate	shared	access	signatures
By	default,	storage	resources	are	protected	at	the	service	level.	Only
authenticated	callers	can	access	tables	and	queues.	Blob	containers	and	blobs	can
optionally	be	exposed	for	anonymous	access,	but	you	would	typically	allow
anonymous	access	only	to	individual	blobs.	To	authenticate	to	any	storage
service,	a	primary	or	secondary	key	is	used,	but	this	grants	the	caller	access	to	all
actions	on	the	storage	account.
An	SAS	is	used	to	delegate	access	to	specific	storage	account	resources

without	enabling	access	to	the	entire	account.	An	SAS	token	lets	you	control	the
lifetime	by	setting	the	start	and	expiration	time	of	the	signature,	the	resources

lifetime	by	setting	the	start	and	expiration	time	of	the	signature,	the	resources
you	are	granting	access	to,	and	the	permissions	being	granted.
The	following	is	a	list	of	operations	supported	by	SAS:

	Reading	or	writing	blobs,	blob	properties,	and	blob	metadata
	Leasing	or	creating	a	snapshot	of	a	blob
	Listing	blobs	in	a	container
	Deleting	a	blob
	Adding,	updating,	or	deleting	table	entities
	Querying	tables
	Processing	queue	messages	(read	and	delete)
	Adding	and	updating	queue	messages
	Retrieving	queue	metadata

This	section	covers	creating	an	SAS	token	to	access	storage	services	using	the
Storage	Client	Library.

More	Info:	Controlling	Anonymous	Access

To	control	anonymous	access	to	containers	and	blobs,	follow	the
instructions	provided	at	http://msdn.microsoft.com/en-
us/library/azure/dd179354.aspx.

More	Info:	Constructing	an	Sas	Uri

SAS	tokens	are	typically	used	to	authorize	access	to	the	Storage
Client	Library	when	interacting	with	storage	resources,	but	you
can	also	use	it	directly	with	the	storage	resource	URI	and	use
HTTP	requests	directly.	For	details	regarding	the	format	of	an
SAS	URI,	see	http://msdn.microsoft.com/en-
us/library/azure/dn140255.aspx.

Creating	an	SAS	token	(Blobs)
The	following	code	shows	how	to	create	an	SAS	token	for	a	blob	container.
Note	that	it	is	created	with	a	start	time	and	an	expiration	time.	It	is	then	applied
to	a	blob	container:
Click	here	to	view	code	image

SharedAccessBlobPolicy	sasPolicy	=	new	SharedAccessBlobPolicy();

sasPolicy.SharedAccessExpiryTime	=	DateTime.UtcNow.AddHours(1);

http://msdn.microsoft.com/en-us/library/azure/dd179354.aspx
http://msdn.microsoft.com/en-us/library/azure/dn140255.aspx

sasPolicy.SharedAccessExpiryTime	=	DateTime.UtcNow.AddHours(1);

sasPolicy.SharedAccessStartTime	=	DateTime.UtcNow.Subtract(new

TimeSpan(0,	5,	0));

sasPolicy.Permissions	=	SharedAccessBlobPermissions.Read	|

SharedAccessBlobPermissions.

Write	|	SharedAccessBlobPermissions.Delete	|

SharedAccessBlobPermissions.List;

CloudBlobContainer	files	=	blobClient.GetContainerReference("files");

string	sasContainerToken	=	files.GetSharedAccessSignature(sasPolicy);

The	SAS	token	grants	read,	write,	delete,	and	list	permissions	to	the	container
(rwdl).	It	looks	like	this:
Click	here	to	view	code	image

?sv=2014-02-

14&sr=c&sig=B6bi4xKkdgOXhWg3RWIDO5peekq%2FRjvnuo5o41hj1pA%3D&st=2014

	-12-24T14%3A16%3A07Z&se=2014-12-24T15%3A21%3A07Z&sp=rwdl

You	can	use	this	token	as	follows	to	gain	access	to	the	blob	container	without
a	storage	account	key:
Click	here	to	view	code	image

StorageCredentials	creds	=	new	StorageCredentials(sasContainerToken);

CloudStorageAccount	accountWithSAS	=	new

CloudStorageAccount(accountSAS,	"accountname",

endpointSuffix:	null,	useHttps:	true);

CloudBlobClientCloudBlobContainer	sasFiles	=

sasClient.GetContainerReference("files");

With	this	container	reference,	if	you	have	write	permissions,	you	can	interact
with	the	container	as	you	normally	would	assuming	you	have	the	correct
permissions.

Creating	an	SAS	token	(Queues)
Assuming	the	same	account	reference	as	created	in	the	previous	section,	the
following	code	shows	how	to	create	an	SAS	token	for	a	queue:
Click	here	to	view	code	image

CloudQueueClient	queueClient	=	account.CreateCloudQueueClient();

CloudQueue	queue	=	queueClient.GetQueueReference("queue");

SharedAccessQueuePolicy	sasPolicy	=	new	SharedAccessQueuePolicy();

sasPolicy.SharedAccessExpiryTime	=	DateTime.UtcNow.AddHours(1);

sasPolicy.Permissions	=	SharedAccessQueuePermissions.Read	|

SharedAccessQueuePermissions.Add	|	SharedAccessQueuePermissions.Update

|

SharedAccessQueuePermissions.ProcessMessages;

sasPolicy.SharedAccessStartTime	=	DateTime.UtcNow.Subtract(new

sasPolicy.SharedAccessStartTime	=	DateTime.UtcNow.Subtract(new

TimeSpan(0,	5,	0));

string	sasToken	=	queue.GetSharedAccessSignature(sasPolicy);

The	SAS	token	grants	read,	add,	update,	and	process	messages	permissions	to
the	container	(raup).	It	looks	like	this:
Click	here	to	view	code	image

?sv=2014-02-

14&sig=wE5oAUYHcGJ8chwyZZd3Byp5jK1Po8uKu2t%2FYzQsIhY%3D&st=2014-12-2

4T14%3A23%3A22Z&se=2014-12-24T15%3A28%3A22Z&sp=raup

You	can	use	this	token	as	follows	to	gain	access	to	the	queue	and	add	messages:
Click	here	to	view	code	image

StorageCredentials	creds	=	new	StorageCredentials(sasContainerToken);

CloudQueueClient	sasClient	=	new	CloudQueueClient(new

Uri("https://dataike1.queue.core.windows.net/"),	creds);

CloudQueue	sasQueue	=	sasClient.GetQueueReference("queue");

sasQueue.AddMessage(new	CloudQueueMessage("new	message"));

Console.ReadKey();

Important:	Secure	Use	of	Sas

Always	use	a	secure	HTTPS	connection	to	generate	an	SAS	token
to	protect	the	exchange	of	the	URI,	which	grants	access	to
protected	storage	resources.

Creating	an	SAS	token	(Tables)
The	following	code	shows	how	to	create	an	SAS	token	for	a	table:
Click	here	to	view	code	image

SharedAccessTablePolicy	sasPolicy	=	new	SharedAccessTablePolicy();

sasPolicy.SharedAccessExpiryTime	=	DateTime.UtcNow.AddHours(1);

sasPolicy.Permissions	=	SharedAccessTablePermissions.Query	|

SharedAccessTablePermissions.Add	|	SharedAccessTablePermissions.Update

|

SharedAccessTablePermissions.Delete;

sasPolicy.SharedAccessStartTime	=	DateTime.UtcNow.Subtract(new

TimeSpan(0,	5,	0));

string	sasToken	=	table.GetSharedAccessSignature(sasPolicy);

The	SAS	token	grants	query,	add,	update,	and	delete	permissions	to	the
container	(raud).	It	looks	like	this:
Click	here	to	view	code	image

?sv=2014-02-

14&tn=%24logs&sig=dsnI7RBA1xYQVr%2FTlpDEZMO2H8YtSGwtyUUntVmxstA%3D&s

t=2014-12-24T14%3A48%3A09Z&se=2014-12-24T15%3A53%3A09Z&sp=raud

Renewing	an	SAS	token
SAS	tokens	have	a	limited	period	of	validity	based	on	the	start	and	expiration
times	requested.	You	should	limit	the	duration	of	an	SAS	token	to	limit	access	to
controlled	periods	of	time.	You	can	extend	access	to	the	same	application	or	user
by	issuing	new	SAS	tokens	on	request.	This	should	be	done	with	appropriate
authentication	and	authorization	in	place.

Validating	data
When	you	extend	write	access	to	storage	resources	with	SAS,	the	contents	of
those	resources	can	potentially	be	made	corrupt	or	even	be	tampered	with	by	a
malicious	party,	particularly	if	the	SAS	was	leaked.	Be	sure	to	validate	system
use	of	all	resources	exposed	with	SAS	keys.

Create	stored	access	policies
Stored	access	policies	provide	greater	control	over	how	you	grant	access	to
storage	resources	using	SAS	tokens.	With	a	stored	access	policy,	you	can	do	the
following	after	releasing	an	SAS	token	for	resource	access:

	Change	the	start	and	end	time	for	a	signature’s	validity
	Control	permissions	for	the	signature
	Revoke	access

The	stored	access	policy	can	be	used	to	control	all	issued	SAS	tokens	that	are
based	on	the	policy.	For	a	step-by-step	tutorial	for	creating	and	testing	stored
access	policies	for	blobs,	queues,	and	tables,	see	http://azure.microsoft.com/en-
us/documentation/articles/storage-dotnet-shared-access-signature-part-2.

Important:	Recommendation	for	Sas	Tokens

Use	stored	access	policies	wherever	possible,	or	limit	the	lifetime	of
SAS	tokens	to	avoid	malicious	use.

More	Info:	Stored	Access	Policy	Format

For	more	information	on	the	HTTP	request	format	for	creating
stored	access	policies,	see:	https://docs.microsoft.com/en-

http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-shared-access-signature-part-2
https://docs.microsoft.com/en-us/rest/api/storageservices/establishing-a-stored-access-policy

us/rest/api/storageservices/establishing-a-stored-access-policy.

Regenerate	storage	account	keys
When	you	create	a	storage	account,	two	512-bit	storage	access	keys	are
generated	for	authentication	to	the	storage	account.	This	makes	it	possible	to
regenerate	keys	without	impacting	application	access	to	storage.
The	process	for	managing	keys	typically	follows	this	pattern:

1.	 When	you	create	your	storage	account,	the	primary	and	secondary	keys	are
generated	for	you.	You	typically	use	the	primary	key	when	you	first	deploy
applications	that	access	the	storage	account.

2.	 When	it	is	time	to	regenerate	keys,	you	first	switch	all	application
configurations	to	use	the	secondary	key.

3.	 Next,	you	regenerate	the	primary	key,	and	switch	all	application
configurations	to	use	this	primary	key.

4.	 Next,	you	regenerate	the	secondary	key.

Important:	Managing	Key	Regeneration

It	is	imperative	that	you	have	a	sound	key	management	strategy.	In
particular,	you	must	be	certain	that	all	applications	are	using	the
primary	key	at	a	given	point	in	time	to	facilitate	the	regeneration
process.

Regenerating	storage	account	keys
To	regenerate	storage	account	keys	using	the	portal,	complete	the	following
steps:

1.	 Navigate	to	the	management	portal	accessed	via	https://portal.azure.com.
2.	 Select	your	storage	account	from	your	dashboard	or	your	All	Resources

list.
3.	 Click	the	Keys	box.
4.	 On	the	Manage	Keys	blade,	click	Regenerate	Primary	or	Regenerate

Secondary	on	the	command	bar,	depending	on	which	key	you	want	to
regenerate.

5.	 In	the	confirmation	dialog	box,	click	Yes	to	confirm	the	key	regeneration.

https://portal.azure.com

Configure	and	use	Cross-Origin	Resource	Sharing
Cross-Origin	Resource	Sharing	(CORS)	enables	web	applications	running	in	the
browser	to	call	web	APIs	that	are	hosted	by	a	different	domain.	Azure	Storage
blobs,	tables,	and	queues	all	support	CORS	to	allow	for	access	to	the	Storage
API	from	the	browser.	By	default,	CORS	is	disabled,	but	you	can	explicitly
enable	it	for	a	specific	storage	service	within	your	storage	account.

More:	Info	Enabling	Cors

For	additional	information	about	enabling	CORS	for	your	storage
accounts,	see:	http://msdn.microsoft.com/en-
us/library/azure/dn535601.aspx.

Configure	storage	metrics
Storage	Analytics	metrics	provide	insight	into	transactions	and	capacity	for	your
storage	accounts.	You	can	think	of	them	as	the	equivalent	of	Windows
Performance	Monitor	counters.	By	default,	storage	metrics	are	not	enabled,	but
you	can	enable	them	through	the	management	portal,	using	Windows
PowerShell,	or	by	calling	the	management	API	directly.
When	you	configure	storage	metrics	for	a	storage	account,	tables	are

generated	to	store	the	output	of	metrics	collection.	You	determine	the	level	of
metrics	collection	for	transactions	and	the	retention	level	for	each	service:	Blob,
Table,	and	Queue.
Transaction	metrics	record	request	access	to	each	service	for	the	storage

account.	You	specify	the	interval	for	metric	collection	(hourly	or	by	minute).	In
addition,	there	are	two	levels	of	metrics	collection:

	Service	level	These	metrics	include	aggregate	statistics	for	all	requests,
aggregated	at	the	specified	interval.	Even	if	no	requests	are	made	to	the
service,	an	aggregate	entry	is	created	for	the	interval,	indicating	no	requests
for	that	period.
	API	level	These	metrics	record	every	request	to	each	service	only	if	a
request	is	made	within	the	hour	interval.

Note:	Metrics	Collected

All	requests	are	included	in	the	metrics	collected,	including	any
requests	made	by	Storage	Analytics.

http://msdn.microsoft.com/en-us/library/azure/dn535601.aspx

Capacity	metrics	are	only	recorded	for	the	Blob	service	for	the	account.
Metrics	include	total	storage	in	bytes,	the	container	count,	and	the	object	count
(committed	and	uncommitted).
Table	2-1	summarizes	the	tables	automatically	created	for	the	storage	account

when	Storage	Analytics	metrics	are	enabled.

TABLE	2-1	Storage	metrics	tables

METRICS TABLE	NAMES

Hourly	metrics $MetricsHourPrimaryTransactionsBlob
$MetricsHourPrimaryTransactionsTable
$MetricsHourPrimaryTransactionsQueue
$MetricsHourPrimaryTransactionsFile

Minute	metrics	(cannot	set
through	the	management
portal)

$MetricsMinutePrimaryTransactionsBlob
$MetricsMinutePrimaryTransactionsTable
$MetricsMinutePrimaryTransactionsQueue
$MetricsMinutePrimaryTransactionsFile

Capacity	(only	for	the	Blob
service)

$MetricsCapacityBlob

More	Info:	Storage	Analytics	Metrics	Tabale	Schema

For	additional	details	on	the	transaction	and	capacity	metrics
collected,	see:	https://docs.microsoft.com/en-
us/rest/api/storageservices/storage-analytics-metrics-table-schema.

Retention	can	be	configured	for	each	service	in	the	storage	account.	By
default,	Storage	Analytics	will	not	delete	any	metrics	data.	When	the	shared	20-
terabyte	limit	is	reached,	new	data	cannot	be	written	until	space	is	freed.	This
limit	is	independent	of	the	storage	limit	of	the	account.	You	can	specify	a
retention	period	from	0	to	365	days.	Metrics	data	is	automatically	deleted	when
the	retention	period	is	reached	for	the	entry.
When	metrics	are	disabled,	existing	metrics	that	have	been	collected	are

persisted	up	to	their	retention	policy.

https://docs.microsoft.com/en-us/rest/api/storageservices/storage-analytics-metrics-table-schema

More	Info:	Storage	Metrics

For	more	information	about	enabling	and	working	with	storage
metrics,	see:	http://msdn.microsoft.com/en-
us/library/azure/dn782843.aspx.

Configuring	storage	metrics	and	retention
To	enable	storage	metrics	and	associated	retention	levels	for	Blob,	Table,	and
Queue	services	in	the	portal,	follow	these	steps:

1.	 Navigate	to	the	management	portal	accessed	via	https://portal.azure.com.

A.	 Select	your	storage	account	from	your	dashboard	or	your	All
resources	list.

B.	 Scroll	down	to	the	Usage	section,	and	click	the	Capacity	graph	check
box.

C.	 On	the	Metric	blade,	click	Diagnostics	Settings	on	the	command	bar.
D.	 Click	the	On	button	under	Status.	This	shows	the	options	for	metrics

and	logging.
	If	this	storage	account	uses	blobs,	select	Blob	Aggregate	Metrics	to
enable	service	level	metrics.	Select	Blob	Per	API	Metrics	for	API
level	metrics.
	If	this	storage	account	uses	tables,	select	Table	Aggregate	Metrics	to
enable	service	level	metrics.	Select	Table	Per	API	Metrics	for	API
level	metrics.
	If	this	storage	account	uses	queues,	select	Queue	Aggregate	Metrics
to	enable	service	level	metrics.	Select	Queue	Per	API	Metrics	for
API	level	metrics.

2.	 Provide	a	value	for	retention	according	to	your	retention	policy.	Through
the	portal,	this	will	apply	to	all	services.	It	will	also	apply	to	Storage
Analytics	Logging	if	that	is	enabled.	Select	one	of	the	available	retention
settings	from	the	slider-bar,	or	enter	a	number	from	0	to	365.

Note:	Choosing	a	Metrics	Level

Minimal	metrics	yield	enough	information	to	provide	a	picture	of
the	overall	usage	and	health	of	the	storage	account	services.

http://msdn.microsoft.com/en-us/library/azure/dn782843.aspx
https://portal.azure.com

Verbose	metrics	provide	more	insight	at	the	API	level,	allowing	for
deeper	analysis	of	activities	and	issues,	which	is	helpful	for
troubleshooting.

Analyze	storage	metrics
Storage	Analytics	metrics	are	collected	in	tables	as	discussed	in	the	previous
section.	You	can	access	the	tables	directly	to	analyze	metrics,	but	you	can	also
review	metrics	in	both	Azure	management	portals.	This	section	discusses
various	ways	to	access	metrics	and	review	or	analyze	them.

More	Info:	Storage	Monitoring,	Diagnosing,	and	Troubleshooting

For	more	details	on	how	to	work	with	storage	metrics	and	logs,	see:
http://azure.microsoft.com/en-us/documentation/articles/storage-
monitoring-diagnosing-troubleshooting.

Monitor	metrics
At	the	time	of	this	writing,	the	portal	features	for	monitoring	metrics	is	limited	to
some	predefined	metrics,	including	total	requests,	total	egress,	average	latency,
and	availability	(see	Figure	2-4).	Click	each	box	to	see	a	Metric	blade	that
provides	additional	detail.

http://azure.microsoft.com/en-us/documentation/articles/storage-monitoring-diagnosing-troubleshooting

FIGURE	2-4	Monitoring	overview	from	the	portal

To	monitor	the	metrics	available	in	the	portal,	complete	the	following	steps:

1.	 Navigate	to	the	management	portal	accessed	via	https://portal.azure.com.
2.	 Select	your	storage	account	from	your	dashboard	or	your	All	Resources

list.
3.	 Scroll	down	to	the	Monitor	section,	and	view	the	monitoring	boxes

summarizing	statistics.	You’ll	see	TotalRequests,	TotalEgress,
AverageE2ELatency,	and	AvailabilityToday	by	default.

4.	 Click	each	metric	box	to	view	additional	details	for	each	metric.	You’ll	see
metrics	for	blobs,	tables,	and	queues	if	all	three	metrics	are	being	collected.

Note:	Customizing	the	Monitoring	Blade

You	can	customize	which	boxes	appear	in	the	Monitoring	area	of
the	portal,	and	you	can	adjust	the	size	of	each	box	to	control	how
much	detail	is	shown	at	a	glance	without	drilling	into	the	metrics
blade.

Configure	Storage	Analytics	Logging
Storage	Analytics	Logging	provides	details	about	successful	and	failed	requests
to	each	storage	service	that	has	activity	across	the	account’s	blobs,	tables,	and

https://portal.azure.com

to	each	storage	service	that	has	activity	across	the	account’s	blobs,	tables,	and
queues.	By	default,	storage	logging	is	not	enabled,	but	you	can	enable	it	through
the	management	portal,	by	using	Windows	PowerShell,	or	by	calling	the
management	API	directly.
When	you	configure	Storage	Analytics	Logging	for	a	storage	account,	a	blob

container	named	$logs	is	automatically	created	to	store	the	output	of	the	logs.
You	choose	which	services	you	want	to	log	for	the	storage	account.	You	can	log
any	or	all	of	the	Blob,	Table,	or	Queue	servicesLogs	are	created	only	for	those
services	that	have	activity,	so	you	will	not	be	charged	if	you	enable	logging	for	a
service	that	has	no	requests.	The	logs	are	stored	as	block	blobs	as	requests	are
logged	and	are	periodically	committed	so	that	they	are	available	as	blobs.

Note:	Deleting	the	Log	Container

After	Storage	Analytics	has	been	enabled,	the	log	container	cannot
be	deleted;	however,	the	contents	of	the	log	container	can	be
deleted.

Retention	can	be	configured	for	each	service	in	the	storage	account.	By	default,
Storage	Analytics	will	not	delete	any	logging	data.	When	the	shared	20-terabyte
limit	is	reached,	new	data	cannot	be	written	until	space	is	freed.	This	limit	is
independent	of	the	storage	limit	of	the	account.	You	can	specify	a	retention
period	from	0	to	365	days.	Logging	data	is	automatically	deleted	when	the
retention	period	is	reached	for	the	entry.

Note:	Duplicate	Logs

Duplicate	log	entries	may	be	present	within	the	same	hour.	You
can	use	the	RequestId	and	operation	number	to	uniquely	identify
an	entry	to	filter	duplicates.

More	Info:	Storage	Logging

For	more	information	about	enabling	and	working	with	Azure
storage	logging,	see:	http://msdn.microsoft.com/en-
us/library/azure/dn782843.aspx	and	http://msdn.microsoft.com/en-
us/library/azure/hh343262.aspx.

Set	retention	policies	and	logging	levels	To	enable	storage	logging	and
associated	retention	levels	for	Blob,	Table,	and	Queue	services	in	the	portal,

http://msdn.microsoft.com/en-us/library/azure/dn782843.aspx
http://msdn.microsoft.com/en-us/library/azure/hh343262.aspx

associated	retention	levels	for	Blob,	Table,	and	Queue	services	in	the	portal,
follow	these	steps:

1.	 Navigate	to	the	management	portal	accessed	via	https://portal.azure.com.
2.	 Select	your	storage	account	from	your	dashboard	or	your	All	resources	list.
3.	 Under	the	Metrics	section,	click	Diagnostics.
4.	 Click	the	On	button	under	Status.	This	shows	the	options	for	enabling

monitoring	features.
5.	 If	this	storage	account	uses	blobs,	select	Blob	Logs	to	log	all	activity.
6.	 If	this	storage	account	uses	tables,	select	Table	Logs	to	log	all	activity.
7.	 If	this	storage	account	uses	queues,	select	Queue	Logs	to	log	all	activity.
8.	 Provide	a	value	for	retention	according	to	your	retention	policy.	Through

the	portal,	this	will	apply	to	all	services.	It	will	also	apply	to	Storage
Analytics	Metrics	if	that	is	enabled.	Select	one	of	the	available	retention
settings	from	the	drop-down	list,	or	enter	a	number	from	0	to	365.

Note:	Controlling	Logged	Activities

From	the	portal,	when	you	enable	or	disable	logging	for	each
service,	you	enable	read,	write,	and	delete	logging.	To	log	only
specific	activities,	use	Windows	PowerShell	cmdlets.

Enable	client-side	logging
You	can	enable	client-side	logging	using	Microsoft	Azure	storage	libraries	to	log
activity	from	client	applications	to	your	storage	accounts.	For	information	on	the
.NET	Storage	Client	Library,	see:	http://msdn.microsoft.com/en-
us/library/azure/dn782839.aspx.	For	information	on	the	Storage	SDK	for	Java,
see:	http://msdn.microsoft.com/en-us/library/azure/dn782844.aspx.

Analyze	logs
Logs	are	stored	as	block	blobs	in	delimited	text	format.	When	you	access	the
container,	you	can	download	logs	for	review	and	analysis	using	any	tool
compatible	with	that	format.	Within	the	logs,	you’ll	find	entries	for	authenticated
and	anonymous	requests,	as	listed	in	Table	2-2.

TABLE	2-2	Authenticated	and	anonymous	logs

Request	type Logged	requests

https://portal.azure.com
http://msdn.microsoft.com/en-us/library/azure/dn782839.a
http://msdn.microsoft.com/en-us/library/azure/dn782844.aspx

Request	type Logged	requests

Authenticated
requests

	Successful	requests
	Failed	requests	such	as	timeouts,	authorization,
throttling	issues,	and	other	errors
	Requests	that	use	an	SAS
	Requests	for	analytics	data

Anonymous
requests

	Successful	requests
	Server	errors
	Timeouts	for	client	or	server
	Failed	GET	requests	with	error	code	304	(Not	Modified)

Logs	include	status	messages	and	operation	logs.	Status	message	columns
include	those	shown	in	Table	2-3.	Some	status	messages	are	also	reported	with
storage	metrics	data.	There	are	many	operation	logs	for	the	Blob,	Table,	and
Queue	services.

More	Info:	Status	Messages	and	Operation	Logs

For	a	detailed	list	ofx	specific	logs	and	log	format	specifics,	see:
http://msdn.microsoft.com/en-us/library/azure/hh343260.aspx	and
http://msdn.microsoft.com/en-us/library/hh343259.aspx.

TABLE	2-3	Information	included	in	logged	status	messages

Column Description

Status
Message

Indicates	a	value	for	the	type	of	status	message,	indicating
type	of	success	or	failure

Description Describes	the	status,	including	any	HTTP	verbs	or	status
codes

Billable Indicates	whether	the	request	was	billable

Availability Indicates	whether	the	request	is	included	in	the	availability
calculation	for	storage	metrics

Finding	your	logs
When	storage	logging	is	configured,	log	data	is	saved	to	blobs	in	the	$logs

http://msdn.microsoft.com/en-us/library/azure/hh343260.aspx
http://msdn.microsoft.com/en-us/library/hh343259.aspx

When	storage	logging	is	configured,	log	data	is	saved	to	blobs	in	the	$logs
container	created	for	your	storage	account.	You	can’t	see	this	container	by
listing	containers,	but	you	can	navigate	directly	to	the	container	to	access,	view,
or	download	the	logs.
To	view	analytics	logs	produced	for	a	storage	account,	do	the	following:
Using	a	storage	browsing	tool,	navigate	to	the	$logs	container	within	the

storage	account	you	have	enabled	Storage	Analytics	Logging	for	using	this
convention:	https://<accountname>.blob.core.windows.net/$logs.
View	the	list	of	log	files	with	the	convention

<servicetype>/YYYY/MM/DD/HHMM/<counter>.log.
Select	the	log	file	you	want	to	review,	and	download	it	using	the	storage

browsing	tool.

More	Info:	Log	Metadata

The	blob	name	for	each	log	file	does	not	provide	an	indication	of
the	time	range	for	the	logs.	You	can	search	this	information	in	the
blob	metadata	using	storage	browsing	tools	or	Windows
PowerShell.

View	logs	with	Microsoft	Excel
Storage	logs	are	recorded	in	a	delimited	format	so	that	you	can	use	any
compatible	tool	to	view	logs.	To	view	logs	data	in	Excel,	follow	these	steps:

1.	 Open	Excel,	and	on	the	Data	menu,	click	From	Text.
2.	 Find	the	log	file	and	click	Import.
3.	 During	import,	select	Delimited	format.	Select	Semicolon	as	the	only

delimiter,	and	Double-Quote	(“)	as	the	text	qualifier.

Analyze	logs
After	you	load	your	logs	into	a	viewer	like	Excel,	you	can	analyze	and	gather
information	such	as	the	following:

	Number	of	requests	from	a	specific	IP	range
	Which	tables	or	containers	are	being	accessed	and	the	frequency	of	those
requests
	Which	user	issued	a	request,	in	particular,	any	requests	of	concern
	Slow	requests

	How	many	times	a	particular	blob	is	being	accessed	with	an	SAS	URL
	Details	to	assist	in	investigating	network	errors

More	Info:	Log	Analysis

You	can	run	the	Azure	HDInsight	Log	Analysis	Toolkit	(LAT)	for
a	deeper	analysis	of	your	storage	logs.	For	more	information,	see:
https://hadoopsdk.codeplex.com/releases/view/117906.

Skill	2.4:	Implement	Azure	SQL	databases
In	this	section,	you	learn	about	Microsoft	Azure	SQL	Database,	a	PaaS	offering
for	relational	data.

This	skill	covers	how	to:
	Choose	the	appropriate	database	tier	and	performance	level
	Configure	and	perform	point	in	time	recovery
	Enable	geo-replication
	Import	and	export	data	and	schema
	Scale	Azure	SQL	databases
	Manage	elastic	pools,	including	DTUs	and	eDTUs
	Manage	limits	and	resource	governor
	Implement	Azure	SQL	Data	Sync
	Implement	graph	database	functionality	in	Azure	SQL

Choosing	the	appropriate	database	tier	and	performance	level
Choosing	a	SQL	Database	tier	used	to	be	simply	a	matter	of	storage	space.
Recently,	Microsoft	added	new	tiers	that	also	affect	the	performance	of	SQL
Database.	This	tiered	pricing	is	called	Service	Tiers.	There	are	three	service	tiers
to	choose	from,	and	while	they	still	each	have	restrictions	on	storage	space,	they
also	have	some	differences	that	might	affect	your	choice.	The	major	difference	is
in	a	measurement	called	database	throughput	units	(DTUs).	A	DTU	is	a	blended
measure	of	CPU,	memory,	disk	reads,	and	disk	writes.	Because	SQL	Database	is
a	shared	resource	with	other	Azure	customers,	sometimes	performance	is	not
stable	or	predictable.	As	you	go	up	in	performance	tiers,	you	also	get	better
predictability	in	performance.

https://hadoopsdk.codeplex.com/releases/view/117906

predictability	in	performance.
	Basic	Basic	tier	is	meant	for	light	workloads.	There	is	only	one	performance
level	of	the	basic	service	tier.	This	level	is	good	for	small	use,	new	projects,
testing,	development,	or	learning.
	Standard	Standard	tier	is	used	for	most	production	online	transaction
processing	(OLTP)	databases.	The	performance	is	more	predictable	than	the
basic	tier.	In	addition,	there	are	four	performance	levels	under	this	tier,	levels
S0	to	S3	(S4	–	S12	are	currently	in	preview).
	Premium	Premium	tier	continues	to	scale	at	the	same	level	as	the	standard
tier.	In	addition,	performance	is	typically	measured	in	seconds.	For	instance,
the	basic	tier	can	handle	16,600	transactions	per	hour.	The	standard/S2	level
can	handle	2,570	transactions	per	minute.	The	top	tier	of	premium	can	handle
735	transactions	per	second.	That	translates	to	2,645,000	per	hour	in	basic
tier	terminology.

More	Info:	Sql	Database	Tiers	and	Throughput

For	more	information	on	SQL	Database	tiers,	see:
http://msdn.microsoft.com/en-us/library/azure/dn741336.aspx.

There	are	many	similarities	between	the	various	tiers.	Each	tier	has	a	99.99
percent	uptime	SLA,	backup	and	restore	capabilities,	access	to	the	same	tooling,
and	the	same	database	engine	features.	Fortunately,	the	levels	are	adjustable,	and
you	can	change	your	tier	as	your	scaling	requirements	change.
The	management	portal	can	help	you	select	the	appropriate	level.	You	can

review	the	metrics	on	the	Metrics	tab	to	see	the	current	load	of	your	database
and	decide	whether	to	scale	up	or	down.

1.	 Click	the	SQL	database	you	want	to	monitor.
2.	 Click	the	DTU	tab,	as	shown	in	Figure	2-5.
3.	 Add	the	following	metrics:

	CPU	Percentage
	Physical	Data	Reads	Percentage
	Log	Writes	Percentage

http://msdn.microsoft.com/en-us/library/azure/dn741336.aspx

FIGURE	2-5	The	Metrics	tab

All	three	of	these	metrics	are	shown	relative	to	the	DTU	of	your	database.	If
you	reach	80	percent	of	your	performance	metrics,	it’s	time	to	consider
increasing	your	service	tier	or	performance	level.	If	you’re	consistently	below	10
percent	of	the	DTU,	you	might	consider	decreasing	your	service	tier	or
performance	level.	Be	aware	of	momentary	spikes	in	usage	when	making	your
choice.
In	addition,	you	can	configure	an	email	alert	for	when	your	metrics	are	80

percent	of	your	selected	DTU	by	completing	the	following	steps:

1.	 Click	the	metric.
2.	 Click	Add	Rule.
3.	 The	first	page	of	the	Create	Alert	Rule	dialog	box	is	shown	in	Figure	2-6.

Add	a	name	and	description,	and	then	click	the	right	arrow.

FIGURE	2-6	The	first	page	of	the	Add	An	Alert	Rule	dialog	box

4.	 Scroll	down	for	the	rest	of	the	page	of	the	Create	Alert	Rule	dialog	box,
shown	in	Figure	2-7,	select	the	condition	and	the	threshold	value.

FIGURE	2-7	The	second	page	of	the	Create	Alert	Rule	dialog	box

5.	 Select	your	alert	evaluation	window.	An	email	will	be	generated	if	the
event	happens	over	a	specific	duration.	You	should	indicate	at	least	10
minutes.

6.	 Select	the	action.	You	can	choose	to	send	an	email	either	to	the	service
administrator(s)	or	to	a	specific	email	address.

Configuring	and	performing	point	in	time	recovery
Azure	SQL	Database	does	a	full	backup	every	week,	a	differential	backup	each
day,	and	an	incremental	log	backup	every	five	minutes.	The	incremental	log
backup	allows	for	a	point	in	time	restore,	which	means	the	database	can	be
restored	to	any	specific	time	of	day.	This	means	that	if	you	accidentally	delete	a
customer’s	table	from	your	database,	you	will	be	able	to	recover	it	with	minimal
data	loss	if	you	know	the	timeframe	to	restore	from	that	has	the	most	recent
copy.
The	length	of	time	it	takes	to	do	a	restore	varies.	The	further	away	you	get

The	length	of	time	it	takes	to	do	a	restore	varies.	The	further	away	you	get
from	the	last	differential	backup	determines	the	longer	the	restore	operation
takes	because	there	are	more	log	backups	to	restore.	When	you	restore	a	new
database,	the	service	tier	stays	the	same,	but	the	performance	level	changes	to
the	minimum	level	of	that	tier.
Depending	on	your	service	tier,	you	will	have	different	backup	retention

periods.	Basic	retains	backups	for	7	days.	Standard	and	premium	retains	for	35
days.
You	can	restore	a	database	that	was	deleted	as	long	as	you	are	within	the

retention	period.	Follow	these	steps	to	restore	a	database:

1.	 Select	the	database	you	want	to	restore,	and	then	click	Restore.
2.	 The	Restore	dialog	box	opens,	as	shown	in	Figure	2-8.

FIGURE	2-8	The	Restore	dialog	box

3.	 Select	a	database	name.
4.	 Select	a	restore	point.	You	can	use	the	slider	bar	or	manually	enter	a	date

and	time.
5.	 You	can	also	restore	a	deleted	database.	Click	on	the	SQL	Server	(not	the

database)	that	once	held	the	database	you	wish	to	restore.	Select	the
Deleted	Databases	tab,	as	shown	in	Figure	2-9.

FIGURE	2-9	The	Deleted	Databases	tab	for	SQL	databases	in	the
management	portal

6.	 Select	the	database	you	want	to	restore.
7.	 Click	Restore	as	you	did	in	Step	1.
8.	 Specify	a	database	name	for	the	new	database.
9.	 Click	Submit.

Enabling	geo-replication
Every	Azure	SQL	Database	subscription	has	built-in	redundancy.	Three	copies
of	your	data	are	stored	across	fault	domains	in	the	datacenter	to	protect	against
server	and	hardware	failure.	This	is	built	in	to	the	subscription	price	and	is	not

server	and	hardware	failure.	This	is	built	in	to	the	subscription	price	and	is	not
configurable.
In	addition,	you	can	configure	active	geo-replication.	This	allows	your	data	to

be	replicated	between	Azure	data	centers.	Active	geo-replication	has	the
following	benefits:

	Database-level	disaster	recovery	goes	quickly	when	you’ve	replicated
transactions	to	databases	on	different	SQL	Database	servers	in	the	same	or
different	regions.
	You	can	fail	over	to	a	different	data	center	in	the	event	of	a	natural	disaster
or	other	intentionally	malicious	act.
	Online	secondary	databases	are	readable,	and	they	can	be	used	as	load
balancers	for	read-only	workloads	such	as	reporting.
	With	automatic	asynchronous	replication,	after	an	online	secondary	database
has	been	seeded,	updates	to	the	primary	database	are	automatically	copied	to
the	secondary	database.

Creating	an	offline	secondary	database
To	create	an	offline	secondary	database	in	the	portal,	follow	these	steps:

1.	 Navigate	to	your	SQL	database	in	the	management	portal	accessed	via
https://portal.azure.com.

2.	 Scroll	to	the	Geo	Replication	section,	and	click	the	Configure	Geo
Replication	box.

3.	 On	the	Geo	Replication	blade,	select	your	target	region.
4.	 On	the	Create	Secondary	blade,	click	Create.

Note:	Uses	for	Creating	an	Offline	Secondary

Another	use	for	this	feature	has	to	do	with	the	ability	to	terminate
the	continuous	copy	relationship	between	a	primary	and	secondary
database.	You	can	terminate	the	relationship	and	then	upgrade	the
primary	database	to	a	different	schema	to	support	a	software
upgrade.	The	secondary	database	gives	you	a	rollback	option.

Creating	an	online	secondary	database
Before	you	create	an	online	secondary,	the	following	requirements	must	be	met:

	The	secondary	database	must	have	the	same	name	as	the	primary.

https://portal.azure.com

	They	must	be	on	separate	servers.
	They	both	must	be	on	the	same	subscription.
	The	secondary	server	cannot	be	a	lower	performance	tier	than	the	primary.

The	steps	for	configuring	an	active	secondary	is	the	same	as	creating	an	offline
secondary,	except	you	can	select	the	target	region,	as	shown	in	Figure	2-10.

FIGURE	2-10	The	New	Secondary	For	Geo	Replication	dialog	box	for
creating	an	active	secondary

Creating	an	online	secondary	database

1.	 To	create	an	online	secondary	in	the	portal,	follow	these	steps:Navigate	to
your	SQL	database	in	the	management	portal	accessed	via
https://portal.azure.com.

2.	 On	the	Create	Secondary	blade,	change	the	Secondary	Type	to	Readable.
3.	 Click	Create	to	create	the	secondary.

Import	and	export	schema	and	data
The	on-premise	version	of	Microsoft	SQL	Server	has	long	had	the	ability	to
export	and	import	data	using	a	BACPAC	file.	This	file	will	also	work	with
Azure	SQL	Database.	A	BACPAC	file	is	just	a	ZIP	file	that	contains	all	of	the
metadata	and	state	data	of	a	SQL	Server	database.
The	easiest	way	to	import	schema	and	data	from	an	on-premise	SQL	Server

into	an	Azure	SQL	Database	is	to	use	SQL	Server	Management	Studio	(SSMS).
The	general	steps	are:

1.	 Export	source	database	using	SSMS
2.	 Import	database	to	a	new	destination	using	SSMS.

Export	source	database

1.	 Open	SQL	Server	Management	Studio
2.	 Right-click	on	the	source	database,	click	Tasks,	and	click	Export	Data-tier

Application	(see	Figure	2-11).

FIGURE	2-11	SSMS	Export	Data-tier	right-click	menu

3.	 Click	Next	on	the	Welcome	screen	(Figure	2-12).

https://portal.azure.com

FIGURE	2-12	Welcome	screen	for	BACPAC	process

4.	 In	the	Export	Settings	screen,	you	can	choose	where	the	BACPAC	file
should	be	stored.	You	can	either	save	it	to	a	local	disk	or	save	it	in	an
Azure	Storage	blob	container.	Either	method	is	easy	to	use	when	you
import	the	BACPAC	file	(Figure	2-13).

FIGURE	2-13	Location	for	BACPAC	file

5.	 On	the	Advanced	tab	(Figure	2-14),	you	can	selective	choose	specific
tables	or	schemas	or	the	entire	database.

FIGURE	2-14	The	advanced	tab	for	selecting	the	correct	tables	and
schema

6.	 Then	click	Finish	and	we’re	all	done.

Import	BACPAC	file	into	Azure	SQL	Database

1.	 Connect	to	your	Azure	SQL	Database	using	SSMS.
2.	 You	may	need	to	log	into	the	portal	and	allow	your	IP	address	in	to	the

built-in	firewall	used	by	Azure	SQL	Database.	More	information	can	be
found	here:	https://docs.microsoft.com/en-us/azure/sql-database/sql-
database-firewall-configure.

A.	 Right-click	on	the	database	folder	and	click	Import	Data-tier
Application.

B.	 Click	Next.
C.	 Choose	the	correct	BACPAC	file	and	click	Next.
D.	 In	the	next	screen	(Figure	2-15),	click	Connect	and	enter	your	storage

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-firewall-configure

account	name	and	account	key.

FIGURE	2-15	The	Connect	To	Microsoft	Azure	Storage	screen

3.	 Name	the	new	database	and	select	the	pricing	tier	(see	Figure	2-16).
Warning:	this	option	determines	pricing.	If	you	are	just	experimenting,
choose	Basic	under	the	Edition	of	Microsoft	Azure	SQL	Database.

FIGURE	2-16	Choosing	the	database	name	and	pricing	tier

4.	 Click	Next	and	Finish.
5.	 The	schema	and	data	will	import	into	the	new	database	that	you’ve	named.

Scale	Azure	SQL	databases
There	are	two	methods	for	preparing	a	relational	database	for	a	high	transaction
load.	First,	we	can	scale-up.	This	means	that	we	will	add	CPU,	memory,	and
better	disk	i/o	to	handle	the	load.	In	Azure	SQL	Database,	scaling	up	is	very
simple:	we	just	move	the	slider	bar	over	to	the	right	or	choose	a	new	pricing	tier.
This	will	give	us	the	ability	to	handle	more	DTUs.	Under	a	very	high	load,	we
might	not	be	able	to	scale-up	much	futher.	That	would	mean	we’d	have	to	use
our	second	method,	scale-out.
Scaling	out	a	database	means	that	we	would	break	apart	a	large	database	into

small	portions.	This	is	called	sharding.	We	would	put	one	portion	of	our	data	in

small	portions.	This	is	called	sharding.	We	would	put	one	portion	of	our	data	in
one	database	and	another	portion	of	our	data	in	a	different	database.	We	can	do
this	by	function,	by	date,	by	geo-location	of	our	brand	offices,	by	business	unit,
or	some	other	method.
We	may	also	shard	a	database	simply	because	it	is	too	large	to	be	stored	in	a

single	Azure	SQL	Database.	Or	it	is	too	much	data	to	backup	and	restore	in	a
reasonable	amount	of	time.	We	may	also	shard	data	because	we	are	a	software
company	and	our	customers	require	that	their	data	is	stored	away	from	our	other
customers,	effectively	giving	us	one	database	per	customer.
Sharding	is	burdensome	in	a	transactional	system	because	it	usually	involves
rewriting	a	significant	portion	of	our	applications	to	handle	multiple	databases.
Also,	if	we	get	the	sharding	boundaries	wrong,	we	might	not	actually	improve
performance.	For	instance,	what	if	we	often	join	data	from	one	database	with
data	from	a	different	database?	Now	we’re	locking	resources	while	we	wait	for
the	slower	database	to	respond.	This	can	compound	our	concurrency,	blocking,
and	deadlocking	issues	that	we	might	have	led	us	towards	scaling-out	in	the	first
place.
Some	of	these	issues	are	solved	with	a	shard	map.	This	is	usually	a	table	or

database	that	tells	the	application	where	data	actually	is	and	where	to	go	looking
for	it.	This	allows	us	to	move	data	around	and	update	the	shard	map,	thus
avoiding	significant	rewriting	of	our	application.	If	implemented	correctly,	shard
maps	can	allow	us	to	add	more	databases	or	delete	database	as	necessary.	This
may	give	us	the	elasticity	that	may	have	eluded	us	on	the	database	thus	far.
You’ll	note	that	sharding	is	easily	implemented	in	Azure	Table	Storage	and

Azure	Cosmos	DB,	but	is	significantly	more	difficult	in	a	relational	database	like
Azure	SQL	Database.	The	complexity	comes	from	being	transactionally
consistent	while	having	data	available	and	spread	throughout	several	databases.
Microsoft	has	released	a	set	of	tools	called	Elastic	Database	Tools	that	are

compatible	with	Azure	SQL	Database.	This	client	library	can	be	used	in	your
application	to	create	sharded	databases.	It	has	a	split-merge	tool	that	will	allow
you	to	create	new	nodes	or	drop	nodes	without	data	loss.	It	also	includes	a	tool
that	will	keep	schema	consistent	across	all	the	nodes	by	running	scripts	on	each
node	individually.
The	main	power	of	the	Elastic	Database	Tools	is	the	ability	to	fan-out	queries

across	multiple	shards	without	a	lot	of	code	changes.	Follow	these	general	steps
to	use	a	sharded	database:

1.	 Get	a	Shard	Map.
	There	are	several	different	types	of	shard	maps,	for	instance	range	shard

map	will	tell	you	what	range	of	values	exist	in	which	databases.	If	we	were
to	divide	our	data	by	customer	ID,	then	we	would	make	sure	all	tables	in
our	database	included	a	customer	ID.	We	could	grab	anything	about	that
customer,	including	their	contacts,	orders,	invoices,	payments,	customer
service	disputes,	and	employees	as	long	as	we	have	the	correct	customer
ID.	A	shard	map	might	look	like	this:
	1	–	100	=	Database1
	101	–	200	=	Database2
	202	–	300	=	Database	3

2.	 Create	a	MultiShareConnection	Object
	This	is	similar	to	a	regular	SqlConnection	object,	except	in	represents	a
connection	to	a	set	of	shards.

3.	 Create	a	multi-shard	command.
4.	 Set	the	CommandText	property
5.	 ExecuteReader
6.	 View	the	results	using	the	MultiShardDataReader	class.
7.	 Assuming	you	had	a	ShardMap	object,	the	query	would	look	like	this:

Click	here	to	view	code	image

using	(MultiShardConnection	conn	=	new	MultiShardConnection(

																																				myShardMap.GetShards(),		

																																				myShardConnectionString)		

)		

{		

using	(MultiShardCommand	cmd	=	conn.CreateCommand())

								{		

								cmd.CommandText	=	"SELECT	c1,	c2,	c3	FROM	ShardedTable";		

								cmd.CommandType	=	CommandType.Text;		

								cmd.ExecutionOptions	=

MultiShardExecutionOptions.IncludeShardNameColumn;

								cmd.ExecutionPolicy	=

MultiShardExecutionPolicy.PartialResults;		

								using	(MultiShardDataReader	sdr	=	cmd.ExecuteReader())		

												{		

																while	(sdr.Read())

																					{		

																								var	c1Field	=	sdr.GetString(0);		

																									var	c2Field	=	sdr.GetFieldValue<int>(1);		

																								var	c3Field	=	sdr.GetFieldValue<Int64>(2);

																					}		

													}		

								}		

}

Managed	elastic	pools,	including	DTUs	and	eDTUs
A	single	SQL	Database	server	can	have	several	databases	on	it.	Those	databases
can	each	have	their	own	size	and	pricing	tier.	This	might	work	out	well	if	we
always	know	exactly	how	large	each	database	will	be	and	how	many	DTUs	are
needed	for	them	individually.	What	happens	if	we	don’t	really	know	that?	Or
we’d	like	the	databases	on	a	single	server	to	share	a	DTU	pool?	Elastic	pools
(not	to	be	confused	with	the	last	topic,	Elastic	Tools)	are	used	to	do	exactly	this:
share	DTUs	across	databases	on	a	single	server.
Elastic	pools	enable	the	user	to	purchase	elastic	Database	Transaction	Units

(eDTUs)	for	a	pool	of	multiple	databases.	The	user	adds	databases	to	the	pool,
sets	the	minimum	and	maximum	eDTUS	for	each	database,	and	sets	the	eDTU
limit	of	the	pool	based	on	their	budget.	This	means	that	within	the	pool,	each
database	is	given	the	ability	to	auto-scale	in	a	set	range.
In	Figure	2-17,	you	will	see	a	database	that	spends	most	of	its	time	idle,	but

occasionally	spikes	in	activity.	This	database	is	a	good	candidate	for	an	Elastic
pool.

FIGURE	2-17	Choosing	the	right	database	to	participate	in	the	pool

To	create	an	Elastic	pool,	follow	these	steps:

1.	 Click	on	your	database	server	and	click	New	Pool.
	The	new	pool	pane	appears	(Figure	2-18).

FIGURE	2-18	Creating	an	Elastic	pool

2.	 Name	the	pool	a	unique	name.
3.	 Choose	a	pricing	tier	for	the	pool.
4.	 To	choose	the	databases	you	want	to	participate	in	the	pool,	click

Configure	Pool.	This	pane	appears	in	Figure	2-19.

FIGURE	2-19	Choosing	the	databases	that	participate	in	the	Elastic	pool

Implement	Azure	SQL	Data	Sync
SQL	Data	Sync	is	a	new	service	for	Azure	SQL	Database.	It	allows	you	to	bi-
directionally	replicate	data	between	two	Azure	SQL	Databases	or	between	an
Azure	SQL	Database	and	an	on-premise	SQL	Server.
A	Sync	Group	is	a	group	of	databases	that	you	want	to	synchronize	using

Azure	SQL	Data	Sync.	A	Sync	Schema	is	the	data	you	want	to	synchronize.
Sync	Direction	allows	you	to	synchronize	data	in	either	one	direction	or	bi-
directionally.	Sync	Interval	controls	how	often	synchronization	occurs.	Finally,	a
Conflict	Resolution	Policy	determines	who	wins	if	data	conflicts	with	one
another.
The	following	diagram	(Figure	2-20)	shows	how	Azure	Data	Sync	keeps

multiple	databases	consistent	with	each	other.

FIGURE	2-20	Azure	Data	Sync	diagram

The	hub	database	must	always	be	an	Azure	SQL	Database.	A	member
database	can	either	be	Azure	SQL	Database	or	an	on-premise	SQL	Server.
It	is	important	to	note	that	this	is	a	method	to	of	keeping	data	consistent	across

multiple	databases,	it	is	not	an	ETL	tool.	This	should	not	be	used	to	populate	a
data	warehouse	or	to	migrate	an	on-premise	SQL	Server	to	the	cloud.	This	can
be	used	to	populate	a	read-only	version	of	the	database	for	reporting,	but	only	if
the	schema	will	be	100%	consistent.

More	Info:	Azure	SQL	Data	Sync

Here’s	a	tutorial	for	creating	a	Data	Sync	Group:
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-
started-sql-data-sync.

Implement	graph	database	functionality	in	Azure	SQL	Database
SQL	Server	2017	introduces	a	new	graph	database	feature.	This	feature	hasn’t
been	released	in	the	on-premise	edition	as	of	this	writing,	but	should	be	available
in	Azure	SQL	Database	by	the	time	this	book	is	released.	We	discuss	graph
databases	in	the	next	section	on	Azure	Cosmos	DB	as	well.
So	far,	we’ve	discussed	a	NoSQL	solution	when	we	covered	Azure	Storage

Tables.	That	was	a	key-value	store.	We	will	cover	a	different	type	of	NoSQL

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-started-sql-data-sync

Tables.	That	was	a	key-value	store.	We	will	cover	a	different	type	of	NoSQL
solution,	JSON	document	storage,	when	we	examine	Azure	Cosmos	DB
DocumentDB.	Graph	databases	are	yet	another	NoSQL	solution.	Graph	database
introduce	two	new	vocabulary	words:	nodes	and	relationships.
Nodes	are	entities	in	relational	database	terms.	Each	node	is	popularly	a	noun,

like	a	person,	an	event,	an	employee,	a	product,	or	a	car.	A	relationship	is	similar
to	a	relationship	in	SQL	Server	in	that	it	defines	that	a	connection	exists	between
nouns.	Where	the	relationship	in	graph	databases	differ	is	that	it	is	hierarchal	in
nature,	where	it	tends	to	be	flat	in	SQL	Server,	PostgresSQL,	and	other	relational
storage	engines.
A	graph	is	an	abstract	representation	of	a	set	of	objects	where	nodes	are	linked

with	relationships	in	a	hierarchy.	A	graph	database	is	a	database	with	an	explicit
and	enforceable	graph	structure.	Another	key	difference	between	a	relational
storage	engine	and	a	graph	database	storage	engine	is	that	as	the	number	of
nodes	increase,	the	performance	cost	stays	the	same.	Any	relational	database
professional	will	tell	you	that	joining	tables	will	burden	the	engine	and	be	a
common	source	of	performance	issues	when	scaling.	Graph	databases	don’t
suffer	from	that	issue.	Also,	entities	can	be	connected	with	each	other	through
several	different	paths.
So	where	relational	databases	are	optimized	for	aggregation,	graph	databases

are	optimized	for	having	plenty	of	connections	between	nodes.	Graph	databases
are	popularly	traversed	through	a	domain	specific	language	(DSL)	called
Gremlin.
In	Azure	SQL	Database,	graph-like	capabilities	are	implemented	through	T-

SQL.	Graph	databases	popularly	have	several	different	relationship	types	that
are	possible	between	nodes.	Azure	SQL	Database	only	has	many-to-many
relationships.
You	can	create	graph	objects	in	T-SQL	with	the	following	syntax:

Click	here	to	view	code	image

CREATE	TABLE	Person	(ID	INTEGER	PRIMARY	KEY,	Name	VARCHAR(100),	Age

INT)	AS	NODE;

CREATE	TABLE	friends	(StartDate	date)	AS	EDGE;

This	is	very	similar	to	the	standard	CREATE	TABLE	syntax,	with	the	added
“AS	NODE”	or	“AS	EDGE”	at	the	end.
Azure	SQL	Database	supports	new	query	syntax	for	traversing	the	graph

hierarchy.	This	query	looks	something	like	this:
Click	here	to	view	code	image

SELECT	Restaurant.name

FROM	Person,	likes,	Restaurant

WHERE	MATCH	(Person-(likes)->Restaurant)

AND	Person.name	=	'John';

Notice	the	MATCH	keyword	in	the	T-SQL	WHERE	clause.	This	will	show	us
every	person	that	likes	a	restaurant	named	John.

More	Info:	Azure	SQL	Graph

Here's	a	tutorial	for	creating	a	graph	relationships	that	currently
works	with	Azure	SQL	Database:	https://docs.microsoft.com/en-
us/sql/relational-databases/graphs/sql-graph-sample.

Skill	2.5:	Implement	Azure	Cosmos	DB	DocumentDB
Azure	Cosmos	DB	DocumentDB	is	a	JSON	document	store	database,	similar	to
MongoDB.	JSON	document	stores	are	quite	a	bit	different	than	traditional
relational	database	engines,	and	any	attempt	to	map	concepts	will	likely	be
futile.	With	that	in	mind,	we’ll	do	our	best	to	use	your	existing	knowledge	of
RDBMS’s	while	discussing	this	topic.	JSON	document	stores	are	the	fastest
growing	NoSQL	solutions.	Developers	gravitate	towards	it	because	it	doesn’t
require	assembling	or	disassembling	object	hierarchies	into	a	flat	relational
design.	Azure	Cosmos	DB	was	originally	designed	as	a	JSON	document	storage
product.	It	has	since	added	support	for	key-value	(Table	API)	and	graph
(Gremlin).
JSON	has	been	the	lingua	franca	of	data	exchange	on	the	internet	for	over	a

decade.	Here	is	an	example	of	JSON:
Click	here	to	view	code	image

{

{

					“glossary”:	{

								“title”:	“example	glossary”,

								“GlossDiv”:	{

												“title”:	“S”,

												“GlossList”:	{

																“GlossEntry”:	{

																				“ID”:	“SGML”,

																				“SortAs”:	“SGML”,

																				“GlossTerm”:	“Standard	Generalized	Markup

Language”,

																				“Acronym”:	“SGML”,

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-sample

																				“Abbrev”:	“ISO	8879:1986”,

																				“GlossDef”:	{

																								“para”:	“A	meta-markup	language,	used	to	create

markup																												languages	such	as	DocBook.”,

																									“GlossSeeAlso”:	[“GML”,	“XML”]

																				},

																				“GlossSee”:	“markup”

																	}

												}

								}

				}

}

Notice	the	hierarchal	nature	of	JSON.	One	of	the	key	advantages	of	JSON	is
that	it	can	express	an	object	model	that	developers	often	create	in	code.	Object
models	have	parent	nodes	and	child	nodes.	In	our	above	example,	GlossTerm	is
a	child	object	of	GlossEntry.	JSON	can	also	express	arrays:	GlossSeeAlso	has
two	values	in	it.	When	relational	database	developers	create	an	API	to	store
JSON,	they	have	to	undergo	a	process	called	shredding	where	they	remove	each
individual	element	and	store	them	in	flat	tables	that	have	relationships	with	each
other.	This	process	was	time-consuming,	offered	little	in	real	business	value,	and
was	prone	to	errors.	Because	of	these	drawbacks,	developers	often	turn	towards
JSON	document	stores,	where	saving	a	document	is	as	easy	as	pressing	the	Save
icon	in	Microsoft	Word.	In	this	section	we’ll	show	how	to	create	an	object
model,	save	it,	and	query	it	using	Azure	Cosmos	DB	DocumentDB.

This	skill	covers	how	to:
	Choose	the	Cosmos	DB	API	surface
	Create	Cosmos	DB	API	Databases	and	Collections
	Query	documents
	Run	Cosmos	DB	queries
	Create	Graph	API	databases
	Execute	GraphDB	queries

Choose	the	Cosmos	DB	API	surface
Like	previously	mentioned,	Azure	Cosmos	DB	is	a	multi-model	database	that
has	several	different	APIs	you	can	choose	between:	Table,	DocumentDB,	and
GraphDB.
Azure	Cosmos	DB	Table	API	provides	the	same	functionality	and	the	same

API	surface	as	Azure	Storage	tables.	If	you	have	an	existing	application	that	uses

API	surface	as	Azure	Storage	tables.	If	you	have	an	existing	application	that	uses
Azure	Storage	tables,	you	can	easily	migrate	that	application	to	use	Azure
Cosmos	DB.	This	will	allow	you	to	take	advantage	of	better	performance,	global
data	distribution,	and	automatic	indexing	of	all	fields,	thus	reducing	significant
management	overhead	of	your	existing	Azure	Storage	table	application.
Azure	Cosmos	DB	Document	DB	is	an	easy-to-implement	JSON	document

storage	API.	It	is	an	excellent	choice	for	mobile	applications,	web	application,
and	IoT	applications.	It	allows	for	rapid	software	development	by	cutting	down
the	code	the	developer	has	to	write	to	either	shred	their	object	model	into	a
relational	store,	or	manage	the	consistency	of	manual	indexing	in	Azure	Storage
Tables.	It	also	is	compatible	with	MongoDB,	another	JSON	document	storage
product.	You	can	migrate	an	existing	MongoDB	application	to	Azure	Cosmos
DB	DocumentDB.
Azure	Cosmos	DB	supports	the	Gremlin,	a	popular	graph	API.	This	allows

developers	to	write	applications	that	take	advantage	of	Graph	traversal	of	their
data	structures.	Graph	databases	allow	us	to	define	the	relationship	between
entities	that	are	stored.	For	instance,	we	can	declare	that	one	entity	works	for
another	one,	is	married	to	a	different	one,	and	owns	even	a	different	one.	Entities
are	not	people,	rather	they	are	entries	defined	in	our	data	store.	We	can	say	Paula
works	for	Sally	and	is	married	to	Rick.	Paula	owns	a	vintage	Chevy	Corvette.
Knowing	these,	we	can	write	a	simple	line	of	code	in	Gremlin	to	find	out	what
car	Paula	owns.	Graph	databases	excel	at	defining	relationships	and	exploring
the	network	of	those	relationships.	As	a	result,	they	have	been	popular	as
engines	for	social	media	applications.	Because	Azure	Cosmos	DB	supports	the
Gremlin	API,	it	is	easy	to	port	existing	applications	that	use	it	to	Azure	Cosmos
DB.

Create	Cosmos	DB	API	Database	and	Collections
Each	Cosmos	DB	account	must	have	at	least	one	database.	A	database	is	a
logical	container	that	can	contain	collections	of	documents	and	users.	Users	are
the	mechanism	that	get	permissions	to	Cosmos	DB	resources.	Collections
primarily	contain	JSON	documents.	Collections	should	store	JSON	documents
of	the	same	type	and	purpose,	just	like	a	SQL	Server	table.	Collections	are
different	than	tables	because	they	don’t	enforce	that	documents	have	a	particular
schema.	This	can	be	very	foreign	to	the	relational	database	developer	who
assumes	that	every	record	in	a	table	will	have	the	same	number	of	columns	with
the	same	data	types.	Collections	should	have	documents	of	the	same	properties
and	data	types,	but	they	aren’t	required	to.	Azure	Cosmos	DB	DocumentDB

gracefully	handles	if	columns	don’t	exist	on	a	document.	For	instance,	if	we	are
looking	for	all	customers	in	zip	code	92101,	and	a	customer	JSON	document
doesn’t	happen	to	have	that	property,	Azure	Cosmos	DB	just	ignores	the
document	and	doesn’t	return	it.
Collections	can	also	store	stored	procedures,	triggers,	and	functions.	These

concepts	are	also	similar	to	relational	databases,	like	Microsoft	SQL	Server.
Stored	procedures	are	application	logic	that	are	registered	with	a	collection	and
repeatedly	executed.	Triggers	are	application	logic	that	execute	either	before	or
after	an	insert,	update	(replace),	or	delete	operation.	Functions	allow	you	to
model	a	custom	query	operator	and	extend	the	core	DocumentDB	API	query
language.	Unlike	SQL	Server,	where	these	components	are	written	in	Transact-
SQL,	Azure	DocumentDB	stored	procedures,	triggers,	and	functions	are	written
in	JavaScript.
Before	we	can	begin	writing	code	against	Azure	Cosmos	DB,	we	must	first

create	an	Azure	Cosmos	DB	account.	Follow	these	steps:

1.	 Sign	in	to	the	Azure	portal.
2.	 On	the	left	pane,	click	New,	Databases,	and	then	click	Azure	Cosmos	DB.
3.	 On	the	New	account	blade,	choose	your	programming	model.	For	our

example,	click	SQL	(DocumentDB).
4.	 Choose	a	unique	ID	for	this	account.	It	must	be	globally	unique,	such	as

developazure1,	but	then	you	should	call	yours	developazure(your	given
name	here).	This	will	be	prepended	to	documents.azure.com	to	create	the
URI	you	will	use	to	gain	access	to	your	account.

5.	 Choose	the	Subscription,	Resource	Group,	and	Location	of	your	account.
6.	 Click	Create.
7.	 Now	let’s	create	a	Visual	Studio	solution.
8.	 Open	Visual	Studio	2015	or	2017.
9.	 Create	a	New	Project.
10.	 Select	Templates,	Visual	C#,	Console	Application.
11.	 Name	your	project.
12.	 Click	OK.
13.	 Open	Nuget	Package	Manager.
14.	 In	the	Browse	tab,	look	for	Azure	DocumentDB.	Add	the

Microsoft.Azure.DocumentDB	client	to	your	project.

http://documents.azure.com

15.	 In	order	to	use	the	code,	you	may	need	a	using	statement	like	this:
Click	here	to	view	code	image

using	Microsoft.Azure.Documents.Client;

using	Microsoft.Azure.Documents;

using	Newtonsoft.Json;

Azure	Cosmos	DB	requires	two	things	in	order	to	create	and	query
documents,	an	account	name	and	an	access	key.	This	should	be	familiar	to	you	if
you	read	the	section	on	Azure	Storage	blobs	or	Azure	Storage	tables.	You	should
store	them	in	constants	in	your	application	like	this:
Click	here	to	view	code	image

private	const	string	account	=	"<your	account	URI>";

private	const	string	key	=	"<your	key>";

Azure	DocumentDB	SDK	also	has	several	async	calls,	so	we’ll	create	our
own	async	function	called	TestDocDb.	We’ll	call	it	in	the	Main	function	of	the
console	app.
Click	here	to	view	code	image

static	void	Main(string[]	args)

{

						TestDocDb().Wait();

}

You	can	find	both	of	these	things	in	Azure	portal	for	your	Azure	Cosmos	DB
account.	To	create	a	database	named	SalesDB,	use	the	following	code:
Click	here	to	view	code	image

private	static	async	Task	TestDocDb()

{

string	id	=	"SalesDB";

var	database	=	_client.CreateDatabaseQuery().Where(db	=>	db.Id	==

id).AsEnumerable().FirstOrDefault();

if	(database	==	null)

{

database	=	await	client.CreateDatabaseAsync(new	Database	{	Id	=	id

});			

}

Now	that	we	have	a	database	for	our	sales	data,	we’ll	want	to	store	our
customers.	We’ll	do	that	in	our	Customers	collection.	We’ll	create	that
collection	with	the	following	code:

Click	here	to	view	code	image

string	collectionName	=	"Customers";

var	collection	=

client.CreateDocumentCollectionQuery(database.CollectionsLink).

Where(c	=>	c.Id	==	collectionName).AsEnumerable().FirstOrDefault();

if	(collection	==	null)

{

collection	=	await

client.CreateDocumentCollectionAsync(database.CollectionsLink,

	new	DocumentCollection	{	Id	=	collectionName});			

}

Now	let’s	add	a	few	documents	to	our	collection.	Before	we	can	do	that,	let’s
create	a	couple	of	plain-old	CLR	objects	(POCOs).	We	want	a	little	complexity
to	see	what	those	documents	look	like	when	serialized	out	to	Azure	Cosmos	DB.
First	we’ll	create	a	phone	number	POCO:
Click	here	to	view	code	image

public	class	PhoneNumber

{

public	string	CountryCode	{	get;	set;	}

public	string	AreaCode	{	get;	set;	}

public	string	MainNumber	{	get;	set;	}

}

And	now	we	add	another	POCO	for	each	customer	and	their	phone	numbers:
Click	here	to	view	code	image

public	class	Customer

{

				public	string	CustomerName	{	get;	set;	}

				public	PhoneNumber[]	PhoneNumbers	{	get;	set;	}

}

Now	let’s	instantiate	a	few	customers:
var	contoso	=	new	Customer

{

CustomerName	=	"Contoso	Corp",

							PhoneNumbers	=	new	PhoneNumber[]

										{

															new	PhoneNumber

																			{

																							CountryCode	=	"1",

		AreaCode	=	"619",

		MainNumber	=	"555-1212"																																										},

															new	PhoneNumber

																			{

																							CountryCode	=	"1",

		AreaCode	=	"760",

		MainNumber	=	"555-2442"																																										},

											}

};

var	wwi	=	new	Customer

{

CustomerName	=	"World	Wide	Importers",

							PhoneNumbers	=	new	PhoneNumber[]

										{

															new	PhoneNumber

																			{

																							CountryCode	=	"1",

		AreaCode	=	"858",

		MainNumber	=	"555-7756"																																										},

															new	PhoneNumber

																			{

																							CountryCode	=	"1",

		AreaCode	=	"858",

		MainNumber	=	"555-9142"																																										},

											}

};

Once	the	customers	are	created,	it	becomes	really	easy	to	save	them	in	Azure
Cosmos	DB	DocumentDB.	In	order	to	serialize	the	object	model	to	JSON	and
save	it,	it	is	really	only	once	line	of	code:
Click	here	to	view	code	image

await	client.CreateDocumentAsync(collection.DocumentsLink,	contoso);

And,	to	save	the	other	document:
Click	here	to	view	code	image

await	_client.CreateDocumentAsync(collection.DocumentsLink,	wwi);

Now	that	the	documents	are	saved,	you	can	log	into	your	Cosmos	DB	account
in	the	Azure	portal,	open	Document	Explorer	and	view	them.	Document
Explorer	is	accessible	on	the	top	menu	toolbar	of	your	Cosmos	DB	configuration
pane.

Query	documents
Retrieving	documents	from	Azure	Cosmos	DB	DocumentDB	is	where	the	magic
really	happens.	The	SDK	allows	you	to	call	a	query	to	retrieve	a	JSON
document	and	store	the	return	in	an	object	model.	The	SDK	wires	up	any
properties	with	the	same	name	and	data	type	automatically.	This	will	sound
amazing	to	a	relational	database	developer	who	might	be	used	to	writing	all	of

amazing	to	a	relational	database	developer	who	might	be	used	to	writing	all	of
that	code	by	hand.	With	Cosmos	DB,	the	wiring	up	of	persistence	store	to	the
object	model	happens	without	any	data	layer	code.
In	addition,	the	main	way	to	retrieve	data	from	Azure	Cosmos	DB	is	through

LINQ,	the	popular	C#	feature	that	allows	developers	to	interact	with	objects,
Entity	Framework,	XML,	and	SQL	Server.

Run	Cosmos	DB	queries
There	are	three	main	ways	you	can	query	documents	using	the	Azure	Cosmos
DB	SDK:	lambda	LINQ,	query	LINQ,	and	SQL	(a	SQL-like	language	that’s
compatible	with	Cosmos	DB).
A	query	of	documents	using	lambda	LINQ	looks	like	this:

Click	here	to	view	code	image

var	customers	=	client.CreateDocumentQuery<Customer>

(collection.DocumentsLink).

Where(c	=>	c.CustomerName	==	"Contoso	Corp").ToList();

A	query	of	documents	using	LINQ	queries	looks	like	this:
Click	here	to	view	code	image

												var	linqCustomers	=	from	c	in

client.CreateDocumentQuery<Customer>(collection.DocumentsLink)

																				select	c;

A	query	for	documents	using	SQL	looks	like	this:
Click	here	to	view	code	image

var	customers	=	client.CreateDocumentQuery<Customer>

(collection.DocumentsLink,

"SELECT	*	FROM	Customers	c	WHERE	c.CustomerName	=	'Contoso	Corp'");

More	Info:	Documentdb	Query	Tutorial

Azure	Cosmos	DB	has	a	demo	tool	that	will	teach	you	how	to	write
SQL	against	the	hierarchal	nature	of	JSON.	It	can	be	found	here:
https://www.documentdb.com/sql/demo.

Create	Graph	API	databases
In	order	to	create	a	Graph	API	database,	you	should	follow	the	exact	steps	at	the
beginning	of	this	objective.	The	difference	would	be	that	in	the	creation	blade	of

https://www.documentdb.com/sql/demo

beginning	of	this	objective.	The	difference	would	be	that	in	the	creation	blade	of
Azure	Cosmos	DB,	instead	of	choosing	SQL	as	the	API,	choose	Gremlin	Graph
API.
Use	the	following	code	to	create	a	document	client	to	your	new	Azure

Cosmos	DB	Graph	API	account:
Click	here	to	view	code	image

using	(DocumentClient	client	=	new	DocumentClient(

				new	Uri(endpoint),

				authKey,

				new	ConnectionPolicy	{	ConnectionMode	=	ConnectionMode.Direct,

ConnectionProtocol

=	Protocol.Tcp	}))

Once	you	have	a	client	instantiated,	you	can	create	a	new	graph	database	with
this	code:
Click	here	to	view	code	image

Database	database	=	await	client.CreateDatabaseIfNotExistsAsync(new

Database

{	Id	=	"graphdb"	});

Just	like	before,	we	need	a	collection	for	our	data,	so	we’ll	create	it	like	this:
Click	here	to	view	code	image

DocumentCollection	graph	=	await

client.CreateDocumentCollectionIfNotExistsAsync(

				UriFactory.CreateDatabaseUri("graphdb"),

				new	DocumentCollection	{	Id	=	"graph"	},

				new	RequestOptions	{	OfferThroughput	=	1000	});

Execute	GraphDB	queries
GraphDB	API	queries	are	executed	very	similarly	to	the	queries	we	looked	at
before.	GraphDB	queries	are	defined	through	a	series	of	Gremlin	steps.	Here	is	a
simple	version	of	that	query:
Click	here	to	view	code	image

IDocumentQuery<dynamic>	query	=	client.CreateGremlinQuery<dynamic>

(graph,	"g.V().count()");

while	(query.HasMoreResults)

{

				foreach	(dynamic	result	in	await	query.ExecuteNextAsync())

				{

								Console.WriteLine($"\t	{JsonConvert.SerializeObject(result)}");

				}

}

Implement	MongoDB	database
Azure	Cosmos	DB	can	be	used	with	applications	that	were	originally	written	in
MongoDB.	Existing	MongoDB	drivers	are	compatible	with	Azure	Cosmos	DB.
Ideally,	you	would	switch	between	from	MongoDB	to	Azure	Cosmos	DB	by	just
changing	a	connection	string	(after	loading	the	documents,	of	course).
You	can	even	use	existing	MongoDB	tooling	with	Azure	Cosmos	DB.

Manage	scaling	of	Cosmos	DB,	including	managing	partitioning,
consistency,	and	RUs
The	main	method	for	scaling	performance	in	Azure	Cosmos	DB	is	the
collection.	Collections	are	assigned	a	specific	amount	of	storage	space	and
transactional	throughput.	Transactional	throughput	is	measured	in	Request
Units(RUs).	Collections	are	also	used	to	store	similar	documents	together.	An
organization	can	choose	to	organize	their	documents	into	collections	in	any
manner	that	logically	makes	sense	to	them.	A	software	company	might	create	a
single	collection	per	customer.	A	different	company	may	choose	to	put	heavy
load	documents	in	their	own	collection	so	they	can	scale	them	separately	from
other	collections.
We	described	sharding	in	the	last	section	and	when	we	discussed	Azure

Storage	Tables.	Sharding	is	a	feature	of	Azure	Cosmos	DB	also.	We	can	shard
automatically	by	using	a	partition	key.	Azure	Cosmos	DB	will	automatically
create	multiple	partitions	for	us.	Partitioning	is	completely	transparent	to	your
application.	All	documents	with	the	same	partition	key	value	will	always	be
stored	on	the	same	partition.	Cosmos	DB	may	store	different	partition	keys	on
the	same	partition	or	it	may	not.	The	provisioned	throughput	of	a	collection	is
distributed	evenly	among	the	partitions	within	a	collection.
You	can	also	have	a	single	partition	collection.	It’s	important	to	remember

that	partitioning	is	always	done	at	the	collection,	not	at	the	Cosmos	DB	account
level.	You	can	have	a	collection	that	is	a	single	partition	alongside	multiple
partition	collections.	Single	partition	collections	have	a	10GB	storage	limit	and
can	only	have	up	to	10,000	RUs.	When	you	create	them,	you	do	not	have	to
specify	a	partition	key.	To	create	a	single	partition	collection,	follow	these	steps:

1.	 On	you	Cosmos	DB	account,	click	the	overview	tab	and	click	Add
Collection	(Figure	2-21).

FIGURE	2-21	Creating	a	collection	in	the	Azure	Portal

2.	 On	the	Add	Collection	pane,	name	the	collection	and	click	Fixed	for
Storage	Capacity.	Notice	how	the	partition	key	textbox	automatically	has	a
green	check	next	to	it	indicating	that	it	doesn’t	need	to	be	filled	out.

FIGURE	2-22	The	Azure	Portal

For	multiple	partition	collections,	it	is	important	that	you	choose	the	right
partition	key.	A	good	partition	key	will	have	a	high	number	of	distinct	values
without	being	unique	to	each	individual	document.	Partitioning	based	on
geographic	location,	a	large	date	range,	department,	or	customer	type	is	a	good
idea.	The	storage	size	for	documents	with	the	same	partition	key	is	10GB.	The
partition	key	should	also	be	in	your	filters	frequently.
A	partition	key	is	also	the	transaction	boundary	for	stored	procedures.	Choose

a	key	on	documents	that	often	get	updated	together	with	the	same	partition	key
value.

Consistency

Consistency
Traditional	relational	databases	have	a	little	bit	of	baggage	as	it	relates	to	data
consistency.	Users	of	those	systems	have	the	expectation	that	when	they	write
data,	all	readers	of	that	data	will	see	the	latest	version	of	it.	That	strong
consistency	level	is	great	for	data	integrity	and	notifying	users	when	data
changes,	but	creates	problems	with	concurrency.	Writers	have	to	lock	data	as
they	write,	blocking	readers	of	the	data	until	the	write	is	over.	This	creates	a	line
of	readers	waiting	to	read	until	the	write	is	over.	In	most	transactional
applications,	reads	outnumber	writes	10	to	1.	Having	writes	block	readers	gives
the	readers	the	impression	that	the	application	is	slow.
This	has	particularly	created	issues	when	scaling	out	relational	databases.	If	a

write	occurs	on	one	partition	and	it	hasn’t	replicated	to	another	partition,	readers
are	frustrated	that	they	are	seeing	bad	or	out	of	date	data.	It	is	important	to	note
that	consistency	has	long	had	an	inverse	relationship	with	concurrency.
Many	JSON	document	storage	products	have	solved	that	tradeoff	by	having	a

tunable	consistency	model.	This	allows	the	application	developer	to	choose
between	strong	consistency	and	eventual	consistency.	Strong	consistency	slows
down	reads	and	writes	while	giving	the	best	data	consistency	between	users.
Eventual	consistency	allows	the	readers	to	read	data	while	writes	happen	on	a
different	replica,	but	isn’t	guaranteed	to	return	current	data.	Things	are	faster
because	replicas	don’t	wait	to	get	the	latest	updates	from	a	different	replica.
In	DocumentDB,	there	are	five	tunable	consistency	levels:
	Strong	Mentioned	in	the	previous	paragraph.
	Bounded	Staleness	Tolerates	inconsistent	query	results,	but	with	a	freshness
guarantee	that	the	results	are	at	least	as	current	as	a	specified	period	of	time.
	Session	The	default	in	DocumentDB.	Writers	are	guaranteed	strong
consistency	on	writers	that	they	have	written.	Readers	and	other	writer
sessions	are	eventually	consistent.
	Consistent	Prefix	Guarantees	that	readers	do	not	see	out	of	order	writes.
Meaning	the	writes	may	not	have	arrived	yet,	but	when	they	do,	they’ll	be	in
the	correct	order.
	Eventual	Mentioned	in	the	previous	paragraph.

Manage	multiple	regions
It	is	possible	to	globally	distribute	data	in	Azure	Cosmos	DB.	Most	people	think
of	global	distribution	as	an	high	availability/disaster	recovery	(HADR)	scenario.
Although	that	is	a	side	effect	in	Cosmos	DB,	it	is	primarily	to	get	data	closer	to
the	users	with	lower	network	latency.	European	customers	consume	data	housed

the	users	with	lower	network	latency.	European	customers	consume	data	housed
in	a	data	center	in	Europe.	Indian	customers	consume	data	housed	in	India.	At
this	writing,	there	are	30	data	centers	that	can	house	Cosmos	DB	data.
Each	replica	will	add	to	your	Cosmos	DB	costs.
In	a	single	geo-location	Cosmos	DB	collection,	you	cannot	really	see	the

difference	in	consistency	choices	from	the	previous	section.	Data	replicates	so
fast	that	the	user	always	sees	the	latest	copy	of	the	data	with	few	exceptions.
When	replicating	data	around	the	globe,	choosing	the	correct	consistency	level
becomes	more	important.
To	choose	to	globally	distribute	your	data,	follow	these	steps:

1.	 In	the	Azure	portal,	click	on	your	Cosmos	DB	account.
2.	 On	the	account	blade,	click	Replicate	data	globally	(Figure	2-23).

FIGURE	2-23	The	Replicate	data	globally	blade

3.	 In	the	Replicate	data	globally	blade,	select	the	regions	to	add	or	remove	by
clicking	the	regions	on	the	map.

	One	region	is	flagged	as	the	write	region.	The	other	regions	are	read
regions.	This	consolidates	the	writes	while	distributing	the	reads,	and
since	reads	often	outnumber	writes	significantly,	this	can	drastically

improve	the	perceived	performance	of	your	application.
4.	 You	can	now	set	that	region	for	either	manual	or	automatic	failover	(Figure

2-24).	Automatic	failover	will	switch	the	write	region	in	order	of	priority.

FIGURE	2-24	The	Automatic	Failover	pane

It	is	also	possible	to	choose	your	preferred	region	in	your	application	by	using
the	DocumentDB	API.	The	code	looks	like	this	in	C#:
Click	here	to	view	code	image

ConnectionPolicy	connectionPolicy	=	new	ConnectionPolicy();

//Setting	read	region	selection	preference

connectionPolicy.PreferredLocations.Add(LocationNames.WestUS);	//	first

preference

connectionPolicy.PreferredLocations.Add(LocationNames.EastUS);	//

second	preference

connectionPolicy.PreferredLocations.Add(LocationNames.NorthEurope);	//

third	preference

//	initialize	connection

DocumentClient	docClient	=	new	DocumentClient(

				accountEndPoint,

				accountKey,

				connectionPolicy);

Implement	stored	procedures
Cosmos	DB	collections	can	have	stored	procedures,	triggers,	and	user	defined
functions	(UDFs),	just	like	traditional	database	engines.	In	SQL	Server,	these
objects	are	written	using	T-SQL.	In	Cosmos	DB,	they	are	written	in	JavaScript.
This	code	will	be	executed	directly	in	the	collection’s	partition	itself.	Batch
operations	executed	on	the	server	will	avoid	network	latency	and	will	be	fully
atomic	across	multiple	documents	in	that	collection’s	partition.	Operations	in	a
stored	procedure	either	all	succeed	or	none	succeed.
In	order	to	create	a	Cosmos	DB	stored	procedure	in	C#,	you	would	use	code

that	looked	something	like	this.
Click	here	to	view	code	image

var	mySproc	=	new	StoredProcedure

												{

																Id	=	"createDocs",

																Body	=	"function(documentToCreate)	{"	+

																		"var	context	=	getContext();"	+

																		"var	collection	=	context.getCollection();"	+

	"var	accepted	=	collection.createDocument(collection.getSelfLink(),"	+

																			"documentToCreate,"	+

																			"function	(err,	documentCreated)	{"	+

																			"if	(err)	throw	new	Error('Error	oh	'	+

documentToCreate.Name	+

'-	'	+	err.message);"	+

																							"context.getResponse().setBody(documentCreated.id)"

+

																																"});"	+

																				"if	(!accepted)	return;"	+

																								"}"

												};

var	response	=	await

client.CreateStoredProcedureAsync(conferenceCollection.

SelfLink,	mySproc);

This	code	creates	a	stored	procedure	using	a	string	literal.	It	takes	a	document
in	as	a	parameter	and	saves	it	in	the	collection.	It	does	that	by	using	the	context
object	inside	the	stored	procedure.

More	Info:	Azure	Cosmos	DB	Stored	Procedures

There’s	a	tutorial	for	implementing	server	side	objects	that’s	worth
going	through:	https://docs.microsoft.com/en-us/azure/cosmos-

https://docs.microsoft.com/en-us/azure/cosmos-db/programming

db/programming.

Access	Cosmos	DB	from	REST	interface
Cosmos	DB	has	a	REST	API	that	provides	a	programmatic	interface	to	create,
query,	and	delete	databases,	collections,	and	documents.	So	far,	we’ve	been
using	the	Azure	Document	DB	SDK	in	C#,	but	it’s	possible	to	call	the	REST
URIs	directly	without	the	SDK.	The	SDK	makes	these	calls	simpler	and	easier	to
implement,	but	are	not	strictly	necessary.	SDKs	are	available	for	Python,
JavaScript,	Java,	Node.js,	and	Xamarin.	These	SDKs	all	call	the	REST	API
underneath.	Using	the	REST	API	allows	you	to	use	a	language	that	might	not
have	an	SDK,	like	Elixir.	Other	people	have	created	SDKs	for	Cosmos	DB,	like
Swift	developers	for	use	in	creating	iPhone	applications.	If	you	choose	other
APIs,	there	are	SDKs	in	even	more	langauges.	For	instance,	the	MongoDB	API
supports	Golang.
The	REST	API	allows	you	to	send	HTTPS	requests	using	GET,	POST,	PUT,

or	DELETE	to	a	specific	endpoint.

More	Info:	Azure	Cosmos	DB	Rest	API

Rest	API	documentation	can	be	found	here:
https://docs.microsoft.com/en-us/rest/api/documentdb/.

Manage	Cosmos	DB	security
Here	are	the	various	types	of	Cosmos	DB	security.

Encryption	at	rest
Encryption	at	rest	means	that	all	physical	files	used	to	implement	Cosmos	DB
are	encrypted	on	the	hard	drives	they	are	using.	Anyone	with	direct	access	to
those	files	would	have	to	unencrypt	them	in	order	to	read	the	data.	This	also
applies	to	all	backups	of	Cosmos	DB	databases.	There	is	no	need	for
configuration	of	this	option.

Encryption	in	flight
Encryption	in	flight	is	also	required	when	using	Cosmos	DB.	All	REST	URI
calls	are	done	over	HTTPS.	This	means	that	anyone	sniffing	a	network	will	only
see	encryption	round	trips	and	not	clear	text	data.

Network	firewall

https://docs.microsoft.com/en-us/rest/api/documentdb/

Network	firewall
Azure	Cosmos	DB	implements	an	inbound	firewall.	This	firewall	is	off	by
default	and	needs	to	be	enabled.	You	can	provide	a	list	of	IP	addresses	that	are
authorized	to	use	Azure	Cosmos	DB.	You	can	specify	the	IP	addresses	one	at	a
time	or	in	a	range.	This	ensures	that	only	an	approved	set	of	machines	can	access
Cosmos	DB.	These	machines	will	still	need	to	provide	the	right	access	key	in
order	to	gain	access.	Follow	these	steps	to	enable	the	firewall:

1.	 Navigate	to	your	Cosmos	DB	account.
2.	 Click	Firewall.
3.	 Enable	the	firewall	and	specify	the	current	IP	address	range.
4.	 Click	Save	(see	Figure	2-25).

FIGURE	2-25	The	Cosmos	DB	firewall	pane

Users	and	permissions
Azure	Cosmos	DB	support	giving	access	to	users	in	the	database	to	specific
resources	or	using	Active	Directory	users.
Users	can	be	granted	permissions	to	an	application	resource.	They	can	have

two	different	access	levels,	either	All	or	Read.	All	means	they	have	full
permission	to	the	resource.	Read	means	they	can	only	read	the	resource,	but	not
write	or	delete.

write	or	delete.

More	Info:	Azure	Users	AND	Permissions

More	information	on	creating	permissions	for	database	users	can
be	found	here:	https://docs.microsoft.com/en-us/azure/cosmos-
db/secure-access-to-data/.

Active	Directory
You	can	use	Active	Directory	users	and	give	them	access	to	the	entire	Cosmos
DB	database	by	using	the	Azure	portal.	Follow	these	steps	to	grant	access:

1.	 Click	on	your	Cosmos	DB	account	and	click	Access	Control	(IAM).
2.	 Click	Add	to	add	a	new	Active	Directory	user.

FIGURE	2-26	The	Cosmos	DB	Add	permission	pane

https://docs.microsoft.com/en-us/azure/cosmos-db/secure-access-to-data/

3.	 Choose	the	appropriate	role	for	the	user	and	enter	the	user’s	name	or	email
address	(Figure	2-27).

FIGURE	2-27	The	Cosmos	DB	user	role	list

Now	you’ve	given	permission	to	another	user	to	that	database.	Note	that	you
can	give	them	reader	access	which	will	stop	them	from	writing	over	documents.
This	might	be	good	for	ETL	accounts,	business/data	analysts,	or	report	authors.

Skill	2.6:	Implement	Redis	caching
Redis	is	a	key-value	store,	NoSQL	database.	Its	implementation	is	very	similar
to	Azure	Table	Storage.	The	main	difference	is	Redis	is	very	high	performing	by
keeping	the	data	in	memory	most	of	the	time.	By	default,	Redis	also	doesn’t
persist	the	data	between	reboots.	There	are	exceptions	to	this,	but	the	main
purpose	of	keeping	Redis	cache	in	memory	is	for	fast	data	retrieval	and	fast
aggregations.	This	allows	important	data	to	be	easily	accessible	to	an	application
without	loading	the	backend	data	store.	As	a	result,	Redis	is	typically	not	used	as
a	data	store	for	an	application,	but	used	to	augment	the	data	store	you’ve	already
selected.	Imagine	using	Azure	SQL	Database	as	your	main	data	repository.	Your
application	constantly	looks	up	sales	tax	for	all	50	states.	Some	cities	even	have
their	own	sales	tax	that’s	higher	than	the	state’s	sales	tax.	Constantly	looking	this
up	can	compete	with	I/O	for	the	rest	of	your	application’s	functions.	Offloading
the	sales	tax	lookup	to	a	pinned	Redis	cache	will	not	only	make	that	lookup
much	faster,	but	will	free	up	resources	for	your	data	repository	for	things	like
taking	orders,	updating	addresses,	awarding	sales	commission,	and	general
reporting.

This	is	just	one	example	of	how	Redis	can	be	used.	Redis	has	many	uses,	but
primarily	it’s	a	temporary	storage	location	of	data	that	has	a	longer	lifespan.	That
data	needs	to	be	expired	when	it’s	out	of	date	and	re-populated.
Azure	Redis	Cache	is	the	Azure	product	built	around	Redis	and	offering	it	as	a

Platform-as-a-Service	(PAAS)	product.

This	skill	covers	how	to:
	Choose	a	cache	tier
	Implement	data	persistence
	Implement	security	and	network	isolation
	Tune	cluster	performance
	Integrate	Redis	caching	with	ASP.NET	session	and	cache	providers

Choose	a	cache	tier
First	we	need	to	create	an	Azure	Redis	Cache	account	using	the	Azure	portal.

1.	 Log	in	to	the	Azure	portal.
2.	 Click	New,	Databases,	Redis	Cache.	Click	Create.
3.	 In	the	New	Redis	Cache	blade,	specify	configuration	parameters	(Figure	2-

28).

http://ASP.NET

FIGURE	2-28	Azure	Redis	Cache	Panel

4.	 Choose	a	DNS	name	for	your	cache.	It	must	be	globally	unique.
5.	 Choose	a	Subscription,	Resource	group,	and	Location	for	the	Redis	Cache.

Remember	to	keep	it	close	to	the	application	that	will	be	using	it.
6.	 Choose	a	Pricing	tier	for	Redis	Cache.

There	are	three	tiers	of	Azure	Redis	Cache:	Basic,	Standard,	and	Premium.
Basic	is	the	cheapest	tier	and	allows	up	to	53GB	of	Redis	Cache	database	size.
Standard	has	the	same	storage	limit,	but	includes	replication	and	failover	with
master/slave	replication.	This	replication	is	automatic	between	two	nodes.
Premium	increases	ten	times	to	530GB.	It	also	offers	data	persistence,	meaning
that	data	will	survive	power	outages.	It	also	includes	much	better	network
performance,	topping	out	at	40,000	client	connections.	Obviously,	the	pricing
increases	as	you	move	up	from	Basic	through	Premium.

increases	as	you	move	up	from	Basic	through	Premium.

Implement	data	persistence
Redis	peristance	allows	you	to	save	data	to	disk	instead	of	just	memory.
Additionally,	you	can	take	snapshots	of	your	data	for	backup	purposes.	This
allows	your	Redis	cache	to	survive	hardware	failure.	Redis	persistence	is
implemented	through	the	RDB	model,	where	data	is	streamed	out	to	binary	into
Azure	Storage	blobs.	Azure	Redis	Cache	persistence	is	configured	through	the
following	pane	shown	in	Figure	2-29.

FIGURE	2-29	Redis	data	persistence

On	this	pane,	you	can	configure	the	frequency	of	the	RDB	snapshot,	as	well	as
the	storage	account	that	will	be	the	storage	target.

More	Info:	Import/Export	RDB

You	can	also	manually	import	and	export	the	RDB	snapshot.	More
information	is	found	here:	https://docs.microsoft.com/en-
us/azure/redis-cache/cache-how-to-import-export-data.

Implement	security	and	network	isolation
Azure	Redis	Cache’s	primary	security	mechanism	is	done	through	access	keys.
We’ve	used	access	keys	in	Azure	Storage	blobs,	Azure	Storage	tables,	and
Azure	Cosmos	DB.	In	addition	to	access	keys,	Azure	Redis	Cache	offers
enhanced	security	when	you	use	the	premium	offering.	This	is	done	primarily
through	the	Virtual	Network	(VNET).	This	allows	you	to	hide	Redis	Cache
behind	your	application	and	not	have	a	public	URL	that	is	open	to	the	internet.
The	VNET	is	configured	at	the	bottom	of	the	New	Redis	Cache	pane	(pictured

earlier.)	You	can	configure	the	virtual	network	when	creating	the	Azure	Redis
Cache	account.	You	cannot	configure	it	after	it	has	been	created.	Also,	you	can
only	use	a	VNET	that	exists	in	the	same	data	center	as	your	Azure	Redis	Cache
account.	Azure	Redis	Cache	must	be	created	in	an	empty	subnet.
When	creating	an	Azure	Redis	Cache	account,	select	Virtual	Network	towards

the	bottom.	You	will	see	the	following	pane	shown	in	Figure	2-30.

https://docs.microsoft.com/en-us/azure/redis-cache/cache-how-to-import-export-data

FIGURE	2-30	Azure	Redis	Cache	Virtual	Network	pane

This	is	where	you	can	configure	your	static	IP	address	and	subnet.

More	Info:	Virtual	Networking

For	more	information	on	Azure	Virtual	Networking,	see	here:
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-
networks-overview.

Doing	this	isolates	your	Azure	Redis	Cache	service	behind	your	virtual
network	and	keeps	it	from	being	accessed	from	the	internet.

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview

Tune	cluster	performance
Also	with	the	premium	service,	you	can	implement	a	Redis	Cluster.	Redis
clusters	allow	you	to	split	the	dataset	among	multiple	nodes,	allowing	you	to
continue	operations	when	a	subset	of	the	nodes	experience	failure,	give	more
throughput,	and	increase	memory	(and	there	for	total	database)	size	as	you
increase	the	number	of	shards.	Redis	clustering	is	configured	when	you	create
the	Azure	Redis	Cache	account	(Figure	2-31).	The	reason	why	Premium	can
store	10	times	the	data	as	the	other	two	tiers	is	because	clustering	allows	you	to
choose	the	number	of	nodes	in	the	cluster,	from	1	to	10.

FIGURE	2-31	Redis	Cache	Clustering

Once	the	cache	is	created,	you	use	it	just	like	a	non-clustered	cache.	Redis
distributes	your	data	for	you.

Integrate	Redis	caching	with	ASP.NET	session	and	cache
providers
Session	state	in	an	ASP.NET	applications	is	traditionally	stored	in	either

http://asp.net/
http://ASP.NET

memory	or	a	SQL	Server	database.	Session	state	in	memory	is	difficult	to
implement	if	the	server	is	a	member	of	a	server	farm	and	the	user	changes	which
server	they’re	attached	to.	Session	state	would	be	lost	in	that	case.	Storing
session	state	in	a	SQL	database	solves	that	problem,	but	introduces	database
management	of	performance,	latency,	and	license	management.	Often	databases
are	already	under	high	load	and	don’t	need	the	added	load	of	managing	a	high
amount	of	session	state.
Redis	cache	is	an	excellent	place	to	store	session	state.	To	implement	this,	use

the	Redis	Cache	Session	State	Nuget	package.	Once	added	to	the	project,	you
just	have	to	add	the	following	line	to	your	web.config	file	under	the	providers
section:
Click	here	to	view	code	image

<add	name="MySessionStateStore"

											host	=	"127.0.0.1"

								port	=	""

								accessKey	=	""

								ssl	=	"false"

								throwOnError	=	"true"

								retryTimeoutInMilliseconds	=	"0"

								databaseId	=	"0"

								applicationName	=	""

								connectionTimeoutInMilliseconds	=	"5000"

								operationTimeoutInMilliseconds	=	"5000"

				/>

<add	name="MySessionStateStore"

type="Microsoft.Web.Redis.RedisSessionStateProvider"

	host="127.0.0.1"	accessKey=""	ssl="false"/>

The	host	attribute	points	to	the	endpoint	of	your	Azure	Redis	account.
ApplicationName	allows	multiple	applications	to	use	the	same	Redis	database.
Every	other	attribute	is	self-explanatory.
There	is	a	different	Nuget	packaged	called	the	Redis	Output	Cache	Provider.

This	will	store	page	output	in	Redis	cache	for	future	use.	It’s	configured	in	a
similar	manner	as	the	previous	product.

Skill	2.7:	Implement	Azure	Search
Azure	Search	is	a	Platform-as-a-Service	(PAAS)	offering	that	gives	developers
APIs	needed	to	add	search	functionality	in	their	applications.	Primarily	this
mean	full	text	search.	The	typical	example	is	how	Google	and	Bing	search
works.	Bing	doesn’t	care	what	tense	you	use,	it	spell	checks	for	you,	and	finds
similar	topics	based	on	search	terms.	It	also	offers	term	highlighting	and	can
ignore	noise	words,	as	well	as	many	other	search-related	features.	Applying

ignore	noise	words,	as	well	as	many	other	search-related	features.	Applying
these	features	inside	your	application	can	give	your	users	a	rich	and	comforting
search	experience.

This	skill	covers	how	to:
	Create	a	service	index
	Add	data
	Search	an	index
	Handle	Search	results

Create	a	service	index
There	are	several	types	of	Azure	Search	accounts:	free,	basic,	standard,	and
high-density.	The	free	tier	only	allows	50MB	of	data	storage	and	10,000
documents.	As	you	increase	from	basic	to	high-density,	you	increase	how	many
documents	you	can	index	as	well	as	how	quickly	searches	return.	Compute
resources	for	Azure	Search	are	sold	through	Search	Units	(SUs).	The	basic	level
allows	3	search	units.	The	high-density	level	goes	up	to	36	SUs.	In	addition,	all
of	the	paid	pricing	tiers	offer	load-balancing	over	three	replicas	or	more	replicas.
To	create	an	Azure	Search	service,	follow	these	steps:

1.	 Log	on	to	the	Azure	portal.
2.	 Add	a	new	item.	Look	up	Azure	Search	Service.
3.	 In	the	New	Search	Service	pane,	choose	a	unique	URL,	Subscription,

Resource	group,	and	Location.

FIGURE	2-32	Azure	Search	pane

4.	 Carefully	choose	an	Azure	Search	pricing	tier.	Make	a	note	of	the	search
URI	(your	search	name).search.windows.net.

As	you	use	Azure	Search,	you	can	scale	it	if	you	need	more	SUs	or	have	more
documents	to	search.	On	your	Azure	Search	pane,	click	Scale.	The	Scale	blade	is
supported	in	Standard	level	and	above,	not	basic.	From	there	you	can	choose
how	many	replicas	handle	your	workload	and	how	many	partitions	you	have.
Replicas	distribute	workloads	across	multiple	nodes.	Partitions	allow	for	scaling
the	document	count	as	well	as	faster	data	ingestion	by	spanning	your	index	over
multiple	Azure	Search	Units.	Both	of	these	are	only	offered	in	the	paid	service
tiers.

Add	data
You	add	data	to	Azure	Search	through	creating	an	index.	An	index	contains
documents	used	by	Azure	Search.	For	instance,	a	hotel	chain	might	have	a
document	describing	each	hotel	they	own,	a	home	builder	might	have	a
document	for	each	house	they	have	on	the	market.	An	index	is	similar	to	a	SQL

document	for	each	house	they	have	on	the	market.	An	index	is	similar	to	a	SQL
Server	table	and	documents	are	similar	to	rows	in	those	tables.
In	our	examples,	we’ll	use	C#	and	the	Microsoft	.NET	Framework	to	add	data

to	an	index	and	search	it.	To	use	the	.NET	SDK	for	Azure	Search	with	our
examples,	you	must	meet	the	following	requirements:

	Visual	Studio	2017.
	Create	an	Azure	Search	service	with	the	Azure	portal.	The	free	version	will
work	for	these	code	samples.
	Download	the	Azure	Search	SDK	Nuget	package.
Just	like	with	our	other	services,	we	must	first	create	a	Search	service	client,

like	this:
Click	here	to	view	code	image

string	searchServiceName	=	"your	search	service	name;

string	accesskey	=	"your	access	key"

SearchServiceClient	serviceClient	=	new

SearchServiceClient(searchServiceName,

new	SearchCredentials(accesskey));

Let’s	assume	we	build	homes	and	we	have	a	POCO	for	the	home	class.	That
class	would	have	properties	like	RetailPrice,	SquareFootage,	Description,	and
FlooringType.
The	home	class	might	look	like	this:

Click	here	to	view	code	image

using	System;

using	Microsoft.Azure.Search;

using	Microsoft.Azure.Search.Models;

using	Microsoft.Spatial;

using	Newtonsoft.Json;

//	The	SerializePropertyNamesAsCamelCase	attribute	is	defined	in	the

Azure

//	Search	.NET	SDK.

//	It	ensures	that	Pascal-case	property	names	in	the	model	class	are

mapped	to

//	camel-case	field	names	in	the	index.

[SerializePropertyNamesAsCamelCase]

public	partial	class	Home

{

				[System.ComponentModel.DataAnnotations.Key]

				[IsFilterable]

				public	string	HomeID	{	get;	set;	}

				[IsFilterable,	IsSortable,	IsFacetable]

				public	double?	RetailPrice	{	get;	set;	}

				[IsFilterable,	IsSortable,	IsFacetable]

				public	int?	SquareFootage	{	get;	set;	}

				[IsSearchable]

				public	string	Description	{	get;	set;	}

				[IsFilterable,	IsSortable]

				public	GeographyPoint	Location	{	get;	set;	}

}

The	properties	all	have	attributes	on	them	that	tell	Azure	Search	how	to
construct	field	definitions	for	them	in	the	index.	Notice	how	these	are	all	public
properties.	Azure	Search	will	only	create	definitions	for	public	properties.
First,	we	create	an	index	with	the	following	code:
Click	here	to	view	code	image

var	definition	=	new	Index()

{

			Name	=	"homes",

			Fields	=	FieldBuilder.BuildForType<Home>()

};

serviceClient.Indexes.Create(definition);

This	will	create	an	index	object	with	field	objects	that	define	the	correct
schema	based	on	our	POCO.	The	FieldBuilder	class	iterates	over	the	properties
of	the	Home	POCO	using	reflection.
First,	create	a	batch	of	homes	to	upload.

Click	here	to	view	code	image

var	homes	=	new	Home[]

{

				new	Home()

				{

							RetailPrice	=	Convert.ToDouble("459999.00"),

							SquareFootage	=	3200,

							Description	=	"Single	floor,	ranch	style	on	1	acre	of

property.		4	bedroom,

							large	living	room	with	open	kitchen,	dining	area.",

							Location	=	GeographyPoint.Create(47.678581,	-122.131577)

				};

Then	create	a	batch	object,	declaring	that	you	intend	to	upload	a	document:
Click	here	to	view	code	image

ISearchIndexClient	indexClient	=

serviceClient.Indexes.GetClient("homes");

serviceClient.Indexes.GetClient("homes");

var	batch	=	IndexBatch.Upload(homes);

Then	upload	the	document:
Click	here	to	view	code	image

indexClient.Documents.Index(batch);

Search	an	index
In	order	to	search	documents,	we	must	first	declare	a	SearchParameters	object
and	DocumentSearchResult	object	of	type	Home	in	our	example.
Click	here	to	view	code	image

SearchParameters	parameters;

DocumentSearchResult<Home>	searchResults;

Now	we	look	for	any	home	that	has	the	word	ranch	in	the	document.	We
return	only	the	HomeID	field.	We	save	the	results.
Click	here	to	view	code	image

parameters	=

				new	SearchParameters()

				{

							Select	=	new[]	{	"SquareFootage"	}

				};

searchResults	=	indexClient.Documents.Search<Home>("3200",	parameters);

Handle	Search	results
After	we	have	the	search	results	saved	in	the	results	variable,	we	can	iterate
through	them	like	this:
Click	here	to	view	code	image

foreach	(SearchResult<Home>	result	in	searchResults.Results)

{

				Console.WriteLine(result.Document);

}

We	have	covered	many	different	areas	that	data	can	be	stored	in	Microsoft
Azure.	These	different	storage	products	can	be	overwhelming	and	make
choosing	correctly	difficult.
It	is	important	to	note	that	the	same	data	can	be	stored	in	any	of	these

solutions	just	fine,	and	your	application	will	likely	succeed	no	matter	which
storage	product	you	use.	You	can	store	data	in	a	key-value	store,	a	document
store,	a	graph	database,	a	relational	store,	or	any	combination	of	these	products.

store,	a	graph	database,	a	relational	store,	or	any	combination	of	these	products.
Functionally,	they	are	very	similar	with	similar	features.	There	is	also	no	specific
set	of	problems	that	can	only	be	stored	in	a	graph	database	or	only	be	stored	in	a
relational	engine.	Understanding	the	different	features,	problems,	advantages,
and	query	languages	will	help	you	choose	the	correct	data	store	for	your
application,	but	you	will	always	feel	uncertain	that	you	chose	the	right	one.
Anyone	who	looks	at	your	problem	and	definitely	knows	the	perfect	storage

product	is	likely	either	trying	to	sell	you	something,	only	knows	that	product	and
therefore	has	a	vested	interest	in	choosing	it,	has	bought	in	to	a	specific	buzz
word	or	new	trend,	or	is	underinformed	about	the	drawbacks	of	their	preferred
product.	This	author’s	advice	is	to	inform	yourself	the	best	you	can	and	make	a
decision	while	accepting	the	fact	that	every	product	has	tradeoffs.

Thought	experiment
In	this	thought	experiment,	apply	what	you’ve	learned	about	this	skill.	You	can
find	answers	to	these	questions	in	the	next	section.
Contoso	Limited	creates	lasers	that	etch	patterns	for	processors	and	memory.

Their	customers	include	large	chip	manufacturers	around	the	world
Contoso	is	in	the	process	of	moving	several	applications	to	Azure.	You	are	the

data	architect	contracted	by	Contoso	to	help	them	make	the	good	decisions	for
these	applications	regarding	storage	products	and	features.	Contoso	has	a	mobile
application	their	sales	people	use	to	create	quotes	to	email	to	their	customers.
The	product	catalog	is	in	several	languages	and	contains	detailed	product
images.	You	are	localizing	a	mobile	application	for	multiple	languages.

1.	 How	will	you	structure	the	files	in	Blob	storage	so	that	you	can	retrieve
them	easily?

2.	 What	can	you	do	to	make	access	to	these	images	quick	for	users	around	the
world?
On	a	regular	interval,	a	Contoso	laser	sends	the	shot	count	of	how	many
times	the	laser	fired	to	your	application.	The	shot	count	is	cumulative	by
day.	Contoso	built	more	than	500	of	these	lasers	and	distributed	them
around	the	world.	Each	laser	has	its	own	ma	chine	identifier.	Each	time	the
shot	count	is	sent,	it	includes	a	time	stamp.	The	analysts	are	mostly
concerned	with	the	most	recent	shot	count	sent.	It’s	been	decided	to	store
the	shot	count	in	Azure	Table	Storage.

3.	 What	should	you	use	for	the	partition	key?	How	many	partitions	should
you	create?

4.	 How	should	you	create	the	row	key?
5.	 How	many	tables	should	you	build?	What’s	in	each	table?

Contoso	also	wants	to	write	a	third	application,	a	web	application,	that
executives	can	use	to	show	the	relationship	between	customers	of	your
company.	Contoso	knows	that	some	of	their	customers	purchase	chips	from
other	Contoso	customers.	Your	company	feels	like	it’s	in	a	perfect	position
to	examine	global	business	relationships	since	it	has	all	of	the	laser	records
that	occur	in	the	global	enterprise.	Your	company	uses	a	variety	of
relational	databases,	like	Oracle	and	Microsoft	SQL	Server.	You	have	heard
a	lot	about	JSON	Document	storage	engines,	like	Azure	Cosmos	DB,	and
feel	like	it	would	be	a	perfect	fit	for	this	project.	Contoso	is	concerned	that
this	application	will	have	a	significant	load	considering	the	amount	of	data
that	will	be	processed	for	each	laser.	You’ve	decided	to	help	them	by
implementing	Redis	Cache.

6.	 What	are	some	advantages	that	Azure	Cosmos	DB	has	over	traditional
relational	data	stores?

7.	 What	are	disadvantages	your	enterprise	will	face	in	implementing	a	store
like	this?

8.	 How	will	your	organization’s	data	analyst	query	data	from	Azure	Cosmos
DB?

9.	 Where	do	you	think	Redis	Cache	can	help	them?
10.	 How	will	Redis	Cache	lessen	the	load	on	their	database	server?
11.	 What	are	some	considerations	when	implementing	Redis	Cache?

Thought	experiment	answers
This	section	contains	the	solution	to	the	thought	experiment.

1.	 You	would	consider	structuring	the	blob	hierarchy	so	that	one	of	the
portions	of	the	path	represented	the	language	or	region.

2.	 You	would	consider	creating	a	CDN	on	a	publicly	available	container	to
cache	those	files	locally	around	the	world.

3.	 Machine	ID	seems	like	a	logical	candidate	for	PartitionKey.
4.	 Shot	count	time	stamp,	ordered	descending.
5.	 There	might	be	two	tables,	one	for	the	machine	metadata	and	one	for	the

shots.	You	could	also	make	an	argument	for	consolidating	both	pieces	of
data	into	one	table	for	speed	in	querying.

6.	 Cosmos	DB	will	be	easier	to	maintain	because	the	schema	is	declared
inside	the	application.	As	the	application	matures,	the	schema	can	mature.
This	will	keep	the	schema	fresh	and	new	and	changeable.	Cosmos	DB
doesn’t	really	need	a	complicated	data	layer	or	an	ORM,	thus	saving	hours
of	development	as	we	write	and	release.	CosmosDB	keeps	the	data	in	the
same	structure	as	the	object	model,	keeping	the	data	easy	for	developers	to
learn	and	navigate.

7.	 There	is	a	learning	curve	for	document	stores	and	graph	stores.	Traditional
relational	developers	might	have	a	difficult	time	keeping	up	with	it.

8.	 Business	analysts	and	data	analysts	might	need	to	learn	a	new	query
language	in	order	to	gain	access	to	the	data	in	Cosmos	DB.	ETL	processes
might	need	to	be	written	to	pipe	document	data	into	a	traditional	data	store
for	reporting	and	visualizations.	Otherwise	the	reporting	burden	of	the
application	will	rest	on	the	original	developers,	which	also	may	be	an
acceptable	solution.

9.	 They	can	cache	their	entire	product	catalog.	They	can	cache	each	session	so
that	the	session	can	be	saved	before	it’s	committed	to	the	database.	They
can	cache	location	information,	shipping	information,	etc.

10.	 All	of	the	above	items	will	greatly	alleviate	the	load	of	their	applications.
Basically,	you	are	stopping	the	relational	database	read	locks	from	blocking
the	writing	transactions.	Also,	by	caching	the	reads,	you	are	stopping	them
from	competing	for	I/O	with	the	writes.

11.	 Caching	is	memory	intensive,	so	make	sure	you	are	using	memory
effectively.	Caching	rarely	used	things	is	not	effective.	Caching	needs	data
management.	Knowing	when	to	expire	cache,	refresh	cache,	and	populate
cache	are	all	things	that	should	be	thought	of	ahead	of	time.

Chapter	summary
	A	blob	container	has	several	options	for	access	permissions.	When	set	to
Private,	all	access	requires	credentials.	When	set	to	Public	Container,	no
credentials	are	required	to	access	the	container	and	its	blobs.	When	set	to
Public	Blob,	only	blobs	can	be	accessed	without	credentials	if	the	full	URL	is
known.
	To	access	secure	containers	and	blobs,	you	can	use	the	storage	account	key
or	shared	access	signatures.
	Block	blobs	allow	you	to	upload,	store,	and	download	large	blobs	in	blocks
up	to	4	MB	each.	The	size	of	the	blob	can	be	up	to	200	GB.

	You	can	use	a	blob	naming	convention	akin	to	folder	paths	to	create	a	logical
hierarchy	for	blobs,	which	is	useful	for	query	operations.
	All	file	copies	with	Azure	Storage	blobs	are	done	asynchronously.
	Table	storage	is	a	non-relational	database	implementation	(NoSQL)
following	the	key-value	database	pattern.
	Table	entries	each	have	a	partition	key	and	row	key.	The	partition	key	is	used
to	logically	group	rows	that	are	related;	the	row	key	is	a	unique	entry	for	the
row.
	The	Table	service	uses	the	partition	key	for	distributing	collections	of	rows
across	physical	partitions	in	Azure	to	automatically	scale	out	the	database	as
needed.
	A	Table	storage	query	returns	up	to	1,000	records	per	request,	and	will	time
out	after	five	seconds.
	Querying	Table	storage	with	both	the	partition	and	row	key	results	in	fast
queries.	A	table	scan	is	required	for	queries	that	do	not	use	these	keys.
	Applications	can	add	messages	to	a	queue	programmatically	using	the	.NET
Storage	Client	Library	or	equivalent	for	other	languages,	or	you	can	directly
call	the	Storage	API.
	Messages	are	stored	in	a	storage	queue	for	up	to	seven	days	based	on	the
expiry	setting	for	the	message.	Message	expiry	can	be	modified	while	the
message	is	in	the	queue.
	An	application	can	retrieve	messages	from	a	queue	in	batch	to	increase
throughput	and	process	messages	in	parallel.
	Each	queue	has	a	target	of	approximately	2,000	messages	per	second.	You
can	increase	this	throughput	by	partitioning	messages	across	multiple	queues.
	You	can	use	SAS	tokens	to	delegate	access	to	storage	account	resources
without	sharing	the	account	key.
	With	SAS	tokens,	you	can	generate	a	link	to	a	container,	blob,	table,	table
entity,	or	queue.	You	can	control	the	permissions	granted	to	the	resource.
	Using	Shared	Access	Policies,	you	can	remotely	control	the	lifetime	of	a
SAS	token	grant	to	one	or	more	resources.	You	can	extend	the	lifetime	of	the
policy	or	cause	it	to	expire.
	Storage	Analytics	metrics	provide	the	equivalent	of	Windows	Performance
Monitor	counters	for	storage	services.
	You	can	determine	which	services	to	collect	metrics	for	(Blob,	Table,	or

Queue),	whether	to	collect	metrics	for	the	service	or	API	level,	and	whether
to	collect	metrics	by	the	minute	or	hour.
	Capacity	metrics	are	only	applicable	to	the	Blob	service.
	Storage	Analytics	Logging	provides	details	about	the	success	or	failure	of
requests	to	storage	services.
	Storage	logs	are	stored	in	blob	services	for	the	account,	in	the	$logs
container	for	the	service.
	You	can	specify	up	to	365	days	for	retention	of	storage	metrics	or	logs,	or
you	can	set	retention	to	0	to	retain	metrics	indefinitely.	Metrics	and	logs	are
removed	automatically	from	storage	when	the	retention	period	expires.
	Storage	metrics	can	be	viewed	in	the	management	portal.	Storage	logs	can	be
downloaded	and	viewed	in	a	reporting	tool	such	as	Excel.
	The	different	editions	of	Azure	SQL	Database	affect	performance,	SLAs,
backup/restore	policies,	pricing,	geo-replication	options,	and	database	size.
	The	edition	of	Azure	SQL	Database	determines	the	retention	period	for	point
in	time	restores.	This	should	factor	into	your	backup	and	restore	policies.
	It	is	possible	to	create	an	online	secondary	when	you	configure	Azure	SQL
Database	geo-replication.	It	requires	the	Premium	Edition.
	If	you	are	migrating	an	existing	database	to	the	cloud,	you	can	use	the
BACPACs	to	move	schema	and	data	into	your	Azure	SQL	database.
	Elastic	pools	will	help	you	share	DTUs	with	multiple	databases	on	the	same
server.
	Sharding	and	scale-out	can	be	easier	to	manage	by	using	the	Elastic	Tools
from	Microsoft.
	Azure	SQL	Database	introduces	new	graph	features	and	graph	query	syntax.
	The	different	types	of	APIs	available	in	Azure	Cosmos	DB,	including	table,
graph,	and	document.
	Why	developers	find	document	storage	easy	to	use	in	web,	mobile,	and	IoT
applications	because	saving	and	retrieving	data	does	not	require	a	complex
data	layer	or	an	ORM.
	The	different	ways	to	query	Azure	Cosmos	DB,	including	LINQ	lambda,
LINQ	query,	and	SQL.
	Why	graph	databases	are	a	great	solution	for	certain	problems,	particularly
showing	relationships	between	entities.
	Cosmos	DB	scaling	is	in	large	part	automatic	and	requires	little	to	no

management.	The	most	important	thing	is	to	correctly	choose	which
documents	will	go	in	which	collections	and	which	partition	key	to	use	with
them.
	Cosmos	DB	supports	multiple	regions	for	disaster	recovery	and	to	keep	the
data	close	to	the	users	for	improved	network	latency.
	Cosmos	DB	has	several	different	security	mechanisms,	including	encryption
at	rest,	network	firewalls,	and	users	and	permissions.
	What	Redis	Cache	is	and	how	it	can	help	speed	up	applications.
	How	to	choose	between	the	different	tiers	of	Azure	Redis	Cache
	The	importance	of	data	persistence	in	maintaining	state	in	case	of	power	or
hardware	failure.
	How	to	scale	Azure	Redis	Cache	for	better	performance	or	larger	data	sets.
	Create	an	Azure	Search	Service	using	the	Azure	portal.
	Create	an	Azure	Search	index	and	populate	it	with	documents	using	C#	and
the	.NET	SDK.
	Search	the	index	for	a	keyword	and	handle	the	results.

Chapter	3.	Manage	identity,	application	and	network
services

Beyond	compute	and	storage	features,	Microsoft	Azure	also	provides	a	number
of	infrastructure	services	for	security	and	communication	mechanisms	to	support
many	messaging	patterns.	In	this	chapter	you	learn	about	these	core	services.

Skills	in	this	chapter:
	Skill	3.1:	Integrate	an	app	with	Azure	Active	Directory	(Azure	AD)
	Skill	3.2:	Develop	apps	that	use	Azure	AD	B2C	and	Azure	AD	B2B
	Skill	3.3:	Manage	Secrets	using	Azure	Key	Vault
	Skill	3.4:	Design	and	implement	a	messaging	strategy

Skill	3.1:	Integrate	an	app	with	Azure	AD
Azure	Active	Directory	(Azure	AD)	provides	a	cloud-based	identity
management	service	for	application	authentication,	Single	Sign-On	(SSO),	and
user	management.	Azure	AD	can	be	used	for	the	following	core	scenarios:

	A	standalone	cloud	directory	service
	Corporate	access	to	Software-as-a-Service	(SaaS)	applications	with
directory	synchronization
	SSO	between	corporate	and	SaaS	applications
	Application	integration	for	SaaS	applications	using	different	identity
protocols
	User	management	through	a	Graph	API
	Manage	multi-factor	authentication	settings	for	a	directory

In	this	section,	you	learn	how	to	do	the	following:
	Set	up	a	directory
	How	to	integrate	applications	with	Azure	AD	using	WSFederation,	
OAuth	and	SAML-P
	How	to	query	the	user	directory	with	the	Microsoft	Graph	API
	How	to	work	with	multi-factor	authentication	(MFA)	features

More	Info:	Azure	AD	Documentation

You	can	find	the	Azure	AD	documentation	at:
https://docs.microsoft.com/en-us/azure/active-directory/.

More	Info:	Using	Windows	Powershell	to	Manage	Azure	AD

This	section	will	walk	you	through	the	steps	to	achieve	results
through	the	Azure	Portal.	You	may	want	to	manage	some	aspects
of	Azure	AD	with	Windows	PowerShell.	For	example,	to	initialize
Azure	AD	for	application	integration	you	would	create
applications,	permissions,	users,	and	groups.	For	more
information,	see:	https://docs.microsoft.com/en-
us/powershell/module/Azuread/?view=azureadps-2.0.

This	skill	covers	how	to:
	Develop	apps	that	use	WSFederation,	SAML-P,	and	OpenID	Connect
and	OAuth	endpoints
	Query	the	directory	using	Microsoft	Graph	API,	MFA	and	MFA	API

Preparing	to	integrate	an	app	with	Azure	AD
There	are	several	common	scenarios	for	application	integration	with	Azure	AD,
including	the	following:

	Users	sign	in	to	web	applications
	Users	sign	in	to	JavaScript	application	(for	example,	single	page	applications
or	SPAs)
	Browser-based	applications	call	Web	APIs	from	JavaScript
	Users	sign	in	to	native	/	mobile	applications	that	call	Web	APIs
	Web	applications	call	Web	APIs
	Server	applications	or	processes	call	Web	APIs
Where	a	user	is	present,	the	user	must	first	be	authenticated	at	Azure	AD,	thus

presenting	proof	of	authentication	back	to	the	application	in	the	form	of	a	token.
You	can	choose	from	a	few	protocols	to	authenticate	the	user:	WSFederation,
SAML-P,	or	OpenID	Connect.	OpenID	Connect	is	the	recommended	path
because	it	is	the	most	modern	protocol	available,	and	is	based	on	OAuth	2.0.
Scenarios	that	involve	API	security	are	typically	based	on	OAuth	2.0	flows,

https://docs.microsoft.com/en-us/azure/active-directory/
https://docs.microsoft.com/en-us/powershell/module/Azuread/?view=azureadps-2.0

Scenarios	that	involve	API	security	are	typically	based	on	OAuth	2.0	flows,
though	this	is	not	a	strict	requirement.
Authentication	workflows	involve	details	at	the	protocol	level,	but	Figure	3-1

illustrates	from	a	high	level	the	OpenID	Connect	workflow	for	authenticating
users	to	a	web	app.	The	user	typically	starts	by	navigating	to	a	protected	area	of
the	web	app,	or	electing	to	login	(1).	The	application	then	sends	an	OpenID
Connect	sign	in	request	(2)	to	Azure	AD.	If	the	user	does	not	yet	have	a	session
at	Azure	AD	(usually	represented	by	a	cookie),	they	are	prompted	to	login	(3).
After	successfully	authenticating	the	user’s	credential	(4)	Azure	AD	writes	a
single	sign-on	(SSO)	session	cookie	to	establish	the	user	session,	and	sends	the
OpenID	Connect	sign	in	response	back	to	the	browser	(5),	including	an	id	token
to	identify	the	user.	This	is	posted	to	the	web	app	(6).	The	application	validates
the	response	and	establishes	the	user	session	at	the	application	(7).

FIGURE	3-1	The	high-level	workflow	for	an	OpenID	Connect	sign-in	request

More	Info:	Authentication	Scenarios

See	the	following	reference	for	a	review	of	these	key	authentication

scenarios	with	related	sample	applications:
https://docs.microsoft.com/en-us/azure/active-
directory/develop/active-directory-authentication-scenarios.

The	following	steps	are	involved	in	application	integration	scenarios	with
Azure	AD:

1.	 Create	your	Azure	AD	directory.	This	is	your	tenant.
2.	 Create	your	application.
3.	 Register	the	application	with	Azure	AD	with	information	about	your

application.
4.	 Write	code	in	your	application	to	satisfy	one	of	the	scenarios	for	user

authentication	or	token	requests	to	call	APIs.
5.	 Receive	protocol-specific	responses	to	your	application	from	Azure	AD,

including	a	valid	token	for	proof	of	authentication	or	for	authorization
purposes.

In	this	section,	you’ll	learn	how	to	create	a	directory,	register	an	application	in
the	Azure	portal,	and	learn	how	to	find	integration	endpoints	for	each	protocol.

More	Info:	Azure	AD	Code	Samples

Integration	between	applications	and	Azure	AD	involves	selecting	a
protocol	for	user	authentication	and	for	specific	application
authorization	scenarios	and	choosing	components	for	your
application	platform	to	simplify	working	with	protocols.	The
following	reference	has	many	authentication	and	authorization
samples	to	help	you	apply	the	review	in	this	section	to	code,
illustrating	the	most	common	integration	scenarios:
https://azure.microsoft.com/en-us/resources/samples/?service=active-
directory&sort=0.

Creating	a	directory
To	create	a	new	Azure	AD	directory,	follow	these	steps:

1.	 Navigate	to	the	Azure	portal	accessed	via	https://portal.azure.com.
2.	 Click	New	and	select	Security	+	Identity,	then	select	Azure	Active

Directory	from	the	list	of	choices.

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-authentication-scenarios
https://azure.microsoft.com/en-us/resources/samples/?service=active-directory&sort=0
https://portal.azure.com

3.	 From	the	Create	Directory	blade,	(Figure	3-2)	enter	your	Organization
name	and	your	domain	name.	Select	the	country	or	region	and	click	Create.

FIGURE	3-2	The	Create	Directory	blade

4.	 Once	created	there	will	be	a	link	shown	on	the	same	blade,	that	you	can
click	to	navigate	to	the	directory.	You	can	also	navigate	to	the	directory	by
selecting	More	Services	from	the	navigate	panel,	then	from	the	search
textbox	type	active,	then	select	Azure	Active	Directory.	The	blade	for	the
new	directory	that	you	have	created	will	be	shown.

5.	 If	the	Azure	Active	Directory	blade	shown	is	not	your	new	directory,	you
can	switch	directories	by	selecting	the	Switch	Directories	link	from	the
directory	blade	(Figure	3-3).	This	drops	down	the	directory	selection	menu
from	which	you	can	choose	the	directory	you	want	to	navigate	to.

FIGURE	3-3	The	Switch	directory	link	available	from	an	Azure	Active
Directory	blade

More	Info:	Creating	a	Premium	Directory

See	the	following	reference	for	setting	up	a	premium	directory:
https://docs.microsoft.com/en-us/azure/active-directory/active-
directory-get-started-premium.

More	Info:	Azure	AD	Connect

See	the	following	reference	for	how	to	use	Azure	AD	Connect	to
integrate	your	on-premises	directories	with	your	Azure	AD
directory:	https://docs.microsoft.com/en-us/azure/active-
directory/connect/active-directory-aadconnect.

Registering	an	application
You	can	register	Web/API	or	Native	applications	with	your	directory.	Web/API
applications	require	setting	up	a	URL	for	sign	in	responses.	Native	applications
require	setting	up	an	application	URI	for	OAuth2	responses	to	be	redirected	to.
Visual	Studio	has	tooling	integration	that	supports	automating	the	creation	of
applications	if	you	configure	your	directory	authentication	while	setting	up	the
project	with	a	template	that	supports	this.	This	removes	the	need	to	manually
register	applications,	and	it	initializes	the	configuration	of	the	application	for	you
as	well,	using	middleware	that	understands	how	to	integrate	with	Azure	Active
Directory.
You	can	manually	add	a	Web/API	application	using	the	Azure	portal	by

following	these	steps:

1.	 Navigate	to	the	Azure	portal	accessed	via	https://portal.azure.com.
2.	 Select	Azure	Active	Directory	from	the	navigation	panel	and	navigate	to

your	directory.
3.	 Select	App	registrations	(Figure	3-4)	from	the	navigation	pane,	and	click

New	Application	Registration	from	the	command	bar	at	the	top	of	the
blade.

https://docs.microsoft.com/en-us/azure/active-directory/active-directory-get-started-premium
https://docs.microsoft.com/en-us/azure/active-directory/connect/active-directory-aadconnect
https://portal.azure.com

FIGURE	3-4	The	App	registrations	blade

4.	 From	the	Create	application	blade	(Figure	3-5),	supply	a	name	for	the
application.	Choose	the	application	type	Web/API	and	supply	the	Sign-on
URL,	which	is	the	address	where	the	sign	in	response	can	be	posted	to	the
application.	If	you	are	using	the	OpenID	Connect	middleware	for
aspnetcore,	the	address	will	end	with	/signin-oidc	and	the	middleware
knows	to	look	for	responses	arriving	with	that	path.

FIGURE	3-5	The	Create	application	blade

5.	 Click	Create	to	register	the	application.
6.	 Select	App	registrations	from	the	navigation	pane	for	the	directory.	The

new	application	will	be	listed	in	the	blade.
7.	 Select	your	application	by	clicking	it.	From	here	you	can	customize

additional	settings	such	as	the	following:

A.	 Uploading	a	logo	for	login	branding
B.	 Indicating	if	the	application	is	single	or	multi-tenant
C.	 Managing	keys	for	OAuth	scenarios
D.	 Controlling	consent	settings
E.	 Granting	permissions

More	Info:	Integrating	Applications

For	additional	details	related	to	integrating	applications	see	this
reference:	https://docs.microsoft.com/en-us/azure/active-
directory/develop/active-directory-integrating-applications.

Viewing	integration	endpoints
You	can	integrate	applications	with	Azure	AD	through	several	protocol
endpoints	including:

	WSFederation	metadata	and	sign-on	endpoints
	SAML-P	sign-on	and	sign-out	endpoints
	OAuth	2.0	token	and	authorization	endpoints
	Azure	AD	Graph	API	endpoint

Exam	Tip

The	graph	endpoint	exposed	in	the	Azure	Portal	for	Azure	AD
directories	and	applications	is	the	Azure	AD	Graph	API,	which
relates	to	Azure	AD	v1	capabilities.	This	chapter	covers	the
Microsoft	Graph	API	which	is	the	preferred	way	to	integrate,	so	a
different	endpoint	will	be	discussed	later.

To	view	the	endpoints	(Figure	3-6)	available	to	your	directory,	do	the
following:

1.	 Navigate	to	the	Azure	portal	accessed	via	https://portal.azure.com.
2.	 Select	Azure	Active	Directory	from	the	navigation	panel	and	navigate	to

your	directory.

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-integrating-applications
https://portal.azure.com

3.	 Select	App	registrations	from	the	navigation	pane	for	the	directory,	and
click	Endpoints	from	the	command	bar.

4.	 The	endpoints	blade	(see	Figure	3-2)	lists	protocol	endpoints,	such	as	the
following:
	https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-
44150037bfd9/federationmetadata/2007-06/federationmetadata.xml
	https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-
44150037bfd9/wsfed
	https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-
44150037bfd9/saml2
	https://graph.windows.net/c6cad604-0f11-4c1c-bdc0-44150037bfd9
	https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-
44150037bfd9/oauth2/token
	https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-
44150037bfd9/oauth2/authorize

https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-44150037bfd9/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-44150037bfd9/wsfed
https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-44150037bfd9/saml2
https://graph.windows.net/c6cad604-0f11-4c1c-bdc0-44150037bfd9
https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-44150037bfd9/oauth2/token
https://login.microsoftonline.com/c6cad604-0f11-4c1c-bdc0-44150037bfd9/oauth2/authorize

FIGURE	3-6	A	list	of	protocol	endpoints	for	an	Azure	AD	tenant

Develop	apps	that	use	WSFederation,	SAML-P,	OpenID	Connect
and	OAuth	endpoints
You	can	integrate	your	applications	for	authentication	and	authorization
workflows	using	WSFederation,	SAML	Protocol	(SAML-P),	OpenID	Connect
and	OAuth	2.0.	Azure	AD	OAuth	2.0	and	endpoints	support	both	OpenID
Connect	and	OAuth	2.0	integration	for	authentication	or	authorization	requests.
If	your	applications	require	support	for	WSFederation	or	SAML	2.0	protocol
you	can	use	those	endpoints	to	achieve	the	integration.	This	section	discusses
integration	using	these	protocols.

Note:	Openid	Connect

OpenID	Connect	extends	the	features	of	OAuth	2.0	protocol	to
support	user	authentication	workflows	and	session	management.
The	OAuth	2.0	authorization	endpoint	is	the	endpoint	used	by

OpenID	Connect	to	perform	authentication,	and	some	new
endpoints	are	introduced	with	OpenID	Connect	that	also	support
session	management,	although	you	may	not	see	all	of	these
endpoints	exposed	directly	by	Azure	AD.	The	endpoints	exposed	by
an	identity	service	are	often	implementation	specific	while	they	still
(should)	follow	the	protocols	at	their	core.

Integrating	with	OpenID	Connect
OAuth	2.0	is	an	authorization	protocol,	not	an	authentication	protocol.	OpenID
Connect	extends	OAuth	2.0	with	standard	flows	for	user	authentication	and
session	management.	Today’s	applications	typically	use	OpenID	Connect
workflows	authenticating	users	from	web,	JavaScript,	or	mobile	applications
(via	the	browser).	OpenID	Connect	authentication	involves	the	application
sending	a	sign	in	request	to	the	directory,	and	receiving	a	sign	in	response	at	the
application.	The	sign	in	response	includes	an	id	token	representing	proof	of
authentication,	and	the	application	uses	this	to	establish	the	user	session	at	the
application.
To	create	an	aspnetcore	application	that	authenticates	users	with	OpenID

Connect,	do	the	following	from	Visual	Studio	2017:

1.	 Open	Visual	Studio	2017	and	create	a	new	project	based	on	the	ASP.NET
Core	Web	Application	project	template	(Figure	3-7).	Select	Web
Application	for	the	style	of	application	on	the	second	dialog	and	then	click
Change	Authentication.

http://ASP.NET

FIGURE	3-7	The	new	ASP.NET	Core	Web	Application	dialog

2.	 Select	Work	or	School	Accounts	and	enter	your	Azure	AD	domain	into	the
textbox	provided	(if	you	are	signed	in,	this	will	also	be	available	in	the
drop-down	list).	Click	OK	to	return	to	the	previous	dialog,	and	again	click
OK	to	accept	the	settings	and	create	the	project	(Figure	3-8).

FIGURE	3-8	The	Change	Authentication	dialog

http://ASP.NET

3.	 Visual	Studio	will	register	this	application	with	your	Azure	AD	directory,
and	configure	the	project	with	the	correct	application	settings	in	the
appsettings.json	file.	These	settings	provide	the	following	key	information
to	the	middleware:

A.	 Which	directory	to	communicate	with	(Domain	and	TenantId).
B.	 Which	registered	application	is	making	the	request	(ClientId).
C.	 Which	redirect	URI	should	be	provided	with	the	sign	in	request,	so

that	Azure	AD	can	validate	this	in	its	list	of	approved	redirect	URIs
(built	from	the	CallbackPath).

D.	 The	base	address	of	the	Azure	AD	instance	to	send	requests	to
(Instance).

4.	 The	following	settings	are	found	in	the	web.config	for	the	new	project:
Click	here	to	view	code	image

"AzureAd":	{	"Instance":	"https://login.microsoftonline.com/",

				"Domain":	"solaaddirectory.onmicrosoft.com",

				"TenantId":	"c6cad604-0f11-4c1c-bdc0-44150037bfd9",

				"ClientId":	"483db32c-f517-495d-a7b5-03d6453c939c",

				"CallbackPath":	"/signin-oidc"

		},

5.	 Navigate	to	your	Azure	AD	directory	(Figure	3-9)	at	the	Azure	portal	and
view	the	App	registrations.	Select	your	new	application	to	view	its
properties.	The	properties	show	the	App	ID	URI	used	to	uniquely	identify
your	application	at	the	directory,	and	the	home	page	URL	used	to	send
protocol	responses	post	sign	in.

FIGURE	3-9	Azure	AD	application	settings	blade

When	you	run	the	new	project	from	Visual	Studio	you	will	see	a	workflow
like	this:

1.	 A	user	navigates	to	the	application.
2.	 When	the	user	browses	to	a	protected	page	or	selects	Login,	the	application

redirects	anonymous	users	to	sign	in	at	Azure	AD,	sending	an	OpenID
Connect	sign	in	request	to	the	OAuth	endpoint.

3.	 The	user	is	presented	with	a	login	page,	unless	she	has	previously	signed	in

and	established	a	user	session	at	the	Azure	AD	tenant.
4.	 When	authenticated,	an	OpenID	Connect	response	is	returned	via	HTTP

POST	to	the	application	URL,	and	this	response	includes	an	id	token
showing	proof	of	user	authentication.

5.	 The	application	processes	this	response,	using	the	configured	middleware
that	supports	OpenID	Connect	protocol,	and	verifies	the	token	is	signed	by
the	specified	trusted	issuer	(your	Azure	AD	tenant),	onfirming	that	the
token	is	still	valid.

6.	 The	application	can	optionally	use	claims	in	the	token	to	personalize	the
application	experience	for	the	logged	in	user.

7.	 The	application	can	also	optionally	query	Azure	AD	for	groups	for
authorization	purposes.

Note:	Oauth	Endpoints

Azure	AD	exposes	two	OAuth	endpoints:	the	authorization
endpoint	(supports	authentication	via	OpenID	Connect)	and	the
token	endpoint	(supports	requests	pertaining	to	access	tokens).
These	are	protocol	endpoints	defined	by	the	OAuth	2.0	protocol.
Middleware	components	that	support	OpenID	Connect	and	OAuth
2.0	usually	rely	on	a	well-known	OpenID	Connect	metadata
endpoint	at	the	identity	service	to	discover	which	endpoint	to	send
requests	to.	This	metadata	endpoint	for	a	given	directory	looks
something	like	this:
https://login.microsoftonline.com/solaaddirectory.onmicrosoft.com/.well-
known/openid-configuration.

More	Info:	Openid	Connect	Sample

For	more	information	on	integrating	an	ASP.NET	MVC
application	using	the	OWIN	framework	to	handle	OpenID	Connect
requests	and	responses,	see:	https://github.com/Azure-
Samples/active-directory-dotnet-webapp-openidconnect.

Integrating	with	OAuth
OAuth	2.0	is	an	authorization	protocol	that	is	typically	used	for	delegated
authorization	scenarios	where	user	consent	is	required	to	access	resources,	and
for	access	token	requests.	The	desired	response	from	an	OAuth	2.0	authorization

https://login.microsoftonline.com/solaaddirectory.onmicrosoft.com/.well-known/openid-configuration
http://ASP.NET
https://github.com/Azure-Samples/active-directory-dotnet-webapp-openidconnect

for	access	token	requests.	The	desired	response	from	an	OAuth	2.0	authorization
request	is	an	access	token,	which	is	typically	used	to	call	APIs	protecting
resources.
Before	an	application	can	request	tokens,	it	must	be	registered	with	the	Azure

AD	tenant	and	have	both	a	client	id	and	secret	(key)	that	can	be	used	to	make
OAuth	requests	on	behalf	of	the	application.
To	generate	a	secret	for	an	application,	complete	the	following	steps:

1.	 Navigate	to	the	directory	from	the	Azure	portal	accessed	via
https://portal.azure.com.

2.	 Click	App	registrations	in	the	navigation	pane,	and	select	the	application
you	want	to	enable	for	token	requests	via	OAuth.

3.	 Select	Keys	in	the	navigation	pane.	Provide	a	friendly	name	for	the	key	and
select	a	duration	for	the	key	to	be	valid	(Figure	3-10).

FIGURE	3-10	The	Keys	blade	for	an	application	in	Azure	AD

4.	 Click	Save	on	the	command	bar	and	the	value	for	the	key	appears.
5.	 Copy	the	key	somewhere	safe;	it	will	not	be	presented	again.
6.	 You	can	now	use	the	client	id	and	secret	(key)	to	perform	OAuth	token

requests	from	your	application.

A	later	section,	“Query	the	Graph	API,”	covers	an	example	of	an	OAuth	token
request	authorizing	an	application	to	use	the	Graph	API.

More	Info:	Oauth	Token	Request	Samples

The	following	samples	illustrate	authorizing	users	and	applications
for	OAuth	token	requests:	https://github.com/Azure-Samples/active-

https://portal.azure.com
https://github.com/Azure-Samples/active-directory-dotnet-webapp-webapi-oauth2-useridentity

directory-dotnet-webapp-webapi-oauth2-useridentity	and
https://github.com/Azure-Samples/active-directory-dotnet-webapp-
webapi-oauth2-appidentity.

Integrating	with	WSFederation
WSFederation	is	an	identity	protocol	used	for	browser-based	applications	for
user	authentication.	To	create	a	new	ASP.NET	MVC	application	that	integrates
with	the	WSFederation	endpoint	there	are	a	number	of	custom	coding	steps	that
are	required	since	the	templates	do	not	support	this	directly.	Those	steps	are
discussed	at	the	following	reference:	https://github.com/Azure-Samples/active-
directory-dotnet-webapp-wsfederation.

Note:	Visual	Studio

The	reference	uses	Visual	Studio	2013	but	the	steps	work	for
Visual	Studio	2017.

A	few	key	points	to	call	out	about	the	setup	for	WSFederation	are	as	follows:

1.	 When	you	create	a	new	project	using	Visual	Studio	(for	example,	based	on
the	ASP.NET	Web	Application	project	template)	you	will	select	MVC	for
the	style	of	application	on	the	second	dialog	and	leave	No	Authentication
as	the	authentication	option	for	the	template	(Figure	3-11).	If	you	choose
other	authentication	options,	the	generated	code	will	always	use	OpenID
Connect	as	the	protocol,	and	this	will	not	work	for	WSFederation	or	other
protocols.

https://github.com/Azure-Samples/active-directory-dotnet-webapp-webapi-oauth2-appidentity
http://ASP.NET
https://github.com/Azure-Samples/active-directory-dotnet-webapp-wsfederation
http://ASP.NET

FIGURE	3-11	The	new	ASP.NET	Web	Application	dialog	with	no
authentication	option	selected

2.	 You	will	have	to	add	code	per	the	above	reference	to	communicate	using
WSFederation	protocol	and	set	up	the	application	settings	required	to
match	your	Azure	AD	setup	for	the	application.

3.	 You	will	register	an	Azure	AD	application	following	the	steps	shown
earlier	in	this	skill.	Here	is	an	example	for	a	WSFederation	application
setup	(Figure	3-12).

http://ASP.NET

FIGURE	3-12	The	settings	for	a	registered	WSFederation	compatible
application	in	Azure	AD

4.	 The	details	for	connecting	an	MVC	application	with	the	registered	Azure
AD	application	for	WSFederation	are	covered	in	the	reference.	It	shows

you	how	to	setup	the	OWIN	middleware	for	WSFederation:
WsFederationAuthenticationMiddleware.	In	addition	to	following	those
steps,	note	the	following:

A.	 Ensure	that	the	App	ID	URI	matches	the	wtrealm	parameter	that	will
be	passed	in	the	WSFederation	request	from	the	client	application.

B.	 Ensure	SSL	is	enabled	for	your	application.
C.	 Ensure	that	the	Home	page	URL	is	an	HTTPS	endpoint	and	matches

the	application	SSL	path.

When	you	run	a	WSFederation	client	you	will	see	the	following	workflow:

1.	 A	user	navigates	to	the	application.
2.	 When	the	user	browses	to	a	protected	page	or	selects	Login,	the	application

redirects	anonymous	users	to	sign	in	at	Azure	AD,	sending	a	WSFederation
protocol	request	that	indicates	the	application	URI	for	the	realm	parameter.
The	URI	matches	the	App	ID	URI	shown	in	the	registered	application
settings.

3.	 The	request	is	sent	to	the	tenant	WSFederation	endpoint.
4.	 The	user	is	presented	with	a	login	page,	unless	she	has	previously	signed	in

and	established	a	user	session	at	the	Azure	AD	tenant.
5.	 When	authenticated,	a	WSFederation	response	is	returned	via	HTTP	POST

to	the	application	URL	-	and	this	response	includes	a	SAML	token	showing
proof	of	user	authentication.

6.	 The	application	processes	this	response,	using	the	configured	OWIN
middleware	that	supports	WSFederation,	and	verifies	the	token	is	signed	by
the	specified	trusted	issuer	(your	Azure	AD	tenant),	and	confirms	that	the
token	is	still	valid.

7.	 The	application	can	optionally	use	claims	in	the	token	to	personalize	the
application	experience	for	the	logged	in	user.

8.	 The	application	can	optionally	query	Azure	AD	for	groups	for
authorization	purposes.

Note:	Federation	Metadata

WSFederation	exposes	two	endpoints:	one	for	metadata	and	one
for	sign-in	and	sign-out.	The	metadata	endpoint	exposes	the
standard	federation	metadata	document	that	many	identity

middleware	know	how	to	consume	to	discover	the	address	of	the
sign-in	and	sign-out	endpoint,	the	certificate	required	to	validate
signatures	in	a	response,	and	other	endpoints	available	at	the
service,	such	as	SAML-P	endpoints.	If	you	use	the	metadata
endpoint,	your	application	should	dynamically	receive	updates,
such	as	new	certificates	used	by	the	service.	The	sign-in	and	sign-
out	endpoint	expects	parameters	indicating	the	purpose	of	the
request.

Integrating	with	SAML-P
SAML	2.0	Protocol	(SAML-P)	can	be	used	like	WSFederation	to	support	user
authentication	to	browser-based	applications.	For	example,	SAML-P	integration
with	Azure	AD	might	follow	steps	like	this:

1.	 A	user	navigates	to	your	application.
2.	 Your	application	redirects	anonymous	users	to	authenticate	at	Azure	AD,

sending	a	SAML-P	request	that	indicates	the	application	URI	for	the
ConsumerServiceURL	element	in	the	request.

3.	 The	request	is	sent	to	your	tenant	SAML2	sign	in	endpoint.
4.	 The	user	is	presented	with	a	login	page,	unless	she	has	previously	signed	in

and	established	a	user	session	at	the	Azure	AD	tenant.
5.	 When	authenticated,	a	SAML-P	response	is	returned	via	HTTP	POST	to

the	application	URL.	The	URL	to	use	is	specified	in	the	single	sign-on
settings	as	the	Reply	URL.	This	response	contains	a	SAML	token.

6.	 The	application	processes	this	response,	verifies	the	token	is	signed	by	a
trusted	issuer	(Azure	AD),	and	confirms	that	the	token	is	still	valid.

7.	 The	application	can	optionally	use	claims	in	the	token	to	personalize	the
application	experience	for	the	logged	in	user.

8.	 The	application	can	optionally	query	Azure	AD	for	groups	for
authorization	purposes.

Note:	SAML-P	Endpoints

SAML-P	support	in	Azure	AD	includes	a	sign-on	and	sign-out
endpoint,	and	they	are	both	the	same	URL.	The	protocol	describes
how	to	format	each	request	so	that	the	endpoint	knows	which
action	is	requested.

More	Info:	SAML	Protocol

SAML-P	tools	are	not	provided	as	part	of	the	.NET	Framework
libraries;	however,	there	are	a	few	third-party	libraries	available
for	building	applications	based	on	this	protocol.	Typically,	support
for	SAML-P	becomes	important	when	you	are	integrating	other
SaaS	applications	with	your	Azure	AD	because	some	applications
do	not	support	WSFederation	or	OpenID	Connect.	For	more
information	on	SAML-P	and	Azure	AD,	see
https://docs.microsoft.com/en-us/azure/active-directory/active-
directory-saml-protocol-reference.

Query	the	directory	using	Microsoft	Graph	API,	MFA	and	MFA
API
Beyond	authentication	and	authorization	workflows	for	your	applications,	you
can	also	interact	with	the	Microsoft	Graph	API	to	manage	users	and	request
information	about	users,	and	integrate	multi-factor	authentication	scenarios	into
your	solutions.	This	section	discusses	those	capabilities.

Note:	Microsoft	Graph	VS.	Azure	AD	Graph

Microsoft	Graph	is	the	recommended	API	to	be	used	over	Azure
AD	Graph	API	-	as	it	is	where	future	investments	in	functionality
are	being	made.	Microsoft	Graph	already	supports	most
everything	that	is	exposed	today	through	Azure	AD	graph	and	will
ultimately	support	all	of	Azure	AD	Graph	functionality.	In	the
meantime,	both	APIs	are	supported	for	those	applications	that
were	already	implemented	against	Azure	AD	Graph.	New
applications	are	recommended	to	use	Microsoft	Graph	unless	there
is	a	feature	that	only	Azure	AD	Graph	exposes.	See	this	reference
for	the	roadmap:	https://dev.office.com/blogs/microsoft-graph-or-
azure-ad-graph.

Query	the	Microsoft	Graph	API
Using	the	Microsoft	Graph	API,	you	can	interact	with	your	Azure	AD	tenant	to
manage	users,	groups,	and	more.	If	the	application	is	limited	to	read	access	only,
query	activity	will	be	allowed.	With	read	and	write	access,	the	application	can

https://docs.microsoft.com/en-us/azure/active-directory/active-directory-saml-protocol-reference
https://dev.office.com/blogs/microsoft-graph-or-azure-ad-graph

query	activity	will	be	allowed.	With	read	and	write	access,	the	application	can
perform	additional	management	activities:

	Add,	update,	and	delete	users	and	groups
	Find	users
	Request	a	user’s	group	and	role	membership
	Manage	group	membership
	Create	applications
	Query	and	create	directory	properties

More	Info:	Microsoft	Graph	API	Reference

See	this	reference	for	documentation	regarding	the	Microsoft
Graph:	https://developer.microsoft.com/en-us/graph/docs.

Exam	Tip

The	Microsoft	Graph	API	is	accessible	via	the	Azure	AD	v2
endpoint.	The	Azure	AD	v2	endpoint	is	an	evolution	of	the	Azure
AD	v1	endpoint	that	modernizes	some	of	the	protocol	payloads,
allows	you	to	use	a	single	endpoint	for	both	Azure	AD	and
Microsoft	Account	users,	and	also	adds	other	features.	At	the	time
of	this	writing,	the	only	way	to	use	the	Azure	AD	v2	endpoint	is	to
register	applications	at	the	new	Microsoft	Application	Registry	at
https://apps.dev.microsoft.com.	For	more	details	on	this	see:
https://docs.microsoft.com/en-us/azure/active-
directory/develop/active-directory-appmodel-v2-overview.

Before	you	can	interact	with	the	Microsoft	Graph	API	programmatically,	you
must	create	an	application	with	the	Microsoft	Application	Registry	as	follows
(Figure	3-13):

1.	 Navigate	to	the	Microsoft	Application	Registry	accessed	via
https://apps.dev.microsoft.com.

2.	 Click	Add	an	app,	and	from	the	app	registration	page	enter	a	friendly	name
for	your	application	and	supply	your	contact	email	for	administering	the

https://developer.microsoft.com/en-us/graph/docs
https://apps.dev.microsoft.com
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-appmodel-v2-overview
https://apps.dev.microsoft.com

applications.	You	can	optionally	select	the	Guided	Setup	checkbox	for	a
walkthrough	to	complete	additional	settings.	Click	to	create	the	application.

FIGURE	3-13	The	Register	your	application	page

3.	 If	you	do	not	select	the	guided	setup,	you	will	see	the	registration	details
for	your	new	application	and	be	able	to	view	and	manage	those	details,	for
example:

A.	 View	the	application	id	(a	GUID)	identifying	your	application.
B.	 Generate	a	password	or	set	up	a	key	pair	for	the	application	to	support

token	requests.
C.	 Supply	web	application	integration	details	such	as	redirect	URL	and

single	sign-out	URL.
D.	 Supply	mobile	application	integration	details	such	as	redirect	URI.
E.	 Set	any	delegated	or	application	permissions	that	the	application

requires.
F.	 Provide	other	application	customization	details	that	are	relevant

during	sign	in	such	as	the	logo,	home	page	URL,	terms	of	service
URL,	and	privacy	statement	URL.

An	application	can	query	the	Microsoft	Graph	API	in	a	few	ways:
	The	application	can	directly	query	the	graph	API	with	the	application	id	and
secret,	to	access	information	that	the	application	has	direct	access	to	(without
user	consent	being	required).

	The	application	can	request	information	about	the	user	through	delegated
permissions,	which	implies	that	the	user	must	first	authenticate	to	the
application,	grant	consent	(or	at	least	have	consent	automatically	granted	at
the	administrative	level),	and	then	make	requests	on	behalf	of	that	user.
To	set	up	a	web	application	to	support	user	authentication,	consent	and

delegated	permissions	to	user	information	exposed	via	the	Graph	API:

1.	 Create	an	application	password.	Click	Generate	New	Password	from	the
Application	secrets	section.	In	the	dialog	presented	save	the	generated
password	somewhere	safe	as	it	will	not	be	presented	again	(Figure	3-14).

FIGURE	3-14	The	Application	Secrets	section	of	the	registered
application

2.	 From	Platforms	section,	select	Add	Platform	and	select	Web.	Provide	the
web	application	sign	in	URL	and	for	single	sign-out	scenarios	you	can
optionally	provide	the	application	sign	out	URL	(Figure	3-15).

FIGURE	3-15	The	web	application	configuration	for	sign	in	and	sign	out

3.	 By	default,	the	Microsoft	Graph	Permissions	will	have	delegated
permissions	for	User.Read	selected.	You	may	choose	to	change	the
delegated	permissions,	or	add	application	permissions,	based	on	the	type	of
requests	your	application	may	make	to	the	Graph	API.

More	Info:	Azure	Samples	for	Microsoft	Graph

See	the	Azure	Samples	on	GitHub	for	more	examples	for	calling
the	Microsoft	Graph	API	including	the	following	examples	for	web
apps	and	JavaScript	based	applications:

https://github.com/Azure-Samples/active-directory-dotnet-webapp-
openidconnect-v2	and	https://github.com/Azure-Samples/active-
directory-javascript-singlepageapp-dotnet-webapi-v2.

Working	with	MFA
Multi-factor	authentication	(MFA)	requires	that	users	provide	more	than	one
verification	method	during	the	authentication	process,	including	two	or	more	of
the	following:

	A	password	(something	you	know)
	An	email	account	or	phone	(something	you	have)
	Biometric	input	like	a	thumbprint	(something	you	are)
Azure	Multi-Factor	Authentication	(MFA)	is	the	Microsoft	solution	for	two-

step	verification	workflows	that	can	work	with	phone,	text	messages	or	mobile
app	verification	methods.

Note:	MFA	Settings

At	the	time	of	this	writing,	you	must	still	navigate	to	the	(old)
management	portal	to	enable	MFA	for	users	in	your	directory,	and
to	configure	MFA	settings.	This	will	change	in	the	near	future.

You	can	enable	MFA	for	users	in	your	directory	by	doing	the	following:

1.	 Navigate	to	the	Azure	portal	accessed	via	https://portal.azure.com.
2.	 Click	New	and	select	Security	+	Identity,	then	select	Multi-Factor

Authentication	from	the	list	of	choices	(Figure	3-16).

https://github.com/Azure-Samples/active-directory-dotnet-webapp-openidconnect-v2
https://github.com/Azure-Samples/active-directory-javascript-singlepageapp-dotnet-webapi-v2
https://portal.azure.com

FIGURE	3-16	The	Multi-Factor	Authentication	selection	in	the	Azure
Portal

3.	 You	will	see	a	link	that	will	take	you	to	the	(old)	management	portal.	Click
Go	to	navigate	to	that	portal	(Figure	3-17).

FIGURE	3-17	The	Coming	Soon	screen	that	links	to	the	old	management
portal	for	managing	Multi-Factor	Authentication

4.	 From	the	(old)	management	portal	select	your	directory	and	click	the
Configure	tab	(Figure	3-18).

FIGURE	3-18	A	directory	view	in	the	(old)	management	portal	where
you	can	configure	MFA	settings

5.	 Scroll	down	to	the	multi-factor	authentication	section	and	click	Manage
service	settings.	You	will	navigate	to	another	portal	where	you	can
configure	your	multi-factor	authentication	service	settings	(Figure	3-19).

FIGURE	3-19	The	configuration	section	where	you	can	manage	multi-
factor	authentication

6.	 From	the	multi-factor	authentication	portal,	select	the	service	settings	tab.
You	can	optionally	customize	settings	for	the	following:

A.	 App	passwords
B.	 Trusted	IPs	to	bypass	multi-factor	authentication
C.	 Enabled	multi-factor	verification	options	such	as	call	or	text	to	phone,

mobile	notifications	or	mobile	apps
D.	 Device	remember-me	settings

7.	 Select	the	users	tab.	From	here	you	can	select	users	and	enable	multi-factor
authentication	(Figure	3-20).	Select	a	user	from	your	directory	who	does
not	yet	have	multi-factor	enabled,	and	click	Enable	from	the	action	pane	to
the	right.

FIGURE	3-20	The	user	configuration	settings	for	multi-factor
authentication

Users	with	multi-factor	authentication	enabled	will	be	prompted	to	set	up	their
multi-factor	authentication	settings	during	their	next	login.	The	login	workflow
will	follow	these	steps:

1.	 First,	the	user	is	taken	to	the	directory	login	where	they	are	prompted	to
login	with	their	username	and	password.

2.	 Once	authenticated,	they	are	presented	with	a	request	to	set	up	their	multi-
factor	settings	(Figure	3-21).

FIGURE	3-21	A	user	prompt	to	set	up	multi-factor	authentication

3.	 If	the	user	has	not	yet	supplied	their	email	address	or	phone	number	for
multi-factor	authentication,	they	will	be	asked	to	provide	this	information
now.	In	addition,	they	will	be	taken	through	the	process	of	verifying	this
information	to	ensure	they	can	be	used	safely	for	future	multi-factor
authentication	workflows.

Exam	Tip

Azure	Multi-Factor	Authentication	is	included	inAzure	Active
Directory	Premium	plans	and	Enterprise	Mobility	+	Security
plans,	and	can	be	deployed	either	in	the	cloud	or	on-premises.	See
the	following	documentation	for	the	full	details	about	Microsoft’s
MFA	solution:	https://docs.microsoft.com/en-us/azure/multi-factor-
authentication.

Work	with	the	MFA	API
You	may	choose	to	integrate	multi-factor	authentication	directly	into	your
applications.	This	can	be	done	by	using	the	Multi-factor	Authentication	Software
Development	Kit	(SDK),	which	provides	an	API	for	interacting	with	Azure
MFA	from	your	application.
In	order	to	use	these	MFA	APIs	you	must	first	create	a	Multi-factor

https://www.microsoft.com/cloud-platform/azure-active-directory-features
https://www.microsoft.com/cloud-platform/enterprise-mobility-security-pricing
https://docs.microsoft.com/en-us/azure/multi-factor-authentication

In	order	to	use	these	MFA	APIs	you	must	first	create	a	Multi-factor
Authentication	Provider	from	the	Azure	portal	following	these	steps:

1.	 Navigate	to	the	Azure	portal	accessed	via	https://portal.azure.com.
2.	 Click	New	and	select	Security	+	Identity,	then	select	Multi-Factor

Authentication	from	the	list	of	choices.	You	will	see	a	link	that	will	take
you	to	the	(old)	management	portal	(Figure	3-22).	Click	Go	to	navigate	to
that	portal.

3.	 Select	Active	Directory	from	the	navigation	pane	and	select	the	Multi-
factor	Auth	Providers	tab.

FIGURE	3-22	The	list	of	directories	in	the	(old)	management	portal

4.	 Create	a	new	provider	and	set	these	values	(Figure	3-23):

A.	 Name	for	the	provider.
B.	 Usage	model,	choosing	between	Per	Enabled	User	or	Per

Authentication.
C.	 Associate	the	provider	with	one	of	your	directories.

FIGURE	3-23	Creating	a	new	multi-factor	auth	provider	in	the	(old)
management	portal

https://portal.azure.com

5.	 Click	Create	to	create	the	new	multi-factor	authentication	provider	(Figure
3-24).	You	will	see	it	in	the	list	of	the	providers	once	it’s	created.

FIGURE	3-24	The	list	of	multi-factor	authentication	providers

6.	 To	manage	settings	for	the	multi-factor	authentication	provider,	select	it
and	click	Manage	from	the	command	bar	below.	You	will	be	taken	to	the
Azure	Multi-Factor	Authentication	portal	(Figure	3-25).

7.	 Select	Downloads	to	view	the	available	MFA	SDK	downloads	and	choose
the	one	for	your	development	environment	for	download.

FIGURE	3-25	The	Azure	Multi-factor	Authentication	portal	and
Downloads	SDK	area

More	Info:	Multi-Factor	Authentication	SDK

For	more	information	on	using	the	MFA	SDK	to	integrate	with
your	applications	see	this	resource:	https://docs.microsoft.com/en-
us/azure/multi-factor-authentication/multi-factor-authentication-sdk.

Exam	Tip

You	can	only	associate	one	multi-factor	authentication	provider	to
a	directory.

Skill	3.2:	Develop	apps	that	use	Azure	AD	B2C	and	Azure	AD
B2B
Azure	AD	supports	user	sign-in	with	social	identity	providers	such	as	Google
and	Facebook	as	part	of	Azure	AD	B2C.	Azure	AD	also	enables	access	to
applications	from	external	partners	as	part	of	Azure	B2B	collaboration.	This
section	discusses	these	features.

This	skill	covers	how	to:
	Design	and	implement	.NET	MVC,	Web	API,	and	Windows	desktop
apps	that	leverage	social	identity	provider	authentication
	Leverage	Azure	AD	B2B	to	design	and	implement	applications	that
support	partner-managed	identities	and	enforce	multi-factor
authentication

Design	and	implement	apps	that	leverage	social	identity	provider
authentication
Azure	AD	B2C	makes	it	possible	for	users	of	your	applications	to	authenticate
with	social	identity	providers,	enterprise	accounts	using	open	standards,	and
local	accounts	where	users	are	managed	by	Azure	AD.	Fundamentally	this
means	that	the	user	signs	in	at	the	identity	provider,	and	therefore,	credentials
are	managed	by	the	identity	provider.
Figure	3-26	illustrates	the	workflow	assuming	OpenID	Connect	protocol	for

communication	between	a	web	application	and	the	Azure	AD	B2C	tenant.	The
user	navigates	to	the	application	to	login	(1)	and	is	redirected	to	Azure	AD	with

https://docs.microsoft.com/en-us/azure/multi-factor-authentication/multi-factor-authentication-sdk

an	OpenID	Connect	sign	in	request	(2).	Azure	AD	redirects	the	user	to	the	third
party	identity	provider	(3)	with	the	protocol	that	is	established	for
communication	between	Azure	AD	and	that	provider	(it	may	not	be	OpenID
Connect).	If	the	user	does	not	yet	have	an	active	session	at	the	identity	provider,
they	are	typically	presented	with	a	login	page	to	enter	credentials	(4),	and	upon
successful	authentication	(5),	the	identity	provider	issues	a	protocol	response	and
sets	up	the	user	session	(6)	possibly	in	the	form	of	an	SSO	session	cookie.	The
response	is	posted	to	Azure	AD	(7)	and	validated.	Upon	successful	validation	of
the	response	(and	user	identity)	Azure	AD	establishes	a	user	session	(SSO
session	cookie)	and	issues	an	OpenID	Connect	response	to	the	calling	web	app
(8).	This	response	is	posted	to	the	web	app	(9)	and	validated	to	establish	the	user
session	at	the	web	app	(10).

FIGURE	3-26	The	high-level	workflow	for	user	sign-in	to	an	external	identity
provider	via	Azure	AD	B2C

There	are	a	few	important	things	to	point	out	about	this	workflow:
	Applications	need	not	be	aware	of	the	identity	provider	where	the	user	signs
in,	since	the	application	trusts	the	response	from	Azure	AD.
	The	trust	relationships	are	between	applications	and	Azure	AD,	and	between
Azure	AD	and	the	identity	provider(s)	that	are	configured	(see	Figure	3-27).
	The	protocols	to	be	used	between	Azure	AD	and	identity	provider	can	vary

per	identity	provider.	This	has	no	relationship	to	how	the	application
communicates	with	Azure	AD.

FIGURE	3-27	Trust	relationships	between	Applications	and	Azure	AD,	and
between	Azure	AD	and	external	identity	providers

This	section	covers	how	to	set	up	Azure	AD	B2C	to	enable	users	to	login	with
their	preferred	social	identity	provider	such	as	Microsoft	Account,	Facebook,
Google+,	Amazon	or	Linked	In.

More	Info:	Azure	AD	B2C	Overview

For	a	complete	look	at	Azure	AD	B2C	see	this	overview:
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-
directory-b2c-overview.

Create	an	Azure	AD	B2C	tenant
To	create	a	new	Azure	AD	B2C	tenant	follow	these	steps:

1.	 Navigate	to	the	Azure	portal	accessed	via	https://portal.azure.com.
2.	 Click	New	and	select	Security	+	Identity,	then	select	Azure	Active

Directory	B2C	from	the	list	of	choices	(Figure	3-28).

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-overview
https://portal.azure.com

FIGURE	3-28	The	list	of	options	under	Security	+	Identity	in	the	Azure
portal	where	Azure	Active	Directory	B2C	can	be	found

3.	 Click	Create	from	the	Azure	Active	Directory	B2C	blade.
You	may	be	prompted	to	switch	to	a	directory	with	a	subscription	attached.
If	so,	click	Switch	directories	and	select	the	correct	subscription	where	you
want	to	create	the	new	B2C	tenant.	You	may	also	have	to	repeat	steps	1-3.

4.	 From	the	Create	new	B2C	tenant	or	Link	to	existing	tenant	blade,	select
Create	a	new	Azure	AD	B2C	tenant	(Figure	3-29).

5.	 Enter	a	name	for	the	organization,	a	domain	name,	and	select	the	country	or
region	for	the	new	tenant.

FIGURE	3-29	Settings	for	creating	a	new	Azure	AD	B2C	tenant.

6.	 You	can	navigate	to	your	directory	by	clicking	the	link	supplied	in	the
create	blade,	after	the	directory	is	created.	Or,	you	can	navigate	to	More
Services	from	the	navigation	menu	and	type	Azure	AD	to	filter	the	list	and
find	Azure	AD	B2C,	then	select	it	(Figure	3-30).

FIGURE	3-30	Filtering	services	to	show	Azure	AD	B2C

7.	 Your	tenant	will	appear	in	the	B2C	Tenant	dashboard	and	may	show	a
notification	indicating	that	it	is	not	attached	to	a	subscription.	If	this
happens,	switch	directories	again,	select	your	subscription	from	the	list,	and
repeat	steps	1-3.	At	step	4	select	Link	to	existing	tenant	and	choose	your
tenant.	This	will	remove	the	warning.

8.	 Repeat	step	6	to	return	to	your	Azure	B2C	tenant	dashboard	and	click	the
tenant	settings	component.	From	here	you	will	be	able	to	manage	your
tenant	settings.

Register	an	application
A	given	solution	may	have	one	or	more	applications	that	will	integrate	with
Azure	AD	B2C.	Integration	requires	an	application	be	registered	with	the	B2C
tenant.	When	you	register	an	application,	you	can	configure	how	the	application
will	integrate	with	the	tenant,	for	example:

	Indicate	if	the	application	is	a	web	or	API	application,	or	a	native
application
	Indicate	if	OpenID	Connect	will	be	used	to	authenticate	users	interactively
	Indicate	any	required	redirect	URLs	or	URIs

Follow	these	steps	to	register	a	web	application:

1.	 Navigate	to	your	B2C	tenant	settings	(Figure	3-31)	as	described	in	the

previous	section
2.	 Select	Applications	and	click	Add	from	the	command	bar

FIGURE	3-31	The	applications	list	where	you	can	register	a	new
application

3.	 In	the	New	application	blade,	provide	the	following	settings	(Figure	3-32):

A.	 Enter	a	name	for	the	application
B.	 Select	Yes	for	Web	App	/	Web	API
C.	 Select	Yes	for	Allow	implicit	flow
D.	 Provide	a	reply	URL	authentication	responses	should	be	posted

FIGURE	3-32	The	New	application	blade

4.	 An	application	ID	is	created	for	the	application	once	you	create	it	(Figure
3-33).	Select	the	application	from	the	applications	list	and	you	can	review
its	settings	including	this	new	application	ID.

FIGURE	3-33	The	settings	for	an	application

Now	you	can	set	up	your	application	with	the	following	settings:
	Configure	any	external	identity	providers	to	be	supported	for	sign	in
	Manage	user	attributes
	Manage	users	and	groups
	Manage	policies

Configure	identity	providers
You	may	want	to	give	your	users	a	choice	between	one	or	more	external	identity
providers	to	sign	in.	Azure	AD	supports	a	pre-defined	set	of	well-known	social
identity	providers	to	choose	from	(Figure	3-34).
To	configure	an	external	identity	provider,	follow	these	steps:

1.	 Navigate	to	your	directory	settings	as	discussed	previously.
2.	 Select	identity	providers	from	the	navigation	pane.
3.	 Enter	a	name	for	the	identity	provider,	something	that	matches	the	provider

you	will	configure	such	as	“google”	or	“facebook.”
4.	 Select	the	identity	provider	to	configure	and	click	OK.

FIGURE	3-34	The	identity	providers	supported	by	Azure	B2C	tenants

5.	 Set	up	the	identity	provider	in	the	final	tab.	Based	on	the	selected	identity
provider,	you	will	be	presented	with	required	settings	that	typically	include
a	client	id	and	secret	for	the	provider.	You	must	have	previously	set	up	an
application	with	the	identity	provider,	in	order	to	have	the	required	settings
for	this	configuration.	Once	you	have	entered	the	required	settings,	click
OK	(see	Figure	3-35).

FIGURE	3-35	Required	settings	for	Google	as	an	identity	provider

6.	 Click	Create	to	complete	the	configuration	of	the	identity	provider.	You
will	see	your	new	provider	listed	in	the	identity	providers	blade.

More	Info:	Configuring	Identity	Providers

The	setup	for	each	identity	provider	involves	setting	up	an
application	at	the	identity	provider,	sometimes	through	a
development	account,	and	then	setting	up	the	credentials	and
related	information	required	by	that	identity	provider	in	your
Azure	AD	B2C	settings.	See	this	reference	for	setting	up	a
Microsoft	Account:	https://docs.microsoft.com/en-us/azure/active-
directory-b2c/active-directory-b2c-setup-msa-app.	Additional
provider	setup	instructions	can	be	found	in	the	same	area	of	the
documentation	including	Google	and	Facebook.

Configuring	policies
There	are	several	policies	you	can	configure	for	your	Azure	AD	B2C	tenant.
These	policies	enable	features	and	govern	the	user	experience	for	the	following
scenarios:

	Sign-up
	Sign-in
	Profile	editing
	Password	reset
These	policies	all	provide	default	UI	templates	but	allow	for	overriding	those

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-msa-app

These	policies	all	provide	default	UI	templates	but	allow	for	overriding	those
templates	for	further	customization.	You	can	also	determine	which	identity
provider	shall	be	supported,	support	for	multi-factor	authentication,	and	control
over	which	claims	shall	be	returned	with	the	id	token	post	authentication.	For
sign-up,	you	can	also	configure	which	profile	attributes	you	want	to	collect	for
the	user.

More	Info:	B2C	Application	Samples

Once	you	have	set	up	your	Azure	B2C	tenant,	configuring
applications	to	integrate	involves	similar	steps	to	those	described
earlier	for	OpenID	Connect	application	integration.	See	the
following	samples	from	the	Azure	Samples	GitHub	repository,
specifically	related	to	B2C	applications:

https://github.com/Azure-Samples/active-directory-b2c-dotnetcore-
webapp	https://github.com/Azure-Samples/active-directory-b2c-
xamarin-native

https://github.com/Azure-Samples/active-directory-b2c-dotnet-
webapp-and-webapi

Leverage	Azure	AD	B2B	to	design	and	implement	applications
that	support	partner-managed	identities	and	enforce	multi-factor
authentication
Azure	AD	B2B	collaboration	capabilities	enable	organizations	using	Azure	AD
to	allow	users	from	other	organizations,	with	or	without	Azure	AD,	to	have
limited	access	to	documents,	resources	and	applications.
From	your	Azure	AD	tenant	you	can:
	Set	up	single	sign-on	to	enterprise	applications	such	as	Salesforce	and
Dropbox	through	Azure	AD
	Support	user	authentication	via	Azure	AD	for	your	own	applications
	Enable	access	to	these	applications	to	users	outside	of	your	directory
	Enforce	multi-factor	authentication	for	these	users

More	Info:	Azure	AD	B2B

For	details	on	Azure	AD	B2B	collaboration	and	adding	guest	users
to	access	applications,	see	this	reference:

https://github.com/Azure-Samples/active-directory-b2c-dotnetcore-webapp
https://github.com/Azure-Samples/active-directory-b2c-xamarin-native
https://github.com/Azure-Samples/active-directory-b2c-dotnet-webapp-and-webapi

https://docs.microsoft.com/en-us/azure/active-directory/active-
directory-b2b-what-is-azure-ad-b2b.

Skill	3.3:	Manage	Secrets	using	Azure	Key	Vault
Cloud	applications	typically	need	a	safe	workflow	for	secret	management.	Azure
Key	Vault	provides	a	secure	service	for	Azure	applications	and	services	for:

	Encrypting	storage	account	keys,	data	encryption	keys,	certificates,
passwords	and	other	keys	and	secrets
	Protecting	those	keys	using	hardware	security	modules	(HSMs)

Exam	Tip

Azure	Key	Vault	supports	importing	and	generating	keys	in	HSMs.
This	means	that	keys	are	processed	in	FIPS	140-2	Level	2	validated
HSMs.

Developers	can	easily	create	keys	to	support	development	efforts,	while
administrators	are	able	to	grant	or	revoke	access	to	keys	as	needed.	This	section
covers	how	to	manage	secrets	with	Azure	Key	Vault.

This	skill	covers	how	to:
	Configure	Azure	Key	Vault
	Manage	access,	including	tenants
	Implement	HSM	protected	keys
	Manage	service	limits
	Implement	logging
	Implement	key	rotation

More	Info:	Key	Vault	Overview

For	detailed	documentation	on	Azure	Key	Vault,	see	this	reference:
https://docs.microsoft.com/en-us/azure/keyvault/keyvault-whatis.

https://docs.microsoft.com/en-us/azure/active-directory/active-directory-b2b-what-is-azure-ad-b2b
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-whatis

Configure	Azure	Key	Vault
You	can	create	one	or	more	key	vault	in	a	subscription,	according	to	your	needs
for	management	isolation.	To	create	a	new	key	vault,	follow	these	steps:

1.	 Navigate	to	the	Azure	portal	accessed	via	https://portal.azure.com.
2.	 Click	New	and	select	Security	+	Identity,	then	select	Key	Vault	from	the

list	of	choices	(Figure	3-36).

FIGURE	3-36	Selecting	Key	Vault	from	the	Security	+	Identity	features

3.	 From	the	Create	key	vault	blade,	enter	the	following	values	(Figure	3-37):

A.	 A	name	for	the	key	vault
B.	 Choose	the	subscription
C.	 Create	or	choose	a	resource	group
D.	 A	location

https://portal.azure.com

E.	 Choose	a	pricing	tier	-	primarily	based	on	your	requirements	for	HSM
F.	 Set	up	policies	for	user	access	to	keys,	secrets	and	certificates
G.	 Optionally	grant	access	for	Azure	Virtual	Machines,	Azure	Resource

Manager	or	Azure	Disk	Encryption

FIGURE	3-37	The	Create	key	vault	blade

4.	 Click	Create	to	create	the	key	vault.

Manage	access,	including	tenants
There	are	two	ways	to	access	the	key	vault	-	through	the	management	plane	or
the	data	plane.	The	management	plane	exposes	an	interface	for	managing	the
key	vault	settings	and	policies,	and	the	data	plane	exposes	an	interface	for
managing	the	actual	secrets	and	policies	related	directly	to	managing	those
secrets.	You	can	set	up	policies	that	control	access	through	each	of	these	planes,
granting	users,	applications	or	devices	access	to	specific	functionality	(service
principals).	These	service	principals	must	be	associated	with	the	same	Azure	AD
tenant	as	the	key	vault.
To	create	policies	for	your	key	vault,	navigate	to	the	key	vault	Overview	and

do	the	following	(Figure	3-38):

1.	 Select	Access	policies	from	the	navigation	pane.

2.	 Select	Add	new	from	the	Access	policies	blade.
3.	 Select	Configure	from	template	and	select	Key,	Secret	&	Certificate

Management.	This	will	initialize	a	set	of	permissions	based	on	the
template,	which	you	can	later	adjust.

FIGURE	3-38	Options	for	configuring	a	policy

4.	 Click	Select	a	principal	and	enter	a	username,	application	id	or	device	id
from	your	directory.

5.	 Review	key	permissions	selected	by	the	template-modify	them	as	needed
according	to	the	requirements	for	the	principal	selected	(Figure	3-39).

FIGURE	3-39	The	options	for	customizing	key	permissions	for	a	policy

6.	 Review	secret	permissions	selected	by	the	template,	modify	them	as	needed
according	to	the	requirements	for	the	principal	selected	(Figure	3-40).

FIGURE	3-40	The	options	for	customizing	secret	permissions	for	a
policy

7.	 Review	certificate	permissions	selected	by	the	template,	and	modify	them
as	needed	according	to	the	requirements	for	the	principal	selected	(Figure
3-41).

FIGURE	3-41	The	options	for	customizing	certificate	permissions	for	a
policy

8.	 Click	OK	to	save	the	policy	settings	(Figure	3-42).

FIGURE	3-42	The	options	for	customizing	key	permissions	for	a	policy

9.	 From	the	key	vault	blade,	click	Save	from	the	command	bar	to	commit	the
changes.

In	addition	to	granting	access	to	service	principals,	you	can	also	set	advance
access	policies	to	allow	access	to	Azure	Virtual	Machines,	Azure	Resource
Manager,	or	Azure	Disk	Encryption	as	follows	(Figure	3-43):

1.	 Select	the	Advanced	access	policies	tab	from	the	navigation	pane.
2.	 Enable	access	by	Azure	Virtual	Machines,	Azure	Resource	Manager	or

Azure	Disk	Encryption	as	appropriate.

FIGURE	3-43	The	options	for	setting	advanced	rules	for	a	policy

Exam	Tip

Your	key	vault	is	initially	associated	with	the	default	Azure	AD
tenant	for	the	subscription	it	belongs	to.	You	may	move	the	key
vault	to	a	new	subscription,	or	simply	need	to	associate	the	key
vault	to	another	Azure	AD	tenant.	You	can	change	this	tenant
association	using	PowerShell	command	as	described	by	this
reference:	https://docs.microsoft.com/en-us/azure/keyvault/keyvault-
subscription-move-fix.

More	Info:	Keys,	Secrets	and	Certificates

See	the	following	reference	for	details	on	how	to	distinguish
between	keys,	secrets	and	cerificates:	https://docs.microsoft.com/en-
us/rest/api/keyvault/about-keys--secrets-and-certificates?
redirectedfrom=MSDN.

Implement	HSM	protected	keys
If	you	create	a	key	vault	based	on	a	premium	subscription,	you	will	be	able	to
generate,	store	and	manage	Hardware	Security	Module	(HSM)	protected	keys.
To	create	an	HSM	protected	key	follow	these	steps:

1.	 Navigate	to	the	Azure	portal	accessed	via	https://portal.azure.com.
2.	 Navigate	to	More	Services	from	the	navigation	menu	and	type	key	vault	to

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-subscription-move-fix
https://docs.microsoft.com/en-us/rest/api/keyvault/about-keys--secrets-and-certificates?redirectedfrom=MSDN
https://portal.azure.com

filter	the	list	and	find	Key	Vaults	and	then	select	it.
3.	 From	the	Key	vaults	blade,	select	a	previously	created	key	vault	that

supports	HSM.
4.	 Select	the	Keys	tab	from	the	navigation	pane,	and	click	Add	from	the

command	bar.
5.	 From	the	Create	key	blade,	enter	the	following	information	(Figure	3-44):

A.	 For	Options,	select	Generate.	You	can	also	upload	a	key	or	restore	a
key	from	a	backup.

B.	 Provide	a	name	for	the	key.
C.	 For	key	type,	select	HSM	protected	key.
D.	 Optionally	provide	an	activation	and	expiry	date	for	the	key.

Otherwise	there	is	no	set	expiry.
E.	 Indicate	if	the	key	should	be	enabled	now.

FIGURE	3-44	The	Create	a	key	blade

6.	 Click	Create	to	complete	the	creation	of	the	key.

More	Info:	Managing	HSM	Keys	with	Powershell

See	this	reference	for	more	on	managing	HSM	keys	with
PowerShell:	https://docs.microsoft.com/en-
us/azure/keyvault/keyvault-hsm-protected-keys.

Exam	Tip

Software	keys	(not	protected	by	HSM)	can	be	later	exported	from
the	key	vault.	HSM	keys,	on	the	other	hand,	can	never	be	exported.
In	addition,	all	cryptographic	operations	using	HSM	keys	are
always	performed	within	the	HSM	boundary.

Implement	logging
You	can	monitor	access	to	Key	Vault	by	enabling	logging.	Logs	include:

	All	REST	API	requests	including	failed,	unauthenticated	or	unauthorized
requests
	Key	vault	operations	to	create,	delete	or	change	settings
	Operations	that	involve	keys,	secrets,	and	certificates	in	the	key	vault

Logs	are	saved	to	an	Azure	storage	account	of	your	choice,	in	a	new	container
(generated	for	you)	named	insights-logs-auditevent.	To	set	up	diagnostic
logging,	follow	these	steps:

1.	 Navigate	to	the	Azure	portal	accessed	via	https://portal.azure.com.
2.	 Navigate	to	More	Services	from	the	navigation	menu	and	type	“key	vault	“

to	filter	the	list	and	find	Key	Vaults,	and	then	select	it.
3.	 From	the	Key	vaults	blade,	select	the	key	vault	to	enable	logging	for.
4.	 From	the	Key	vault	blade,	select	the	Diagnostics	logs	tab	from	the

navigation	pane.
5.	 From	the	Diagnostics	logs	blade,	select	the	Turn	on	diagnostics	link.
6.	 From	the	Diagnostics	settings	blade	enter	the	following	settings	(Figure	3-

45):

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-hsm-protected-keys
https://portal.azure.com

A.	 Provide	a	name	for	the	diagnostics	settings.
B.	 One	of	the	following	optional	settings	must	be	chosen:

	Select	Archive	to	a	storage	account	and	configure	a	storage	account
where	the	logs	should	be	stored.	This	storage	account	must	be
previously	created	using	the	Resource	Manager	deployment	model
(not	Classic),	and	a	new	container	for	key	vault	logs	will	be	created
in	this	storage	account.
	Optionally	select	Stream	to	an	event	hub	if	you	want	logs	to	be	part
of	your	holistic	log	streaming	solution.
	Optionally	select	Send	logs	to	Log	Analytics	and	configure	an	OMS
workspace	for	the	logs	to	be	sent	to.

C.	 Select	AuditEvent	(the	only	category	for	key	vault	logging)	and
configure	retention	preferences	for	storage.	If	you	configure	retention
settings,	older	logs	will	be	deleted.

FIGURE	3-45	The	Diagnostics	settings	blade

7.	 Click	Save	from	the	command	bar	to	save	these	diagnostics	settings.
8.	 You	will	now	be	able	to	see	logs	from	the	Diagnostics	output.

Exam	Tip

You	can	use	the	same	storage	account	to	collect	logs	for	multiple
key	vaults.	You	can	also	seamlessly	integrate	key	vault	logs	with	log
analytics,	provided	by	Operations	Management	Services	(OMS).

More	Info:	Manage	Key	Vault	Logging	with	Powershell

See	this	reference	for	more	on	how	to	set	up	key	vault	logging
including	the	use	of	PowerShell:	https://docs.microsoft.com/en-
us/azure/keyvault/keyvault-logging.

Implement	key	rotation
The	beauty	of	working	with	a	key	vault	is	the	ability	to	roll	keys	without	impact
to	applications.	Applications	do	not	hold	on	to	key	material,	and	they	reference
keys	indirectly	through	the	key	vault.	Keys	are	updated	without	affecting	this
reference	and	so	application	configuration	updates	are	no	longer	necessary	when
keys	are	updated.	This	opens	the	door	to	simplified	key	update	procedures	and
the	ability	to	embrace	regular	or	ad-hoc	key	rotation	schedules.
Each	key,	secret	or	certificate	stored	in	Azure	Key	Vault	can	have	one	or

more	versions	associated.	The	first	version	is	created	when	you	first	create	the
key.	Subsequent	versions	can	be	created	through	the	Azure	Portal,	through	key
vault	management	interfaces,	or	through	automation	procedures.
To	rotate	a	key	from	the	Azure	Portal,	navigate	to	the	key	vault	and	follow

these	steps:

1.	 Select	the	Keys	tab	from	the	navigation	pane.
2.	 Select	the	key	to	rotate.
3.	 From	the	key’s	Versions	blade	(Figure	3-46),	you	will	see	the	first	version

of	the	key	that	was	created.

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-logging

FIGURE	3-46	The	Versions	blade	where	you	can	create	a	new	version

4.	 Click	New	Version	from	the	command	bar	and	you	will	be	presented	with
the	Create	A	Key	Blade	where	you	can	generate	or	upload	a	new	key	to	be
associated	with	the	same	key	name.	You	can	choose	the	type	of	key
(Software	key	or	HSM	protected	key)	and	optionally	indicate	an	activation
and	expiry	timeframe.	Click	Create	to	replace	the	key.

5.	 You	will	now	see	two	versions	of	the	key	on	the	Versions	blade	(Figure	3-
47).	Applications	querying	for	the	key	will	now	retrieve	the	new	version.

FIGURE	3-47	The	Versions	blade	showing	a	new	version	and	older
versions

This	key	rotation	procedure	works	similarly	for	secrets	and	certificates.
Applications	will	now	retrieve	the	newer	version	when	contacting	the	key	vault
for	the	specified	key.

More	Info:	Implementing	Key	Rotation

See	this	reference	for	more	details	on	managing	a	key	rotation
process	with	PowerShell:	https://docs.microsoft.com/en-
us/azure/keyvault/keyvault-key-rotation-log-monitoring.

Skill	3.4:	Design	and	implement	a	messaging	strategy
MicrosoftAzure	provides	a	robust	set	of	hosted	infrastructure	services	that
provides	multi-tenant	services	for	communications	between	applications.
Variously,	these	supports	service	publishing,	messaging,	and	the	distribution	of
events	at	scale.	The	services	we	focus	on	in	this	section	include:

	Azure	Relay	Expose	secure	endpoints	for	synchronous	calls	to	service
endpoints	across	a	network	boundary,	for	example	to	expose	on-premises
resources	to	a	remote	client	without	requiring	a	VPN.

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-key-rotation-log-monitoring

	Azure	Service	Bus	Queues	Implement	brokered	messaging	patterns	where
the	message	sender	can	deliver	a	message	even	if	the	receiver	is	temporarily
offline.
	Azure	Service	Bus	Topics	and	subscriptions	Implement	brokered
messaging	patterns	for	publish	and	subscribe	where	messages	can	be
received	by	more	than	one	receiver	(subscriber),	and	conditions	can	be
applied	to	message	delivery.
	Azure	Event	Hubs	Implement	scenarios	that	support	high-volume	message
ingest	and	where	receivers	can	pull	messages	to	perform	processing	at	scale.
	Azure	Notification	Hubs	Implement	scenarios	for	sending	app-centric	push
notifications	to	mobile	devices.
Relays	are	used	for	relayed,	synchronous	messaging.	The	remaining	scenarios

are	a	form	of	brokered,	asynchronous	messaging	patterns.	In	this	section,	you
learn	how	to	implement,	scale	and	monitor	each	Service	Bus	resource.

More	Info:	Service	Bus	Resources	and	Samples

See	these	references	for	a	collection	of	overviews,	tutorials,	and
samples	related	to	Service	Bus:

	Azure	Relay	https://docs.microsoft.com/en-us/azure/servicebus-
relay/
	Service	Bus	Messaging	https://docs.microsoft.com/en-
us/azure/servicebus-messaging/
	Event	Hubs	https://docs.microsoft.com/en-us/azure/eventhubs/
	Notification	Hubs	https://docs.microsoft.com/en-
us/azure/notification-hubs/

This	skill	covers	how	to:
	Develop	and	scale	messaging	solutions	using	Service	Bus	queues,
topics,	relays	and	Notification	Hubs
	Scale	and	monitor	messaging
	Determine	when	to	use	Event	Hubs,	Service	Bus,	IoT	Hub,	Stream
Analytics	and	Notification	Hubs

Develop	and	scale	messaging	solutions	using	Service	Bus	queues,

https://docs.microsoft.com/en-us/azure/service-bus-relay/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/event-hubs/
https://docs.microsoft.com/en-us/azure/notification-hubs/

topics,	relays	and	Notification	Hubs
A	namespace	is	a	container	for	Service	Bus	resources	including	queues,	topics,
Relays,	Notification	Hubs,	and	Event	Hubs.	With	namespaces,	you	can	group
resources	of	the	same	type	into	a	single	namespace,	and	you	can	choose	to
further	separate	resources	according	to	management	and	scale	requirements.	You
don’t	create	a	namespace	directly,	instead	you	will	typically	create	a	namespace
as	a	first	step	in	deploying	a	Service	Bus	queue,	topic,	Relay,	Notification	Hubs
or	Event	Hubs	instance.	Once	you	have	a	namespace	for	a	particular	service,	you
can	add	other	service	instances	of	the	same	type	to	it	(a	Service	Bus	namespace
supports	the	addition	of	queues	and	topics,	so	a	Notification	Hubs	namespace
supports	only	Notification	Hubs	instances).	You	can	also	manage	access	policies
and	adjust	the	pricing	tier	(for	scaling	purposes),	both	of	which	apply	to	all	the
services	in	the	namespace.
The	steps	for	creating	a	Service	Bus	namespace	are	as	follows:

1.	 In	the	Azure	Portal,	select	+	New,	then	search	for	the	type	of	namespace
you	want	to	create:	Service	Bus,	Relay,	Notification	Hubs	or	Event	Hubs.

2.	 Select	Create.
3.	 In	the	Create	namespace	blade	(Figure	3-48),	enter	a	unique	prefix	for	the

namespace	name.
4.	 Choose	your	Azure	Subscription,	Resource	group	and	Location.

FIGURE	3-48	Creating	a	Service	Bus	namespace

5.	 Select	Create	to	deploy	the	namespace.

Selecting	a	protocol	for	messaging
By	default,	Service	Bus	supports	several	communication	protocols.	Table	3-1
lists	the	protocol	options	and	required	ports.

TABLE	3-1	Service	Bus	protocols	and	ports

Protocol PORTS Description

SBMP 9350-9354
(for	relay)
9354	(for
brokered
messaging)

Service	Bus	Messaging	Protocol	(SBMP),	is	a
proprietary	SOAP-based	protocol	that	typically
relies	on	WCF	under	the	covers	to	implement
messaging	with	between	applications	through
Service	Bus.	Relay	services	use	this	protocol	by
default	when	non-HTTP	relay	bindings	are	chosen.
environment	is	set	to	use	HTTP.

environment	is	set	to	use	HTTP.
This	protocol	is	being	phased	out	in	favor	of
AMQP.

HTTP 80,	443 HTTP	protocol	can	be	used	for	relay	services	when
one	of	the	HTTP	relay	bindings	are	selected	and
the	Service	Bus	environment	is	set	to	use	HTTP
connectivity.	The	brokered	messaging	client	library
uses	this	if	you	do	not	specify	AMQP	protocol	and
set	the	Service	Bus	environment	to	HTTP	as
follows:
ServiceBusEnvironment.SystemConnectivity.Mode
=	ConnectivityMode.Http;

AMQP 5671,	5672 Advanced	Message	Queuing	Protocol	(AMQP)	is	a
modern,	cross-platform	asynchronous	messaging
standard.	The	brokered	messaging	client	library
uses	this	protocol	if	the	connection	string	indicates
TransportType	of	Amqp.

WebSockets 80,	443 WebSockets	provide	a	standards	compliant	way	to
establish	bi-directional	communication	channels,
and	can	be	used	for	Service	Bus	queues,	topics	and
the	Relay.

More	Info:	AMQP	Protocol

Advanced	Message	Queuing	Protocol	(AMQP)	is	the	recommended
protocol	to	use	for	brokered	message	exchange	if	firewall	rules	are
not	an	issue.	For	additional	information,	see
https://docs.microsoft.com/azure/servicebus-messaging/servicebus-
amqp-overview.

Exam	Tip

Connectivity	issues	are	common	for	on-premises	environments	that
disable	ports	other	than	80	and	443.	For	this	reason,	it	is	still	often

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-amqp-overview

necessary	for	portability	to	use	HTTP	protocol	for	brokered
messaging.

Introducing	the	Azure	Relay
The	Azure	Relay	service	supports	applications	that	need	to	communicate	by
providing	an	Azure	hosted	rendezvous	endpoint	where	listeners	(the	server
process	that	exposes	functionality)	and	senders	(the	application	that	consumes
the	server	process	functionality)	can	connect,	and	then	the	Azure	Relay	service
itself	takes	care	of	relaying	the	data	between	the	two	cloud-side	connections.
The	Azure	Relay	has	two	distinct	ways	that	you	can	choose	from	to	securely
achieve	this	form	of	connectivity:

	Hybrid	Connections	With	Hybrid	Connections	your	applications
communicate	by	establishing	Web	Sockets	connections	with	relay	endpoints.
This	approach	is	standards	based,	meaning	it	is	useable	from	almost	any
platform	containing	basic	Web	Socket	capabilities.
	WCF	Relays	With	WCF	relays,	your	applications	use	Windows
Communication	Foundation	to	enable	communication	across	relay	endpoints.
This	approach	is	only	useable	with	applications	leveraging	WCF	and	.NET.

Using	Hybrid	Connections
At	a	high	level,	to	use	Hybrid	Connections	involves	these	steps:

1.	 Deploy	an	Azure	Relay	namespace
2.	 Deploy	a	Hybrid	Connection	within	the	namespace
3.	 Retrieve	the	connection	configuration	(connection	details	and	credentials)
4.	 Create	a	listener	application	that	uses	the	configuration	to	provide	service-

side	functionality
5.	 Create	a	sender	application	that	uses	the	configuration	to	communicate	with

the	listener
6.	 Run	the	applications

The	following	sections	walk	through	creating	a	simple	solution	where	the
listener	simply	echoes	the	text	sent	from	the	sender.	The	sender	itself	takes	input
typed	from	the	user	in	a	console	application	and	sends	it	to	the	listener	by	way	of
a	Hybrid	Connection.

More	Info:	Creating	Listener	and	Sender	Applications

The	following	steps	detail	how	to	create	listener	and	sender
applications	using	.NET.	For	an	equivalent	example	that	uses
Node.js,	see	https://docs.microsoft.com/azure/servicebus-relay/relay-
hybrid-connections-node-get-started.

DEPLOY	AN	AZURE	RELAY	NAMESPACE
The	following	steps	are	needed	to	deploy	a	new	Azure	Relay	namespace:

1.	 In	the	Azure	Portal,	select	+	NEW	and	then	search	for	“Relay”.	Select	the
item	labeled	Relay	by	Microsoft.

2.	 In	the	Create	namespace	blade,	enter	a	unique	prefix	for	the	namespace
name.

3.	 Choose	your	Azure	Subscription,	Resource	group	and	Location.
4.	 Select	Create	to	deploy	the	namespace.

DEPLOY	A	HYBRID	CONNECTION
The	following	steps	are	needed	to	deploy	a	new	Hybrid	Connection	within	the
Azure	Relay	namespace:

1.	 Using	the	Portal,	navigate	to	the	blade	of	your	deployed	Relay	namespace.
2.	 Select	+	Hybrid	Connection	from	the	command	bar.
3.	 On	the	Create	Hybrid	Connection	blade,	enter	a	name	for	your	new	Hybrid

Connection.
4.	 Select	Create.

RETRIEVE	THE	CONNECTION	CONFIGURATION
Your	applications	will	need	at	minimum	the	following	configuration	in	order	to
communicate	with	the	Hybrid	Connection:

	Namespace	URI
	Hybrid	Connection	Name
	Shared	access	policy	name
	Shared	access	policy	key

Follow	these	steps	to	retrieve	these	values	for	use	in	your	listener	and	sender
applications:

1.	 Using	the	Portal,	navigate	to	the	blade	of	your	deployed	Relay	namespace.
2.	 From	the	menu,	select	Shared	access	policies	to	retrieve	the	policies

https://docs.microsoft.com/azure/service-bus-relay/relay-hybrid-connections-node-get-started

available	at	the	namespace	level.
3.	 In	the	list	of	policies,	select	a	policy.	For	example,	by	default	the

RootManageSharedAccessKey	policy	is	available.
4.	 On	the	Policy	blade,	take	note	of	the	policy	name	and	the	value	of	the

Primary	key.	Also	note	the	connection	string	values	you	can	use	with	SDKs
that	support	these	as	inputs	(Figure	3-49).

FIGURE	3-49	Examining	a	Policy

5.	 Close	the	Policy	blade.
6.	 From	the	menu,	select	Hybrid	Connections.
7.	 In	the	listing,	select	your	deployed	Hybrid	Connection.
8.	 From	the	Essentials	panel,	take	note	of	the	value	for	Namespace.	This	is	the

namespace	name.
9.	 Also,	take	note	of	the	Hybrid	Connection	URL	(Figure	3-50).	It	is	of	the

form
https://<namespace>.servicebus.windows.net/<hybridconnectionname>

FIGURE	3-50	Obtaining	the	Hybrid	Connection	URL

10.	 You	can	get	the	name	of	your	Hybrid	Connection	either	from	the	title	of
the	blade,	or	by	looking	at	the	Hybrid	Connection	URL	and	copying	the
value	after	the	slash	(/).

CREATE	A	LISTENER	APPLICATION
Follow	these	steps	to	create	simple	listener	application	that	echoes	any	text
transmitted	by	a	sender	application:

1.	 Launch	Visual	Studio.
2.	 Select	File,	New,	Project	and	select	Visual	C#	from	the	tree	under

Templates,	and	then	the	Console	App	(.NET	Framework)	template.
3.	 Provide	the	name	and	location	of	your	choice.
4.	 Select	OK.
5.	 In	Solution	Explorer,	right	click	the	new	project	and	select	Manage	NuGet

Packages.
6.	 In	the	document	that	appears,	select	Browse.
7.	 Search	for	“Microsoft.Azure.Relay”	and	then	select	the	Microsoft	Azure

Relay	item	in	the	list	(Figure	3-51).

FIGURE	3-51	Selecting	the	Microsoft.Azure.Relay	NuGet	package

8.	 Select	Install	to	begin	the	installation	and	follow	the	prompts.
9.	 Open	program.cs.

10.	 Replace	the	using	statements	at	the	top	of	the	document	with	the	following:
using	System;

using	System.IO;

using	System.Threading;

using	System.Threading.Tasks;

using	Microsoft.Azure.Relay;

11.	 Replace	the	Program	class	with	the	following:
Click	here	to	view	code	image

class	Program

{

				private	const	string	RelayNamespace	=	"

<namespace>.servicebus.windows.net";

				private	const	string	ConnectionName	=	"<hybridconnectionname>";

				private	const	string	KeyName	=	"<sharedaccesskeyname>	";

				private	const	string	Key	=	"<sharedaccesskeyvalue>";

				static	void	Main(string[]	args)

				{

								RunAsync().GetAwaiter().GetResult();

				}

				private	static	async	void	ProcessMessagesOnConnection(

																																		HybridConnectionStream

relayConnection,

																																			CancellationTokenSource	cts)

				{

								Console.WriteLine("New	session");

								//	The	connection	is	a	fully	bidrectional	stream,	enabling

the	Listener	

to	echo	the	text	from	the	Sender.	

								var	reader	=	new	StreamReader(relayConnection);

								var	writer	=	new	StreamWriter(relayConnection)	{	AutoFlush

=	true	};

								while	(!cts.IsCancellationRequested)

								{

												try

												{

															//	Read	a	line	of	input	until	a	newline	is

encountered

															var	line	=	await	reader.ReadLineAsync();

															if	(string.IsNullOrEmpty(line))

															{

																			await	relayConnection.ShutdownAsync(cts.Token);

																			break;

															}

															Console.WriteLine(line);

															//	Echo	the	line	back	to	the	client

															await	writer.WriteLineAsync($"Echo:	{line}");

												}

												catch	(IOException)

												{

															Console.WriteLine("Client	closed	connection");

															break;

												}

								}

													Console.WriteLine("End	session");

												//	Close	the	connection

												await	relayConnection.CloseAsync(cts.Token);

								}

								private	static	async	Task	RunAsync()

								{

												var	cts	=	new	CancellationTokenSource();

												var	tokenProvider	=	

																									TokenProvider.CreateSharedAccessSignatureTokenProvider(KeyNa

				me,	Key);

												var	listener	=	new	HybridConnectionListener(

																																								new

Uri(string.Format("sb://{0}/{1}",

					RelayNamespace,	ConnectionName)),	

																																								tokenProvider);

												//	Subscribe	to	the	status	events

												listener.Connecting	+=	(o,	e)	=>	{

Console.WriteLine("Connecting");	};

												listener.Offline	+=	(o,	e)	=>	{

Console.WriteLine("Offline");	};

												listener.Online	+=	(o,	e)	=>	{

Console.WriteLine("Online");	};

												//	Establish	the	control	channel	to	the	Azure	Relay

service

												await	listener.OpenAsync(cts.Token);

												Console.WriteLine("Server	listening");

												//	Providing	callback	for	cancellation	token	that	will

close	the	listener.

												cts.Token.Register(()	=>

listener.CloseAsync(CancellationToken.None));

												//	Start	a	new	thread	that	will	continuously	read	the

console.

												new	Task(()	=>

Console.In.ReadLineAsync().ContinueWith((s)	=>	{	

				cts.Cancel();	})).Start();

												//	Accept	the	next	available,	pending	connection

request.	

												while	(true)

												{

																var	relayConnection	=	await

listener.AcceptConnectionAsync();

																if	(relayConnection	==	null)

																{

																				break;

																}

																ProcessMessagesOnConnection(relayConnection,	cts);

												}

												//	Close	the	listener	after	we	exit	the	processing	loop

												await	listener.CloseAsync(cts.Token);

							}

				}

12.	 In	the	aforementioned	code,	replace	the	values	as	follows:
	<namespace>	Your	Azure	Relay	namespace	name.
	<hybridconnectionname>	The	name	of	your	Hybrid	Connection.
	<sharedaccesskeyname>	The	name	of	your	Shared	Access	Key	as
acquired	from	the	Policy	blade	in	the	Portal.
	<sharedaccesskeyvalue>	The	value	of	your	Shared	Access	Key	as
acquired	from	the	Policy	blade	in	the	Portal.

CREATE	A	SENDER	APPLICATION
Next,	add	another	Console	Application	project	that	will	contain	the	code	for	the
sender	application	by	following	these	steps:

1.	 In	Solution	Explorer,	right	click	your	solution	and	select	Add,	New	Project
and	then	choose	Console	App	(.NET	Framework).

2.	 Provide	the	name	and	location	of	your	choice.
3.	 Select	OK.
4.	 In	Solution	Explorer,	right	click	the	new	project	and	select	Manage	NuGet

Packages.
5.	 In	the	document	that	appears,	select	Browse.

6.	 Search	for	“Microsoft.Azure.Relay”	and	then	select	the	Microsoft	Azure
Relay	item	in	the	list.

7.	 Select	Install	to	begin	the	installation	and	follow	the	prompts.
8.	 Open	program.cs.
9.	 Replace	the	using	statements	at	the	top	of	the	document	with	the	following:

Click	here	to	view	code	image

using	System;

using	System.IO;

using	System.Threading;

using	System.Threading.Tasks;

using	Microsoft.Azure.Relay;	

Replace	the	Program	class	with	the	following:

class	Program

{

				private	const	string	RelayNamespace	=	"

<namespace>.servicebus.windows.net";

				private	const	string	ConnectionName	=	"<hybridconnectionname>";

				private	const	string	KeyName	=	"<sharedaccesskeyname>	";

				private	const	string	Key	=	"<sharedaccesskeyvalue>";

				static	void	Main(string[]	args)

				{

								RunAsync().GetAwaiter().GetResult();

				}

private	static	async	Task	RunAsync()

								{

												Console.WriteLine("Enter	lines	of	text	to	send	to	the

server	with

	ENTER");

												//	Create	a	new	hybrid	connection	client

												var	tokenProvider	=

TokenProvider.CreateSharedAccessSignatureTokenProv

ider(KeyName,	Key);

												var	client	=	new	HybridConnectionClient(new	

Uri(String.Format("sb://{0}/{1}",	RelayNamespace,	ConnectionName)),

tokenProvider);

													//	Initiate	the	connection

												var	relayConnection	=	await

client.CreateConnectionAsync();

												var	reads	=	Task.Run(async	()	=>	{

																var	reader	=	new	StreamReader(relayConnection);

																var	writer	=	Console.Out;

																do

																{

																				//	Read	a	full	line	of	UTF-8	text	up	to	newline

																				string	line	=	await	reader.ReadLineAsync();

																				//	if	the	string	is	empty	or	null,	we	are	done.

																				if	(String.IsNullOrEmpty(line))

																								break;

																				//	Write	to	the	console

																				await	writer.WriteLineAsync(line);

																}

																while	(true);

												});

												//	Read	from	the	console	and	write	to	the	hybrid

connection

												var	writes	=	Task.Run(async	()	=>	{

																var	reader	=	Console.In;

																var	writer	=	new	StreamWriter(relayConnection)	{

AutoFlush	=	true	

};

																do

																{

																				//	Read	a	line	form	the	console

																				string	line	=	await	reader.ReadLineAsync();

																				await	writer.WriteLineAsync(line);

																				if	(String.IsNullOrEmpty(line))

																								break;

																}

																while	(true);

												});

												await	Task.WhenAll(reads,	writes);

												await

relayConnection.CloseAsync(CancellationToken.None);

								}

10.	 In	the	aforementioned	code,	replace	the	values	as	follows:
	<namespace>	Your	Azure	Relay	namespace	name.
	<hybridconnectionname>	The	name	of	your	Hybrid	Connection.
	<sharedaccesskeyname>	Tthe	name	of	your	Shared	Access	Key.
	<sharedaccesskeyvalue>	Tthe	value	of	your	Shared	Access	Key.

RUN	THE	APPLICATIONS
Finally,	run	the	applications	to	exercise	the	relay	functionality:

1.	 Using	Solution	Explorer,	right	click	your	solution	and	select	Set	Startup
Projects.

2.	 In	the	dialog,	select	Multiple	startup	projects.
3.	 Set	the	action	to	Start	for	both	projects,	making	sure	that	your	listener	is

above	your	sender	so	that	it	starts	first.
4.	 Select	OK.
5.	 From	the	Debug	menu,	select	Start	without	debugging.
6.	 On	the	sender	console	screen	(Figure	3-52),	respond	to	the	prompt	by

typing	some	text	to	send	to	the	listener	and	pressing	enter.
7.	 Verify	in	the	other	console	screen	(the	listener),	that	the	text	was	received

and	that	it	was	echoed	back	to	the	sender.

FIGURE	3-52	The	console	output	of	the	Listener	and	Sender	applications

Using	the	WCF	Relay
The	WCF	Relay	service	is	frequently	used	to	expose	on-premises	resources	to
remote	client	applications	located	in	the	cloud	or	across	network	boundaries,	in
other	words	it	facilitates	hybrid	applications.	It	involves	creating	a	Service	Bus
namespace	for	the	Relay	service,	creating	shared	access	policies	to	secure	access
to	management,	and	following	these	high	level	implementation	steps:

1.	 Create	a	service	contract	defining	the	messages	to	be	processed	by	the
Relay	service.

2.	 Create	a	service	implementation	for	that	contract.	This	implementation
includes	the	code	to	run	when	messages	are	received.

3.	 Host	the	service	in	any	compatible	WCF	hosting	environment,	expose	an
endpoint	using	one	of	the	available	WCF	relay	bindings,	and	provide	the
appropriate	credentials	for	the	service	listener.

4.	 Create	a	client	reference	to	the	relay	using	typical	WCF	client	channel
features,	providing	the	appropriate	relay	binding	and	address	to	the	service,
with	the	appropriate	credentials	for	the	client	sender.

5.	 Use	the	client	reference	to	call	methods	on	the	service	contract	to	invoke
the	service	through	the	Service	Bus	relay.

The	WCF	Relay	service	supports	different	transport	protocols	and	Web
services	standards.	The	choice	of	protocol	and	standard	is	determined	by	the
WCF	relay	binding	selected	for	service	endpoints.	The	list	of	bindings
supporting	these	options	are	as	follows:

supporting	these	options	are	as	follows:
	BasicHttpRelayBinding
	WS2007HttpRelayBinding
	WebHttpRelayBinding
	NetTcpRelayBinding
	NetOneWayRelayBinding
	NetEventRelayBinding

Clients	must	select	from	the	available	endpoints	exposed	by	the	service	for
compatible	communication.	HTTP	services	support	two-way	calls	using	SOAP
protocol	(optionally	with	extended	WS*	protocols)	or	classic	HTTP	protocol
requests	(also	referred	to	as	REST	services).	For	TCP	services,	you	can	use
synchronous	two-way	calls,	one-way	calls,	or	one-way	event	publishing	to
multiple	services.

Exam	Tip

The	NetTcpRelayBinding	relay	supports	two	connection	modes:
relayed	(the	default)	or	hybrid.	In	hybrid	mode,	communications
are	initially	relayed,	but	if	possible,	a	direct	socket	connection	is
established	between	client	and	service,	thus	removing	the	relay
from	communications	for	the	session.

Deploy	a	WCF	Relay
The	following	steps	are	needed	to	deploy	a	new	WCF	Relay	within	the	Azure
Relay	namespace:

1.	 Using	the	Portal,	navigate	to	the	blade	of	your	deployed	Relay	namespace.
2.	 Select	+	WCF	Relay	from	the	command	bar.
3.	 On	the	Create	WCF	Relay	blade	(Figure	3-53),	enter	a	name	for	your	new

WCF	Relay.
4.	 Select	the	Relay	Type	(NetTcp	or	HTTP).

FIGURE	3-53	Using	the	Portal	to	create	a	WCF	Relay

5.	 Select	Create.
6.	 Once	deployment	completes,	select	your	new	WCF	Relay	from	the	list

(Figure	3-54).

FIGURE	3-54	Selecting	the	newly	created	Relay	in	the	Portal

7.	 In	the	Essentials	blade,	take	note	of	your	WCF	Relay	URL	and	namespace
(Figure	3-55).

FIGURE	3-55	Viewing	the	Namespace	and	WCF	Relay	URL

Managing	relay	credentials
WCF	Relay	credentials	are	managed	on	the	Shared	access	policies	blade	for	the
namespace	as	follows:

1.	 Make	sure	you	have	created	a	Service	Bus	namespace	as	described	in	the
section	“Create	a	Service	Bus	namespace.”

2.	 Navigate	to	the	blade	for	your	Service	Bus	namespace	in	the	Azure	Portal.
3.	 From	the	menu,	select	Shared	access.
4.	 To	create	a	new	shared	access	policy	for	the	namespace,	select	+	Add.

5.	 Provide	a	name	for	the	Policy	and	select	what	permissions	(Manage,	Send,
Listen)	it	should	have	(Figure	3-56).

6.	 Select	Create.

FIGURE	3-56	Using	the	Portal	to	add	a	new	SAS	policy.

7.	 You	can	view	the	Keys	after	the	policy	has	been	created	by	selecting
Shared	access	polices	and	then	choosing	your	newly	created	policy.

More	Info:	Sender	and	Receiver	Keys

It	is	considered	a	best	practice	to	create	separate	keys	for	the
sender	and	receiver,	and	possibly	multiple	keys	according	to
different	groups	of	senders	and	receivers.	This	allows	you	to	more
granularly	control	which	applications	have	send,	receive,	and
management	rights	to	Service	Bus	relays	created	in	the	namespace.
It	also	not	recommended	that	you	use	the
RootManageSharedAccessKey	in	production	application
configuration.	You	should	treat	this	policy	like	you	would	an
administrator	account.

CREATING	A	RELAY	AND	LISTENER	ENDPOINT
After	you	have	created	the	namespace	and	noted	the	listener	policy	name	and
key,	you	can	write	code	to	create	a	relay	service	endpoint.	Here	is	a	simple
example,	it	assumes	you	have	deployed	a	relay	of	type	NetTcp:

1.	 Open	Visual	Studio	and	create	a	new	console	application.
2.	 Add	the	Microsoft	Azure	Service	Bus	NuGet	package

(WindowsAzure.ServiceBus)	to	the	console	application.
3.	 Create	a	WCF	service	definition	to	be	used	as	a	definition	for	the	relay

contract	and	an	implementation	for	the	relay	listener	service.	Add	a	class
file	to	the	project	with	the	following	service	contract	and	implementation.
Include	the	using	statement	at	the	top	of	the	file:
Click	here	to	view	code	image

using	System.ServiceModel;

[ServiceContract]

public	interface	IrelayService

{

		[OperationContract]

		string	EchoMessage(string	message);

}

public	class	RelayService:IrelayService

{

		public	string	EchoMessage(string	message)

		{

				Console.WriteLine(message);

				return	message;

		}

}

4.	 Host	the	WCF	service	in	the	console	application	by	creating	an	instance	of
the	WCF	ServiceHost	for	the	service.	Add	an	endpoint	using
NetTcpRelayBinding,	passing	the	name	of	the	Service	Bus	namespace,
policy	name,	and	key.	Include	the	using	statements	at	the	top	of	the	file:
Click	here	to	view	code	image

using	System.ServiceModel;

using	Microsoft.ServiceBus;

				class	Program

				{

								static	void	Main(string[]	args)

								{

												string	serviceBusNamespace	=	"<namespace>";

												string	listenerPolicyName	=	"

<sharedaccesspolicykeyname>";

												string	listenerPolicyKey	=	"

<sharedaccesspolicykeyvalue>";

												string	serviceRelativePath	=	"<relayname>";

												ServiceHost	host	=	new

ServiceHost(typeof(RelayService));

												host.AddServiceEndpoint(typeof(IrelayService),	new

NetTcpRelayBinding(){	IsDynamic	=	false	},

															ServiceBusEnvironment.CreateServiceUri("sb",

serviceBusNamespace,

serviceRelativePath))

															.Behaviors.Add(new	TransportClientEndpointBehavior

															{

																			TokenProvider	=	TokenProvider.

CreateSharedAccessSignatureToke

nProvider(listenerPolicyName,	listenerPolicyKey)

															});

											host.Open();

												Console.WriteLine("Service	is	running.	Press	ENTER	to

stop	the

service.");

												Console.ReadLine();

												host.Close();

								}

				}

5.	 In	the	aforementioned	code,	replace	the	values	as	follows:
	<namespace>	Your	WCF	Relay	namespace	name.
	<sharedaccesskeyname>	The	name	of	your	Shared	Access	Key.
	<sharedaccesskeyvalue>	The	value	of	your	Shared	Access	Key.
	<relayname>	The	name	of	your	WCF	Relay.

6.	 Run	the	console,	and	the	WCF	service	listener	is	now	waiting	for
messages.

Exam	Tip

You	can	configure	WCF	Relay	endpoints	programmatically	or	by
using	application	configuration	in	the	<system.servicemodel>
section.	The	latter	is	more	appropriate	for	dynamically	configuring
the	host	environment	for	production	applications.

SENDING	MESSAGES	THROUGH	RELAY
After	you	have	created	the	relay	service,	defined	the	endpoint	and	related

After	you	have	created	the	relay	service,	defined	the	endpoint	and	related
protocols,	and	noted	the	sender	policy	name	and	key,	you	can	create	a	client	to
send	messages	to	the	relay	service.	Here	is	a	simple	example	with	steps	building
on	the	previous	sections:

1.	 In	the	existing	Visual	Studio	solution	created	in	the	previous	section,	add
another	console	application	called	RelayClient.

2.	 Add	the	Microsoft	Azure	Service	Bus	NuGet	package	to	the	client	console
application.

3.	 Add	a	new	class	to	the	project,	copy	the	WCF	service	interface,	and	create
a	new	interface	to	be	used	by	the	WCF	client	channel	creation	code.
Include	the	using	statement	at	the	top	of	the	file:
Click	here	to	view	code	image

using	System.ServiceModel;

[ServiceContract]

public	interface	IrelayService

{

		[OperationContract]

		string	EchoMessage(string	message);

}

public	interface	IrelayServiceChannel:IrelayService,IClientChannel

{}

4.	 Add	code	in	the	main	entry	point	to	call	the	relay	service.	You	will	create	a
WCF	client	channel	for	the	client	channel	interface,	provide	an	instance	of
the	NetTcpRelayBinding	for	the	client	endpoint,	and	provide	an
EndpointAddress	for	the	namespace	and	relative	path	to	the	service.	You
will	also	provide	the	sender	policy	name	and	key.	Include	the	using
statement	at	the	top	of	the	file:
Click	here	to	view	code	image

using	Microsoft.ServiceBus;

using	System.ServiceModel;

				class	Program

				{

								static	void	Main(string[]	args)

								{

												string	serviceBusNamespace	=	"<namespace>";

												string	senderPolicyName	=	"

<sharedaccesspolicykeyname>";

												string	senderPolicyKey	=	"

<sharedaccesspolicykeyvalue>";

												string	serviceRelativePath	=	"<relayname>";

												var	client	=	new	ChannelFactory<IrelayServiceChannel>(

																new	NetTcpRelayBinding(){	IsDynamic	=	false	},

																new	EndpointAddress(

																				ServiceBusEnvironment.CreateServiceUri("sb",

serviceBusNamespace,	serviceRelativePath)));

												client.Endpoint.Behaviors.Add(

																new	TransportClientEndpointBehavior	{	TokenProvider

=

TokenProvider.CreateSharedAccessSignatureTokenProvider(senderPolicyName,

senderPolicyKey)	});

												using	(var	channel	=	client.CreateChannel())

												{

																string	message	=	channel.EchoMessage("hello	from

the	relay!");

																Console.WriteLine(message);

												}

												Console.ReadLine();

				}

}

5.	 In	the	aforementioned	code,	replace	the	values	as	follows:
	<namespace>	your	WCF	Relay	namespace	name.
	<sharedaccesskeyname>	the	name	of	your	Shared	Access	Key.
	<sharedaccesskeyvalue>	the	value	of	your	Shared	Access	Key.
	<relayname>	the	name	of	your	WCF	Relay.

6.	 To	test	sending	messages	to	the	service	created	in	the	previous	section,	first
run	the	service	listener	console,	and	then	the	client	console.	You	will	see
the	message	written	to	both	consoles.

Note:	Relay	Alternatives

Practically	speaking,	most	systems	today	employ	an	asynchronous
architecture	that	involves	queues,	topics,	or	event	hubs	as	a	way	to
queue	work	for	on-premises	processing	from	a	remote	application.

Using	Service	Bus	queues
Service	Bus	queues	provide	a	brokered	messaging	service	that	supports	physical
and	temporal	decoupling	of	a	message	producer	(sender)	and	message	consumer
(receiver).	Queues	are	based	on	the	brokered	messaging	infrastructure	of	Service
Bus	and	provide	a	First	In	First	Out	(FIFO)	buffer	to	the	first	receiver	that
removes	the	message.	There	is	only	one	receiver	per	message.

removes	the	message.	There	is	only	one	receiver	per	message.

More	Info:	Azure	Queues	VS.	Service	Bus	Queues

Azure	queues	are	built	on	top	of	storage,	while	Service	Bus	queues
are	built	on	top	of	a	broader	messaging	infrastructure.	For	more
information	on	how	the	two	compare,	and	how	to	choose	between
them,	see	https://docs.microsoft.com/azure/servicebus-
messaging/servicebus-azure-and-servicebus-queues-compared-
contrasted.

Properties	of	the	Service	Bus	queue	influence	its	behavior,	including	the	size
and	partitions	for	scale	out,	message	handling	for	expiry	and	locking,	and
support	for	sessions.	Table	3-2	shows	the	core	properties	of	a	Service	Bus	queue.
Properties	prefixed	with	an	asterisk	(*)	indicate	a	property	not	shown	in	the
portal	while	creating	the	queue,	but	can	be	edited	in	the	portal	after	they	are
created.

TABLE	3-2	Queue	properties

Property Description

Max	Size The	size	of	the	queue	in	terms	of	capacity	for	messages.	Can
be	from	1	GB	to	5	GB	without	partitioning,	and	80	GB	when
partitioning	is	enabled.

Default
message
time	to	live

Time	after	which	a	message	will	expire	and	be	removed	from
the	queue.	Defaults	to	14	days	in	the	Portal.

Move
expired
messages
to	dead-
letter	sub-
queue

If	enabled,	automatically	moves	expired	messages	to	the	dead
letter	queue.

Lock
duration

Duration	of	time	a	message	is	inaccessible	to	other	receivers
when	a	receiver	requests	a	peek	lock	on	the	message.	Defaults
to	1	minute.	Can	be	set	to	a	value	up	to	5	minutes.

Enable If	enabled,	the	queue	will	retain	a	buffer	and	ignore	messages

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted

Enable
duplicate
detection

If	enabled,	the	queue	will	retain	a	buffer	and	ignore	messages
with	the	same	message	identifier	(provided	by	the	sender).
The	window	for	this	buffer	can	be	set	to	a	value	up	to	7	days.

*Duplicate
detection
history

Window	of	time	for	measuring	duplicate	detection.	Defaults
to	10	minutes.

Enable
sessions

If	enabled,	messages	can	be	grouped	into	sequential	batches
to	guarantee	ordered	delivery	of	a	set	of	messages.

Enable
partitioning

If	enabled,	messages	will	be	distributed	across	multiple
message	brokers	and	can	be	grouped	by	partition	key.	Up	to
100	partitioned	queues	are	supported	within	a	Basic	or
Standard	tier	namespace.	Premium	tier	namespaces	support
1,000	partitions	per	messaging	unit.

*Maximum
delivery
count

The	maximum	number	of	times	Service	Bus	will	try	to	deliver
the	message	before	moving	it	to	the	dead-letter	sub-queue.

*Queue
status

Allows	for	disabling	publishing	or	consumption	without
removing	the	queue.	Valid	choices	are	Active,	Disabled,
Receive	Disabled	(send	only	mode)	or	Send	Disabled	(receive
only	mode).

More	Info:	Queue	Properties

For	a	comprehensive	list	of	all	Service	Bus	queue	properties,	see
the	QueueDescription	class	documentation	available	at
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.queuedescription

In	this	section	you	learn	how	to	create	a	queue,	send	messages	to	a	queue,	and
retrieve	messages	from	a	queue.

CREATING	A	QUEUE
You	can	create	a	queue	directly	from	the	portal	by	following	these	steps:

1.	 Navigate	to	the	Service	Bus	namespace	(Figure	3-57)	you	provisioned	in
the	portal.

https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.queuedescription

2.	 In	the	command	bar,	select	+	Queue.
3.	 Provide	a	name	for	the	new	queue.
4.	 Select	Create	to	deploy	the	queue.

FIGURE	3-57	Creating	a	new	Service	Bus	queue	in	the	Portal

Managing	queue	credentials
Queue	credentials	are	managed	either	at	the	namespace	level.	To	manage	the
Shared	access	policies	blade	for	the	namespace,	follow	these	steps:

1.	 Navigate	to	the	blade	for	your	Service	Bus	namespace	in	the	Azure	Portal.
2.	 From	the	menu,	select	Shared	access	policies	under	the	Settings	header.
3.	 To	create	a	new	shared	access	policy	for	the	queue,	select	+	Add.
4.	 Provide	a	name	for	the	Policy	and	select	what	permissions	(Manage,	Send,

Listen)	it	should	have.
5.	 Select	Create.
6.	 You	can	view	the	Keys	after	the	policy	has	been	created	by	selecting

Shared	access	polices	and	then	choosing	your	newly	created	policy.

FINDING	QUEUE	CONNECTION	STRINGS
To	communicate	with	a	queue,	you	provide	connection	information	including
the	queue	URL	and	shared	access	credentials.	The	portal	provides	a	connection
string	for	each	shared	access	policy	you	have	created.	For	example,	the
following	are	the	connection	strings	for	the	Receiver	and	Sender	policies	created
at	the	namespace	level	in	the	previous	section:
Click	here	to	view	code	image

Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyName=

<policyname>;Share

dAccessKey=B2bwP15EErkuF2NHJ17wlNKUiCHrersCcag08/K0U8w=;

You	can	access	this	information	as	follows:

1.	 Navigate	to	the	blade	for	your	Service	Bus	namespace	in	the	Azure	Portal.
2.	 Select	Shared	access	polices	and	then	choosing	the	desired	policy.
3.	 The	connection	strings	are	displayed	on	the	blade	that	appears.

Exam	Tip

The	connection	string	shown	in	the	management	portal	for	queues,
topics,	notification	hubs,	and	event	hubs	does	not	use	AMQP
protocol	by	default.	You	must	add	a	TransportType=Amqp	string
as	follows	to	tell	the	client	library	to	use	this	recommended
protocol:

Click	here	to	view	code	image

Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyName=Receiver;SharedAccessKey=N1Qt3CQyha1BxVFpTTJXMGkG/OOh14WTJbe1+M84tho=;
TransportType=Amqp.

SENDING	MESSAGES	TO	A	QUEUE
After	you	have	created	the	namespace	and	queue	and	you’ve	noted	the	sender
connection	string,	you	can	write	code	to	create	a	queue	client	that	sends	message

connection	string,	you	can	write	code	to	create	a	queue	client	that	sends	message
to	that	queue.	Here	is	a	simple	example	with	steps:

1.	 Open	Visual	Studio	and	create	a	new	console	application	called
QueueSender.

2.	 Add	the	Microsoft	Azure	Service	Bus	NuGet	package	to	the	console
application.

3.	 In	the	main	entry	point,	add	code	to	send	messages	to	the	queue.	Get	the
connection	string	with	a	TransportType	setting	for	AMQP,	create	an
instance	of	the	MessagingFactory,	and	create	a	reference	to	the	queue	with
QueueClient.	You	can	then	create	a	BrokeredMessage	(in	this	case,	a
string)	and	send	that	using	the	queue	reference.	The	following	listing	shows
the	entire	implementation,	including	required	namespaces:
Click	here	to	view	code	image

using	Microsoft.ServiceBus;

using	Microsoft.ServiceBus.Messaging;

class	Program

{

				static	void	Main(string[]	args)

				{

								string	queueName	=	"<queuename>";

								string	connection	=

"Endpoint=sb://<namespace>.servicebus.windows.net/;

SharedAccessKeyName=<sharedaccesskeyname>;

SharedAccessKey=<sharedaccesskeyvalue>;TransportType=Amqp";

								MessagingFactory	factory	=

MessagingFactory.CreateFromConnectionString(

connection);

								QueueClient	queue	=	factory.CreateQueueClient(queueName);

								string	message	=	"queue	message	over	amqp";

								BrokeredMessage	bm	=	new	BrokeredMessage(message);

								queue.Send(bm);

				}

}

4.	 In	the	aforementioned	code,	replace	the	values	as	follows:
	<namespace>	Your	Service	Bus	namespace	name.
	<sharedaccesskeyname>	The	name	of	your	Shared	Access	Key.
	<sharedaccesskeyvalue>	The	value	of	your	Shared	Access	Key.
	<queuename>	The	name	of	your	queue.

5.	 Run	the	project	to	send	a	message	to	the	queue.

Exam	Tip

The	BrokeredMessage	type	can	accept	any	serializable	object	or	a
stream	to	be	included	in	the	body	of	the	message.	You	can	also	set
additional	custom	properties	on	the	message	and	provide	settings
relevant	to	partitions	and	sessions.

RECEIVING	MESSAGES	FROM	A	QUEUE
There	are	two	modes	for	processing	queue	messages:

	ReceiveAndDelete	Messages	are	delivered	once,	regardless	of	whether	the
receiver	fails	to	process	the	message.
	PeekLock	Messages	are	locked	after	they	are	delivered	to	a	receiver	so	that
other	receivers	do	not	process	them	unless	they	are	unlocked	through	timeout
or	if	the	receiver	that	locked	the	message	abandons	processing.
By	default,	PeekLock	mode	is	used,	and	this	is	preferred	unless	the	system

can	tolerate	lost	messages.	The	receiver	should	manage	aborting	the	message	if
it	can’t	be	processed	to	allow	another	receiver	to	try	to	process	the	message	more
quickly.
After	you	have	created	the	namespace	and	queue	and	you’ve	noted	the

receiver	connection	string,	you	can	write	code	to	read	messages	from	the	queue
using	the	client	library.	Here	is	a	simple	example	with	steps:

1.	 In	the	existing	Visual	Studio	solution	created	in	the	previous	section,	add
another	console	application	called	QueueListener.

2.	 Add	the	Microsoft	Azure	Service	Bus	NuGet	package	to	the	console
application.

3.	 In	the	main	entry	point,	add	code	to	read	messages	from	the	queue.	Get	the
connection	string	with	a	TransportType	setting	for	AMQP,	create	an
instance	of	the	MessagingFactory,	and	create	a	reference	to	the	queue	with
QueueClient.	You	can	then	use	that	QueueClient	to	receive	messages.	The
following	listing	shows	the	entire	implementation,	including	required
namespaces:
Click	here	to	view	code	image

using	System;

using	Microsoft.ServiceBus.Messaging;

class	Program

{

				static	void	Main(string[]	args)

				{

								string	queueName	=	"<queuename>";

								string	connection	=

"Endpoint=sb://<namespace>.servicebus.windows.net/;

SharedAccessKeyName=<sharedaccesskeyname>;

SharedAccessKey=<sharedaccesskeyvalue>=;TransportType=Amqp";

								MessagingFactory	factory	=

MessagingFactory.CreateFromConnectionString(

connection);

								QueueClient	queue	=	factory.CreateQueueClient(queueName);

								while	(true)

								{

												BrokeredMessage	message	=	queue.Receive();

												if	(message	!=	null)

												{

																try

																{

																				Console.WriteLine("MessageId	{0}",

message.MessageId);

																				Console.WriteLine("Delivery	{0}",

message.DeliveryCount);

																				Console.WriteLine("Size	{0}",	message.Size);

																				Console.WriteLine(message.GetBody<string>());

																					message.Complete();

																}

																catch	(Exception	ex)

																{

																				Console.WriteLine(ex.ToString());

																				message.Abandon();

																}

												}

								}

				}

}

4.	 In	the	aforementioned	code,	replace	the	values	as	follows:
	<namespace>	Your	Service	Bus	namespace	name.
	<sharedaccesskeyname>	The	name	of	your	Shared	Access	Key.
	<sharedaccesskeyvalue>	The	value	of	your	Shared	Access	Key.
	<queuename>	The	name	of	your	queue.

Note:	Duplicate	Messages

Service	Bus	queues	support	at-least-once	processing.	This	means
that	under	certain	circumstances,	a	message	might	be	redelivered
and	processed	twice.	To	avoid	duplicate	messages,	you	can	use	the
MessageId	of	the	message	to	verify	that	a	message	was	not	already
processed	by	your	system.

More	Info:	Dead	Letter	Queues

Messages	that	cannot	be	processed	are	considered	poison	messages
and	should	be	removed	from	the	queue	and	handled	separately.
This	is	typically	done	with	a	dead	letter	queue.	Service	Bus	queues
have	a	dead	letter	sub-queue	available	for	this	purpose.	You	write
to	the	dead	letter	sub-squeue	when	you	detect	a	poison	message
and	provide	a	separate	service	to	process	those	failures.	Messages
written	to	the	dead	letter	sub-queue	do	not	expire.	For	a	sample,
see	https://docs.microsoft.com/en-us/azure/servicebus-
messaging/servicebus-dead-letter-queues.

Using	Service	Bus	topics	and	subscriptions
Service	Bus	queues	support	one-to-one	delivery	from	a	sender	to	a	single
receiver.	Service	Bus	topics	and	subscriptions	support	one-to-many
communication	in	support	of	traditional	publish	and	subscribe	patterns	in
brokered	messaging.	When	messages	are	sent	to	a	topic,	a	copy	is	made	for	each
subscription,	depending	on	filtering	rules	applied	to	the	subscription.	Messages
are	not	received	from	the	topic;	they	are	received	from	the	subscription.
Receivers	can	listen	to	one	or	more	subscriptions	to	retrieve	messages.
Properties	of	the	Service	Bus	topic	influence	its	behavior,	including	the	size

and	partitions	for	scale	out	and	message	handling	for	expiry.	Table	3-3	and
Table	3-4	respectively	show	the	core	properties	of	a	Service	Bus	topic	and
subscription.	Properties	prefixed	with	an	asterisk	(*)	indicate	a	property	not
shown	in	the	management	portal	while	creating	the	topic	or	subscription,	but	can
be	edited	in	the	management	portal	after	they	are	created.

TABLE	3-3	Topic	properties

Property Description

Max	size The	size	of	the	topic	buffer	in	terms	of	capacity	for	messages.
Can	be	from	1	GB	to	5	GB,	and	80	GB	when	partitioning	is

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dead-letter-queues

Can	be	from	1	GB	to	5	GB,	and	80	GB	when	partitioning	is
enabled.

Default
message
time	to	live

Time	after	which	a	message	will	expire	and	be	removed	from
the	topic	buffer.	Defaults	to	14	days	in	the	portal.

Enable
duplicate
detection

If	enabled,	the	topic	will	retain	a	buffer	and	ignore	messages
with	the	same	message	identifier	(provided	by	the	sender).
The	window	for	this	can	be	set	to	a	value	up	to	7	days.

*Duplicate
detection
history

Window	of	time	for	measuring	duplicate	detection.	Defaults
to	10	minutes.

*Filter
message
before
publishing

If	enabled,	the	publisher	will	fail	to	publish	a	message	that
will	not	reach	a	subscriber.

*Topic
status

Allows	for	disabling	publishing	without	removing	the	topic.
Valid	choices	are	Enabled,	Disabled,	or	Send	Disabled
(receive	only	mode).

Enable
partitioning

If	enabled,	messages	will	be	distributed	across	multiple
message	brokers	and	can	be	grouped	by	partition	key.	Up	to
100	partitioned	topics	are	supported	within	a	Basic	or
Standard	tier	namespace.	Premium	tier	namespaces	support
1,000	partitions	per	messaging	unit.

TABLE	3-4	Subscription	properties

Property Description

Default	message	time
to	live

Time	after	which	a	message	will	expire	and	be
removed	from	the	subscription	buffer.

Move	expired
messages	to	dead-
letter	sub-queue

If	enabled,	automatically	moves	expired	messages
to	the	dead	letter	topic	path.

Move	messages	that
cause	filter	evaluation

If	enabled,	automatically	moves	messages	that	fail
filter	evaluation	to	the	dead	letter	sub-queue.

cause	filter	evaluation
exceptions	to	the
dead-letter	sub-queue

filter	evaluation	to	the	dead	letter	sub-queue.

Lock	duration Duration	of	time	a	message	is	inaccessible	to	other
receivers	when	a	receiver	requests	a	peek	lock	on
the	message.	Defaults	to	30	seconds.	Can	be	set	to
a	value	up	to	5	minutes.

Enable	sessions If	enabled,	messages	can	be	grouped	into
sequential	batches	to	guarantee	ordered	delivery	of
a	set	of	messages.

Enable	batched
operations

If	enabled,	server-side	batch	operations	are
supported.

Maximum	delivery
count

The	maximum	number	of	times	Service	Bus	will
try	to	deliver	the	message	before	moving	it	to	the
dead-letter	sub-queue.

*Topic	subscription
state

Allows	for	disabling	consumption	without
removing	the	subscription.	Valid	choices	are
Enabled,	Disabled,	or	Receive	Disabled	(send	only
mode).

More	Info:	Topic	&	Subscription	Properties

For	a	comprehensive	list	of	all	Service	Bus	topic	properties,	see	the
TopicDescription	class	documentation	available	at:
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.topicdescription
Similarly,	for	subscription	properties,
see:https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.subscriptiondescription

CREATING	A	TOPIC	AND	SUBSCRIPTION
You	can	create	a	topic	directly	from	the	portal	by	following	these	steps:

1.	 Navigate	to	the	Service	Bus	namespace	(Figure	3-58)	you	provisioned	in
the	portal.

2.	 In	the	command	bar,	select	+	Topic.

https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.topicdescription
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.subscriptiondescription

3.	 Provide	a	name	for	the	new	topic.
4.	 Select	Create	to	deploy	the	topic.
5.	 To	create	subscriptions	for	the	topic,	select	the	topic	in	the	portal.
6.	 Select	+	Subscription	in	the	command	bar.
7.	 Provide	a	name	for	the	subscription.

FIGURE	3-58	Creating	a	new	Service	Bus	subscription	against	a	selected
topic	in	the	Portal

8.	 Select	Create	to	deploy	the	subscription.

MANAGING	TOPIC	CREDENTIALS
Service	Bus	topic	credentials	can	be	managed	from	the	portal.	The	following
example	illustrates	creating	a	sender	and	receiver	policy:

1.	 Navigate	to	the	blade	for	your	Service	Bus	namespace	in	the	Azure	Portal.

2.	 From	the	menu,	select	Shared	access	policies.
3.	 To	create	a	new	shared	access	policy	for	the	topic,	select	+	Add.
4.	 Provide	a	name	for	the	Policy	and	select	what	permissions	(Manage,	Send,

Listen)	it	should	have.	For	a	Sender	policy,	select	only	the	Sender
permission.	For	a	Receiver	policy,	select	only	the	Listen	permission.

5.	 Select	Create.
6.	 You	can	view	the	Keys	and	connection	strings	after	the	policy	has	been

created	by	selecting	Shared	access	polices	and	then	choosing	your	newly
created	policy.

Note:	Shared	Access	Policies	for	Topics

You	will	usually	create	at	least	one	policy	per	subscriber	to	isolate
access	keys	and	one	for	send	permissions	to	separate	key	access
between	clients	and	services.

SENDING	MESSAGES	TO	A	TOPIC
With	topics	and	subscriptions,	you	send	messages	to	a	topic	and	retrieve	them
from	a	subscription.	After	you	have	created	the	namespace,	the	topic,	and	one	or
more	subscriptions,	and	you’ve	noted	the	sender	connection	string,	you	can	write
code	to	create	a	topic	client	that	sends	messages	to	that	topic.	Here	is	a	simple
example	with	steps:

1.	 Open	Visual	Studio	and	create	a	new	console	application	called
TopicSender.

2.	 Add	the	Microsoft	Azure	Service	Bus	NuGet	package	to	the	console
application.

3.	 In	Program.cs,	add	code	to	send	messages	to	the	topic.	Begin	by	adding	the
following	namespace:
Click	here	to	view	code	image

using	Microsoft.ServiceBus.Messaging;

4.	 Create	an	instance	of	the	MessagingFactory,	and	create	a	reference	to	the
topic	with	TopicClient.	You	can	then	create	a	BrokeredMessage	and	send
that	using	the	topic	reference.	Here	is	the	body	of	the	main	method:
Click	here	to	view	code	image

string	topicName	=	"<topicname>";

string	connection	=	

string	connection	=	

"Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyName=

<sharedaccesskeyname>;SharedAccessKey=<shareaccesskeyvalue>";

MessagingFactory	factory	=	

MessagingFactory.CreateFromConnectionString(connection);

TopicClient	topic	=	factory.CreateTopicClient(topicName);

topic.Send(new	BrokeredMessage("topic	message"));

5.	 In	the	aforementioned	code,	replace	the	values	as	follows:
	<namespace>	Your	Service	Bus	namespace	name.
	<sharedaccesskeyname>	The	name	of	your	Shared	Access	Key.
	<sharedaccesskeyvalue>	The	value	of	your	Shared	Access	Key.
	<topicname>	The	name	of	your	topic.

6.	 Run	the	project	to	send	a	message	to	the	topic.

RECEIVING	MESSAGES	FROM	A	SUBSCRIPTION
Processing	messages	from	a	subscription	is	similar	to	processing	messages	from
a	queue.	You	can	use	ReceiveAndDelete	or	PeekLock	mode.	The	latter	is	the
preferred	mode	and	the	default.
After	you	have	created	the	namespace,	topic,	and	subscriptions,	and	you’ve

noted	the	subscription	connection	string,	you	can	write	code	to	read	messages
from	the	subscription	using	the	client	library.	Here	is	a	simple	example	with
steps:

1.	 In	the	existing	Visual	Studio	solution	created	in	the	previous	section,	add
another	console	application	called	TopicListener.

2.	 Add	the	Microsoft	Azure	Service	Bus	NuGet	package	to	the	console
application.

3.	 In	Program.cs,	add	code	to	receive	messages	from	the	subscription.	Begin
by	adding	the	following	namespace:
Click	here	to	view	code	image

using	Microsoft.ServiceBus.Messaging;

4.	 In	the	main	entry	point,	add	code	to	read	messages	from	a	subscription.	Get
the	connection	string	for	the	subscription,	create	an	instance	of	the
MessagingFactory,	and	create	a	reference	to	the	subscription	with
SubscriptionClient.	You	can	then	call	Receive()	to	get	the	next
BrokeredMessage	from	the	subscription	for	processing.	Here	is	the	body	of
the	main	method:

Click	here	to	view	code	image

string	topicName	=	"<topicname>";

string	subA	=	"<subscriptioname>";

string	connection	=

"Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyName=

<sharedaccesskeyname>;SharedAccessKey=<sharedaccesskeyvalue>";

MessagingFactory	factory	=	

MessagingFactory.CreateFromConnectionString(connection);

SubscriptionClient	clientA	=

factory.CreateSubscriptionClient(topicName,	subA);

while	(true)

{

				BrokeredMessage	message	=	clientA.Receive();

				if	(message	!=	null)

				{

								try

								{

												Console.WriteLine("MessageId	{0}",	message.MessageId);

												Console.WriteLine("Delivery	{0}",

message.DeliveryCount);

												Console.WriteLine("Size	{0}",	message.Size);

												Console.WriteLine(message.GetBody<string>());

												message.Complete();

								}

									catch	(Exception	ex)

								{

												Console.WriteLine(ex.ToString());

												message.Abandon();

								}

}

5.	 In	the	aforementioned	code,	replace	the	values	as	follows:
	<namespace>	Your	Service	Bus	namespace	name.
	<sharedaccesskeyname>	The	name	of	your	Shared	Access	Key.
	<sharedaccesskeyvalue>	The	value	of	your	Shared	Access	Key.
	<topicname>	The	name	of	your	topic.
	<subscriptionname>	The	name	of	your	Service	Bus	subscription	to	the
topic.

6.	 Run	both	the	sender	and	the	receiver	projects	to	see	the	message	exchange.

Exam	Tip

If	you	enable	batch	processing	for	the	subscription,	you	can	receive
a	batch	of	messages	in	a	single	call	using	ReceiveBatch()	or
ReceiveBatchAsync().	This	will	pull	messages	in	the	subscription
up	to	the	number	you	specify,	or	fewer	if	applicable.	Note	that	you
must	be	aware	of	the	potential	lock	timeout	while	processing	the
batch.

More	Info:	Atching	and	Prefetch

You	can	batch	messages	from	a	queue	or	topic	client	to	avoid
multiple	calls	to	send	messages	to	Service	Bus,	including	them	in	a
single	call.	You	can	also	batch	receive	messages	from	a	queue	or
subscription	to	process	messages	in	batch.	For	more	information
on	batch	processing	and	prefetch,	an	alternative	to	batch,	see
https://docs.microsoft.com/azure/servicebus-messaging/servicebus-
performance-improvements.

FILTERING	MESSAGES
One	of	the	powerful	features	of	topics	and	subscriptions	is	the	ability	to	filter
messages	based	on	certain	criteria,	such	as	the	value	of	specific	message
properties.	Based	on	criteria,	you	can	determine	which	subscription	should
receive	a	copy	of	each	message.	In	addition,	you	can	configure	the	topic	to
validate	that	every	message	has	a	valid	destination	subscription	as	part	of
publishing.
By	default,	subscriptions	are	created	with	a	“match	all”	criteria,	meaning	all

topic	messages	are	copied	to	the	subscription.	You	cannot	create	a	subscription
with	filter	criteria	through	the	portal,	but	you	can	create	it	programmatically
using	the	NamespaceManager	object	and	its	CreateSubscription()	method.	The
following	code	illustrates	creating	an	instance	of	the	NamespaceManager	for	a
topic	and	creating	a	subscription	with	a	filter	based	on	a	custom	message
property:
Click	here	to	view	code	image

string	topicName	=	"<topicname>";

string	connection	=	"Endpoint=sb://<namespace>.servicebus.windows.

net/;SharedAccessKeyName=

<sharedaccesskeyname>;

SharedAccessKey=<sharedacceskeyvalue>";

var	ns	=	NamespaceManager.CreateFromConnectionString(connectionString);

SqlFilter	filter	=	new	SqlFilter("Priority	==	1");

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-performance-improvements

SqlFilter	filter	=	new	SqlFilter("Priority	==	1");

ns.CreateSubscription(topicName,	"PrioritySubscription",	filter);

To	send	messages	to	the	topic,	targeting	the	priority	subscription,	set

the	Priority	property	to	one	on	each	message:

BrokeredMessage	message	=	new	BrokeredMessage("priority	message");

message.Properties["Priority"]	=	1;

Using	Event	Hubs
Event	Hubs	support	very	high-volume	message	streaming	as	is	typical	of
enterprise	application	logging	solutions	or	Internet	of	Things	(IoT)	scenarios.
With	Event	Hubs,	your	application	can	support	the	following:

	Ingesting	message	data	at	scale
	Consuming	message	data	in	parallel	by	multiple	consumers
	Re-processing	messages	by	restarting	at	any	point	in	time	within	the	message
stream
Messages	to	Event	Hubs	are	FIFO	and	durable	for	up	to	seven	days.

Consumers	can	reconnect	to	an	Event	Hub	and	choose	where	to	begin
processing,	allowing	for	the	re-processing	scenario	(sometimes	referred	to	as
message	replay)	or	for	reconnecting	after	failure.	Event	Hubs	differ	from	queues
and	topics	in	that	there	are	no	enterprise	messaging	features.	Instead	there	is	very
high	throughput	and	volume.	For	example,	there	isn’t	a	Time-to-Live	(TTL)
feature	for	messages,	no	dead-letter	sub-queue,	no	transactions	or
acknowledgements.	The	focus	is	low	latency,	highly	reliable,	message	streaming
with	order	preservation	and	replay.	Event	Hubs	also	differ	in	their	model	from
traditional	queues,	which	use	a	competing	consumer	pattern	(whereby	a	message
goes	to	at	most	one	consumer	and	the	service	tracks	the	state	of	messages	sent	to
consumer)	and	instead	use	a	multi-consumer	pattern	where	each	consumer	is
responsible	for	tracking	the	state	of	its	own	progress	thru	the	messages.
Table	3-5	shows	the	core	properties	of	an	event	hub.	Properties	prefixed	with

an	asterisk	(*)	indicate	a	property	not	shown	in	the	management	portal	while
creating	the	queue,	but	they	can	be	edited	in	the	management	portal	after	they
are	created.

More	Info:	Event	Hubs	Overview

For	more	details	on	the	event	hubs	architecture,	see
http://msdn.microsoft.com/en-us/library/azure/dn836025.aspx.

http://msdn.microsoft.com/en-us/library/azure/dn836025.aspx

Exam	Tip

Event	hubs	can	by	default	handle	1-MB	ingress	per	second,	2-MB
egress	per	second	per	partition.	This	can	be	increased	to	1-GB
ingress	per	second	and	2-GB	egress	per	second	through	a	support
ticket.

TABLE	3-5	Event	Hub	properties

Property Description

Partition
count

Determines	the	number	of	partitions	across	which	messages	are
distributed.	Can	be	set	to	a	value	between	2	and	32	and	cannot
be	modified	after	it	is	created.

Message
retention

Determines	the	number	of	days	a	message	will	be	retained
before	it	is	removed	from	the	event	hub.	Can	be	between	1	and
7	days.

Capture Enables	the	Capture	feature	that	automatically	writes	messages
ingested	to	the	Event	Hub	to	an	Azure	Storage	blob	container.
The	data	is	written	as	block	blobs	in	the	Apache	Avro	format.
Can	be	On	or	Off.

Capture
Time
window

Defines	the	time	window	that	triggers	a	capture	event.	The
default	is	5	minutes.

Capture
Size
window

Defines	the	size	in	bytes	that	once	reached	triggers	a	capture
event.	The	default	is	300	MB.

Capture
Container

The	Azure	Storage	container	that	will	store	the	capture	files.

Capture
Storage
Account

The	Azure	Storage	Account	that	will	store	the	capture	files.

Capture The	template	used	for	creating	the	blob	name	of	the	capture

Capture
file	name
format

The	template	used	for	creating	the	blob	name	of	the	capture
files,	typically	used	with	path	segments	for	the	namespace,
Event	Hub	name,	partition	id,	and	timestamp.

*Event
hub	state

Allows	for	disabling	the	hub	without	removing	it.	Valid	choices
are	Enabled	or	Disabled.

CREATING	AN	EVENT	HUB
You	can	create	an	event	hub	directly	from	the	portal	by	following	these	steps:

1.	 Using	the	portal,	navigate	to	the	blade	for	your	deployed	Event	Hub
namespace.

2.	 From	the	command	bar,	select	+	Event	Hub.
3.	 Provide	a	name	for	your	Event	Hub	(Figure3-59)	and	select	Create.

FIGURE	3-59	Creating	a	new	Event	Hub	in	the	Portal

Exam	Tip

You	can	create	between	1	and	32	partitions,	but	with	a	support
ticket	you	can	increase	that	number	up	to	1,024.

MANAGING	EVENT	HUB	CREDENTIALS
Event	Hub	credentials	can	be	managed	from	the	portal	at	the	namespace	level	in
the	same	way	as	was	shown	for	Service	Bus	queues.

FINDING	EVENT	HUB	CONNECTION	STRINGS
Connection	strings	for	Event	Hubs	are	accessed	in	the	same	way	as	for	queues
discussed	earlier	and	are	located	under	the	namespace,	Shared	access	policies
and	then	selecting	a	particular	policy	to	view	the	connection	strings.

SENDING	MESSAGES	TO	AN	EVENT	HUB
With	Event	Hubs,	you	send	messages	as	EventData	instances	to	the	Event	Hub,
and	the	service	will	distribute	those	messages	across	the	available	partitions.
Messages	are	stored	for	up	to	seven	days	and	can	be	retrieved	multiple	times	by
consumers.
After	you	have	created	the	namespace	and	Event	Hub	and	you’ve	noted	the

sender	connection	string,	you	can	write	code	to	create	an	Event	Hub	client	that
sends	messages.	Here	is	a	simple	example	with	steps:

1.	 Open	Visual	Studio	and	create	a	new	console	application	called
EventHubSender.

2.	 Add	the	Microsoft	Azure	Service	Bus	NuGet	package	to	the	console
application.

3.	 In	Program.cs,	add	code	to	receive	messages	from	the	subscription.	Begin
by	adding	the	following	namespace:
Click	here	to	view	code	image

using	Microsoft.ServiceBus.Messaging;

4.	 In	the	main	entry	point,	add	code	to	send	messages	to	the	Event	Hub.
Create	an	instance	of	the	MessagingFactory	and	a	reference	to	the
EventHubClient.	You	can	then	create	an	EventData	instance	and	send.	Here
is	the	body	of	the	main	method:
Click	here	to	view	code	image

string	ehName	=	"<eventhubname>";

string	connection	=	

"Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyName=

<sharedaccesskeyname>;SharedAccessKey=

<sharedaccesskeyvalue>;TransportType=Amqp";

MessagingFactory	factory	=

	MessagingFactory.CreateFromConnectionString(connection);

EventHubClient	client	=	factory.CreateEventHubClient(ehName);

string	message	=	"event	hub	message";

EventData	data	=	new	EventData(Encoding.UTF8.GetBytes(message));

client.Send(data);

5.	 In	the	aforementioned	code,	replace	the	values	as	follows:
	<namespace>	Your	Event	Hub	namespace	name.
	<sharedaccesskeyname>	The	name	of	your	Shared	Access	Key.
	<sharedaccesskeyvalue>	The	value	of	your	Shared	Access	Key.
	<eventhubname>	The	name	of	your	Event	Hub.

6.	 Run	the	sender	project	to	send	a	message.

Note:	Partitions	and	Partition	Keys

You	can	optionally	supply	a	partition	key	to	group	event	data	so
that	the	data	is	collected	in	the	same	partition	in	sequence.
Otherwise,	data	is	sent	in	a	round-robin	fashion	across	partitions.
In	addition,	you	can	supply	custom	properties	and	a	sequence
number	to	event	data	prior	to	sending.

RECEIVING	MESSAGES	FROM	A	CONSUMER	GROUP
When	you	create	the	Event	Hub,	you	allocate	a	number	of	partitions	to	distribute
message	ingestion.	This	helps	you	to	scale	the	Event	Hub	ingress	alongside
settings	for	throughput	(to	be	discussed	in	the	next	section).	To	consume
messages,	consumers	connect	to	a	single	partition.	In	this	example,	a	default
consumer	group	is	created	to	consume	events,	and	within	that	consumer	group
there	is	typically	one	consumer	application	process	for	each	partition.	You	can
think	of	the	consumer	process	like	a	subscription	to	a	Service	Bus	topic	that	is
specific	to	a	partition,	and	the	consumer	group	as	a	logical	entity	that	represents
the	stream	processing	application	all-up,	inclusive	of	all	the	individual	processes
that	together	handle	all	messages.
After	you	have	created	the	namespace,	and	Event	Hub,	and	you’ve	noted	the

Event	Hub	connection	string,	you	can	write	code	to	read	messages	from	the
consumer	group	using	the	client	library.	Here	is	a	simple	example	with	steps:

1.	 In	the	existing	Visual	Studio	solution	created	in	the	previous	section,	add
another	console	application	called	EventHubListener.

2.	 Add	the	Microsoft	Azure	Service	Bus	NuGet	package	to	the	console
application.

3.	 In	Program.cs,	add	code	to	receive	messages	from	the	subscription.	Begin
by	adding	the	following	namespace:
Click	here	to	view	code	image

using	Microsoft.ServiceBus.Messaging;

4.	 In	the	main	entry	point,	add	code	to	read	data	from	the	Event	Hub	using	the
default	consumer	group.	You	can	then	call	Receive()	to	get	the	next	event
from	the	partition	with	ID	“0”	for	processing.	Here	is	the	body	of	the	main
method:
Click	here	to	view	code	image

string	ehName	=	"<eventhubname>";

string	connection	=	

"Endpoint=sb://<namespace>.servicebus.windows.net/;SharedAccessKeyName=

<sharedaccesskeyname>;

SharedAccessKey=<sharedaccesskeyvalue>;TransportType=Amqp";

MessagingFactory	factory	=

	MessagingFactory.CreateFromConnectionString(connection);

EventHubClient	ehub	=	factory.CreateEventHubClient(ehName);

EventHubConsumerGroup	group	=	ehub.GetDefaultConsumerGroup();

EventHubReceiver	receiver	=	group.CreateReceiver("0");

while	(true)

{

				EventData	data	=	receiver.Receive();

				if	(data	!=	null)

				{

								try

								{

													string	message	=

Encoding.UTF8.GetString(data.GetBytes());

												Console.WriteLine("EnqueuedTimeUtc:	{0}",

data.EnqueuedTimeUtc);

												Console.WriteLine("PartitionKey:	{0}",

data.PartitionKey);

												Console.WriteLine("SequenceNumber:	{0}",

data.SequenceNumber);

												Console.WriteLine(message);

								}

								catch	(Exception	ex)

								{

												Console.WriteLine(ex.ToString());

																	}

				}

}

5.	 In	the	aforementioned	code,	replace	the	values	as	follows:
	<namespace>	Your	Event	Hub	namespace	name.
	<sharedaccesskeyname>	The	name	of	your	Shared	Access	Key.
	<sharedaccesskeyvalue>	The	value	of	your	Shared	Access	Key.
	<eventhubname>	The	name	of	your	Event	Hub.

6.	 Run	both	projects	to	send	and	receive	a	message.

More	Info:	Eventprocessorhost

To	simplify	scaling	event	hub	consumers	for	.NET	developers,
there	is	a	NuGet	package	that	supplies	a	hosting	feature	for	event
hubs	called	EventProcessorHost	which	can	easily	be	hosted	within
an	Azure	Web	Job.	For	more	information,	see:
https://www.nuget.org/packages/Microsoft.Azure.ServiceBus.EventProcessorHost/

Note:	Consumer	Groups

A	default	consumer	group	is	created	for	each	new	event	hub,	but
you	can	optionally	create	multiple	consumer	groups	(receivers)	to
consume	events	in	parallel.

Using	Notification	Hubs
Notification	hubs	provide	a	service	for	push	notifications	to	mobile	devices,	at
scale.	If	you	are	implementing	applications	that	are	a	source	of	events	to	mobile
applications,	Notification	Hubs	simplify	the	effort	to	send	platform-compatible
notifications	to	all	the	applications	and	devices	in	your	ecosystem.

CREATING	A	NOTIFICATION	HUB
You	can	create	a	notification	hub	directly	from	portal	by	following	these	steps:

1.	 Using	the	portal,	select	+	NEW	and	search	for	Notification	Hub.
2.	 Provide	a	name	for	the	Notification	Hub	and	the	new	Event	Hub

Namespace.
3.	 Select	a	location,	resource	group,	subscription	and	pricing	tier.

https://www.nuget.org/packages/Microsoft.Azure.ServiceBus.EventProcessorHost/

4.	 Select	Create.

IMPLEMENTING	SOLUTIONS	WITH	NOTIFICATION	HUBS
A	solution	that	involves	Notification	Hubs	typically	has	the	following	moving
parts:

	A	mobile	application	deployed	to	a	device	and	able	to	receive	push
notifications
	A	back-end	application	or	other	event	source	that	will	publish	notifications	to
the	mobile	application
	A	platform	notification	service,	compatible	with	the	application	platform
	A	Notification	Hub	to	receive	messages	from	the	publisher	and	handle
pushing	those	events	in	a	platform-specific	format	to	the	mobile	device

The	implementation	requirements	vary	based	on	the	target	platform	for	the
mobile	application.	For	a	set	of	tutorials	with	steps	for	each	platform	supported,
including	the	steps	for	setting	up	the	mobile	application,	the	back-end
application,	and	the	notification	hub,	see
http://azure.microsoft.com/documentation/articles/notification-hubs-windows-
store-dotnet-get-started.

More	Info:	Notification	Hub	Guides
The	following	references	provide	additional	background	and
programming	guidance	for	Notification	Hubs	and	mobile
services:
	Notification	hubs	overview	and	tutorials:
http://msdn.microsoft.com/en-us/library/azure/jj891130.aspx
	Notification	hubs	documentation:
http://azure.microsoft.com/documentation/services/notification-hubs/
	Mobile	Apps	documentation:	https://azure.microsoft.com/en-
us/documentation/learning-paths/appservice-mobileapps/

Scale	and	monitor	messaging
In	this	section,	you	learn	how	to	choose	a	Service	Bus	pricing	tier,	scale	Service
Bus	features,	and	monitor	communication.

Choosing	a	pricing	tier

http://azure.microsoft.com/documentation/articles/notification-hubs-windows-store-dotnet-get-started
http://msdn.microsoft.com/en-us/library/azure/jj891130.aspx
http://azure.microsoft.com/documentation/services/notification-hubs/
https://azure.microsoft.com/en-us/documentation/learning-paths/appservice-mobileapps/

When	you	create	a	Service	Bus	namespace,	you	choose	a	messaging	tier	for	all
entities	that	will	belong	to	that	namespace.	The	tier	you	choose	controls	which
entities	you	have	access	to	as	follows:

	Basic	tier	Queues	(up	to	100	connections)
	Standard	tier	Queues,	topics	and	related	messaging	features	(up	to	1000
connections)
	Premium	tier	All	features	in	Standard,	plus	larger	message	sizes,	resource
isolation	and	linear	scalability	(1,000	brokered	connections	per	messaging
unit)

Standard	and	Premium	tiers	support	advance	brokered	messaging	features
such	as	transactions,	de-duplication,	sessions,	and	forwarding,	so	if	you	need
these	features	for	your	solution,	select	from	these	tiers.

More	Info:	Service	Bus	Tiers

For	information	on	Service	Bus	tier	pricing,	see:
http://azure.microsoft.com/pricing/details/servicebus/.

Event	Hubs	have	their	own	tiering	approach.	The	basic	tier	only	supports	a
single	consumer	group,	so	if	you	want	to	support	parallelized	processing	across
partitions,	choose	a	standard	or	dedicated	messaging	tier.	In	addition,	standard
tier	provides	additional	storage	up	to	seven	days	for	event	hubs.	The	dedicated
tier	is	sold	at	a	fixed	price	per	daily	capacity	unit	instead	of	charged	million
events	as	is	done	by	the	basic	and	standard	tiers.

More	Info:	Event	Hub	Tiers

For	information	on	event	hub	tier	pricing,	see:
http://azure.microsoft.com/pricing/details/eventhubs/.

Notification	Hubs	have	a	separate	tier	selection	strategy.	When	you	create	a
namespace	that	supports	Notification	Hubs,	you	choose	a	messaging	tier	for
brokered	messaging	entities,	if	applicable,	and	select	a	Notification	Hub	tier
appropriate	to	your	expected	push	notification	strategy.

	Free	tier	Up	to	1	million	messages	per	month	and	up	to	500	active	devices
per	Namespace;	no	support	for	auto-scale	nor	a	number	of	other	enterprise

http://azure.microsoft.com/pricing/details/service-bus/
http://azure.microsoft.com/pricing/details/event-hubs/

features
	Basic	tier	10	million	messages	per	month	and	up	to	200,000	active	devices
per	namespace	plus	unlimited	overage	for	a	fee;	support	for	auto-scale;	no
support	for	other	enterprise	features
	Standard	tier	The	same	as	basic	tier,	but	supporting	up	to	10	million
devices	per	namespace,	with	all	enterprise	features

More	Info:	Notification	Hub	Tiers

For	information	on	notification	hub	tier	pricing,	see:
http://azure.microsoft.com/pricing/details/notification-hubs/.

Scaling	Service	Bus	features
Service	Bus	entities	scale	based	on	a	variety	of	properties,	including:

	Namespaces
	Partitions
	Message	size
	Throughput	units
	Entity	instances

Not	all	of	these	properties	impact	every	Service	Bus	entity	in	the	same
manner.
A	Service	Bus	namespace	is	a	container	for	one	or	more	entities,	such	as

relays,	queues,	topics,	event	hubs,	and	notification	hubs.	In	most	cases,	the
namespace	itself	is	not	a	unit	of	scale,	with	some	exceptions	specifically	related
to	pricing	(referenced	earlier),	event	hub	throughput	(to	be	discussed),	and	the
following:

	For	relays,	there	is	a	limit	to	the	number	of	endpoints,	connections	overall,
and	listeners.
	The	number	of	topics	and	queues	are	limited,	and	separately	a	smaller
number	of	partitioned	topics	and	queues	are	supported.
Since	pricing	is	not	directly	related	to	namespace	allocation	between	relays,

queues,	topics,	and	event	hubs,	you	can	avoid	reaching	some	of	these	limits	by
isolating	entities	that	could	be	impacted	into	separate	namespaces.	For	example,
consider	isolating	individual	relays	that	might	grow	their	connection
requirements,	or	consider	isolating	partitioned	queues	and	topics.

http://azure.microsoft.com/pricing/details/notification-hubs/

More	Info:	Service	Bus	Quotas

For	the	latest	information	related	to	namespace	and	other	quotas
for	individual	Service	Bus	entities,	see:
https://docs.microsoft.com/azure/servicebus-messaging/servicebus-
quotas.

Beyond	namespace	selection,	each	entity	has	slightly	different	requirements
for	scale	as	is	discussed	in	this	section.

Scaling	relays
This	section	discusses	how	to	scale	relays	for	potential	namespace	limitations.

NAMESPACE
As	mentioned	previously,	relay	endpoints	have	a	limited	number	of	overall
connections	and	listeners	that	can	be	supported	per	namespace.	When	you	are
considering	the	design	for	a	relay	service,	you	should	consider	the	number	of
concurrent	connections	that	might	be	required	for	communicating	with	the
endpoint.
If	the	scale	of	the	solution	has	the	potential	to	exceed	the	quota	per

namespace,	the	following	approach	can	help	to	mitigate	the	limitation:

	Design	the	solution	to	support	publishing	an	instance	of	each	relay	service
into	multiple	namespaces.	This	will	allow	for	growth	so	that	additional
listeners	can	be	added	by	adding	namespaces	with	a	new	relay	service
instance.
	Design	the	solution	so	that	clients	sending	messages	to	the	relay	service	can
distribute	calls	across	a	selection	of	service	instances.	This	implies	building	a
service	registry.

Exam	Tip

Relay	services	can	be	replaced	with	queues	or	topics	to	provide
greater	throughput,	scalability,	and	design	flexibility.

Scaling	queues	and	topics

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-quotas

Scaling	queues	and	topics
This	section	discusses	how	to	scale	queues	and	topics	for	potential	namespace	or
storage	limitations	and	discusses	the	use	of	batching	and	partitions	to	help	with
scaling.

NAMESPACE
Queues	and	topics	are	similar	in	their	scale	triggers.	Neither	is	particularly
bound	by	the	namespace	it	belongs	to	except	in	the	total	number	of	queues	or
topics	supported	and	the	limited	number	of	partitioned	queues	and	topics.
Ideally,	you	will	have	a	pattern	for	your	solution	in	terms	of	namespace
allocations	by	Service	Bus	entities.

STORAGE
When	you	create	a	new	queue	or	topic,	you	must	choose	the	maximum	expected
storage	from	one	GB	to	five	GBs,	and	this	cannot	be	resized.	This	impacts	the
amount	of	concurrent	storage	supported	as	messages	flow	through	Service	Bus.

BATCHING
To	increase	throughput	for	a	queue	or	topic,	you	can	have	senders	batch
messages	to	Service	Bus	and	listeners	batch	receive	or	prefetch	from	Service
Bus.	This	increases	overall	throughput	across	all	connected	senders	and	listeners
and	can	help	reduce	the	number	of	messages	taking	up	storage.

More	Info:	Batching	and	PreFetching

For	more	information	on	batch	send,	batch	receive,	or	prefetch,
see:	https://docs.microsoft.com/en-us/azure/servicebus-
messaging/servicebus-performance-improvements.

PARTITIONS
Adding	partitions	increases	the	number	of	message	brokers	available	for
incoming	messages,	as	well	as	the	number	available	for	consuming	messages.
For	high	throughput	queues	and	topics,	you	should	enable	partitioning	when	you
create	the	queue	or	topic.

More	Info:	Partitioned	Entities

For	more	information	on	partitions,	see:

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-performance-improvements

https://docs.microsoft.com/en-us/azure/servicebus-
messaging/servicebus-partitioning.

Scaling	Event	Hubs
This	section	discusses	how	to	scale	event	hubs	for	potential	namespace
limitations	and	discusses	how	to	set	throughput	units	or	use	partitions	to	help
with	scaling.

NAMESPACE
Each	namespace	can	have	multiple	Event	Hubs,	but	those	Event	Hubs	share	the
throughput	units	allocated	to	the	namespace.	This	means	that	multiple	Event
Hubs	can	share	a	single	throughput	unit	to	conserve	cost,	but	conversely,	if	a
single	Event	Hub	has	the	potential	of	scaling	beyond	the	available	throughput
units	for	a	namespace,	you	might	consider	creating	a	separate	namespace	for	it.

Exam	Tip

You	can	request	additional	throughput	by	navigating	to	your
Event	Hub	namespace	in	the	Azure	Portal,	selecting	Scale,
adjusting	the	slider	to	the	desired	number	of	units	and	selecting
Save.

THROUGHPUT	UNITS
The	primary	unit	of	scale	for	Event	Hubs	is	throughput	units.	This	value	is
controlled	at	the	namespace	level	and	thus	applies	to	all	Event	Hubs	in	the
namespace.	By	default,	you	get	a	single	throughput	unit	which	provides	ingress
up	to	one	MB	per	second,	or	1,000	events	per	second,	and	egress	up	to	two	MB
per	second.	You	pre-purchase	units	and	can	by	default	configure	up	to	20	units.

PARTITIONS
A	single	Event	Hub	partition	can	scale	to	utilize	a	maximum	of	one	throughput
unit;	therefore,	the	number	of	partitions	across	Event	Hubs	in	the	namespace
should	be	equal	to	or	greater	than	the	number	of	throughput	units	selected.

Scaling	Notification	Hubs
There	is	no	equivalent	notion	of	throughput	units	in	Notification	Hubs.	The

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-partitioning

There	is	no	equivalent	notion	of	throughput	units	in	Notification	Hubs.	The
scaling	capacity	is	dictated	by	the	selected	pricing	tier.

Monitoring	Service	Bus	features
In	this	section	you	learn	how	to	monitor	queues,	topics,	event	hubs,	and
notification	hubs.

MONITORING	QUEUES
To	monitor	a	Service	Bus	queue	from	the	portal,	complete	the	following	steps:

1.	 Navigate	to	the	blade	for	the	queue	and	select	the	Overview	tab.
2.	 The	metrics	shown	for	a	queue	includes	message	counts,	the	max	storage

size	of	the	queue	and	the	current	storage	used	by	the	queue.

MONITORING	TOPICS
To	monitor	a	Service	Bus	topic	from	existing	portal,	complete	the	following
steps:

1.	 Navigate	to	the	blade	for	the	topic	and	select	the	Overview	tab.
2.	 The	metrics	shown	for	a	queue	includes	message	counts,	or	the	max	storage

size	of	the	queue	and	the	current	storage	used	by	the	queue.

MONITORING	EVENT	HUBS
To	monitor	Event	Hub	from	the	portal,	follow	these	steps	(Figure	3-60):

1.	 Navigate	to	the	blade	Event	Hub	Namespace	blade	and	select	the	Overview
tab.	From	this	tab	you	are	viewing	a	summary	of	activity	across	all	Event
Hub	instances	in	the	namespace,	including	statistics	about	incoming
messages,	incoming	send	requests,	outgoing	messages	and	internal	server
errors.

FIGURE	3-60	Viewing	Event	Hub	metrics	from	the	Overview	tab	of	an
Event	Hub	in	the	Portal

2.	 Select	the	chart	to	view	the	Metric	blade.
3.	 Select	Edit	Chart	from	the	command	bar	to	view	customize	the	time	range

plotted	in	the	chart,	the	style	(Bar	or	Line)	and	the	metrics	to	display
(Figure	3-61).

FIGURE	3-61	Viewing	the	list	of	available	Event	Hub	metrics	from	Edit
Chart	blade	for	an	Event	Hub

4.	 Select	OK	to	apply	the	changes	to	the	chart.

MONITORING	NOTIFICATION	HUBS
To	monitor	a	Notification	Hub	from	the	portal:

1.	 Navigate	to	the	blade	for	your	Notification	Hub	in	the	portal.
2.	 From	the	menu	on	the	left,	select	Metrics	under	the	Monitoring	header.
3.	 Choose	from	the	list	of	metrics	the	set	of	metrics	you	wish	to	chart	and	the

chart	on	the	right	will	update	with	the	corresponding	metric.

Determine	when	to	use	Event	Hubs,	Service	Bus,	IoT	Hub,
Stream	Analytics	and	Notification	Hubs
To	help	you	better	recall	when	to	use	which	service,	the	following	table
summarizes	when	to	use	each	of	the	services	discussed	in	this	chapter,	as	well	as
some	of	the	related	services	that	help	in	message	processing.

TABLE	3-6	Services	and	related	services	for	message	processing	help

Service Purpose Comment

Service	Bus	Queue Messaging Best	for	first	in,	first	out	messaging.

Service	Bus
Topics/Subscriptions

Broadcast
messaging

Best	for	publish/subscribe	scenarios
or	when	you	need	multiple
consumers	to	be	able	to	read	the
same	message	conditionally.

Event	Hubs High-scale
message
ingest

Best	for	massive	scale	message
ingest	scenarios,	such	as	telemetry

IoT	Hub Device
messaging

Best	for	scenarios	that	have	high
scale	messaging	requirements	but
also	need	device	management
capabilities

Notification	Hubs Push
notifications

Best	for	sending	push	notifications
for	mobile	apps.

Stream	Analytics Message
processing

Best	for	processing	messages	from
Event	Hubs,	IoT	Hub	using	SQL
queries

EventProcessorHost Message
processing

Best	for	processing	messages	from
Event	Hubs,	IoT	Hub	using	.NET
custom	code

Thought	experiment
In	this	thought	experiment,	apply	what	you’ve	learned	about	implementing

In	this	thought	experiment,	apply	what	you’ve	learned	about	implementing
Azure	AD,	Azure	Key	Vault,	and	selecting	a	messaging	strategy.	Apply	this	to	a
scenario	with	an	appropriate	selection	across	each	Azure	feature.	This	will
require	you	to	choose	the	Azure	AD	configuration,	the	Key	Vault	configuration,
and	the	messaging	features,	which	are	best	suited	to	the	solution.	You	can	find
answers	to	this	thought	experiment	in	the	“Thought	Experiment	Answers”
section	at	the	end	of	this	chapter.	The	following	paragraphs	describe	the	solution
and	the	questions	to	answer.
You	are	designing	a	multi-tenant	solution	that	sells	widgets.	The	system	tracks

your	products,	each	customer,	and	the	orders.
There	are	several	applications	that	comprise	the	system:
	The	internal	web	application	(Corporate	Portal)	that	allows	the	corporate
employees	to	manage	available	widgets	and	manage	customers	and	orders.
	All	corporate	employees	should	be	able	to	use	this	portal,	their	access
restricted	by	the	groups	they	belong	to.
	There	isn’t	an	existing	directory	to	work	with,	so	the	user	store	will	be	a
green	field	setup.
	Corporate	users	are	expected	to	use	multi-factor	authentication.
	It	is	expected	that	the	corporate	users	will	be	setup	by	an	administrator	to
the	organization.

	The	external	web	application	(Customer	Portal)	that	allows	customers	to
view	their	orders,	manage	their	profiles	and	preferences,	and	place	new
orders.
	Customers	can	sign	up	for	access	to	this	portal,	but	access	to	tenants	is
managed	by	the	Corporate	Portal.

	Customer	users	should	be	able	to	sign-in	by	creating	a	user	account,	or	by
signing	up	with	their	Google	or	Microsoft	Account.
These	applications	will	not	only	authenticate	users,	but	also	request	access

tokens	to	call	secure	APIs.	This	will	require	storing	client	id	and	secret	settings
for	each	client	application	that	will	request	access	tokens.
Each	customer	also	expects	a	report	of	his	or	her	own	activity	each	month,

and	on	demand	as	needed.	These	reports	require	sifting	through	large	amounts	of
data	and	generating	a	PDF	file	for	the	customer,	to	be	emailed	when	it	is
generated.	In	addition,	since	it	is	a	multi-tenant	site,	you	want	to	track	detailed
logs	for	insights	into	individual	customer	activity	at	any	given	time	to
troubleshoot	or	gather	intelligence	on	usage	patterns.

1.	 How	would	you	go	about	setting	up	corporate	users	in	Azure	AD?
2.	 How	would	you	go	about	supporting	self-registration	and	social	login	for

customer	users	in	Azure	AD?
3.	 Which	features	of	Azure	AD	would	you	use	to	support	user	authentication

and	token	issuance	for	APIs?
4.	 How	can	Azure	Key	Vault	be	used	in	this	solution?
5.	 What	kind	of	communication	architecture	might	fit	the	reporting	strategy

and	why?

Thought	experiment	answers
This	section	contains	the	solution	to	the	thought	experiment.

1.	 Consider	setting	up	an	Azure	AD	tenant	dedicated	to	corporate	users	for
the	Corporate	Portal.	Add	users	via	the	portal,	or	programmatically	and
assign	users	to	appropriate	groups	that	align	with	application	permissions.

2.	 Consider	adding	customer	users	as	Azure	AD	B2C	collaboration	users	-
guest	users	-	who	can	register	and	sign-in	with	Microsoft	Account	or
Google	identity	providers.

3.	 Configure	applications	for	the	Azure	AD	tenant,	and	create	keys	for	access
token	requests	for	APIs.	Applications	can	request	access	tokens	during
sign-in	if	the	application	will	use	the	token	from	a	SPA	or	from	the	web
application,	or	individually	request	access	tokens.	Any	protocol	flows	that
require	a	secret	will	use	the	client	id	and	secret	for	the	application.

4.	 Create	a	Key	Vault	in	the	same	subscription	as	the	Azure	AD	tenant.	Create
secrets	to	hold	the	Azure	AD	application	secrets	that	are	necessary	for
token	requests.

5.	 Consider	using	Service	Bus	queues	to	offload	processing	of	report
generation	from	the	main	website	to	a	separate	compute	tier	that	can	be
scaled	as	needed.	Since	this	is	not	a	publish-and-subscribe	scenario,	queues
can	satisfy	this	requirement.	Actual	processing	can	be	performed	by	any
compute	tier,	including	a	VM,	cloud	service	worker	role,	or	web	job	in	an
isolated	VM.

Chapter	summary
	You	can	easily	create	new	Azure	AD	directories	and	manage	users	and
registered	applications	via	the	Azure	Portal.

	Azure	AD	supports	WSFederation,	SAML-P,	OpenID	Connect	and	OAuth	2
protocols	for	application	integration.	Registered	applications	can	integrate
with	Azure	AD	using	any	of	these	protocol	endpoints.
	You	can	manage	users	programmatically	using	the	Microsoft	Graph	API	at
the	Azure	AD	v2	endpoint,	but	this	also	requires	registering	application	at	the
new	Microsoft	Application	Registry	separate	from	the	applications	registered
from	within	the	Azure	Portal	(today).
	You	can	use	the	Microsoft	Graph	API	to	query	directories;	to	find	and
manage	users,	groups	and	role	assignment;	and	to	create	applications	for
integration	with	Azure	AD	directories.
	You	can	enable	multi-factor	authentication	for	users	individually	or	in	batch.
This	requires	additional	licenses	for	your	users.
	You	can	integrate	multi-factor	authentication	directly	to	your	applications	by
using	the	MFA	SDK	which	exposes	APIs	for	this	purpose.
	Azure	AD	B2C	enables	users	to	register	and	sign-in	using	social	identity
providers.
	Azure	AD	B2B	enables	organizations	to	allow	access	to	applications	and
resources	by	external	users.
	Azure	Key	Vault	provides	a	secure	way	to	manage	keys,	secrets	and
certificates	including	support	for	HSM	protected	assets.
	A	Service	Bus	namespace	is	a	container	for	relay	and	message	broker
communication	through	relays,	queues,	topics	and	subscriptions,	event	hubs,
and	notification	hubs.
	Relay	enables	access	to	on-premises	resources	without	exposing	on-premises
services	to	the	public	Internet.	By	default,	all	relay	messages	are	sent	through
Service	Bus	(relay	mode),	but	connections	might	be	promoted	to	a	direct
connection	(hybrid	mode).
	Queues	and	topics	are	message	brokering	features	of	Service	Bus	that
provide	a	buffer	for	messages,	partitioning	options	for	scalability,	and	a	dead
letter	feature	for	messages	that	can’t	be	processed.
	Queues	support	one-to-one	message	delivery	while	topics	support	one-to-
many	delivery.
	Event	hubs	support	high-volume	message	streaming	and	can	ingest	message
data	at	scale.	Messages	are	stored	in	a	buffer	and	can	be	processed	multiple
times.
	Service	Bus	features	can	require	authentication	using	a	key.	You	can	create

multiple	keys	to	isolate	the	key	used	for	management	and	usage	patterns,
such	as	send	and	receive.

Chapter	4.	Design	and	implement	Azure	PaaS
compute	and	web	and	mobile	services

The	Azure	platform	provides	a	rich	set	of	Platform-as-a-Service	(PaaS)
capabilities	for	hosting	web	applications	and	services.	The	platform	approach
provides	more	than	just	a	host	for	running	your	application	logic;	it	also	includes
robust	mechanisms	for	managing	all	aspects	of	your	web	application	lifecycle,
from	configuring	continuous	and	staged	deployments	to	managing	runtime
configuration,	monitoring	health	and	diagnostic	data,	and	of	course,	helping	with
scale	and	resilience.	Azure	Apps	Services	includes	a	number	of	features	to
manage	web	applications	and	services	including	Web	Apps,	Logic	Apps,	Mobile
Apps	and	API	Apps.	API	Management	provides	additional	features	with	first
class	integration	to	APIs	hosted	in	Azure.	Azure	Functions	and	Azure	Service
Fabric	enable	modern	microservices	architectures	for	your	solutions,	in	addition
to	several	third-party	platforms	that	can	be	provisioned	via	Azure	Quickstart
Templates.	These	key	features	are	of	prime	importance	to	the	modern	web
application,	and	this	chapter	explores	how	to	leverage	them.

Skills	in	this	chapter:
	Skill	4.1:	Design	Azure	App	Service	Web	Apps
	Skill	4.2:	Design	Azure	App	Service	API	Apps
	Skill	4.3:	Develop	Azure	App	Service	Logic	Apps
	Skill	4.4:	Develop	Azure	App	Service	Mobile	Apps
	Skill	4.5:	Implement	API	Management
	Skill	4.6:	Implement	Azure	Functions	and	WebJobs
	Skill	4.7:	Design	and	implement	Azure	Service	Fabric	Apps
	Skill	4.8:	Design	and	implement	third-party	Platform	as	a	Service	(PaaS)
	Skill	4.9:	Design	and	implement	DevOps

Skill	4.1:	Design	Azure	App	Service	Web	Apps
Azure	App	Service	Web	Apps	(or,	just	Web	Apps)	provides	a	managed	service
for	hosting	your	web	applications	and	APIs	with	infrastructure	services	such	as
security,	load	balancing,	and	scaling	provided	as	part	of	the	service.	In	addition,
Web	Apps	has	an	integrated	DevOps	experience	from	code	repositories	and

Web	Apps	has	an	integrated	DevOps	experience	from	code	repositories	and
from	Docker	image	repositories.	You	pay	for	compute	resources	according	to
your	App	Service	Plan	and	scale	settings.	This	section	covers	key	considerations
for	designing	and	deploying	your	applications	as	Web	Apps.

This	skill	covers	how	to:
	Define	and	manage	App	Service	plans
	Configure	Web	App	settings
	Configure	Web	App	certificates	and	custom	domains
	Manage	Web	Apps	by	using	the	API,	Azure	PowerShell,	and	XplatCLI
	Implement	diagnostics,	monitoring,	and	analytics
	Design	and	configure	Web	Apps	for	scale	and	resilience

Define	and	manage	App	Service	plans
An	App	Service	plan	defines	the	supported	feature	set	and	capacity	of	a	group	of
virtual	machine	resources	that	are	hosting	one	or	more	web	apps,	logic	apps,
mobile	apps,	or	API	apps	(this	section	discusses	web	apps	specifically,	and	the
other	resources	are	covered	in	later	sections	in	this	chapter).
Each	App	Service	plan	is	configured	with	a	pricing	tier	(for	example,	Free,

Shared,	Basic,	and	Standard),	and	each	tier	describes	its	own	set	of	capabilities
and	cost.	An	App	Service	plan	is	unique	to	the	region,	resource	group,	and
subscription.	In	other	words,	two	web	apps	can	participate	in	the	same	App
Service	plan	only	when	they	are	created	in	the	same	subscription,	resource
group,	and	region	(with	the	same	pricing	tier	requirements).
This	section	describes	how	to	create	a	new	App	Service	plan	without	creating

a	web	app,	and	how	to	create	a	new	App	Service	plan	while	creating	a	web	app.
It	also	reviews	some	of	the	settings	that	can	be	useful	for	managing	the	App
Service	plan.

More	Info:	App	Services	Overview

For	an	overview	of	App	Services	and	Web	App	development	see
https://docs.microsoft.com/en-us/azure/app-service/.

Creating	a	new	App	Service	plan
To	create	a	new	App	Service	plan	in	the	portal,	complete	the	following	steps:

https://docs.microsoft.com/en-us/azure/app-service/

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	New	on	the	command	bar.
3.	 Within	the	Marketplace	(Figure	4-1)	search	text	box,	type	App	Service

Plan	and	press	Enter.

FIGURE	4-1	The	Marketplace	search	for	App	Service	Plan.

4.	 Select	App	Service	Plan	from	the	results.
5.	 On	the	App	Service	Plan	blade,	select	Create.
6.	 On	the	New	App	Service	Plan	blade	(Figure	4-2),	provide	a	name	for	your

App	Service	plan,	choose	the	subscription,	resource	group,	operating
system	(Windows	or	Linux),	and	location	into	which	you	want	to	deploy.
You	should	also	confirm	and	select	the	desired	pricing	tier.

https://portal.azure.com

FIGURE	4-2	The	settings	for	a	new	App	Service	Plan

7.	 Click	Create	to	create	the	new	App	Service	plan.

Following	the	creation	of	the	new	App	Service	plan,	you	can	create	a	new
web	app	and	associate	this	with	the	previously	created	App	Service	plan.	Or,	as
discussed	in	the	next	section,	you	can	create	a	new	App	Service	plan	as	you
create	a	new	web	app.

More	Info:	App	Service	Pricing	Tiers

App	Service	plan	pricing	tiers	range	from	Free,	Shared,	Basic,
Standard,	Premium,	and	Isolated	tiers.	It	is	important	to
understand	the	features	offered	by	each	tier	related	to	custom
domains,	certificates,	scale,	deployment	slots,	and	more.	For	more
information	see	https://azure.microsoft.com/en-
us/pricing/details/app-service.

https://azure.microsoft.com/en-us/pricing/details/app-service

Creating	a	new	Web	App	and	App	Service	plan
To	create	a	new	Web	App	and	a	new	App	Service	plan	in	the	portal,	complete

the	following	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	New	on	the	command	bar.
3.	 Within	the	Marketplace	list	(Figure	4-3),	select	the	Web	+	Mobile	option.

FIGURE	4-3	The	Marketplace	list	for	Web	+	Mobile

4.	 On	the	Web	+	Mobile	blade,	select	Web	App.
5.	 On	the	Web	App	blade	(Figure	4-4),	provide	an	app	name,	choose	the

subscription,	resource	group,	operating	system	(Windows	or	Linux),	and
choose	a	setting	for	Application	Insights.	You	also	select	the	App	Service
plan	into	which	you	want	to	deploy.

https://portal.azure.com

FIGURE	4-4	The	selections	for	a	new	App	Service.

6.	 When	you	click	the	App	Service	plan	selection,	you	can	choose	an	existing
App	Service	plan,	or	create	a	new	App	Service	plan.	To	create	a	new	App
Service	plan,	click	Create	New	from	the	App	Service	Plan	blade.

7.	 From	the	New	App	Service	Plan	blade	(Figure	4-5),	choose	a	name	for	the
App	Service	plan,	select	a	location,	and	select	a	pricing	tier.	Click	OK	and
the	new	App	Service	plan	is	created	with	these	settings.

FIGURE	4-5	Options	for	a	new	App	Service	Plan.

8.	 From	the	Web	App	blade,	click	Create	to	create	the	web	app	and	associate
it	with	the	new	App	Service	plan.

Review	App	Service	plan	settings
Once	you’ve	created	a	new	App	Service	plan,	you	can	select	the	App	Service
plan	in	the	portal	and	manage	relevant	settings	including	managing	web	apps
and	adjusting	scale.
To	manage	an	App	Service	plan,	complete	the	following	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	More	Services	on	the	command	bar.
3.	 In	the	filter	text	box,	type	App	Service	Plans,	and	select	App	Service	Plans

(Figure	4-6).

FIGURE	4-6	Search	results	for	App	Service	plans

4.	 Review	the	list	of	App	Service	plans	(Figure	4-7).	Note	the	number	of	apps
deployed	to	each	is	shown	in	the	list.	You	can	also	see	the	pricing	tiers.
Select	an	App	Service	plan	from	the	list	to	navigate	to	the	App	Service	Plan
blade.

https://portal.azure.com

FIGURE	4-7	List	of	App	Service	plans

5.	 From	the	left	navigation	pane,	select	Apps	to	view	the	apps	that	are
deployed	to	the	App	Service	plan	(Figure	4-8).	You	can	select	from	the	list
of	apps	to	navigate	to	the	app	blade	and	manage	its	settings.

FIGURE	4-8	List	of	apps	deployed	to	the	App	Service	plan.

6.	 From	the	left	navigation	pane,	select	Scale	Up	to	choose	a	new	pricing	tier
for	the	App	Service	plan.

7.	 From	the	left	navigation	pane,	select	Scale	Out	to	increase	or	decrease	the
number	of	instances	of	the	App	Service	plan,	or	to	configure	Autoscale
settings.

Configure	Web	App	settings
Azure	Web	Apps	provide	a	comprehensive	collection	of	settings	that	you	can
adjust	to	establish	the	environment	in	which	your	web	application	runs,	as	well
as	tools	to	define	and	manage	the	values	of	settings	used	by	your	web
application	code.	You	can	configure	the	following	groups	of	settings	for	your
applications:

	Application	type	and	library	versions
	Load	balancing
	Slot	management
	Debugging
	App	settings	and	connection	strings
	IIS	related	settings
To	manage	Web	App	settings	follow	these	steps:

1.	 Navigate	to	the	blade	of	your	web	app	in	the	portal	accessed	via
https://portal.azure.com.

2.	 Select	the	Application	settings	tab	from	the	left	navigation	pane.	The
setting	blade	appears	to	the	right.

3.	 Choose	from	the	general	settings	required	for	the	application:

A.	 Choose	the	required	language	support	from	.NET	Framework,	PHP,
Java,	or	Python,	and	their	associated	versions.

B.	 Choose	between	32bit	and	64bit	runtime	execution.
C.	 Choose	web	sockets	if	you	are	building	a	web	application	that

leverages	this	feature	from	the	browser.
D.	 Choose	Always	On	if	you	do	not	want	the	web	application	to	be

unloaded	when	idle.	This	reduces	the	load	time	required	for	the	next
request	and	is	a	required	setting	for	web	jobs	to	run	effectively.

E.	 Choose	the	type	of	managed	pipeline	for	IIS.	Integrated	is	the	more
modern	pipeline	and	Classic	would	only	be	used	for	legacy
applications	(Figure	4-9).

https://portal.azure.com

FIGURE	4-9	General	settings	section	for	application	settings

4.	 Choose	your	setting	for	ARR	affinity	(Figure	4-10).	If	you	choose	to	enable
ARR	affinity	your	users	will	be	tied	to	a	particular	host	machine	(creating	a
sticky	session)	for	the	duration	of	their	session.	If	you	disable	this,	your
application	will	not	create	a	sticky	session	and	your	application	is	expected
to	support	load	balancing	between	machines	within	a	session.

FIGURE	4-10	ARR	affinity	settings

5.	 When	you	first	create	your	web	app,	the	auto	swap	settings	are	not
available	to	configure.	You	must	first	create	a	new	slot,	and	from	the	slot
you	may	configure	auto	swap	to	another	slot	(Figure	4-11).

FIGURE	4-11	Auto	Swap	settings

6.	 Enable	remote	debugging	(Figure	4-12)	if	you	run	into	situations	where
deployed	applications	are	not	functioning	as	expected.	You	can	enable
remote	debugging	for	Visual	Studio	versions	2012,	2013,	2015,	and	2017.

FIGURE	4-12	Remote	debugging	settings	for	the	web	app

7.	 Configure	the	app	settings	required	for	your	application.	These	app	settings
(Figure	4-13)	override	any	settings	matching	the	same	name	from	your
application.

FIGURE	4-13	Application	settings

8.	 Configure	any	connection	strings	for	your	application	(Figure	4-14).	These
connection	string	settings	override	any	settings	matching	the	same	key
name	from	your	application	configuration.	For	connection	strings,	once	you
create	the	settings,	save,	and	later	return	to	the	application	settings	blade;
those	settings	are	hidden	unless	you	select	it	to	show	the	value	again.

FIGURE	4-14	Connection	string	settings

9.	 Configure	IIS	settings	related	to	default	documents,	handlers,	and	virtual
applications	and	directories	required	for	your	application	(Figure	4-15).
This	allows	you	to	control	these	IIS	features	related	to	your	application.

FIGURE	4-15	IIS	settings

Note:	Access	to	App	Settings

App	settings	are	represented	as	name-value	pairs	made	available	to
your	web	application	when	it	starts.	The	mechanism	you	use	to
access	these	values	depends	on	the	web	platform	in	which	your	web
application	is	programmed.	If	your	application	is	built	using
ASP.NET	4.6,	you	access	the	values	of	app	settings	just	as	you
would	access	the	AppSettings	values	stored	in	web.config.	If	your
web	application	is	built	using	ASP.NET	Core,	you	access	the	values
as	you	would	in	your	appsettings.json	file.	If	your	web	application
is	built	using	another	supported	web	platform,	such	as	Node.js,

http://ASP.NET
http://ASP.NET

PHP,	Python,	or	Java,	the	app	settings	are	presented	to	your
application	as	environment	variables.

Note:	Accessing	Connection	Strings

Like	app	settings,	connection	strings	represent	name-value	pairs,
but	they	are	used	specifically	for	settings	that	define	the	connection
string	to	a	linked	resource	(typically	a	database)	such	as	a	SQL
database,	a	SQL	server,	MySQL,	or	some	other	custom	resource.
Connection	strings	are	given	special	treatment	within	the	portal,
beyond	that	offered	to	app	settings,	in	that	you	can	specify	a	type
for	the	connection	string	to	identify	it	as	a	SQL	server,	MySQL,	a
SQL	database,	or	a	custom	connection	string.	Additionally,	the
values	for	connection	strings	are	not	displayed	by	default,
requiring	an	additional	effort	to	display	the	values	so	that	their
sensitive	data	is	not	displayed	or	editable	until	specifically
requested	by	the	portal	user.

Configure	Web	App	certificates	and	custom	domains
When	you	first	create	your	web	app,	it	is	accessible	through	the	subdomain	you
specified	in	the	web	app	creation	process,	where	it	takes	the	form
<yourwebappname>.azurewebsites.net.	To	map	to	a	more	user-friendly	domain
name	(such	as	contoso.com),	you	must	set	up	a	custom	domain	name.
If	your	website	will	use	HTTPS	to	secure	communication	between	it	and	the

browser	using	Transport	Layer	Security	(TLS),	more	commonly	(but	less
accurately)	referred	to	in	the	industry	as	Secure	Socket	Layer	(SSL),	you	need	to
utilize	an	SSL	certificate.	With	Azure	Web	Apps,	you	can	use	an	SSL	certificate
with	your	web	app	in	one	of	two	ways:

	You	can	use	the	“built-in”	wildcard	SSL	certificate	that	is	associated	with	the
*.azurewebsites.net	domain.
	More	commonly	you	use	a	certificate	you	purchase	for	your	custom	domain
from	a	third-party	certificate	authority.

Note

There	are	multiple	types	of	SSL	certificates,	but	the	one	you	choose
primarily	depends	on	the	number	of	different	custom	domains	(or

http://azurewebsites.net
http://contoso.com
http://azurewebsites.net

subdomains)	that	the	certificate	secures.	Some	certificates	apply	to
only	a	single	fully	qualified	domain	name	(sometimes	referred	to	as
basic	certs),	some	certificates	apply	to	a	list	of	fully	qualified
domain	names	(also	called	subjectAltName	or	UC	certs),	and	other
certificates	apply	across	an	unlimited	number	of	subdomains	for	a
given	domain	name	(usually	referred	to	as	wildcard	certs).

Mapping	custom	domain	names
Web	Apps	support	mapping	to	a	custom	domain	that	you	purchase	from	a	third-
party	registrar	either	by	mapping	the	custom	domain	name	to	the	virtual	IP
address	of	your	website	or	by	mapping	it	to	the
<yourwebappname>.azurewebsites.net	address	of	your	website.	This	mapping	is
captured	in	domain	name	system	(DNS)	records	that	are	maintained	by	your
domain	registrar.	Two	types	of	DNS	records	effectively	express	this	purpose:

	A	records	(or,	address	records)	map	your	domain	name	to	the	IP	address	of
your	website.
	CNAME	records	(or,	alias	records)	map	a	subdomain	of	your	custom	domain
name	to	the	canonical	name	of	your	website,	expressed	as
<yourwebappname>.azurewebsites.net.
Table	4-1	shows	some	common	scenarios	along	with	the	type	of	record,	the

typical	record	name,	and	an	example	value	based	on	the	requirements	of	the
mapping.

TABLE	4-1	Mapping	domain	name	requirements	to	DNS	record	types,	names,
and	values

Requirement Type	of
Record

Record
Name

Record	Value

contoso.com	should
map	to	my	web	app	IP
address

A
@

138.91.240.81
IP	address

contoso.com	and	all
subdomains
demo.contoso.com	and
www.contoso.com
should	map	to	my	web
app	IP	address

A
*

138.91.240.81
IP	address

http://azurewebsites.net
http://azurewebsites.net
http://contoso.com
http://contoso.com
http://demo.contoso.com
http://www.contoso.com

app	IP	address

www.contoso.com

should	map	to	my	web
app	IP	address

A www 138.91.240.81
IP	address

www.contoso.com
should	map	to	my	web
app	canonical	name	in
Azure

CNAME www contoso.azurewebsites.net
Canonical	name	in	Azure

Note	that	whereas	A	records	enable	you	to	map	the	root	of	the	domain	(like
contoso.com)	and	provide	a	wildcard	mapping	for	all	subdomains	below	the	root
(like	www.contoso.com	and	demo.contoso.com),	CNAME	records	enable	you	to
map	only	subdomains	(like	the	www	in	www.contoso.com).

Configuring	a	custom	domain
To	configure	a	custom	domain,	you	need	access	to	your	domain	name	registrar
setup	for	the	domain	while	also	editing	configuration	for	your	web	app	in	the
Azure	portal.

Exam	Tip

Use	of	a	custom	domain	name	is	not	supported	by	the	Free	App
Service	plan	pricing	tier.	All	other	pricing	tiers	including	Shared,
Basic,	Standard,	and	Premium	support	custom	domains.

These	are	the	high-level	steps	for	creating	a	custom	domain	name	for	your	web
app:

1.	 Navigate	to	the	blade	of	your	web	app	in	the	portal	accessed	via
https://portal.azure.com.

2.	 Ensure	your	web	app	uses	an	App	Service	plan	that	supports	custom
domains.

3.	 Click	Custom	Domains	from	the	left	navigation	pane.
4.	 On	the	Custom	Domains	blade	(Figure	4-16)	note	the	external	IP	address	of

http://www.contoso.com
http://www.contoso.com
http://contoso.azurewebsites.net
http://contoso.com
http://www.contoso.com
http://demo.contoso.com
http://www.contoso.com
https://portal.azure.com

your	web	app.

FIGURE	4-16	Part	of	the	custom	domain	blade	for	the	web	app

5.	 Select	Add	Hostname	to	open	the	Add	Hostname	blade.	Enter	the	hostname
and	click	Validate	for	the	portal	to	validate	the	state	of	the	registrar	setup
with	respect	to	your	web	app.	You	can	then	choose	to	set	up	an	A	record	or
CNAME	record	(Figure	4-17).

FIGURE	4-17	Part	of	the	Add	hostname	blade

6.	 To	set	up	an	A	record,	select	A	Record	and	follow	the	instructions	provided
in	the	blade.	It	guides	you	through	the	following	steps	for	an	A	record
setup:

A.	 You	first	add	a	TXT	record	at	your	domain	name	registrar,	pointing	to
the	default	Azure	domain	for	your	web	app,	to	verify	you	own	the
domain	name.	The	new	TXT	record	should	point	to
<yourwebappname>.azurewebsites.net.

B.	 In	addition,	you	add	an	A	record	pointing	to	the	IP	address	shown	in
the	blade,	for	your	web	app.

7.	 To	set	up	a	CNAME	record,	select	CNAME	record,	and	follow	the
instructions	provided	in	the	blade.

A.	 If	using	a	CNAME	record,	following	the	instructions	provided	by

http://azurewebsites.net

your	domain	name	registrar,	add	a	new	CNAME	record	with	the	name
of	the	subdomain,	and	for	the	value,	specify	your	web	app’s	default
Azure	domain	with	<yourwebappname>.azurewebsites.net.

8.	 Save	your	DNS	changes.	Note	that	it	may	take	some	time	for	the	changes
to	propagate	across	DNS.	In	most	cases,	your	changes	are	visible	within
minutes,	but	in	some	cases,	it	may	take	up	to	48	hours.	You	can	check	the
status	of	your	DNS	changes	by	doing	a	DNS	lookup	using	third-party
websites	like	http://mxtoolbox.com/DNSLookup.aspx.

9.	 After	completing	the	domain	name	registrar	setup,	from	the	Custom
Domains	blade,	click	Add	Hostname	again	to	configure	your	custom
domain.	Enter	the	domain	name	and	select	Validate	again.	If	validation	has
passed,	select	Add	Hostname	to	complete	the	assignment.

Important:	Ip	Address	Changes

The	IP	address	that	you	get	by	following	the	preceding	steps	will
change	if	you	move	your	web	app	to	a	Free	web	hosting	plan,	if	you
delete	and	recreate	it,	or	potentially	if	you	subsequently	enable	SSL
with	the	IP	Based	type.	This	can	also	happen	unintentionally	if	you
reach	your	spending	limit	and	the	web	app	is	changed	to	the	Free
web	hosting	plan	mode.	If	the	IP	address	changes	and	you	are
using	an	A	record	to	map	your	custom	domain	to	your	web	app,
you	will	need	to	update	the	value	of	the	A	record	to	use	the	new	IP
address.

Configuring	SSL	certificates
To	configure	SSL	certificates	for	your	custom	domain,	you	first	need	to	have
access	to	an	SSL	certificate	that	includes	your	custom	domain	name,	including
the	CNAME	if	it	is	not	a	wildcard	certificate.
To	assign	an	SSL	certificate	to	your	web	app,	follow	these	steps:

1.	 Navigate	to	the	blade	of	your	web	app	in	the	portal	accessed	via
https://portal.azure.com.

2.	 Click	SSL	certificates	from	the	left	navigation	pane.
3.	 From	the	SSL	certificates	(Figure	4-18)	blade	you	may	choose	to	import	an

existing	app	service	certificate,	or	upload	a	new	certificate.

http://azurewebsites.net
http://mxtoolbox.com/DNSLookup.aspx
https://portal.azure.com

FIGURE	4-18	SSL	certificates	blade

4.	 You	can	then	select	Add	Binding	to	set	up	the	correct	binding.	You	can	set
up	bindings	that	point	at	your	naked	domain	(contoso.com),	or	to	a
particular	CNAME	(www.contoso.com,	demo.contoso.com),	so	long	as	the
certificate	supports	it.

5.	 You	can	choose	between	Server	Name	Indication	(SNI)	or	IP	based	SSL
when	you	create	the	binding	for	your	custom	domain	(Figure	4-19).

FIGURE	4-19	Part	of	the	Add	Binding	blade

More	Info:	SSL	Certificates	and	Bindings

For	more	information	on	purchasing	SSL	certificates	and	setting
up	Web	App	certificates	see	https://docs.microsoft.com/en-
us/azure/app-service/websites-purchase-ssl-website.

Manage	Web	Apps	by	using	the	API,	Azure	PowerShell,	and
XplatCLI
In	addition	to	configuring	and	managing	Web	Apps	via	the	Azure	portal,

http://contoso.com
http://www.contoso.com
http://demo.contoso.com
https://docs.microsoft.com/en-us/azure/app-service/web-sites-purchase-ssl-web-site

In	addition	to	configuring	and	managing	Web	Apps	via	the	Azure	portal,
programmatic	or	script-based	access	is	available	for	much	of	this	functionality
and	can	satisfy	many	development	requirements.
The	options	for	this	include	the	following:
	Azure	Resource	Manager	(ARM)	Azure	Resource	Manager	provides	a
consistent	management	layer	for	the	management	tasks	you	can	perform
using	Azure	PowerShell,	Azure	CLI,	Azure	portal,	REST	API,	and	other
development	tools.	For	more	information	on	this	see
https://docs.microsoft.com/en-us/azure/azure-resource-manager/.
	REST	API	The	REST	API	enables	you	to	deploy	and	manage	Azure
infrastructure	resources	using	HTTP	request	and	JSON	payloads.	For	more
details	on	this	see	https://docs.microsoft.com/en-us/rest/api/resources/.
	Azure	PowerShell	Azure	PowerShell	provides	cmdlets	for	interacting	with
Azure	Resource	Manager	to	manage	infrastructure	resources.	The
PowerShell	modules	can	be	installed	to	Windows,	macOS,	or	Linux.	For
additional	details	see	https://docs.microsoft.com/en-
us/powershell/azure/overview.
	Azure	CLI	Azure	CLI	(also	known	as	XplatCLI)	is	a	command	line
experience	for	managing	Azure	resources.	This	is	an	open	source	SDK	that
works	on	Windows,	macOS,	and	Linux	platforms	to	create,	manage,	and
monitor	web	apps.	For	details	see	https://docs.microsoft.com/en-
us/cli/azure/overview.

More	Info:	Managing	App	Services

See	the	following	links	that	provide	samples	for	managing	App
Services	using	Azure	and	Azure	CLI	at:
https://docs.microsoft.com/en-us/azure/app-service/app-service-
powershell-samples	and	https://docs.microsoft.com/en-us/azure/app-
service/app-service-cli-samples.

Implement	diagnostics,	monitoring,	and	analytics
Without	diagnostics,	monitoring,	and	analytics,	you	cannot	effectively
investigate	the	cause	of	a	failure,	nor	can	you	proactively	prevent	potential
problems	before	your	users	experience	them.	Web	Apps	provide	multiple	forms
of	logs,	features	for	monitoring	availability	and	automatically	sending	email
alerts	when	the	availability	crosses	a	threshold,	features	for	monitoring	your	web
app	resource	usage,	and	integration	with	Azure	Analytics	via	Application

https://docs.microsoft.com/en-us/azure/azure-resource-manager/
https://docs.microsoft.com/en-us/rest/api/resources/
https://docs.microsoft.com/en-us/powershell/azure/overview
https://docs.microsoft.com/en-us/cli/azure/overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-powershell-samples
https://docs.microsoft.com/en-us/azure/app-service/app-service-cli-samples

app	resource	usage,	and	integration	with	Azure	Analytics	via	Application
Insights.

Exam	Tip

App	Services	are	also	governed	by	quotas	depending	on	the	App
Service	plan	you	have	chosen.	Free	and	Shared	apps	have	CPU,
memory,	bandwidth,	and	filesystem	quotas;	when	reached	the	web
app	no	longer	runs	until	the	next	cycle,	or	the	App	Service	plan	is
changed.	Basic,	Standard,	and	Premium	App	Services	are	only
limited	by	filesystem	quotas	based	on	the	SKU	size	selected	for	the
host.

More	Info:	QUOTAS

For	the	latest	listing	of	specific	quotas,	limits,	and	features,	visit
https://docs.microsoft.com/azure/azure-subscription-service-
limits#app-service-limits.

Configure	diagnostics	logs
A	web	app	can	produce	many	different	types	of	logs,	each	focused	on	presenting
a	particular	source	and	format	of	diagnostic	data.	The	following	list	describes
each	of	these	logs:

	Event	Log	The	equivalent	of	the	logs	typically	found	in	the	Windows	Event
Log	on	a	Windows	Server	machine,	this	is	a	single	XML	file	on	the	local	file
system	of	the	web	application.	In	the	context	of	web	apps,	the	Event	Log	is
particularly	useful	for	capturing	unhandled	exceptions	that	may	have	escaped
the	application’s	exception	handling	logic	and	surfaced	to	the	web	server.
Only	one	XML	file	is	created	per	web	app.
	Web	server	logs	Web	server	logs	are	textual	files	that	create	a	text	entry	for
each	HTTP	request	to	the	web	app.
	Detailed	error	message	logs	These	HTML	files	are	generated	by	the	web
server	and	log	the	error	messages	for	failed	requests	that	result	in	an	HTTP
status	code	of	400	or	higher.	One	error	message	is	captured	per	HTML	file.
	Failed	request	tracing	logs	In	addition	to	the	error	message	(captured	by

https://docs.microsoft.com/azure/azure-subscription-service-limits#app-service-limits

detailed	error	message	logs),	the	stack	trace	that	led	to	a	failed	HTTP	request
is	captured	in	these	XML	documents	that	are	presented	with	an	XSL	style
sheet	for	in-browser	consumption.	One	failed	request	trace	is	captured	per
XML	file.
	Application	diagnostic	logs	These	text-based	trace	logs	are	created	by	web
application	code	in	a	manner	specific	to	the	platform	the	application	is	built
in	using	logging	or	tracing	utilities.

To	enable	these	diagnostic	settings	from	the	Azure	portal,	follow	these	steps:

1.	 Navigate	to	the	blade	of	your	web	app	in	the	portal	accessed	via
https://portal.azure.com.

2.	 Select	the	Diagnostics	Logs	tab	from	the	left	navigation	pane.	The
Diagnostics	Logs	blade	(Figure	4-20)	will	appear	to	the	right.	From	this
blade	you	can	choose	to	configure	the	following:

A.	 Enable	application	logging	to	the	file	system	for	easy	access	through
the	portal.

B.	 Enable	storing	application	logs	to	blob	storage	for	longer	term	access.
C.	 Enable	Web	Server	logging	to	the	file	system	or	to	blob	storage	for

longer	term	access.
D.	 Enable	logging	detailed	error	messages.
E.	 Enable	logging	failed	request	messages.

https://portal.azure.com

FIGURE	4-20	The	diagnostics	logs	blade

3.	 If	you	enable	files	system	logs	for	application	and	Web	Server	logs,	you
can	view	those	from	the	Log	Streaming	tab	(Figure	4-21).

FIGURE	4-21	The	log	streaming	blade

4.	 You	can	access	more	advanced	debugging	and	diagnostics	tools	from	the

Advanced	Tools	tab	(Figure	4-22).

FIGURE	4-22	The	Kudu	web	site

Table	4-2	describes	where	to	find	each	type	of	log	when	retrieving	diagnostic
data	stored	in	the	web	app’s	local	file	system.	The	Log	Files	folder	is	physically
located	at	D:\home\LogFiles.

TABLE	4-2	Locations	of	the	various	logs	on	the	web	app’s	local	file	system

Log	Type Location

Event	Log \LogFiles\eventlog.xml

Web	server
logs

\LogFiles\http\RawLogs*.log

Detailed \LogFiles\DetailedErrors\ErrorPage######.htm

Detailed
error
message
logs

\LogFiles\DetailedErrors\ErrorPage######.htm

Failed
request
tracing	logs

\LogFiles\W3SVC**.xml

Application
diagnostic
logs	(.NET)

\LogFiles\Application*.txt

Deployment
logs

\LogFiles\Git.	This	folder	contains	logs	generated	by	the
internal	deployment	processes	used	by	Azure	web	apps,	as
well	as	logs	for	Git	deployments

Exam	Tip

You	can	retrieve	diagnostics	logs	data	by	using	Visual	Studio
Server	Explorer,	the	Site	Control	Management	(SCM)	website
(also	known	as	Kudu),	the	command	line	in	Windows	PowerShell
or	the	xplat-cli,	or	direct	download	via	FTP	to	query	Table	or	Blob
storage.

Configure	endpoint	monitoring
App	Services	provide	features	for	monitoring	your	applications	directly	from	the
Azure	portal.	There	are	many	metrics	available	for	monitoring,	as	listed	in	Table
4-3.

TABLE	4-3	List	of	available	metrics	that	are	monitored	for	your	web	apps

METRIC DESCRIPTION

Average	Response
Time

The	average	time	taken	for	the	app	to	serve	requests
in	ms.

Average	memory The	average	amount	of	memory	in	MiBs	used	by	the

Average	memory
working	set

The	average	amount	of	memory	in	MiBs	used	by	the
app.

CPU	Time The	amount	of	CPU	in	seconds	consumed	by	the
app.

Data	In The	amount	of	incoming	bandwidth	consumed	by
the	app	in	MiBs.

Data	Out The	amount	of	outgoing	bandwidth	consumed	by
the	app	in	MiBs.

Http	2xx Count	of	requests	resulting	in	a	http	status	code	>=
200	but	<	300.

Http	3xx Count	of	requests	resulting	in	a	http	status	code	>=
300	but	<	400.

Http	401 Count	of	requests	resulting	in	HTTP	401	status
code.

Http	403 Count	of	requests	resulting	in	HTTP	403	status
code.

Http	404 Count	of	requests	resulting	in	HTTP	404	status
code.

Http	406 Count	of	requests	resulting	in	HTTP	406	status
code.

Http	4xx Count	of	requests	resulting	in	a	http	status	code	>=
400	but	<	500.

Http	Server	Errors Count	of	requests	resulting	in	a	http	status	code	>=
500	but	<	600.

Memory	working	set Current	amount	of	memory	used	by	the	app	in
MiBs.

Requests Total	number	of	requests	regardless	of	their
resulting	HTTP	status	code.

You	can	monitor	metrics	from	the	portal	and	customize	which	metrics	should
be	shown	by	following	these	steps:

be	shown	by	following	these	steps:

1.	 Navigate	to	the	blade	of	your	web	app	in	the	portal	accessed	via
https://portal.azure.com.

2.	 Select	the	Overview	tab	from	the	left	navigation	pane.	This	pane	shows	a
few	default	charts	for	metrics	including	server	errors,	data	in	and	out,
requests,	and	average	response	time	(Figure	4-23	and	4-24).

FIGURE	4-23	Metrics	showing	http	server	errors,	data	in,	and	data	out

https://portal.azure.com

FIGURE	4-24	Metrics	showing	requests	and	average	response	time

3.	 You	can	customize	the	metrics	(Figure	4-25)	shown	by	creating	new	graphs
and	pinning	those	to	your	dashboard.

A.	 Click	one	of	the	graphs.	You’ll	be	taken	to	edit	the	metrics	blade	for
the	graph,	limited	to	compatible	metrics	for	the	selection.

B.	 Select	the	metrics	to	add	or	remove	from	the	graph.

FIGURE	4-25	Selecting	metrics	to	show	on	the	graph

C.	 Save	the	graph	to	the	dashboard.	You	can	now	navigate	to	your	portal
dashboard	to	view	the	selected	metrics	without	having	to	navigate	to
the	web	app	directly.	From	here	you	can	also	edit	the	graph	by
selecting	it,	editing	metrics,	and	saving	back	to	the	same	pinned
graph.

4.	 You	can	also	add	alerts	for	metrics.	From	the	Metrics	blade	click	Add

Metric	alert	from	the	command	bar	at	the	top	of	the	blade.	This	takes	you
to	the	Add	Rule	blade	(Figure	4-26)	where	you	can	configure	the	alert.	To
configure	an	alert	for	slow	requests,	as	an	example,	do	the	following:

A.	 Provide	a	name	for	the	rule.
B.	 Optionally	change	the	subscription,	resource	group,	and	resource	but

it	will	default	to	the	current	web	app.
C.	 Choose	Metrics	for	the	alert	type.

FIGURE	4-26	Part	of	the	Add	rule	blade

D.	 Choose	the	metric	from	the	drop-down	list	(Figure	4-27),	in	this	case
Average	Response	Time	with	a	condition	greater	than	a	threshold	of	2
seconds	over	a	15	minute	period.

FIGURE	4-27	Part	of	the	Add	rule	blade	where	you	can	set	the
metric	values

E.	 From	the	same	blade	you	can	also	indicate	who	to	notify,	configure	a
web	hook,	or	even	configure	a	Logic	App	to	produce	a	workflow
based	on	the	alert.

5.	 Click	OK	to	complete	the	alert	configuration.
6.	 You	can	view	the	alerts	from	the	Alerts	tab	of	the	navigation	pane.

Note:	MONITORING	QUOTAS

You	can	also	monitor	quotas	by	selecting	the	Quotas	tab	from	the
left	navigation	pane.	This	gives	you	an	indication	of	where	you
stand	with	your	quotas	based	on	the	App	Service	plan.

Design	and	configure	Web	Apps	for	scale	and	resilience
App	Services	provide	various	mechanisms	to	scale	your	web	apps	up	and	down
by	adjusting	the	number	of	instances	serving	requests	and	by	adjusting	the

by	adjusting	the	number	of	instances	serving	requests	and	by	adjusting	the
instance	size.	You	can,	for	example,	increase	the	number	of	instances	(scale	out)
to	support	the	load	you	experience	during	business	hours,	but	then	decrease
(scale	in)	the	number	of	instances	during	less	busy	hours	to	save	costs.	Web
Apps	enable	you	to	scale	the	instance	count	manually,	automatically	via	a
schedule,	or	automatically	according	to	key	performance	metrics.	Within	a
datacenter,	Azure	load	balances	traffic	between	all	of	your	Web	Apps	instances
using	a	round-robin	approach.
You	can	also	scale	a	web	app	by	deploying	to	multiple	regions	around	the

world	and	then	utilizing	Microsoft	Azure	Traffic	Manager	to	direct	web	app
traffic	to	the	appropriate	region	based	on	a	round	robin	strategy	or	according	to
performance	(approximating	the	latency	perceived	by	clients	of	your
application).	Alternately,	you	can	configure	Traffic	Manager	to	use	the	alternate
regions	as	targets	for	failover	if	the	primary	region	becomes	unavailable.
In	addition	to	scaling	instance	counts,	you	can	manually	adjust	your	instance

size	(scale	up	or	down).	For	example,	you	can	scale	up	your	web	app	to	utilize
more	powerful	VMs	that	have	more	RAM	memory	and	more	CPU	cores	to	serve
applications	that	are	more	demanding	of	memory	consumption	or	CPU
utilization,	or	scale	down	your	VMs	if	you	later	discover	your	requirements	are
not	as	great.

Exam	Tip

Web	Apps	provide	a	high	availability	SLA	of	99.9	percent	using
only	a	single	standard	instance.	You	do	not	need	to	provision	more
than	one	instance	to	benefit	from	this	SLA.

To	scale	your	web	app,	follow	these	steps:

1.	 Navigate	to	the	blade	of	your	web	app	in	the	portal	accessed	via
https://portal.azure.com.

2.	 Select	the	App	Service	plan	tab	from	the	left	navigation	pane.	This	takes
you	to	the	App	Service	Plan	blade.

3.	 Select	the	Scale	Up	tab	from	the	left	navigation	pane	and	you’ll	be	taken	to
a	blade	to	select	the	new	pricing	tier	for	your	web	app	VMs.

4.	 Select	the	Scale	Out	tab	and	you’ll	be	taken	to	the	Scale	Out	blade	to

https://portal.azure.com

choose	the	number	of	instances	to	scale	out	or	into	(Figure	4-28).

FIGURE	4-28	The	scale	out	blade.

5.	 If	you	select	Enable	autoscale,	you	can	create	conditions	based	on	metrics
and	rules	in	order	for	the	site	to	automatically	adjust	instance	count.

More	Info:	MONITORING,	ANALYTICS,	AND
AUTOSCALING

For	more	information	on	monitoring	web	apps,	analytics,	and	setting	up
autoscale,	see:

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-
azureweb-apps-analytics,	https://docs.microsoft.com/en-
us/azure/application-insights/app-insights-analytics,
https://docs.microsoft.com/en-us/Azure/monitoring-and-
diagnostics/insights-autoscale-best-practices,	and
https://docs.microsoft.com/en-us/Azure/monitoring-and-
diagnostics/insights-how-toscale.

Skill	4.2:	Design	Azure	App	Service	API	Apps
Azure	API	Apps	provide	a	quick	and	easy	way	to	create	and	consume	scalable
RESTful	APIs,	using	the	language	of	your	choice,	in	the	cloud.	As	part	of	the
Azure	infrastructure,	you	can	integrate	API	Apps	with	many	Azure	services	such
as	API	Management,	Logic	Apps,	Functions,	and	many	more.	Securing	your
APIs	can	be	done	with	a	few	clicks,	whether	you	are	using	Azure	Active
Directory,	OAuth,	or	social	networks	for	single	sign-on.

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-azure-web-apps-analytics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics
https://docs.microsoft.com/en-us/Azure/monitoring-and-diagnostics/insights-autoscale-best-practices
https://docs.microsoft.com/en-us/Azure/monitoring-and-diagnostics/insights-how-to-scale

Directory,	OAuth,	or	social	networks	for	single	sign-on.
If	you	have	existing	APIs	written	in	.NET,	Node.js,	Java,	Python,	or	PHP,

they	can	be	brought	into	App	Services	as	API	Apps.	When	you	need	to	consume
these	APIs,	enable	CORS	support	so	you	can	access	them	from	any	client.
Swagger	support	makes	generating	client	code	to	use	your	API	simple.	Once	you
have	your	API	App	set	up,	and	clients	are	consuming	it,	it	is	important	to	know
how	to	monitor	it	to	detect	any	issues	early	on.

This	skill	covers	how	to:
	Create	and	deploy	API	Apps
	Automate	API	discovery	by	using	Swashbuckle
	Use	Swagger	API	metadata	to	generate	client	code	for	an	API	app
	Monitor	API	Apps

Create	and	deploy	API	Apps
There	are	different	ways	you	can	create	and	deploy	API	Apps,	depending	on	the
language	and	development	environment	of	choice.	For	instance,	if	you	are	using
Visual	Studio,	you	can	create	a	new	API	Apps	project	and	publish	to	a	new	API
app,	which	provisions	the	service	in	Azure.	If	you	are	not	using	Visual	Studio,
you	can	provision	a	new	API	App	service	using	the	Azure	portal,	Azure	CLI,	or
PowerShell.

Creating	a	new	API	App	from	the	portal
To	create	a	new	API	app	in	the	portal,	complete	the	following	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	New	on	the	command	bar.
3.	 Within	the	Marketplace	(Figure	4-29)	search	text	box,	type	API	App,	and

press	Enter.

https://portal.azure.com

FIGURE	4-29	Marketplace	search	for	API	App

4.	 Select	API	App	from	the	results.
5.	 On	the	API	App	blade,	select	Create.
6.	 On	the	Create	API	App	blade,	choose	your	Azure	subscription,	select	a

Resource	Group,	select	or	create	an	App	Service	Plan,	select	whether	you
want	to	enable	Application	Insights,	and	then	click	Create.

Note:	SERVER-SIDE	AND	CLIENT-SIDE	PROJECTS

After	creating	your	API	App	service,	you	can	quickly	create
sample	ASP.NET,	Node.js,	or	Java	server-side	and	client-side
projects	using	your	new	service,	by	selecting	Quickstart	from	your
API	App	blade	in	the	portal.

Creating	and	deploying	a	new	API	app	with	Visual	Studio	2017
Visual	Studio	2017	comes	preconfigured	with	the	ability	to	create	an	API	app
when	you	have	installed	the	ASP.NET	and	web	development,	as	well	as	Azure
development	workloads.	Follow	these	steps	to	create	a	new	API	app	with	Visual
Studio	2017:

1.	 Launch	Visual	Studio,	and	then	select	File	>	New	>	Project.
2.	 In	the	New	Project	dialog,	select	ASP.NET	Web	Application	(.NET

Framework)	within	the	Cloud	category	(Figure	4-30).	Provide	a	name	and

http://ASP.NET
http://ASP.NET

location	for	your	new	project,	and	then	click	OK.

FIGURE	4-30	The	ASP.NET	Web	Application	Cloud	project	type

3.	 Select	the	Azure	API	App	template	(Figure	4-31),	and	then	click	OK.

FIGURE	4-31	The	Azure	API	App	template

Visual	Studio	creates	a	new	API	App	project	within	the	specified	directory,

http://ASP.NET

Visual	Studio	creates	a	new	API	App	project	within	the	specified	directory,
adding	useful	NuGet	packages,	such	as:

	Newtonsoft.Json	for	deserializing	requests	and	serializing	responses	to	and
from	your	API	app.
	Swashbuckle	to	add	Swagger	for	rich	discovery	and	documentation	for	your
API	REST	endpoints.
In	addition,	Web	API	and	Swagger	configuration	classes	are	created	in	the

project’s	startup	folder.	All	you	need	to	do	from	this	point,	to	deploy	your	API
app	is	to	complete	your	Controller	actions,	and	publish	from	Visual	Studio.
Follow	these	steps	to	deploy	your	API	app	from	Visual	Studio:

1.	 Right-click	your	project	in	the	Visual	Studio	Solution	Explorer	(Figure	4-
32),	then	click	Publish.

FIGURE	4-32	Publish	solution	context	menu

2.	 In	the	Publish	dialog	(Figure	4-33),	select	the	Create	New	option
underneath	Microsoft	Azure	App	Service,	and	then	click	Publish.	This
creates	a	new	API	app	in	Azure	and	publishes	your	solution	to	it.	You
could	alternately	select	the	Select	Existing	option	to	publish	to	an	existing
API	App	service.

FIGURE	4-33	The	Publish	dialog

3.	 In	the	Create	App	Service	dialog	(Figure	4-34),	provide	a	unique	App
name,	select	your	Azure	subscription	and	resource	group,	select	or	create
an	App	Service	Plan,	and	then	click	Create.

FIGURE	4-34	Create	App	Service	dialog

4.	 When	your	API	app	is	finished	publishing,	it	will	open	in	a	new	web
browser.	When	the	page	is	displayed,	navigate	to	the	/swagger	path	to	view
your	generated	API	details,	and	to	try	out	the	REST	methods.	For	example
http://<YOUR-API-APP>.azurewebsites.net/swagger/	(Figure	4-35).

FIGURE	4-35	The	Swagger	interface	for	the	published	API	App

Note:	SWAGGER	UI	MAY	NOT	BE	ENABLED	BY	DEFAULT
IN	ASP.NET	PROJECT

When	you	use	the	Swashbuckle	NuGet	package	within	an
ASP.NET	project,	the	Swagger	UI	may	not	be	enabled	by	default.
If	this	is	the	case,	open	SwaggerConfig.cs	and	uncomment	the	line
that	starts	with	.EnableSwaggerUi(c	=>.

You	do	not	need	to	uncomment	any	of	the	properties	within	the
EnableSwaggerUi	configuration	to	properly	enable	the	UI.

More	Info:	Node.JS	Api	App	Tutorial

To	follow	a	tutorial	for	creating	and	deploying	an	API	App	using
Node.js,	see	https://docs.microsoft.com/azure/app-service/app-
service-web-tutorial-rest-api.

Automate	API	discovery	by	using	Swashbuckle

http://ASP.NET
http://ASP.NET
https://docs.microsoft.com/azure/app-service/app-service-web-tutorial-rest-api

Swagger	is	a	popular,	open	source	framework	backed	by	a	large	ecosystem	of
tools	that	helps	you	design,	build,	document,	and	consume	your	RESTful	APIs.
The	previous	section	included	a	screenshot	of	the	Swagger	page	generated	for	an
API	App.	This	was	generated	by	the	Swashbuckle	NuGet	package.

More	Info:	SWASHBUCKLE

For	more	details	on	Swashbuckle,	see
https://github.com/domaindrivendev/Swashbuckle.

The	core	component	of	Swagger	is	the	Swagger	Specification,	which	is	the
API	description	metadata	in	the	form	of	a	JSON	or	YAML	file.	The
specification	creates	the	RESTful	contract	for	your	API,	detailing	all	its
resources	and	operations	in	a	human	and	machine-readable	format	to	simplify
development,	discovery,	and	integration	with	other	services.	This	is	a
standardized	OpenAPI	Specification	(OAS)	for	defining	RESTful	interfaces,
which	makes	the	generated	metadata	valuable	when	working	with	a	wide	range
of	consumers.	Included	in	the	list	of	consumers	that	can	read	the	Swagger	API
metadata	are	several	Azure	services,	such	as	Microsoft	PowerApps,	Microsoft
Flow,	and	Logic	Apps.	Meaning,	when	you	publish	your	API	App	service	with
Swagger,	these	Azure	services	and	more	immediately	know	how	to	interact	with
your	API	endpoints	with	no	further	effort	on	your	part.
Beyond	other	Azure	services	being	able	to	more	easily	use	your	API	App,

Swagger	RESTful	interfaces	make	it	easier	for	other	developers	to	consume	your
API	endpoints.	The	API	explorer	that	comes	with	swagger-ui	makes	it	easy	for
other	developers	(and	you)	to	test	the	endpoints	and	know	what	the	data	format
looks	like	that	need	to	be	sent	and	should	be	returned	in	kind.
Generating	this	Swagger	metadata	manually	can	be	a	very	tedious	process.	If

you	build	your	API	using	ASP.NET	or	ASP.NET	Core,	you	can	use	the
Swashbuckle	NuGet	package	to	automatically	do	this	for	you,	saving	a	lot	of
time	initially	creating	the	metadata,	and	maintaining	it.	In	addition	to	its
Swagger	metadata	generator	engine,	Swashbuckle	also	contains	an	embedded
version	of	swagger-ui,	which	it	will	automatically	serve	up	once	Swashbuckle	is
installed.

Use	Swashbuckle	in	your	API	App	project
Swashbuckle	is	provided	by	way	of	a	set	of	NuGet	packages:	Swashbuckle	and
Swashbuckle.Core.	When	you	create	a	new	API	App	project	using	the	Visual
Studio	template,	these	NuGet	packages	are	already	included.	If	you	don’t	have
them	installed,	follow	these	steps	to	add	Swashbuckle	to	your	API	App	project:

https://github.com/domaindrivendev/Swashbuckle
http://ASP.NET
http://ASP.NET

them	installed,	follow	these	steps	to	add	Swashbuckle	to	your	API	App	project:

1.	 Install	the	Swashbuckle	NuGet	package,	which	includes	Swashbuckle.Core
as	a	dependency,	by	using	the	following	command	from	the	NuGet
Package	Manager	Console:
Install-Package	Swashbuckle

2.	 The	NuGet	package	also	installs	a	bootstrapper
(App_Start/SwaggerConfig.cs)	that	enables	the	Swagger	routes	on	app
startup	using	WebActivatorEx.	You	can	configure	Swashbuckle’s	options
by	modifying	the	GlobalConfiguration.Configuration.EnableSwagger
extension	method	in	SwaggerConfig.cs.	For	example,	to	exclude	API
actions	that	are	marked	as	Obsolete,	add	the	following	configuration:
Click	here	to	view	code	image

public	static	void	Register()

{

												var	thisAssembly	=	typeof(SwaggerConfig).Assembly;

												GlobalConfiguration.Configuration

																.EnableSwagger(c	=>

																				{

																								…

																								…

																								//	Set	this	flag	to	omit	descriptions	for

any	actions

																								decorated	with	the	Obsolete	attribute

																										c.IgnoreObsoleteActions();

																										…

																										…

																						});

}

3.	 Modify	your	project’s	controller	actions	to	include	Swagger	attributes	to
aid	the	generator	in	building	your	Swagger	metadata.	Listing	4-1	illustrates
the	use	of	the	SwaggerResponseAttribute	at	each	controller	method.

4.	 Swashbuckle	is	now	configured	to	generate	Swagger	metadata	for	your
API	endpoints	with	a	simple	UI	to	explore	that	metadata.	For	example,	the
controller	in	Listing	4-1	may	produce	the	UI	shown	in	Figure	4-36.

FIGURE	4-36	The	Swagger	interface	for	the	published	API	App

LISTING	4-1	C#	code	showing	Swagger	attributes	added	to	the	API	App’s
controller	actions

Click	here	to	view	code	image

								///	<summary>

								///	Gets	the	list	of	contacts

								///	</summary>

								///	<returns>The	contacts</returns>

								[HttpGet]

								[SwaggerResponse(HttpStatusCode.OK,

												Type	=	typeof(IEnumerable<Contact>))]

								[Route("~/contacts")]

								public	async	Task<IEnumerable<Contact>>	Get()

								{

												…

								}

								///	<summary>

								///	Gets	a	specific	contact

								///	</summary>

								///	<param	name="id">Identifier	for	the	contact</param>

								///	<returns>The	requested	contact</returns>

								[HttpGet]

								[SwaggerResponse(HttpStatusCode.OK,

												Description	=	"OK",

												Type	=	typeof(IEnumerable<Contact>))]

								[SwaggerResponse(HttpStatusCode.NotFound,

												Description	=	"Contact	not	found",

												Type	=	typeof(IEnumerable<Contact>))]

								[SwaggerOperation("GetContactById")]

								[Route("~contacts{id}")]

								public	async	Task<Contact>	Get([FromUri]	int	id)

								{

												…

								}

								///	<summary>

								///	Creates	a	new	contact

								///	</summary>

								///	<param	name="contact">The	new	contact</param>

								///	<returns>The	saved	contact</returns>

								[HttpPost]

								[SwaggerResponse(HttpStatusCode.Created,

												Description	=	"Created",

												Type	=	typeof(Contact))]

								[Route("~/contacts")]

								public	async	Task<Contact>	Post([FromBody]	Contact	contact)

								{

												…

								}

You	can	test	any	of	the	API	methods	by	selecting	it	from	the	list.	Here	we
selected	the	contacts{id}	GET	method	and	tested	it	by	entering	a	value	of	2	in
the	id	parameter,	and	clicking	the	Try	It	Out!	button.	Notice	that	Swagger	details
the	return	model	schema,	shows	a	Curl	command	and	a	Request	URL	for
invoking	the	method,	and	shows	the	actual	response	body	after	clicking	the
button	(Figure	4-37).

FIGURE	4-37	An	API	method	and	result	after	testing	with	Swagger

Enable	CORS	to	allow	clients	to	consume	API	and	Swagger	interface
Before	clients,	such	as	other	web	services	or	client	code	generators,	can	consume
your	API	endpoints	and	Swagger	interface,	you	need	to	enable	CORS	on	the	API
App	in	Azure.	To	enable	CORS,	follow	these	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Open	your	API	App	service.	You	can	find	this	by	navigating	to	the

Resource	Group	in	which	you	published	your	service.
3.	 Select	CORS	from	the	left-hand	menu	(Figure	4-38).	Enter	one	or	more

allowed	origins,	then	select	Save.	To	allow	all	origins,	enter	an	asterisk	(*)
in	the	Allowed	Origins	field	and	remove	all	other	origins	from	the	list.

https://portal.azure.com

FIGURE	4-38	Enabling	cross-origin	calls	for	all	sources

Use	Swagger	API	metadata	to	generate	client	code	for	an	API	app
There	are	tools	available	to	generate	client	code	for	your	API	Apps	that	have
Swagger	API	definitions,	like	the	swagger.io	online	editor.	The	previous	section
demonstrated	how	you	can	automatically	generate	the	Swagger	API	metadata,
using	the	Swashbuckle	NuGet	package.
To	generate	client	code	for	your	API	app	that	has	Swagger	API	metadata,

follow	these	steps:

1.	 Find	your	Swagger	2.0	API	definition	document	by	navigating	to
http://<your-api-app/swagger/docs/v1	(v1	is	the	API	version).	Alternately,
you	can	find	it	by	navigating	to	the	Azure	portal,	opening	your	API	App
service,	and	selecting	API	definition	from	the	left-hand	menu.	This
displays	your	Swagger	2.0	API	definition	URL	(Figure	4-39).

http://swagger.io

FIGURE	4-39	Steps	to	find	the	API	App’s	Swagger	2.0	metadata	URL

2.	 Navigate	to	https://editor.swagger.io	to	use	the	Swagger.io	Online	Editor.
3.	 Select	File	>	Import	URL.	Enter	your	Swagger	2.0	metadata	URL	in	the

dialog	box	and	click	OK	(Figure	4-40).

FIGURE	4-40	Steps	to	import	the	Swagger	2.0	metadata

4.	 After	a	few	moments,	your	Swagger	metadata	appears	on	the	left-hand	side
of	the	editor,	and	the	discovered	API	endpoints	will	be	displayed	on	the
right.	Verify	that	all	desired	API	endpoints	appear,	and	then	select	Generate
Client	from	the	top	menu.	Select	the	desired	language	or	platform	for	the
generated	client	app.	This	initiates	a	download	of	a	zip	file	containing	the
client	app	(Figure	4-41).

https://editor.swagger.io

FIGURE	4-41	Steps	to	generate	client	code	in	Swagger.io

Monitor	API	Apps
App	Service,	under	which	API	Apps	reside,	provides	built-in	monitoring
capabilities,	such	as	resource	quotas	and	metrics.	You	can	also	set	up	alerts	and
automatic	scaling	based	on	these	metrics.	In	addition,	Azure	provides	built-in
diagnostics	to	assist	with	debugging	an	App	Service	web	or	API	app.	A
combination	of	the	monitoring	capabilities	and	logging	should	provide	you	with
the	information	you	need	to	monitor	the	health	of	your	API	app,	and	determine
whether	it	is	able	to	meet	capacity	demands.

Using	quotas	and	metrics
API	Apps	are	subject	to	certain	limits	on	the	resources	they	can	use.	The	limits
are	defined	by	the	App	Service	plan	associated	with	the	app.	If	the	application	is
hosted	in	a	Free	or	Shared	plan,	and	then	the	limits	on	the	resources	the	app	can
use	are	defined	by	Quotas,	as	discussed	earlier	for	Web	Apps.
If	you	exceed	the	CPU	and	bandwidth	quotas,	your	app	will	respond	with	a

403	HTTP	error,	so	it’s	best	to	keep	an	eye	on	your	resource	usage.	Exceeding
memory	quotas	causes	an	application	reset,	and	exceeding	the	filesystem	quota
will	cause	write	operations	to	fail,	even	to	logs.	If	you	need	to	increase	or
remove	any	of	these	quotas,	you	can	upgrade	your	App	Service	plan.
Metrics	that	you	can	view	pertaining	to	your	apps	are	the	same	as	shown

earlier	in	Table	4-3.	As	with	Web	Apps,	metrics	are	accessed	from	the	Overview
blade	of	your	API	App	within	the	Azure	portal	by	clicking	one	of	the	metrics
charts,	such	as	Requests	or	Average	Response	Time.	Once	you	click	a	chart,	you
can	customize	it	by	clicking	it	and	selecting	edit	chart.	From	here	you	can
change	the	time	range,	chart	type,	and	metrics	to	display.

Enable	and	review	diagnostics	logs
By	default,	when	you	provision	a	new	API	App,	diagnostics	logs	are	disabled.
These	are	detailed	server	logs	you	can	use	to	troubleshoot	and	debug	your	app.
To	enable	diagnostics	logging,	perform	the	following	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Open	your	API	App	service.	You	can	find	this	by	navigating	to	the

Resource	Group	in	which	you	published	your	service.
3.	 Select	Diagnostics	logs	from	the	left-hand	menu	(Figure	4-42).	Turn	on	any

logs	you	wish	to	capture.	When	you	enable	application	diagnostics,	you
also	choose	the	Level.	This	setting	allows	you	to	filter	the	information
captured	to	informational,	warning,	or	error	information.	Setting	this	to
verbose	will	log	all	information	produced	by	the	application.	This	is	also
where	you	can	go	to	retrieve	FTP	information	for	downloading	the	logs.

https://portal.azure.com

FIGURE	4-42	Steps	to	enable	diagnostics	logs

You	can	download	the	diagnostics	logs	via	FTP,	or	they	can	be	downloaded	as
a	zip	archive	by	using	PowerShell	or	the	Azure	CLI.
The	types	of	logs	and	structure	for	accessing	logs	follow	that	described	for

Web	Apps	and	shown	in	Table	4-2.

More	Info:	Monitor	an	Api	App	with	Web	Server	Logs

For	more	information	about	monitoring	API	Apps	with	web	server
logs,	see:	https://docs.microsoft.com/azure/app-service/websites-
enable-diagnostic-log.	To	view	sample	CLI	scripts	you	can	use	to
enable	and	download	logs,	see:
https://docs.microsoft.com/azure/app-service/scripts/app-service-cli-

https://docs.microsoft.com/azure/app-service/web-sites-enable-diagnostic-log
https://docs.microsoft.com/azure/app-service/scripts/app-service-cli-monitor

monitor.	For	information	on	troubleshooting	your	API	Apps	with
Visual	Studio,	refer	to:	https://docs.microsoft.com/azure/app-
service/websites-dotnet-troubleshoot-visual-studio.

More	Info:	Viewing	Metrics	and	Quotas	for	your	App	Service

For	more	information	on	viewing	metrics	and	quotas	for	your	App
Service,	such	as	an	API	App,	see
https://docs.microsoft.com/azure/app-service/websites-monitor.

More	Info:	Receiving	Alert	Notifications	on	your	App’s	Metrics

You	can	configure	alert	notifications	that	you	can	receive	when
certain	metrics	thresholds	are	reached.	To	found	out	how	to	do
this,	see:	https://docs.microsoft.com/azure/monitoring-and-
diagnostics/insights-receive-alert-notifications.

Skill	4.3:	Develop	Azure	App	Service	Logic	Apps
Azure	Logic	Apps	is	a	fully	managed	iPaaS	(integration	Platform	as	a	Service)
that	helps	you	simplify	and	implement	scalable	integrations	and	workflows	in
the	cloud.	As	such,	you	don’t	have	to	worry	about	infrastructure,	management,
scalability,	and	availability	because	all	of	that	is	taken	care	of	for	you.	Its	Logic
App	Designer	gives	you	a	nice	way	to	model	and	automate	your	process
visually,	as	a	series	of	steps	known	as	a	workflow.	At	its	core,	it	allows	you	to
quickly	integrate	with	many	services	and	protocols,	inside	of	Azure,	outside	of
Azure,	as	well	as	on-premises.	When	you	create	a	Logic	App,	you	start	out	with
a	trigger,	like	‘When	an	email	arrives	at	this	account,’	and	then	you	act	on	that
trigger	with	many	combinations	of	actions,	condition	logic,	and	conversions.

More	Info:	Logic	App	Connectors

There	is	a	large	list	of	connectors	you	can	use	to	integrate	with	services
and	protocols	that	can	be	found	at
https://docs.microsoft.com/azure/connectors/apis-list.

This	skill	covers	how	to:

https://docs.microsoft.com/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/azure/app-service/web-sites-monitor
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-receive-alert-notifications
https://docs.microsoft.com/azure/connectors/apis-list

	Create	a	Logic	App	connecting	SaaS	services
	Create	a	Logic	App	with	B2B	capabilities
	Create	a	Logic	App	with	XML	capabilities
	Trigger	a	Logic	App	from	another	app
	Create	custom	and	long-running	actions
	Monitor	Logic	Apps

Create	a	Logic	App	connecting	SaaS	services
One	of	the	strengths	of	Logic	Apps	is	its	ability	to	connect	a	large	number	of
SaaS	(Software	as	a	Service)	services	to	create	your	own	custom	workflows.	In
this	example,	we	will	connect	Twitter	with	an	Outlook.com	or	hosted	Office	365
mailbox	to	email	certain	tweets	as	they	arrive.
To	create	a	new	Logic	App	in	the	portal,	complete	the	following	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	New	on	the	command	bar.
3.	 Select	Enterprise	Integration,	then	Logic	App	(Figure	4-43).

http://Outlook.com
https://portal.azure.com

FIGURE	4-43	Creating	a	new	Logic	App	from	the	Azure	Portal

4.	 Provide	a	unique	name,	select	a	resource	group	and	location,	check	Pin	To
Dashboard,	and	then	click	Create	(Figure	4-44).

FIGURE	4-44	The	Create	logic	app	form

Follow	the	above	steps	to	create	new	Logic	Apps	as	needed	in	the	remaining
segments	for	this	skill.
Once	the	Logic	App	has	been	provisioned,	open	it	to	view	the	Logic	Apps

Once	the	Logic	App	has	been	provisioned,	open	it	to	view	the	Logic	Apps
Designer.	This	is	where	you	design	or	modify	your	Logic	App.	You	can	select
from	a	series	of	commonly	used	triggers,	or	from	several	templates	you	can	use
as	a	starting	point.	The	following	steps	show	how	to	create	one	from	scratch.

1.	 Select	Blank	Logic	App	under	Templates.
2.	 All	Logic	Apps	start	with	a	trigger.	Search	the	list	for	Twitter,	and	then

select	it.
3.	 Click	Sign	in	to	create	a	connection	to	Twitter	with	your	Twitter	account.	A

dialog	will	appear	where	you	sign	in	and	authorize	the	Logic	App	to	access
your	account.

4.	 In	the	Twitter	trigger	form	on	the	designer	(Figure	4-45),	enter	your	search
text	to	return	certain	tweets	(such	as	#nasa),	and	select	an	interval	and
frequency,	establishing	how	often	you	wish	to	check	for	items,	returning	all
tweets	during	that	time	span.

FIGURE	4-45	The	Twitter	trigger	form	in	the	Logic	Apps	Designer

5.	 Select	the	+	New	Step	button,	and	then	choose	Add	An	Action.
6.	 Type	outlook	in	the	search	box,	and	then	select	Office	365	Outlook	(Send

An	Email)	from	the	results.	Alternately,	you	can	select	Outlook.com	from
the	list	(Figure	4-46).

http://Outlook.com

FIGURE	4-46	Adding	a	new	Office	365	Outlook	action	in	the	Logic
Apps	Designer

7.	 Click	Sign	In	to	create	a	connection	to	your	Office	365	Outlook	account
(Figure	4-47).

8.	 In	the	Send	An	Email	form,	provide	values	for	the	email	recipient,	the
subject	of	the	email,	and	the	body.	In	each	of	these	fields,	you	can	select
parameters	from	the	Twitter	Connector,	such	as	the	tweet’s	text	and	who
posted	it.

FIGURE	4-47	Adding	details	to	a	new	Office	365	Outlook	action	in	the
Logic	Apps	Designer

9.	 Click	Save	in	the	Logic	Apps	Designer	menu.	Your	Logic	App	is	now	live.
If	you	wish	to	test	right	away	and	not	wait	for	your	trigger	interval,	click
Run.

Create	a	Logic	App	with	B2B	capabilities
Logic	Apps	support	business-to-business	(B2B)	workflows	and	communication
through	the	Enterprise	Integration	Pack.	This	allows	organizations	to	exchange
messages	electronically,	even	if	they	use	different	protocols	and	formats.
Enterprise	integration	allows	you	to	store	all	your	artifacts	in	one	place,	within
your	integration	account,	and	secure	messages	through	encryption	and	digital
signatures.	To	access	these	artifacts	from	a	logic	app,	you	must	first	link	it	to
your	integration	account.	Your	integration	account	needs	both	Partner	and
Agreement	artifacts	prior	to	creating	B2B	workflows	for	your	logic	app.

Create	an	integration	account
To	get	started	with	the	Enterprise	Integration	Pack	so	you	can	create	B2B
workflows,	you	must	first	create	an	integration	account,	following	these	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.

https://portal.azure.com

2.	 Select	More	Services	on	the	command	bar.
3.	 In	the	filter	box,	type	integration,	and	then	select	Integration	Accounts	in

the	results	list	(Figure	4-48).

FIGURE	4-48	Navigating	to	the	Integration	accounts	blade

4.	 At	the	top	of	the	Integration	Accounts	blade,	select	+	Add.
5.	 Provide	a	name	for	your	Integration	Account	(Figure	4-49),	select	your

resource	group,	location,	and	a	pricing	tier.	Once	validation	has	passed,
click	Create.

FIGURE	4-49	The	create	Integration	account	form

Note:	Integration	Account	and	Logic	App

Your	integration	account	and	logic	app	must	be	in	the	same
location	before	linking	them.

Add	partners	to	your	integration	account
Partners	are	entities	that	participate	in	B2B	transactions	and	exchange	messages
between	each	other.	Before	you	can	create	partners	that	represent	you	and
another	organization	in	these	transactions,	you	must	both	share	information	that

another	organization	in	these	transactions,	you	must	both	share	information	that
identifies	and	validates	messages	sent	by	each	other.	After	you	discuss	these
details	and	are	ready	to	start	your	business	relationship,	you	can	create	partners
in	your	integration	account	to	represent	you	both.	These	message	details	are
called	agreements.	You	need	at	least	two	partners	in	your	integration	account	to
create	an	agreement.	Your	organization	must	be	the	host	partner,	and	the	other
partner(s)	guests.	Guest	partners	can	be	outside	organizations,	or	even	a
department	in	your	own	organization.
To	add	a	partner	to	your	integration	account,	follow	these	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	More	Services	on	the	command	bar.
3.	 In	the	filter	box,	type	integration,	then	select	Integration	Accounts	in	the

results	list.
4.	 Select	your	integration	account,	and	then	select	the	Partners	tile.
5.	 In	the	Partners	blade,	select	+	Add.
6.	 Provide	a	name	for	your	partner	(Figure	4-50),	select	a	Qualifier,	and	then

enter	a	Value	to	help	identify	documents	that	transfer	through	your	apps.
When	finished,	click	OK.

FIGURE	4-50	Adding	a	partner	to	an	Integration	account

https://portal.azure.com

7.	 After	a	few	moments,	the	new	partner	(Figure	4-51)	will	appear	in	your	list
of	partners.

FIGURE	4-51	Partners	added	to	an	Integration	account

Add	an	agreement
Now	that	you	have	partners	associated	with	your	integration	account,	you	can
allow	them	to	communicate	seamlessly	using	industry	standard	protocols
through	agreements.	These	agreements	are	based	on	the	type	of	information
exchanged,	and	through	which	protocol	or	transport	standards	they	will
communicate:	AS2,	X12,	or	EDIFACT.
Follow	these	steps	to	create	an	AS2	agreement:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	More	Services	on	the	command	bar.
3.	 In	the	filter	box,	type	integration,	and	then	select	Integration	Accounts	in

the	results	list	(Figure	4-52).
4.	 Select	your	integration	account,	and	then	select	the	Agreements	tile.
5.	 In	the	Agreements	blade,	select	+	Add.
6.	 Provide	a	name	for	your	agreement	and	select	AS2	for	the	agreement	type.

Now	select	the	Host	Partner,	Host	Identity,	Guest	Partner,	and	Guest
Identity.	You	can	override	send	and	receive	settings	as	desired.	Click	OK.

https://portal.azure.com

FIGURE	4-52	Adding	an	agreement	to	an	Integration	account

Link	your	Logic	app	to	your	Enterprise	Integration	account
You	will	need	to	link	your	Logic	app	to	your	integration	account	so	you	can
create	B2B	workflows	using	the	partners	and	agreements	you’ve	created	in	your
integration	account.	You	must	make	sure	that	both	the	integration	account	and
Logic	app	are	in	the	same	Azure	region	before	linking.
To	link,	follow	these	steps:

To	link,	follow	these	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	More	Services	on	the	command	bar.
3.	 In	the	filter	box,	type	logic,	and	then	select	Logic	Apps	in	the	results	list.
4.	 Select	your	logic	app,	and	then	select	Workflow	settings.
5.	 In	the	Workflow	settings	blade,	select	your	integration	account	from	the

select	list,	and	click	Save	(Figure	4-53).

FIGURE	4-53	Linking	an	integration	account	with	a	logic	app

Use	B2B	features	to	receive	data	in	a	Logic	App
After	creating	an	integration	account,	adding	partners	and	agreements	to	it,	and
linking	it	to	a	Logic	app,	you	can	now	create	a	B2B	workflow	using	the
Enterprise	Integration	Pack,	following	these	steps:

1.	 Open	the	Logic	App	Designer	on	the	Logic	app	that	has	a	linked
integration	account.

2.	 Select	Blank	Logic	App	under	Templates.
3.	 Search	for	“http	request”	in	the	trigger	filter,	and	then	select	Request

(When	an	HTTP	request	is	received)	from	the	list	of	results	(Figure	4-54).

https://portal.azure.com

FIGURE	4-54	Selecting	a	Request	trigger	in	the	Logic	App	Designer

4.	 Select	the	+	New	Step	button,	and	then	choose	Add	An	Action.
5.	 Type	as2	in	the	search	box,	and	then	select	AS2	(Decode	AS2	Message)

from	the	results	(Figure	4-55).

FIGURE	4-55	Selecting	a	Decode	AS2	Message	action	in	the	Logic	App
Designer

6.	 In	the	form	that	follows,	provide	a	connection	name,	and	then	select	your
integration	account,	and	click	Create	(Figure	4-56).

FIGURE	4-56	Setting	the	Decode	AS2	Message	connection	information
form	in	the	Logic	App	Designer

7.	 Add	the	Body	that	you	want	to	use	as	input.	In	this	example,	we	selected
the	body	of	the	HTTP	request	that	triggers	the	Logic	app.	Add	the	required
Headers	for	AS2.	In	this	example,	we	selected	the	headers	of	the	HTTP
request	that	triggers	the	Logic	app	(Figure	4-57).

FIGURE	4-57	Setting	the	Decode	AS2	Message	body	and	headers
information	form	in	the	Logic	App	Designer

8.	 Select	the	+	New	Step	button,	and	then	choose	Add	An	Action.
9.	 Type	x12	in	the	search	box,	and	then	select	X12	(Decode	X12	Message)

from	the	results	(Figure	4-58).

FIGURE	4-58	Selecting	a	Decode	X12	Message	action	in	the	Logic	App
Designer

10.	 In	the	form	that	follows,	provide	a	connection	name,	and	then	select	your
integration	account	as	before,	and	click	Create	(Figure	4-59).

11.	 The	input	for	this	new	action	is	the	output	for	the	previous	AS2	action.
Because	the	actual	message	content	is	JSON-formatted	and	base64-
encoded,	you	must	specify	an	expression	as	the	input.	To	do	this,	you	type
the	following	into	the	X12	Flat	File	Message	to	Decode	field:
@base64ToString(body(‘Decode_AS2_Message’)?[‘AS2Message’]?
[‘Content’])

FIGURE	4-59	Setting	the	Decode	X12	flat	file	message	to	decode	the
information	form	in	the	Logic	App	Designer

12.	 Select	the	+	New	Step	button,	and	then	choose	Add	An	Action	(Figure	4-
60).

13.	 Type	response	in	the	search	box,	and	then	select	Request	(Response)	from
the	results.

FIGURE	4-60	Selecting	a	Request	(Response)	action	in	the	Logic	App
Designer

14.	 The	response	body	should	include	the	MDN	from	the	output	of	the	Decode
X12	Message	action	(Figure	4-61).	To	do	this,	we	type	the	following	into
the	Body	field:	@base64ToString(body(‘Decode_AS2_message’)?
[‘OutgoingMdn’]?[‘Content’])

FIGURE	4-61	Setting	the	body	in	the	Response	form	in	the	Logic	App
Designer

15.	 Click	Save	in	the	Logic	Apps	Designer	menu.

Create	a	Logic	App	with	XML	capabilities
Oftentimes,	businesses	send	and	receive	data	between	one	or	more	organizations
in	XML	format.	Due	to	the	dynamic	nature	of	XML	documents,	schemas	are
used	to	confirm	that	the	documents	received	are	valid	and	are	in	the	correct
format.	Schemas	are	also	used	to	transform	data	from	one	format	to	another.
Transforms	are	also	known	as	maps,	which	consist	of	source	and	target	XML
schemas.	When	you	link	your	logic	app	with	an	integration	account,	the	schema
and	map	artifacts	within	enable	your	Logic	app	to	use	these	Enterprise
Integration	Pack	XML	capabilities.
The	XML	features	included	with	the	Enterprise	Integration	pack	are:
	XML	validation	Used	to	validate	incoming	and	outgoing	XML	messages
against	a	specific	schema.
	XML	transform	Used	to	convert	data	from	one	format	to	another.

	Flat	file	encoding/decoding	Used	to	encode	XML	content	prior	to	sending,
or	to	convert	XML	content	to	flat	files.
	XPath	Used	to	extract	specific	properties	from	a	message,	using	an	xpath
expression.

Add	schemas	to	your	integration	account
Since	schemas	are	used	to	validate	and	transform	XML	messages,	you	must	add
one	or	more	to	your	integration	account	before	working	with	the	Enterprise
Integration	Pack	XML	features	within	your	linked	logic	app.	To	add	a	new
schema,	follow	these	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	More	Services	on	the	command	bar.
3.	 In	the	filter	box,	type	integration,	and	then	select	Integration	Accounts	in

the	results	list	(Figure	4-62).
4.	 Select	your	integration	account,	and	then	select	the	Schemas	tile.
5.	 In	the	Schemas	blade,	select	+	Add.
6.	 Provide	a	name	for	your	schema	and	select	whether	it	is	a	small	file	(<=

2MB)	or	a	large	file	(>	2MB).	If	it	is	a	small	file,	you	can	upload	it	here.	If
you	select	Large	file,	then	you	need	to	provide	a	publicly	accessible	URI	to
the	file.	In	this	case,	we’re	uploading	a	small	file.	Click	the	Browse	button
underneath	Schema	to	select	a	local	XSD	file	to	upload.	Click	OK.

https://portal.azure.com

FIGURE	4-62	Adding	a	schema	to	an	Integration	account

Add	maps	to	your	Integration	account
When	you	want	to	your	Logic	app	to	transform	data	from	one	format	to	another,
you	first	add	a	map	(schema)	to	your	linked	Integration	account.
To	add	a	new	schema,	follow	these	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	More	Services	on	the	command	bar.
3.	 In	the	filter	box,	type	integration,	then	select	Integration	Accounts	in	the

results	list.
4.	 Select	your	integration	account,	and	then	select	the	Maps	tile.
5.	 In	the	Maps	blade,	select	+	Add.
6.	 Provide	a	name	for	your	map	and	click	the	Browse	button	underneath	Map

to	select	a	local	XSLT	file	to	upload.	Click	OK	(Figure	4-63).

FIGURE	4-63	Adding	a	map	to	an	Integration	account

More	Info:	How	to	Create	a	Transform/Map

You	can	create	the	map	that	you	upload	to	your	Integration
account	by	using	the	Visual	Studio	Enterprise	Integration	SDK	at
https://aka.ms/vsmapsandschemas.

Add	XML	capabilities	to	the	linked	Logic	App

https://portal.azure.com
https://aka.ms/vsmapsandschemas

After	adding	an	XML	schema	and	map	to	the	Integration	account,	you	are	ready
to	use	the	Enterprise	Integration	Pack’s	XML	validation,	XPath	Extract,	and
Transform	XML	operations	in	a	Logic	App.
Once	your	LogicAapp	has	been	linked	to	the	Integration	account	with	these

artifacts,	follow	these	steps	to	use	the	XML	capabilities	in	your	Logic	App:

1.	 Open	the	Logic	App	Designer	on	the	Logic	pp	that	has	a	linked	Integration
account.

2.	 Select	Blank	Logic	App	under	Templates.
3.	 Search	for	“http	request”	in	the	trigger	filter,	and	then	select	Request

(When	An	HTTP	Request	Is	Received)	from	the	list	of	results	(Figure	4-
64).

4.	 Select	the	+	New	Step	button,	and	then	choose	Add	An	Action.
5.	 Type	xml	in	the	search	box,	and	then	select	XML	(XML	Validation)	from

the	results.

FIGURE	4-64	Selecting	an	XML	Validation	action	in	the	Logic	App
Designer

6.	 In	the	form	that	follows,	select	the	Body	parameter	from	the	HTTP	request
trigger	for	the	Content	value.	Select	the	Order	schema	in	the	Schema	Name
select	list,	which	is	the	schema	we	added	to	the	Integration	account	(Figure
4-65).

FIGURE	4-65	Selecting	an	XML	Validation	form	values	in	the	Logic
App	Designer

7.	 Select	the	+	New	Step	button,	and	then	choose	Add	An	Action.
8.	 Type	xml	in	the	search	box,	and	then	select	Transform	XML	from	the

results	(Figure	4-66).

FIGURE	4-66	Selecting	an	Transform	XML	action	in	the	Logic	App
Designer

9.	 In	the	form	that	follows,	select	the	Body	parameter	from	the	HTTP	request
trigger	for	the	Content	value.	Select	the	SAPOrderMap	map	in	the	Map
select	list,	which	is	the	map	we	added	to	the	Integration	account	(Figure	4-
67).

FIGURE	4-67	Setting	the	Transform	XML	form	values	in	the	Logic	App
Designer

10.	 In	the	Condition	form	that	appears,	select	the	Edit	In	Advanced	Mode	link,
and	then	type	in	your	XPath	expression.	In	our	case,	we	type	in	the
following	(Figure	4-68):	@equals(xpath(xml(body(‘Transform_XML’)),
‘string(count(/.))’),	‘1’)

FIGURE	4-68	Setting	the	XPath	expression	for	the	new	condition	in	the
Logic	App	Designer

11.	 In	the	“If	true”	condition	block	beneath,	select	Add	An	Action.	Search	for
“response,”	and	then	select	Request	(Response)	from	the	resulting	list	of
actions	(Figure	4-69).

FIGURE	4-69	Selecting	a	Response	action	for	the	new	condition’s	“If
true”	block	in	the	Logic	App	Designer

12.	 In	the	Response	form,	select	the	Transformed	XML	parameter	from	the
previous	Transform	XML	step.	This	returns	a	200	HTTP	response
containing	the	transformed	XML	(an	SAP	order)	within	the	body	(Figure	4-
70).

FIGURE	4-70	Completing	the	Response	action	form	for	the	new
condition’s	“If	true”	block	in	the	Logic	App	Designer

13.	 Click	Save	in	the	Logic	Apps	Designer	menu.

More	Info:	Deploy	This	Logic	App

Visit	the	GitHub	project	page	for	this	Azure	Quickstart	template	to
deploy	the	Logic	App	in	your	Azure	account	at:
https://github.com/Azure/azure-quickstart-templates/tree/master/201-
logic-app-veter-pipeline.

More	Info:	Using	Xml	Capabilities	in	Logic	Apps

For	more	information	about	working	with	XML	capabilities	in
Logic	Apps,	see:	https://docs.microsoft.com/azure/logic-apps/logic-
apps-enterprise-integration-xml.

https://github.com/Azure/azure-quickstart-templates/tree/master/201-logic-app-veter-pipeline
https://docs.microsoft.com/azure/logic-apps/logic-apps-enterprise-integration-xml

Trigger	a	Logic	App	from	another	app
There	are	many	triggers	that	can	be	added	to	a	Logic	App.	Triggers	are	what
kick	off	the	workflow	within.	The	most	common	type	of	triggers	you	can	use	to
trigger,	or	call,	your	Logic	Apps	from	another	app,	are	those	that	create	HTTP
endpoints.	Triggers	based	on	HTTP	endpoints	tend	to	be	more	widely	used	due
to	the	simplicity	of	making	REST-based	calls	from	practically	any	web-enabled
development	platform.
These	are	the	triggers	that	create	HTTP	endpoints:
	Request	Responds	to	incoming	HTTP	requests	to	start	the	Logic	App’s
workflow	in	real	time.	Very	versatile,	in	that	it	can	be	called	from	any	web-
based	application,	external	webhook	events,	even	from	another	Logic	App
with	a	request	and	response	action.
	HTTP	Webhook	Event-based	trigger	that	does	not	rely	on	polling	for	new
items.	Register	subscribe	and	unsubscribe	methods	with	a	callback	URL	used
to	trigger	the	logic	app.	Whenever	your	external	app	or	service	makes	an
HTTP	POST	to	the	callback	URL,	the	logic	app	fires,	and	includes	any	data
passed	into	the	request.
	API	Connection	Webhook	The	API	connection	trigger	is	similar	to	the
HTTP	trigger	in	its	basic	functionality.	However,	the	parameters	for
identifying	the	action	are	slightly	different.

Create	an	HTTP	endpoint	for	your	logic	app
To	create	an	HTTP	endpoint	to	receive	incoming	requests	for	a	Request	Trigger,
follow	these	steps:

1.	 Open	the	Logic	App	Designer	on	the	logic	app	to	which	you	will	be	adding
an	HTTP	endpoint.

2.	 Select	Blank	Logic	App	under	Templates.
3.	 Search	for	“http	request”	in	the	trigger	filter,	and	then	select	Request

(When	An	HTTP	Request	Is	Received)	from	the	list	of	results.
4.	 You	can	optionally	enter	a	JSON	schema	for	the	payload,	or	data,	that	you

expect	to	be	sent	to	the	trigger.	This	schema	can	be	added	to	the	Request
Body	JSON	Schema	field.	To	generate	the	schema,	select	the	Use	Sample
Payload	To	Generate	Schema	link	at	the	bottom	of	the	form.	This	displays
a	dialog	where	you	can	type	in	or	paste	a	sample	JSON	payload.	This
generates	the	schema	when	you	click	Done.	The	advantage	to	having	a
schema	defined	is	that	the	designer	will	use	the	schema	to	generate	tokens

that	your	logic	app	can	use	to	consume,	parse,	and	pass	data	from	the
trigger	through	your	workflow	(Figure	4-71).

FIGURE	4-71	Adding	a	Request	trigger	with	a	request	body	JSON
schema

5.	 Click	Save	in	the	Logic	Apps	Designer	menu.
6.	 After	saving,	the	HTTP	POST	URL	is	generated	on	the	Receive	trigger

(Figure	4-72).	This	is	the	URL	your	app	or	service	uses	to	trigger	your
logic	app.	The	URL	contains	a	Shared	Access	Signature	(SAS)	key	used	to
authenticate	the	incoming	requests.

FIGURE	4-72	The	generated	HTTP	POST	URL	on	the	Request	trigger

More	Info:	Call,	Trigger,	or	Nest	Workflows	with	Http	Endpoints
in	Logic	Apps

For	more	information	on	the	topic	of	using	HTTP	endpoints	to	call,
trigger,	or	nest	workflows	in	Logic	Apps	see:
https://docs.microsoft.com/azure/logic-apps/logic-apps-http-endpoint.

More	Info:	Create	an	Api	that	Follows	the	Webhook
Subscribe/Unsubscribe	Pattern

For	more	information	on	how	to	create	an	API	that	follows	the
webhook	subscribe	and	unsubscribe	pattern	in	logic	apps	see
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-
app#webhook-triggers.

Create	custom	and	long-running	actions
You	can	create	your	own	APIs	that	provide	custom	actions	and	triggers.	Because
these	are	web-based	APIs	that	use	REST	HTTP	endpoints,	you	can	build	them	in
any	language	framework	like	.NET,	Node.js,	or	Java.	You	can	also	host	your
APIs	on	Azure	App	Service	as	either	web	apps	or	API	apps.	However,	API	apps
are	preferred	because	they	will	make	it	easier	to	build,	host,	and	consume	your
APIs	used	by	Logic	Apps.	Another	recommendation	is	to	provide	an	OpenAPI
(previously	Swagger)	specification	to	describe	your	RESTful	API	endpoints,
their	operations,	and	parameters.	This	makes	it	much	easier	to	reference	your
custom	API	from	a	logic	app	workflow	because	all	of	the	endpoints	are
selectable	within	the	designer.	You	can	use	libraries	like	Swashbuckle	to
automatically	generate	the	OpenAPI	(Swagger)	file	for	you.
If	your	custom	API	has	long-running	tasks	to	perform,	it	is	more	than	likely

that	your	logic	app	will	time	out	waiting	for	the	operation	to	complete.	This	is
because	Logic	Apps	will	only	wait	around	two	minutes	before	timing	out	a
request.	If	your	long-running	task	takes	several	minutes,	or	hours	to	complete,
you	need	to	implement	a	REST-based	async	pattern	on	your	API.	These	types	of
patterns	are	already	fully	supported	natively	by	the	Logic	Apps	workflow
engine,	so	you	don’t	need	to	worry	about	the	implementation	there.

More	Info:	Use	Swashbuckle	to	Automatically	Generate	Openapi
(Swagger)

https://docs.microsoft.com/azure/logic-apps/logic-apps-http-endpoint
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-app#webhook-triggers

Swashbuckle	makes	it	easy	to	automatically	generate	the	OpenAPI
(Swagger)	specification	file	for	you.	For	more	information	see
https://github.com/domaindrivendev/Swashbuckle.

Long-running	action	patterns
Your	custom	API	operations	serve	as	endpoints	for	the	actions	in	your	Logic
App’s	workflow.	At	a	basic	level,	the	endpoints	accept	an	HTTP	request	and
return	an	HTTP	response	within	the	Logic	App’s	request	timeout	limit.	When
your	custom	action	executes	a	long-running	operation	that	will	exceed	this
timeout,	you	can	follow	either	the	asynchronous	polling	pattern	or	the
asynchronous	webhook	pattern.	These	patterns	allow	your	logic	app	to	wait	for
these	long-running	tasks	to	finish.

Asynchronous	polling
The	way	the	asynchronous	polling	pattern	works	is	as	follows:

1.	 When	your	API	receives	the	initial	request	to	start	work,	it	starts	a	new
thread	with	the	long-running	task,	and	immediately	returns	an	HTTP
Response	“202	Accepted”	with	a	location	header.	This	immediate	response
prevents	the	request	from	timing	out,	and	causes	the	workflow	engine	to
start	polling	for	changes.

2.	 The	location	header	points	to	the	URL	for	the	Logic	Apps	to	check	the
status	of	the	long-running	job.	By	default,	the	engine	checks	every	20
seconds,	but	you	can	also	add	a	“Retry-after”	header	to	specify	the	number
of	seconds	until	the	next	poll.

3.	 After	the	allotted	time	(20	seconds),	the	engine	polls	the	URL	on	the
location	header.	If	the	long-running	job	is	still	going,	you	should	return
another	“202	Accepted”	with	a	location	header.	If	the	job	has	completed,
you	should	return	a	“200	OK”	along	with	any	relevant	data.	This	is	what
the	Logic	Apps	engine	will	continue	the	workflow	with.

More	Info:	Asynchronous	Polling	Pattern

For	more	information	on	the	asynchronous	polling	pattern	see
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-
app#async-pattern.

Asynchronous	Webhooks

https://github.com/domaindrivendev/Swashbuckle
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-app#async-pattern

The	asynchronous	webhook	pattern	works	by	creating	two	endpoints	on	your
API	controller:

	Subscribe	The	Logic	Apps	engine	calls	the	subscribe	endpoint	defined	in
the	workflow	action	for	your	API.	Included	in	this	call	is	a	callback	URL
created	by	the	logic	app	that	your	API	stores	for	when	work	is	complete.
When	your	long-running	task	is	complete,	your	API	calls	back	with	an
HTTP	POST	method	to	the	URL,	along	with	any	returned	content	and
headers,	as	input	to	the	logic	app.
	Unsubscribe	This	endpoint	is	called	any	time	the	logic	app	run	is
cancelled.	When	your	API	receives	a	request	to	this	endpoint,	it	should
unregister	the	callback	URL	and	stop	any	running	processes.

More	Info:	Asynchronous	Webhook	Pattern

For	more	information	on	the	asynchronous	webhook	pattern	see
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-
app#webhook-actions.

Monitor	Logic	Apps
When	you	create	a	logic	app,	you	can	use	out-of-the-box	tools	within	Logic
Apps	to	monitor	your	app	and	detect	any	issues	it	may	have,	such	as	failures.
You	can	view	runs	and	trigger	history,	overall	status,	and	performance.
If	you	want	real-time	event	monitoring,	as	well	as	richer	debugging,	you	can

enable	diagnostics	on	your	logic	app	and	send	events	to	OMS	with	Log
Analytics,	or	to	other	services,	such	as	Azure	Storage	and	Event	Hubs.
Select	Metrics	(Figure	4-73)	under	Monitoring	in	the	left-hand	menu	of	your

logic	app	to	view	performance	information	and	the	overall	state,	such	as	how
many	actions	succeeded	or	failed,	over	the	specified	time	period.	It	will	display
an	interactive	chart	based	on	the	selected	metrics.

https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-app#webhook-actions

FIGURE	4-73	Metrics	for	a	logic	app

Select	Alert	Rules	under	Monitoring	to	create	alerts	based	on	metrics	(such	as
any	time	failures	occur	over	a	1-hour	period),	activity	logs	(with	categories	such
as	security,	service	health,	autoscale,	etc.),	and	near	real	time	metrics,	based	on
the	data	captured	by	your	Logic	App’s	metrics,	in	time	periods	spanning	from
one	minute	to	24	hours.	Alerts	can	be	emailed	to	one	or	more	recipients,	route
alerts	to	a	webhook,	or	run	a	logic	app.
The	overview	blade	of	your	logic	app	displays	both	Runs	History	and	Trigger

History	(Figure	4-74).	This	view	lets	you	see	at	a	glance	how	often	the	app	was
called,	and	whether	those	operations	succeeded.	Select	a	run	history	to	see	its
details,	including	any	data	it	received.

FIGURE	4-74	The	Runs	history	and	Trigger	History	of	a	logic	app

More	Info:	Monitor	Status	and	Set	up	Diagnostics	Logging	for
Logic	Apps

To	learn	more	about	how	to	monitor	status,	set	up	diagnostics
logging,	and	turn	on	alerts	for	Logic	Apps	see
https://docs.microsoft.com/azure/logic-apps/logic-apps-monitor-your-
logic-apps.

Skill	4.4:	Develop	Azure	App	Service	Mobile	Apps
Mobile	Apps	in	Azure	App	Service	provides	a	platform	for	the	development	of
mobile	applications,	providing	a	combination	of	backend	Azure	hosted	services
with	device	side	development	frameworks	that	streamline	the	integration	of	the
backend	services.

This	skill	covers	how	to:
	Create	a	mobile	app
	Add	authentication	to	a	mobile	app
	Add	offline	sync	to	a	mobile	app
	Add	push	notifications	to	a	mobile	app

Mobile	Apps	enables	the	development	of	applications	across	a	variety	of
platforms,	targeting	native	iOS,	Android,	and	Windows	apps,	cross-platform
Xamarin	(Android,	Forms	and	iOS)	and	Cordova.	Mobile	Apps	includes	a

https://docs.microsoft.com/azure/logic-apps/logic-apps-monitor-your-logic-apps

Xamarin	(Android,	Forms	and	iOS)	and	Cordova.	Mobile	Apps	includes	a
comprehensive	set	of	open	source	SDKs	for	each	of	the	aforementioned
platforms,	and	together	with	the	services	provided	in	Azure	provide	functionality
for:

	Authentication	and	authorization	Enables	integration	with	identity
providers	including	Azure	Active	Directory,	Facebook,	Google,	Twitter,	and
Microsoft	Account.
	Data	access	Enables	access	to	tabular	data	stored	in	an	Azure	SQL	Database
or	an	on-premises	SQL	Server	(via	a	hybrid	connection)	via	an	automatically
provisioned	and	mobile-friendly	OData	v3	data	source.
	Offline	sync	Enables	reads	as	well	as	create,	update,	and	delete	activity	to
happen	against	the	supporting	tables	even	when	the	device	is	not	connected
to	a	network,	and	coordinates	the	synchronization	of	data	between	local	and
cloud	stores	as	dictated	by	the	application	logic	(e.g.,	network	connectivity	is
detected	or	the	user	presses	a	“Sync”	button).
	Push	notifications	Enables	the	sending	of	push	notifications	to	app	users	via
Azure	Notifications	Hubs,	which	in	turn	supports	the	sending	of	notifications
across	the	most	popular	push	notifications	services	for	Apple	(APNS),
Google	(GCM),	Windows	(WNS),	Windows	Phone	(MPNS),	Amazon
(ADM)	and	Baidu	(Android	China)	devices.

Create	a	mobile	app
From	a	high	level,	the	process	for	creating	a	mobile	app	is	as	follows:

1.	 Identify	the	target	device	platforms	you	want	your	app	to	target.
2.	 Prepare	your	development	environment.
3.	 Deploy	an	Azure	Mobile	App	Service	instance.
4.	 Configure	the	Azure	Mobile	App	Service.
5.	 Configure	your	client	application.
6.	 Augment	your	project	with	authentication/authorization,	offline	data	sync,

or	push	notification	capabilities.

The	sections	that	follow	cover	each	of	these	steps	in	greater	detail.

Identify	the	target	device	platforms
The	first	decision	you	make	when	creating	an	mobile	app	is	choosing	which
device	platforms	to	support.	For	device	platforms,	you	can	choose	from	the	set
that	includes	native	Android,	Cordova,	native	iOS	(Objective-C	or	Swift),
Windows	(C#),	Xamarin	Android,	Xamarin	Forms	and	Xamarin	iOS.

Windows	(C#),	Xamarin	Android,	Xamarin	Forms	and	Xamarin	iOS.
Because	each	device	platform	brings	with	it	a	set	of	requirements,	it	can	make

getting	started	an	almost	overwhelming	setup	experience.	One	way	to	approach
this	is	to	start	with	one	device	platform	so	that	you	can	complete	the	end-to-end
process,	and	then	layer	on	additional	platforms	after	you	have	laid	the
foundation	for	one	platform.	Additionally,	if	you	choose	to	use	Xamarin	or
Cordova	as	your	starting	platform	you	gain	the	advantage	that	these	platforms
can	themselves	target	multiple	device	platforms,	allowing	you	to	write	portable
code	libraries	once	that	is	shared	by	projects	that	are	specific	to	each	target
device.

Prepare	your	development	environment
The	requirements	for	your	development	environment	vary	depending	on	the
device	platforms	you	wish	to	target.	The	pre-requisites	here	include	the
supported	operating	system	(e.g.,	macOS,	Windows),	the	integrated
development	environment	(e.g.,	Android	Studio,	Visual	Studio	for	Windows,
Visual	Studio	for	Mac	or	Xcode)	and	the	devices	(e.g.,	the	emulators/simulators
or	physical	devices	used	for	testing	your	app	from	the	development	environment
of	your	choice).
Table	4-4	summarizes	key	requirements	by	device	platform.

TABLE	4-4	Requirements	for	each	target	platform

Target	Platform Requirements

Android OS:	macOS	or	Windows
IDE:	Android	Studio
Devices:	Android	emulator	and	devices

Cordova OS:	macOS	and	Windows
IDE:	Visual	Studio	for	Windows
Devices:	Android,	iOS*,	Windows	emulators	and
devices.

iOS OS:	macOS
IDE:	Xcode
Devices:	iOS	simulator	and	devices

Windows OS:	Windows

IDE:	Visual	Studio	for	Windows
Devices:	Windows	desktop	and	phone

Xamarin.Android OS:	macOS	or	Windows
IDE:	Visual	Studio	for	mac	or	Windows
Devices:	Android	emulators	and	devices.

Xamarin.Forms OS:	macOS	and	Windows
IDE:	Visual	Studio	for	mac	or	Windows
Devices:	Android,	iOS*,	Windows	emulators	and
devices.

Xamarin.iOS OS:	macOS
IDE:	Visual	Studio	for	mac	or	Windows
Devices:	iOS*	simulator	and	devices

*	Running	the	iOS	simulator	or	connecting	to	an	iOS	device	requires	a	computer	running	macOS	that	is
reachable	across	the	network	from	the	Windows	development	computer,	or	running	the	indicated	IDE	on	a
macOS.

Deploy	an	Azure	Mobile	App	Service
With	the	aforementioned	decisions	in	place,	you	are	now	ready	to	deploy	an
Azure	Mobile	App	Service	instance	to	provide	the	backend	services	to	your	app.
Follow	these	steps:

1.	 In	the	Azure	Portal,	select	New,	and	search	for	Mobile	App,	and	select	the
Mobile	App	entry.

2.	 Select	Create.
3.	 Provide	a	unique	name	for	your	Mobile	App.
4.	 Select	an	Azure	subscription	and	Resource	Group.
5.	 Select	an	existing	App	Service	Plan	or	create	a	new	one.
6.	 Select	Create	to	deploy	the	mobile	app.

Configure	the	mobile	app
Once	you	have	deployed	your	mobile	app,	you	need	to	configure	where	it	will
store	its	tabular	data	and	the	language	(your	options	are	C#	or	Node.js)	in	which
the	backend	APIs	are	implemented	(which	affects	the	programming	language
you	use	when	customizing	the	backend	behavior).	The	following	steps	walk	you
through	preparing	the	quick	start	solution,	which	you	can	use	as	a	starting	point

through	preparing	the	quick	start	solution,	which	you	can	use	as	a	starting	point
for	your	mobile	app.	Follow	these	steps:

1.	 In	the	Azure	Portal,	navigate	to	the	blade	for	your	mobile	app.
2.	 From	the	menu,	under	the	Deployment	heading,	select	Quick	Start.
3.	 On	the	General	listing,	select	the	platform	you	wish	to	target	first.
4.	 On	the	Quick	Start	blade,	select	the	button	underneath	the	header	1

Connect	a	database	that	reads	You	Will	Need	A	Database	In	Order	To
Complete	This	Quickstart.	Click	Here	To	Create	One.”

5.	 On	the	Data	Connections	blade,	select	+	Add.
6.	 On	the	Add	Data	Connection	blade,	leave	the	Type	drop-down	at	SQL

Database.
7.	 Select	SQL	Database	-	Configure	Required	Settings.
8.	 On	the	Database	blade,	select	an	existing	Azure	SQL	Database,	or	create	a

new	database	(and	optionally	a	new	SQL	Database	Server).
9.	 Back	on	the	Add	Data	Connection	blade,	select	Connection	String.
10.	 Provide	the	name	to	use	for	referring	to	this	connection	string	in

configuration.
11.	 Select	OK.
12.	 Select	OK	once	more	to	add	the	data	connection	(and	create	the	SQL

Database	if	so	configured).
13.	 In	a	few	minutes	(when	creating	a	new	SQL	Database),	the	new	entry

appears	in	the	Data	Connections	blade.	When	it	does,	close	the	Data
Connections	blade.

14.	 On	the	Quick	Start	blade,	underneath	the	header,	Create	A	Table	API,
choose	Node.js	and	select	the	check	box	I	Acknowledge	That	This	Will
Overwrite	All	Site	Contents.	Then	select	the	Create	TodoItem	table	button
that	is	enabled.	If	you	choose	to	use	C#,	note	that	you	will	have	to
download	the	zip	provided,	extract	it,	open	it	in	Visual	Studio,	compile	and
then	publish	the	App	Service	to	your	Mobile	App	instance.	This	is
performed	in	the	same	way	as	you	deploy	Web	Apps	as	described
previously.

15.	 Leave	the	Quick	Start	blade	open	and	continue	to	the	next	section.

Configure	your	client	application
Now	that	you	have	a	basic	mobile	app	backend	deployed,	you	are	now	ready	to
create	the	application	that	will	run	on	your	targeted	devices.	You	can	create	a
new	application	from	a	generated	quick	start	project	or	by	connecting	an	existing
application:

1.	 From	the	Quick	Start	blade	of	your	mobile	app,	underneath	the	header,
Configure	Your	Client	Application,	set	the	toggle	to	create	A	New	App	If
You	Want	To	Create	A	Solution	or	Connect	An	Existing	App	If	You
Already	Have	A	Solution	Built	and	just	need	to	connect	it	to	the	mobile
app.

2.	 If	you	select	Create	A	New	App,	you	will	be	provided	with	instructions
specific	to	the	device	platform	you	selected	previously	as	well	as	a
download	link	from	which	you	can	download	a	generated	solution	that
includes	the	code	customized	for	access	to	the	deployed	mobile	app
backend.	For	example,	if	you	selected	Xamarin.Forms	as	your	platform,
you	are	provided	with	a	zip	file	that	contains	a	personalized	project	that
you	can	open	in	Visual	Studio	for	Windows	or	Visual	Studio	for	macOS,
which	has	been	preconfigured	to	connect	to	your	mobile	app	backend.

3.	 If	you	select	Connect	An	Existing	App,	you	are	provided	with	instructions
and	code	you	can	copy	and	paste	into	your	project	to	connect	it	to	the
mobile	app	backend.

4.	 Once	you	have	completed	the	steps	for	either	option,	you	can	open	and	run
the	project	in	the	IDE	and	start	working	against	your	mobile	app	backend.

Add	authentication	to	a	mobile	app
Once	you	have	your	project	in	place	and	connected	to	your	mobile	app	backend,
you	can	enable	authentication	and	authorization.	Recall	that	this	enables
integration	with	identity	providers	including	Azure	Active	Directory,	Facebook,
Google,	Twitter	and	Microsoft	Account	such	that	your	app	users	need	to	sign	in
using	credentials	from	one	of	these	providers.	To	do	so,	follow	these	steps.

1.	 Identify	the	set	of	identity	providers	you	want	to	support.
2.	 For	each	identity	provider,	you	need	to	follow	the	provider’s	specific

instructions	to	register	your	app	and	retrieve	the	credentials	needed	to
authenticate	using	that	provider.	The	up-to-date	instructions	for	each
provider	are	available:

A.	 Azure	Active	Directory:	https://docs.microsoft.com/en-us/azure/app-
service-mobile/app-service-mobile-how-to-configure-active-directory-
authentication

B.	 Facebook:	https://docs.microsoft.com/en-us/azure/app-service-
mobile/app-service-mobile-how-to-configure-facebook-authentication

C.	 Google:	https://docs.microsoft.com/en-us/azure/app-service-
mobile/app-service-mobile-how-to-configure-google-authentication

D.	 Microsoft:	https://docs.microsoft.com/en-us/azure/app-service-
mobile/app-service-mobile-how-to-configure-microsoft-authentication

E.	 Twitter:	https://docs.microsoft.com/en-us/azure/app-service-
mobile/app-service-mobile-how-to-configure-twitter-authentication

3.	 Configure	authentication	/	authorization	in	your	mobile	app.
4.	 Navigate	to	the	blade	of	your	mobile	app	in	the	Azure	Portal.
5.	 From	the	menu,	under	the	Settings	header,	select	Authentication	/

Authorization.
6.	 Under	the	Allowed	External	Redirect	URLs	header,	in	the	text	box	provide

a	callback	URL	that	will	be	used	to	invoke	your	application.	It	should	be	of
the	form	[scheme]://easyauth.callback	where	the	value	of	[scheme]	is	a
string	you	specify	that	starts	with	a	letter	and	consists	of	only	letters	and
numbers.	For	example,	myapp://easyauth.callback.

7.	 Select	Save	from	the	command	bar.
8.	 Restrict	permissions	to	authenticated	users	on	the	service	side.	The

approach	you	take	varies	depending	on	how	you	configured	your	backend
language	and	if	you	have	deployed	custom	backend	code.

9.	 If	you	are	using	the	Node.js	backend	created	through	the	quick	start	in	the
Azure	Portal,	you	can	control	access	to	data	on	a	table-by-table	basis.	From
your	Mobile	App	blade,	in	the	menu	select	Easy	Tables,	and	then	select	the
table	you	want	to	secure.	For	all	of	the	permission	options,	set	the	value	to
Authenticated	Access	Only	and	select	Save.

10.	 If	you	deployed	a	C#	backend,	in	the	controller	for	your	project	that
inherits	from	TableController,	decorate	the	class	with	the	Authorize
attribute.	For	example:
Click	here	to	view	code	image

[Authorize]

		public	class	TodoItemController	:	TableController<TodoItem>

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-active-directory-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-facebook-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-google-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-microsoft-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-twitter-authentication
http://myapp://easyauth.callback

11.	 If	you	have	deployed	a	customized	Node.js	backend,	you	need	to	modify
the	code	accessing	the	table	and	set	the	access	property	to	authenticated.
For	example:
Click	here	to	view	code	image

table.access	=	'authenticated';

More	Info:	Detailed	Step	by	Step	for	Requiring
Authentication	for	Access	to	Tables

Coverage	of	the	implementation	details	for	every	platform
supported	by	Mobile	Apps	is	out	of	scope	for	this	book.	To
read	the	implementation	details	for	your	particular	platform
navigate	to	https://docs.microsoft.com/en-us/azure/app-service-
mobile/app-service-mobile-node-backend-how-to-use-server-
sdk#howto-tables-auth	and	use	the	dropdown	at	the	top	of	the
article	to	select	your	platform.

12.	 Add	the	authentication	logic	to	your	app	project.	The	specific	steps	to	take
vary	based	upon	the	target	platform	for	your	app,	but	in	general	they
amount	adding	user	interface	elements	to	initiate	sign-in	and	handling	the
authentication	events.	An	important	step	in	the	configuration	of	the
authentication	is	providing	the	value	of	your	scheme	you	defined	for	the
Allowed	External	Redirects	URL	(e.g.,	myapp).

More	Info:	Adding	Authentication	Logic

For	the	detailed	steps	and	boilerplate	code	to	use	for	each
platform,	see	https://docs.microsoft.com/en-us/azure/app-
service-mobile/app-service-mobile-xamarin-forms-get-started-
users	and	using	the	dropdown	list	at	the	top	select	your	target
platform.

13.	 Run	your	application	in	your	local	simulator	or	device	to	verify	the
authentication	flow.

Add	offline	sync	to	a	mobile	app
The	offline	data	sync	capability	comes	from	a	mix	of	client-side	SDK	and
service-side	features.	This	capability	enables	reads	as	well	as	create,	update	and
delete	activity	to	happen	against	the	supporting	tables	even	when	the	device	is

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-node-backend-how-to-use-server-sdk#howto-tables-auth
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-users

delete	activity	to	happen	against	the	supporting	tables	even	when	the	device	is
not	connected	to	a	network,	and	coordinates	the	synchronization	of	data	between
local	and	cloud	stores	as	dictated	by	the	application	logic	(e.g.,	network
connectivity	is	detected	or	the	user	presses	a	“Sync”	button).	The	feature
includes	support	for	conflict	detection	when	the	same	record	is	changed	on	both
the	client	and	the	backend,	and	it	allows	for	the	conflicts	to	be	resolved	on	either
the	client	side	or	service	side.

	On	the	Mobile	App	service	side,	you	need	a	table	that	leverages	Mobile	App
easy	tables.	This	is	typically	a	table	in	SQL	Database	that	is	exposed	by
Mobile	Apps	using	the	OData	endpoint.	Easy	tables	can	be	managed	in	the
Mobile	App	blade	in	the	portal,	including	adjusting	their	schema,	setting
permissions,	and	modifying	the	service	side	script	(for	Node.js	backends)
that	processes	the	create,	read,	update,	delete	(CRUD)	operations.
	On	the	client	side,	the	Azure	Mobile	App	SDKs	provide	an	interface	referred
to	as	a	SyncTable	that	wraps	access	to	the	remote	easy	table.	When	using	a
SyncTable	all	the	CRUD	operations	work	from	a	local	store,	whose
implementation	is	device	platform	specific.	The	local	store	provides	the	data
persistence	capability	on	the	client	device.	In	iOS	the	local	store	is	based	on
Core	Data,	and	for	Windows,	Xamarin,	and	Android	the	local	store	is	based
on	SQL	lite.

Changes	to	the	data	are	made	through	a	sync	context	object	that	tracks	the
changes	that	are	made	across	all	of	the	tables.	This	sync	context	maintains	an
operation	queue	that	is	an	ordered	list	of	create,	update	and	delete	operations	that
have	been	performed	against	the	data	locally.

	To	modify	the	backend	table	data	with	the	changes	performed	against	the
local	store,	you	have	to	perform	a	push.	To	populate	the	local	store	with	data
from	the	backend,	you	have	to	perform	a	pull.	A	push	operation	executes	a
series	of	REST	calls	to	your	mobile	app	backend	that	applies	all	the	CUD
changes	since	the	last	push.	It’s	important	to	note	that	when	you	push
changes,	you	are	always	pushing	a	set	containing	at	least	one	operation;	you
are	not	pushing	a	specific	table.	This	restriction	ensures	that	multiple
operations	against	the	context	that	may	span	across	multiple	tables	are
replayed	against	the	backend	table	in	the	correct	order.
	There	is	a	notion	of	an	implicit	push;	this	occurs	when	you	execute	a	pull
operation	but	have	pending	operations	to	push.	In	this	case,	the	pull	will	first
execute	a	push	against	the	sync	context.
	Offline	sync	supports	incremental	sync,	whereby	each	time	you	pull	records

from	the	source	only	the	source	records	that	are	new	or	have	changed	are
retrieved	(as	opposed	to	downloading	the	entire	table	worth	of	data	every
time).	You	can	clear	the	contents	of	the	local	store	by	performing	a	purge.
You	can	enable	Offline	Sync	by	following	these	high-level	steps:

1.	 Modify	the	client	code	that	accesses	your	easy	tables	to	use	objects	of	the
SyncTable	variety.

2.	 Implement	a	method	that	is	run	when	your	application	first	launches	that
defines	the	table	schema	and	initializes	the	local	store	with	data	from	the
remote	table.

3.	 Implement	a	method	that	launches	initiate	sync	operation.	This	could	be
triggered	from	a	button	or	refresh	gesture.

4.	 You	can	test	the	offline	behavior	of	your	app	by:
5.	 Running	the	application	once	as	normal	and	adding	data	to	your	table.
6.	 Modifying	the	application’s	configuration	so	that	it	no	longer	points	to	the

correct	URI	of	your	mobile	app	backend.
7.	 Run	the	application	again.	This	time	the	offline	behavior	should	take	affect.

Make	some	modifications	to	the	data.
8.	 Restore	the	application’s	configuration.
9.	 Run	the	application	again	and	verify	that	the	changes	you	made	while

offline	appear	in	your	easy	table.	To	do	this,	navigate	to	the	blade	of	your
mobile	app,	select	Easy	Tables	from	the	menu,	and	then	select	your	table	to
view	its	contents.

More	Info:	Adding	Offline	Sync	Logic

Coverage	of	the	implementation	details	of	Offline	Sync	for	every
platform	supported	by	Mobile	Apps	is	out	of	scope	for	this	book.
To	read	the	implementation	details	for	your	particular	platform
navigate	to	https://docs.microsoft.com/en-us/azure/app-service-
mobile/app-service-mobile-xamarin-forms-get-started-offline-data
and	use	the	dropdown	at	the	top	of	the	article	to	select	your
platform.

Add	push	notifications	to	a	mobile	app
Push	notifications	enable	you	to	send	app-specific	messages	to	your	app	running
across	a	variety	of	platforms.	In	Azure	Mobile	Apps,	push	notification

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-offline-data

across	a	variety	of	platforms.	In	Azure	Mobile	Apps,	push	notification
capabilities	are	provided	by	Azure	Notification	Hubs,	which	is	accessed	using
the	Mobile	Apps	SDKs	for	the	platform	of	choice.	Notification	Hubs,	in	turn,
abstract	your	application	from	the	complexities	of	dealing	with	the	various	push
notification	systems	(PNS)	that	are	specific	to	each	platform,	which	includes
challenges	like	device	registration	with	the	PNS,	backend	services	to	send
messages	to	the	PNS,	and	provides	for	routing	of	messages	to	targeted	users	or
groups	of	users	(which	requires	maintaining	a	mapping	of	users	to	devices),	and
scaling	to	support	such	functions	across	a	huge	base	of	devices.	Notifications
Hubs	supports	the	sending	of	notifications	across	the	most	popular	push
notifications	services	for	Apple	(APNS),	Google	(GCM),	Windows	(WNS),
Windows	Phone	(MPNS),	Amazon	(ADM),	and	Baidu	(Android	China)	devices.
To	add	push	notifications,	follow	these	steps:

1.	 Deploy	a	Notification	Hub	with	your	mobile	app.
2.	 Navigate	to	the	blade	of	your	mobile	app,	and	on	the	menu	under	the

Settings	heading,	select	Push.
3.	 From	the	Command	bar,	select	Connect.
4.	 On	the	Notification	Hub	blade,	choose	an	existing	Notification	Hub	or

provision	a	new	one.	If	you	choose	to	provision	a	new	Notification	Hub,
provide	a	name	for	the	hub,	a	name	for	the	new	namespace,	and	select	the
desired	pricing	tier,	and	then	select	OK.

5.	 Select	the	link	Configure	Push	Notification	Services.
6.	 On	the	Push	Notification	Services	blade,	select	the	PNS	to	which	you	want

to	connect	the	Notification	Hub.
7.	 On	the	blade	for	the	PNS,	enter	the	PNS	specific	configuration,	and	select

Save.
8.	 Configure	your	backend	server	project	to	send	push	notifications.

More	Info:	Sending	Push	Notifications	from	the	Server	Side

Coverage	of	the	implementation	details	of	sending	push
notifications	for	every	platform	supported	by	Mobile	Apps	is
out	of	scope	for	this	book.	To	read	the	implementation	details
for	your	particular	platform	navigate	to
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-
service-mobile-xamarin-forms-get-started-push#update-the-
server-project-to-send-push-notifications	and	use	the	dropdown
at	the	top	of	the	article	to	select	your	platform.

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-push#update-the-server-project-to-send-push-notifications

9.	 Modify	the	app	project	to	respond	to	push	notifications.

More	Info:	Receiving	Push	Notifications	in	the	Client	App

Coverage	of	the	implementation	details	of	receiving	push
notifications	for	every	platform	supported	by	Mobile	Apps	is	out	of
scope	for	this	book.	To	read	the	implementation	details	for	your
particular	platform	navigate	to	https://docs.microsoft.com/en-
us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-
started-push#configure-and-run-the-android-project-optional	and
use	the	dropdown	at	the	top	of	the	article	to	select	your	platform.

Skill	4.5:	Implement	API	Management
Azure	API	Management	is	a	turnkey	solution	for	publishing,	managing,
securing,	and	analyzing	APIs	to	both	external	and	internal	customers	in	minutes.
You	can	create	an	API	gateway	for	backend	services	hosted	anywhere,	not	just
those	hosted	on	Azure.	Many	modern	APIs	protect	themselves	by	rate-limiting
consumers,	meaning,	limiting	how	many	requests	can	be	made	in	a	certain
amount	of	time.	Traditionally,	there	is	a	lot	of	work	that	goes	into	that	process.
When	you	use	API	Management	to	manage	your	API,	you	can	easily	secure	it
and	protect	it	from	abuse	and	overuse	with	an	API	key,	JWT	validation,	IP
filtering,	and	through	quotas	and	rate	limits.
If	you	have	several	APIs	as	part	of	your	solution,	and	they	are	hosted	across

several	services	or	platforms,	you	can	group	them	all	behind	a	single	static	IP
and	domain,	simplifying	communication,	protection,	and	reducing	maintenance
of	consumer	software	due	to	API	locations	changing.	You	also	can	scale	API
Management	on	demand	in	one	or	more	geographical	locations.	Its	built-in
response	caching	also	helps	with	improving	latency	and	scale.
Hosting	your	APIs	on	the	API	Management	platform	also	makes	it	easier	for

developers	to	use	your	APIs,	by	offering	self-service	API	key	management,	and
an	auto-generated	API	catalog	through	the	developer	portal.	APIs	are	also
documented	and	come	with	code	examples,	reducing	developer	onboarding	time
using	your	APIs.
API	Management	is	made	up	of	the	following	components:
	The	API	gateway	is	the	endpoint	that:
	Accepts	API	calls	and	routes	them	to	your	backends.

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-push#configure-and-run-the-android-project-optional

	Verifies	API	keys,	JWT	tokens,	certificates,	and	other	credentials.
	Enforces	usage	quotas	and	rate	limits.
	Transforms	your	API	on	the	fly	without	code	modifications.
	Caches	backend	responses	where	set	up.
	Logs	call	metadata	for	analytics	purposes.

	The	publisher	portal	is	the	administrative	interface	where	you	set	up	your
API	program.	Use	it	to:
	Define	or	import	API	schema.
	Package	APIs	into	products.
	Set	up	policies	like	quotas	or	transformations	on	the	APIs.
	Get	insights	from	analytics.
	Manage	users.

	The	developer	portal	serves	as	the	main	web	presence	for	developers,	where
they	can:
	Read	API	documentation.
	Try	out	an	API	via	the	interactive	console.
	Create	an	account	and	subscribe	to	get	API	keys.
	Access	analytics	on	their	own	usage.

This	skill	covers	how	to:
	Create	managed	APIs
	Configure	API	management	policies
	Protect	APIs	with	rate	limits
	Add	caching	to	improve	performance
	Monitor	APIs
	Customize	the	Developer	Portal

Create	managed	APIs
The	API	Management	service	is	the	platform	on	which	the	API	gateway,
publisher	portal,	and	developer	portal	are	hosted.	As	such,	before	you	can	create
APIs,	you	must	first	create	a	service	instance.

Create	an	API	Management	service

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	New	on	the	command	bar.
3.	 Select	Developer	Tools,	and	then	API	Management	(Figure	4-75).

FIGURE	4-75	Creating	a	new	API	Management	service	instance	from	the
Azure	Portal

4.	 Provide	a	unique	name,	select	a	resource	group	and	location,	enter	an
organization	name	that	will	appear	on	the	developer	portal	and	emails,	an
administrator	email,	your	pricing	tier,	select	Pin	To	Dashboard,	and	then
click	Create.

Add	a	product
Before	you	can	publish	an	API,	it	needs	to	be	added	to	a	product.	A	product	in
API	Management	contains	one	or	more	APIs,	as	well	as	constraints	such	as	a
usage	quota	and	terms	of	use.	This	is	a	great	way	to	add	API	access	levels,	like
starter	(limit	to	five	calls/minute)	or	unlimited.	You	can	create	several	products
to	group	APIs	with	their	own	usage	rules.	Developers	can	subscribe	to	a	product

https://portal.azure.com

to	group	APIs	with	their	own	usage	rules.	Developers	can	subscribe	to	a	product
once	it	is	published,	and	then	begin	using	its	APIs.
Follow	these	steps	to	add	and	publish	a	new	product:

1.	 Navigate	to	your	API	Management	service	on	the	portal.
2.	 Select	Publisher	Portal	on	the	top	of	the	overview	blade.
3.	 Select	Products	on	the	left-hand	menu,	and	then	click	Add	Product.
4.	 Within	the	new	product	form,	provide	a	Title,	which	should	be	a

descriptive	name	for	your	product	that	appears	on	the	developer	and	admin
portals.	Provide	a	Description	that	explains	the	product’s	purpose	and	any
other	information	you	want	to	display.	The	remaining	fields	allow	you	to
set	your	level	of	protection,	meaning,	whether	your	product	requires	a
subscription,	and	if	so,	whether	the	subscription	needs	to	be	approved	by	an
administrator,	and	whether	developers	can	subscribe	more	than	once.	Once
finished,	click	Save.

5.	 Once	the	product	has	been	added,	you	need	to	add	one	or	more	APIs	to	it
before	you	can	publish	it.	Select	a	product,	and	then	click	the	Add	API	To
Product	link.	This	gives	you	a	list	of	APIs	that	you	can	assign	to	the
product.

Create	a	new	API

1.	 Navigate	to	your	API	Management	service	on	the	portal.
2.	 Select	Publisher	Portal	on	the	top	of	the	overview	blade.
3.	 Select	APIs	on	the	left-hand	menu,	and	then	click	Add	API.
4.	 Within	the	new	product	form	(Figure	4-76):

A.	 Provide	a	unique	Web	API	Name,	which	should	be	a	descriptive	name
for	your	API	that	appears	on	the	developer	and	publisher	portals.

B.	 Enter	the	Web	Service	URL,	which	is	the	HTTP	endpoint	for	your
API.

C.	 Enter	the	Web	Service	URL	suffix,	which	is	unique	to	your	API,	and
is	the	last	part	of	the	API’s	public	URL.

D.	 Select	the	desired	Web	API	URL	Scheme	(HTTP	or	HTTPS
(default)).

E.	 Select	the	product	you	created	and	any	others	you	want	to	add	it	to.
F.	 When	finished,	click	OK.

FIGURE	4-76	Completing	the	Response	action	form	for	the	logic	app

Add	an	operation	to	your	API
Before	you	can	use	your	new	API,	you	must	add	one	or	more	operations.	These
operations	do	things	like	enable	service	documentation,	the	interactive	API
console,	set	per	operation	limits,	set	request/response	validation,	and	configure
operation-level	statistics.

1.	 Navigate	to	your	API	Management	service	on	the	portal.
2.	 Select	Publisher	Portal	on	the	top	of	the	overview	blade.
3.	 Select	APIs	on	the	left-hand	menu,	select	your	API	from	the	list,	and	then

select	the	Operations	tab.
4.	 Click	+	Add	Operation.
5.	 By	default,	the	Signature	tab	will	be	selected.	The	Signature	is	the	URL

template	used	to	send	requests	to	the	underlying	API.	Here	you	select
(Figure	4-77):

A.	 The	HTTP	verb	(GET,	POST,	etc.).
B.	 Type	in	the	URL	template	(e.g.	contacts{id}).
C.	 Type	in	a	display	name,	and	description.
D.	 You	can	also	add	a	rewrite	URL	template	to	call	the	backend	with	a

converted	URL.

FIGURE	4-77	Adding	a	new	operation	to	a	managed	API

6.	 Select	the	Parameters	tab.	New	query	parameters	are	automatically
generated	based	on	the	URL	template	defined	in	the	signature.	In	our	case,
an	id	template	parameter	was	generated	because	the	URL	template	of	our
signature	for	this	operation	is	contacts{id}.	Specify	the	type	(string,
number,	etc.)	and	provide	a	description	for	each	query	parameter	(Figure	4-
78).

FIGURE	4-78	URL	template	parameters

7.	 You	can	optionally	use	the	other	tabs	to	specify	caching	and	responses	for
the	operation.	Click	Save	when	finished.

Publish	your	product	to	make	your	API	available
The	last	step	to	making	your	API	available	to	other	developers	is	to	publish	your
product	to	which	this	and	any	other	APIs	have	been	added.
To	publish	your	product,	follow	these	steps:

1.	 Navigate	to	your	API	Management	service	on	the	portal.
2.	 Select	Publisher	portal	on	the	top	of	the	overview	blade.
3.	 Select	Products	on	the	left-hand	menu,	and	then	click	select	your	product

from	the	list.
4.	 The	summary	tab	will	indicate	whether	your	product	has	been	published,

and	any	associated	APIs.	You	must	have	at	least	one	API	added	before	you
can	publish.	Click	the	Publish	link.

5.	 When	the	confirmation	appears,	click	Yes,	and	then	publish	it.
6.	 After	publishing,	select	the	Visibility	tab.	Choose	which	roles,	such	as

developers,	you	want	to	be	able	to	see	the	product	on	the	developer	portal
and	subscribe	to	the	product.	Click	Save	when	finished.

More	Info:	Add	and	Publish	an	Api	Product

To	learn	more	about	creating	and	publishing	a	product	in	API
Management	see	https://docs.microsoft.com/azure/api-
management/api-management-howto-add-products.

Configure	API	Management	policies

https://docs.microsoft.com/azure/api-management/api-management-howto-add-products

API	Management	policies	allow	you,	as	the	publisher,	to	determine	the	behavior
of	your	APIs	through	configuration,	requiring	no	code	changes.	You	define	a
policy	definition,	which	is	a	collection	of	statements	that	are	executed
sequentially	on	the	request	or	response	of	your	API.	There	are	many	policies	you
can	select	from,	such	as	whether	to	allow	cross	domain	calls,	how	to	authenticate
requests,	find	and	replace	strings	in	the	body,	setting	rate	limits,	and	many	more.

More	Info:	Full	List	of	Policy	Statements

See	the	Policy	Reference	for	a	full	list	of	policy	statements	and	their
settings	at	https://docs.microsoft.com/azure/api-management/api-
management-policy-reference.

Because	the	API	gateway	receives	all	requests	to	your	APIs,	the	policies	you
defined	are	applied	at	this	level.	The	policies	statements	you	choose	affect	both
inbound	requests	and	outbound	responses.	Policies	can	be	applied	globally,	or
scoped	to	the	Product,	API,	or	Operation	level.
To	configure	a	policy,	follow	these	steps:

1.	 Navigate	to	your	API	Management	service	on	the	portal.
2.	 Select	Publisher	Portal	on	the	top	of	the	overview	blade.
3.	 Select	Policies	on	the	left-hand	menu.
4.	 At	the	top	of	the	policies	page,	you	will	find	select	lists	to	define	the	policy

scope	at	the	Product,	API,	and	Operations	levels.	If	you	do	not	select	a
specific	operation,	all	operations	are	included	in	this	policy.	To	create	a
policy	scoped	globally,	simply	deselect	any	options	from	these	select	lists
(Figure	4-79).

https://docs.microsoft.com/azure/api-management/api-management-policy-reference

FIGURE	4-79	Policies	page	for	an	API	Management	service	in	the
Publisher	portal

5.	 To	add	a	new	policy	to	the	selected	policy	scope,	select	+	Add	Policy	link
in	the	Policy	definition	area.

6.	 The	policy	definition	will	appear	in	XML	format.	To	add	an	inbound	policy
that	limits	the	call	rate	per	key,	place	your	cursor	just	inside	the	content	of
the	inbound	XML	element,	and	then	click	the	Limit	Call	Rate	Per	Key
policy	statement	on	the	right.	This	adds	the	statement	to	rate	limit	inbound
requests	to	the	number	of	calls	you	specify	within	your	defined	period	of
time	in	seconds,	and	any	other	conditions	you	desire	(Figure	4-80).

FIGURE	4-80	Editing	the	policy	definition	for	an	API	Management
service	in	the	Publisher	portal

7.	 When	you	are	finished,	click	Save.	Your	changes	will	be	immediately
applied	to	the	API	Management	gateway.

More	Info:	Applying	Policies	in	Api	Management

For	more	information	about	how	to	apply	policies	in	API
Management	see:	https://docs.microsoft.com/azure/api-
management/api-management-howto-policies.

Protect	APIs	with	rate	limits
Protecting	your	published	APIs	by	throttling	incoming	requests	is	one	of	the
most	attractive	offerings	of	API	Management.	When	you	open	up	your	API	for
others	to	use,	it	is	difficult	to	guarantee	a	promised	level	of	service	if	you	cannot
control	the	demand	on	your	resources.	Or,	you	may	be	interested	in	controlling
your	resource	costs	by	limiting	requests,	preventing	you	from	unnecessarily
scaling	up	your	services	to	meet	unexpected	demand.	Rate	limiting,	or	throttling,
is	common	practice	when	providing	APIs.	Oftentimes,	API	publishers	offer
varying	levels	of	access	to	their	APIs.	For	instance,	you	may	choose	to	offer	a
free	tier	with	very	restrictive	rate	limits,	and	various	paid	tiers	offering	higher
request	rates.	This	is	where	API	Management’s	products	come	into	play.	Define
products	for	your	varying	service	levels,	and	apply	rate	limiting	policies	to	each
product,	accordingly.

Create	a	product	to	scope	rate	limits	to	a	group	of	APIs

https://docs.microsoft.com/azure/api-management/api-management-howto-policies

Create	a	product	to	scope	rate	limits	to	a	group	of	APIs
The	following	steps	show	how	to	create	a	free	trial,	adding	APIs	that	developers
can	use	on	a	rate-limited	free	trial	basis:

1.	 Navigate	to	your	API	Management	service	on	the	portal.
2.	 Select	Publisher	Portal	on	the	top	of	the	Overview	blade.
3.	 Create	a	new	product	named	Free	Trial.
4.	 Set	the	description	to	Subscribers	Will	Be	Able	To	Run	10	Calls/Minute

Up	To	A	Maximum	Of	200	Calls/Week.
5.	 Set	the	visibility	to	Developers.
6.	 Add	your	APIs	to	the	product	and	publish	it.
7.	 Go	to	Policies	and	set	the	policy	scope	to	the	free	trial	product.
8.	 Click	+	Add	Policy.
9.	 Position	the	cursor	within	the	inbound	element.
10.	 Scroll	through	the	list	of	policy	statements	and	select	Limit	Call	Rate	Per

Subscription.	Modify	the	XML	to	set	calls	to	10	and	renewal-period	to	60.
You	can	delete	the	API	and	operation	elements	because	they	are	not	needed
in	this	scenario.

11.	 Position	your	cursor	immediately	below	the	rate-limit	element	you	added.
Select	Set	Usage	Quota	Per	Subscription	in	the	list	of	policy	statements.
Modify	the	XML	to	set	calls	to	200	and	renewal-period	to	604800.	You	can
delete	the	API	and	operation	elements	because	they	are	not	needed	in	this
scenario.

12.	 Save	your	changes.	In	the	end,	your	inbound	policy	should	look	as	follows
(Figure	4-81):

FIGURE	4-81	Editing	the	policy	definition	to	set	rate	limits	on	a	product

Advanced	rate	limiting
In	its	simplest	implementation,	you	can	control	the	rate	of	requests	or	the	total
requests/data	transferred.	These	constraints	do	not	help	when	individual	end-
users	of	your	API	consume	exponentially	more	of	the	quota	than	other	users.	If
you	want	to	avoid	having	high-usage	consumers	limit	access	to	occasional	users,
by	using	up	the	pool	of	available	resources,	consider	using	the	new	rate-limit-by-
key	and	quota-by-key	policies.	These	are	more	flexible	rate	limit	ing	policies
that	allow	you	to	define	expressions	to	track	traffic	usage	by	user-level
information,	such	as	IP	address	and	user	identity.
Here	is	an	example	of	rate	and	quota	limiting	by	IP	address:
Click	here	to	view	code	image

<rate-limit-by-key	calls="10"

										renewal-period="60"

										counter-key="@(context.Request.IpAddress)"	/>

<quota-by-key	calls="1000000"

										bandwidth="10000"

										renewal-period="2629800"

										counter-key="@(context.Request.IpAddress)"	/>

More	Info:	Advanced	Rate	Limiting

For	more	information	about	advanced	rate	limiting	through
flexible	request	throttling	see	https://docs.microsoft.com/azure/api-
management/api-management-sample-flexible-throttling.

Add	caching	to	improve	performance
Caching	is	a	great	way	to	limit	your	resource	consumption,	like	bandwidth,	as
well	as	reduce	latency	for	infrequently	changing	data.	API	Management	allows
you	to	configure	response	caching	on	operations.
Follow	these	steps	to	add	response	caching	for	your	API	(Figure	4-82),	and

review	caching	policies:

1.	 Navigate	to	your	API	Management	service	on	the	portal.
2.	 Select	Publisher	portal	on	the	top	of	the	overview	blade.
3.	 Select	APIs	on	the	left-hand	menu.
4.	 Select	the	ECHO	API,	which	is	automatically	added	to	new	API

Management	services.
5.	 Select	the	Operations	tab,	and	then	select	GET	Retrieve	Resource	(Cached)

from	the	list.

https://docs.microsoft.com/azure/api-management/api-management-sample-flexible-throttling

FIGURE	4-82	The	API	operations	tab

6.	 Select	the	Caching	tab	(Figure	4-83)	to	view	the	caching	settings.	To
enable	caching	on	an	operation,	select	the	Enable	check	box.	You	can
modify	the	keyed	operation	responses	by	setting	values	in	the	Vary	By
Query	String	Parameters	and	Vary	By	Headers	fields.	In	this	case,	cache
keys	are	being	computed	on	two	different	headers:	Accept	and	Accept-
Charset.	Duration	sets	the	cache	duration	in	seconds.	Here	it	is	set	to	3600
seconds.

FIGURE	4-83	Caching	settings	for	the	GET	operation	of	the	Echo	API

7.	 Select	Policies	from	the	left-hand	menu	of	the	publisher	portal.
8.	 Select	Echo	API	from	the	API	select	list,	and	then	Retrieve	Resource

(Cached)	from	the	Operation	select	list.
9.	 Here	you	see	that	the	caching	policies	in	the	policy	editor	reflect	the	values

in	the	Caching	tab	of	the	operation.	Any	changes	here	are	reflected	on	the
Caching	tab,	and	vice-versa.

More	Info:	Custom	Caching	in	Api	Management

To	learn	how	to	implement	custom	caching	see
https://docs.microsoft.com/azure/api-management/api-management-
sample-cache-by-key.

Monitor	APIs
API	Management	provides	a	few	methods	by	which	you	can	monitor	resource
usage,	service	health,	activities,	and	analytics.	If	you	want	real-time	monitoring,
as	well	as	richer	debugging,	you	can	enable	diagnostics	on	your	logic	app	and
send	events	to	OMS	with	Log	Analytics,	or	to	other	services,	such	as	Azure
Storage,	and	Event	Hubs.	Select	Diagnostics	Logs	from	the	left-hand	menu	of
your	API	Management	service,	and	then	select	Turn	On	Diagnostics	to	archive

https://docs.microsoft.com/azure/api-management/api-management-sample-cache-by-key

your	API	Management	service,	and	then	select	Turn	On	Diagnostics	to	archive
your	gateway	logs	and	metrics	to	a	storage	account,	stream	to	an	event	hub,	or
send	to	Log	Analytics	on	OMS.
Activity	logs	provide	insight	into	the	operations	that	were	performed	on	your

API	Management	services,	so	you	can	determine	the	“what,	who,	and	when”	for
any	write	operations	taken	on	your	API	Management	services.	Select	Activity
Log	from	the	left-hand	menu	to	filter	and	view	these	logs.	From	here,	you	can
select	Export	to	archive	these	logs	in	a	storage	account	or	send	them	to	an	event
hub.	You	can	also	select	Log	Analytics	to	send	the	logs	to	OMS.

	Select	Metrics	under	Monitoring	in	the	left-hand	menu	of	your	API
Management	service	to	view	the	state	and	health	of	your	APIs	in	near	real-
time.	These	metrics	are	emitted	every	minute.	You	can	monitor	gateway
requests,	determine	which	of	those	were	successful	or	failed,	and	also	view
unauthorized	gateway	requests.	It	displays	an	interactive	chart	based	on	the
selected	metrics.
	Select	Alert	rules	under	Monitoring	to	create	alerts	based	on	metrics	(such	as
any	time	failed	gateway	requests	occur	over	a	one-hour	period),	activity	logs
(with	categories	such	as	security,	service	health,	autoscale,	etc.),	and	near
real	time	metrics,	based	on	the	data	captured	by	your	API	Management
service’s	metrics,	in	time	periods	spanning	from	one	minute	to	24	hours.
Alerts	can	be	emailed	to	one	or	more	recipients,	route	alerts	to	a	webhook,	or
run	a	logic	app.

Open	the	publisher	portal	to	view	Analytics.	This	shows	an	overview	of	usage
by	developers,	top	products,	top	subscriptions,	top	APIs,	and	top	operations.
Each	of	these	categories	show	the	number	of	successful	calls	versus	blocked	or
failed	calls,	as	well	as	bandwidth	used	and	average	response	time,	when
applicable.	The	usage	tab	shows	number	of	calls	and	bandwidth	by	region,
highlighting	countries	on	a	map,	corresponding	with	the	origin	of	the	requests.
You	can	select	any	continent	or	country	to	drill	down	further	into	the	selected
region.	The	health	tab	shows	statistics	about	status	codes,	caching,	API	response
time,	and	Service	response	time.	Finally,	the	activity	tab	shows	more	detailed
information	about	requests	by	developers,	on	products,	by	subscriptions,	for
APIs,	and	on	which	operations.

More	Info:	Monitor	Api	Management

To	learn	more	about	how	to	monitor	an	API	Management	service

see	https://docs.microsoft.com/azure/api-management/api-
management-howto-use-azure-monitor.

Customize	the	developer	portal
The	API	Management	developer	portal	is	built	on	top	of	a	content	management
system	(CMS),	which	gives	you	flexibility	on	ways	you	can	customize	its	layout,
content,	and	styles.	Because	this	is	the	portal	through	which	developers	discover,
subscribe	to,	and	learn	more	about	your	APIs,	you	may	wish	to	alter	the	look	and
feel	to	more	closely	match	your	company’s	website,	or	craft	the	experience	for
your	end	users	in	general.
There	are	three	different	methods	by	which	you	can	customize	the	developer

portal.

Edit	static	page	content	and	layout	elements
The	layout	of	every	page	of	the	developer	portal	is	based	on	small	page	elements
called	widgets	(Figure	4-84).

https://docs.microsoft.com/azure/api-management/api-management-howto-use-azure-monitor

FIGURE	4-84	The	widget	layout	of	the	developer	portal

The	content	area	on	the	page	is	specific	to	an	individual	page’s	contents.	Any
Contents	widget	can	be	edited	to	modify	that	page’s	content.	The	page	layout
elements	are	comprised	of	the	remaining	widgets.	Any	edits	made	to	these
layout	widgets	are	applied	to	all	pages	within	the	portal.
To	edit	the	contents	of	a	layout	widget,	perform	the	following	steps:

1.	 Navigate	to	your	API	Management	service	on	the	portal.
2.	 Select	Publisher	portal	on	the	top	of	the	overview	blade.
3.	 Select	Widgets	on	the	left-hand	menu,	underneath	the	DEVELOPER

PORTAL	section.
4.	 Select	the	widget	you	wish	to	edit,	such	as	Banner.
5.	 The	Edit	Widget	form	allows	you	to	select	the	zone	for	the	widget,	layer,

position,	title,	name	(used	for	CSS),	and	its	HTML.
6.	 Make	changes	as	desired,	and	then	click	Save.	You	immediately	see	your

changes	on	the	developer	portal.

To	edit	the	contents	of	a	page,	perform	the	following	steps:

1.	 Navigate	to	your	API	Management	service	on	the	portal.
2.	 Select	Publisher	portal	on	the	top	of	the	overview	blade.
3.	 Select	Content	on	the	left-hand	menu,	underneath	the	DEVELOPER

PORTAL	section.
4.	 Select	the	page	you	wish	to	edit,	such	as	Welcome.
5.	 The	Edit	Page	form	allows	you	change	the	page	title,	select	whether	you

wish	to	display	the	title	on	the	front-end,	and	its	HTML.
6.	 Make	changes	as	desired,	and	then	click	Save.	When	you	are	satisfied	with

your	changes,	click	Publish	Now	to	make	those	changes	visible	to
everyone.	You	immediately	see	your	changes	on	the	developer	portal.

Using	these	tools,	you	can	add	new	layout	widgets,	as	well	as	new	pages.	Use
the	Navigation	area	to	create	custom	menu	links	or	rearrange	their	order.

Customize	the	styling
Change	the	colors,	fonts,	spacing,	and	other	styles	by	altering	the	style	rules	in
the	developer	portal.	For	instance,	change	the	colors	and	fonts	to	match	your
company’s	website.	To	change	these	style	rules,	you	need	to	be	logged	in	to	the
developer	portal	as	an	administrator.	This	requires	opening	the	developer	portal

developer	portal	as	an	administrator.	This	requires	opening	the	developer	portal
from	the	publisher	portal.

1.	 Navigate	to	your	API	Management	service	on	the	portal.
2.	 Select	Publisher	portal	on	the	top	of	the	overview	blade.
3.	 Select	Developer	portal	from	the	top-right	of	the	page.
4.	 On	the	developer	portal,	hover	your	mouse	over	the	customization	icon	to

display	the	customization	toolbar	(Figure	4-85),	and	then	select	Styles	from
the	toolbar.

FIGURE	4-85	The	customization	toolbar	in	the	developer	portal

5.	 In	the	list	of	editable	styles	that	appear,	you	can	either	look	through	the	list
and	change	style	values	as	you	see	fit,	or	click	the	Select	An	Element	On
The	Page	button,	and	then	select	any	element	on	the	page	to	view	only	its
styles.

6.	 When	you	are	finished	making	edits,	click	the	Publish	button	at	the	bottom
of	the	customization	toolbar.	This	will	show	a	preview	of	your	changes.
When	satisfied,	click	the	Publish	Customizations	button	to	make	your
changes	publicly	available.

Customize	using	templates
Use	templates	to	customize	the	system-generated	developer	pages,	such	as	API
docs,	user	authentication,	products,	etc.	Template	markup	uses	the	DotLiquid
syntax,	based	on	Ruby’s	Liquid	markup,	to	alter	the	appearance	and	behavior	of
the	corresponding	page.	Dynamic	content	in	the	template	is	controlled	through
tokenized	strings.	When	you	select	a	template	to	edit,	there	are	three	panes	that
are	displayed.	The	top	pane	is	a	preview	of	the	corresponding	page.	On	the
bottom	left	is	the	template	editing	pane	where	you	edit	the	markup,	and	on	the

bottom	right	is	the	template	data	pane.	This	pane	serves	as	a	guide	to	the	data
model	for	the	entities	available	in	the	selected	template.	You	can	reference	the
template	data	when	adding	tokenized	strings	to	the	template	beside	it.
To	edit	templates,	follow	these	steps:

1.	 Navigate	to	your	API	Management	service	on	the	portal.
2.	 Select	Publisher	portal	on	the	top	of	the	overview	blade.
3.	 Select	Developer	portal	from	the	top-right	of	the	page.
4.	 On	the	developer	portal,	hover	your	mouse	over	the	customization	icon	to

display	the	customization	toolbar,	and	then	select	Templates	from	the
toolbar.

5.	 Select	the	template	you	wish	to	edit	from	the	list.
6.	 Alter	the	template	markup,	using	the	bottom-left	template	editing	pane.

Here	you	can	use	a	mix	of	HTML	and	tokenized	strings.	Reference	the
template	data	to	the	right	to	view	tokenized	strings	you	can	add	to	the
template,	and	the	values	they	will	display	if	you	reference	them.	All
changes	will	update	the	preview	pane	on	top	in	real	time.

7.	 When	finished	editing,	click	the	save	icon	in	the	template	editing	pane.
8.	 Saved	templates	can	be	published	either	individually,	or	all	together.	To

publish	an	individual	template,	click	Publish	in	the	template	editor.
9.	 Click	Yes	to	confirm	and	make	your	changes	to	the	template	live	on	the

developer	portal.

More	Info:	Edit	Static	Page	Content	and	Layout	Elements

To	learn	more	about	editing	static	page	content	and	layout
elements	on	the	developer	portal	see
https://docs.microsoft.com/azure/api-management/api-management-
modify-content-layout.

More	Info:	Customize	the	Styling

For	more	information	on	how	customize	the	styling	of	the
developer	portal,	see	https://docs.microsoft.com/azure/api-
management/api-management-customize-styles.

https://docs.microsoft.com/azure/api-management/api-management-modify-content-layout
https://docs.microsoft.com/azure/api-management/api-management-customize-styles

More	Info:	Customize	Using	Templates

For	more	information	on	how	to	customize	the	developer	portal
using	templates	see	https://docs.microsoft.com/azure/api-
management/api-management-developer-portal-templates.

Skill	4.6:	Implement	Azure	Functions	and	WebJobs
Azure	Functions	is	a	serverless	compute	service	that	enables	you	to	run	code	on-
demand	without	having	to	explicitly	provision	or	manage	infrastructure.	Use
Azure	Functions	to	run	a	script	or	piece	of	code	in	response	to	a	variety	of	events
from	sources	such	as:

	HTTP	requests
	Timers
	Webhooks
	Azure	Cosmos	DB
	Blob
	Queues
	Event	Hub
When	it	comes	to	implementing	background	processing	tasks,	the	main

options	in	Azure	are	Azure	Functions	and	WebJobs.	It	is	important	to	mention,
however,	that	Functions	are	actually	built	on	top	of	WebJobs.	The	choice	to	use
one	or	the	other	really	depends	on	the	problem	you	are	trying	to	solve.	For
example,	if	you	already	have	an	app	service	running	a	website	or	a	web	API	and
you	require	a	background	process	to	run	in	the	same	context,	a	WebJob	makes
the	most	sense.	Here	are	two	examples	that	may	drive	you	to	using	a	WebJob:

	The	Service	Plan	You	want	to	share	compute	resources	between	the	website
or	API	and	the	WebJob.
	Shared	libraries	The	WebJob	should	share	libraries	that	run	the	website	or
API.
Otherwise,	for	situations	where	you	want	to	externalize	a	process	so	that	it

runs	and	scales	independently	from	your	web	application	or	API	environment,	or
you	are	implementing	an	event	handler	in	response	to	some	external	event	(i.e.,	a
Webhook);	Azure	Functions	are	the	more	modern	serverless	technology	to
choose.

https://docs.microsoft.com/azure/api-management/api-management-developer-portal-templates

More	Info:	Azure	Functions

For	a	general	references	on	Azure	Functions	see
https://docs.microsoft.com/en-us/azure/azure-functions/.

This	skill	covers	how	to:
	Create	Azure	Functions
	Implement	a	webhook	function
	Create	an	event	processing	function
	Implement	an	Azure-connected	function
	Integrate	a	Function	with	storage
	Debug	a	Function
	Design	and	implement	a	custom	binding
	Implement	and	configure	proxies
	Integrate	with	App	Service	Plan

Create	Azure	Functions
The	Azure	portal	gives	you	a	quick	and	easy	way	to	create	a	functions	app,	add
functions	based	on	a	template	and	test	the	function.

Note:	Visual	Studio	2017

You	can	also	develop,	test,	and	publish	functions	using	Visual
Studio	2017.

To	create	a	function	app	in	the	portal	follow	these	steps	(Figure	4-86):

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	New	on	the	command	bar.
3.	 Select	Compute,	and	then	Function	App.
4.	 Click	Create	and	supply	the	app	name,	subscription,	resource	group,

hosting	plan,	location,	and	storage	plan	(if	you	select	Consumption	plan).

Note:	Consumption	Plans

https://docs.microsoft.com/en-us/azure/azure-functions/
https://portal.azure.com

Consumption	plan	means	that	resources	are	added
dynamically	as	required	by	your	function.

FIGURE	4-86	The	Create	Function	App	blade

5.	 After	a	few	minutes,	the	Functions	App	is	created	(Figure	4-87).

FIGURE	4-87	A	new	function	app

More	Info:	Creating	Functions	with	Azure	Cli

You	can	also	create	functions	using	Azure	CLI	and	from	Visual
Studio.	See	these	references	at:	https://docs.microsoft.com/en-
us/azure/azure-functions/functions-create-first-azure-function-azure-
cli	and	https://docs.microsoft.com/en-us/azure/azure-
functions/functions-create-your-first-function-visual-studio.

Implement	a	Webhook	function
Visual	Studio	provides	a	complete	development	and	debugging	environment	for
Azure	Functions	with	the	addition	of	Azure	Functions	Extension.	To	create	a
Webhook	function	using	Visual	Studio	2017,	follow	these	steps:

1.	 Ensure	you	have	the	Functions	App	Visual	Studio	Extension	installed	first
(Figure	4-88).

FIGURE	4-88	Azure	Functions	and	WebJobs	Tools

2.	 In	the	New	Project	dialog,	expand	Visual	C#	>	Cloud	node,	select	Azure

https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function-azure-cli
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-your-first-function-visual-studio

Functions,	type	a	Name	for	your	project,	and	click	OK	(Figure	4-89).

FIGURE	4-89	Selecting	Azure	Functions	from	the	New	Project	dialog

3.	 This	creates	a	new	Functions	App	in	your	subscription.	You	may	have	to
log	in	to	the	Azure	portal	to	complete	the	process.

4.	 From	Visual	Studio,	go	to	Solution	Explorer,	right-click	the	project	node,
and	select	Add	>	New	Item.	Select	Azure	Function,	and	click	Add.

5.	 From	the	New	Azure	Function	dialog,	select	Generic	WebHook,	type	the
function	name,	and	click	OK	(Figure	4-90).

FIGURE	4-90	Selecting	the	type	of	Azure	Function

6.	 This	generates	an	initial	implementation	for	your	function.	The
FunctionName	attribute	sets	the	name	of	your	function.	The
HttpTrigger(WebHookType	=	“genericJson”)	attribute	indicates	the
message	that	triggers	the	function.
Click	here	to	view	code	image

using	Microsoft.Azure.WebJobs;

using	Microsoft.Azure.WebJobs.Host;

using	Newtonsoft.Json;

using	System.Net;

using	System.Net.Http;

using	System.Threading.Tasks;

namespace	SolVsFunctionapp

{

				public	static	class	GenericWebhookFunction

				{

								[FunctionName("GenericWebhookFunction")]

								public	static	async	Task<object>

Run([HttpTrigger(WebHookType	=

"genericJson")]HttpRequestMessage	req,	TraceWriter	log)

								{

												log.Info($"Webhook	was	triggered!");

												string	jsonContent	=	await

req.Content.ReadAsStringAsync();

												dynamic	data	=

JsonConvert.DeserializeObject(jsonContent);

												if	(data.first	==	null	||	data.last	==	null)

												{

													return	req.CreateResponse(HttpStatusCode.BadRequest,

new

												{

																	error	=	"Please	pass	first/last	properties	in	the

input

object"

												});

								}

								return	req.CreateResponse(HttpStatusCode.OK,	new

								{

												greeting	=	$"Hello	{data.first}	{data.last}!"

								});

						}

				}

}

7.	 You	ran	run	the	function	from	Visual	Studio	directly	using	Azure
Functions	Tools.	Press	F5	to	run.	If	prompted,	accept	the	download	and
install	Azure	Functions	Core	tools.

8.	 You	can	copy	the	URL	of	your	function	from	the	Azure	Function	runtime
output	(Figure	4-91).

FIGURE	4-91	The	console	output	after	running	a	Webhook	function
from	Visual	Studio

9.	 You	can	now	post	a	JSON	payload	to	the	function	using	any	tool	that	an
issue	HTTP	requests	to	test	the	function.

Create	an	event	processing	function
To	create	an	event	processing	function,	please	complete	these	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Go	to	your	Function	App,	such	as	the	one	created	in	the	previous	section,

and	click	the	+	sign	to	create	a	new	function	(Figure	4-92).

https://portal.azure.com

FIGURE	4-92	The	Function	Apps	blade	where	you	can	create	a	new
function

3.	 Select	Timer	and	CSharp,	and	select	Create	This	Function	(Figure	4-93).

FIGURE	4-93	The	Function	Apps	blade	where	you	can	choose	the	type
of	function

4.	 This	creates	a	skeleton	function	that	runs	based	on	a	timer.	You	can	edit	the

function.json	file	to	adjust	settings	for	the	function	(Figure	4-94).

FIGURE	4-94	A	new	timer-based	function

5.	 You	can	view	the	output	of	the	function	and	any	logs	emitted	as	it	executes.

Implement	an	Azure-connected	function
To	create	an	Azure-connected	function	using	Azure	Queues,	follow	these	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Go	to	your	Function	App,	such	as	the	one	used	in	the	previous	section,	and

click	the	+	sign	to	create	a	new	function.
3.	 Select	QueueTrigger	-	C#,	provide	a	name	for	the	function,	provide	the

name	of	the	queue	and	the	storage	account	that	it	belongs	to.	Click	Create
to	create	the	function	(Figure	4-95).

https://portal.azure.com

FIGURE	4-95	The	setup	for	a	QueueTrigger

4.	 A	skeleton	implementation	for	the	function	is	created.	This	is	triggered	for
each	message	written	to	the	specified	queue	(Figure	4-96).

FIGURE	4-96	The	code	behind	the	QueueTrigger	function

5.	 To	complete	the	integration,	create	the	storage	account	and	queue	that	you
specified	when	creating	the	function.	From	the	function	app	definition,
select	the	Integrate	tab,	and	select	the	storage	queue	under	Triggers.
Expand	the	Documentation	link	and	enter	the	storage	account	name	and

key.	The	function	will	use	these	credentials	to	connect	to	the	storage
account	(Figure	4-97).

FIGURE	4-97	The	integration	blade	for	setting	up	the	storage	queue	trigger
credentials

To	test	the	function,	add	a	message	to	the	queue.	After	a	few	seconds	the
function	log	in	the	portal	shows	output	from	processing	the	message	(Figure	4-
98).

FIGURE	4-98	The	log	output	for	the	function	after	processing	a	single
message

Integrate	a	function	with	storage
To	create	a	function	integrated	with	Azure	Storage	Blobs,	follow	these	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Go	to	your	Function	App,	such	as	the	one	used	in	the	previous	section,	and

click	the	+	sign	to	create	a	new	function.
3.	 Select	BlobTrigger	-	C#,	provide	a	name	for	the	function,	provide	the	path

to	the	blob	container	item	and	the	storage	account	that	it	belongs	to.	Click
Create	to	create	the	function	(Figure	4-99).

https://portal.azure.com

FIGURE	4-99	The	setup	for	a	BlobTrigger

4.	 A	skeleton	implementation	for	the	function	is	created.	This	is	triggered	for
each	blob	written	to	the	specified	storage	container	(Figure	4-100).

FIGURE	4-100	The	code	behind	the	BlobTrigger	function

5.	 To	complete	the	integration,	create	the	storage	account	and	blob	container
that	you	specified	when	creating	the	function.	From	the	function	app
definition,	select	the	Integrate	tab,	and	select	Azure	Blob	Storage	under
Triggers.	Expand	the	Documentation	link,	and	enter	the	storage	account

name	and	key.	The	function	uses	these	credentials	to	connect	to	the	storage
account	(Figure	4-101).

FIGURE	4-101	The	integration	blade	for	setting	up	the	blob	trigger
credentials

6.	 To	test	the	function,	add	a	file	to	the	blob	container.	After	a	few	seconds
the	function	log	in	the	portal	shows	output	from	processing	the	message,	as
illustrated	in	the	previous	section	for	Azure	storage	queues.

Design	and	implement	a	custom	binding
Function	triggers	indicate	how	a	function	is	invoked.	There	are	a	number	of
predefined	triggers,	some	already	discussed	in	previous	sections,	including:

	HTTP	triggers
	Event	triggers
	Queues	and	topic	triggers
	Storage	triggers

Every	function	must	have	one	trigger.	The	trigger	is	usually	associated	with	a
data	payload	that	is	supplied	to	the	function.	Bindings	are	a	declarative	way	to
map	data	to	and	from	function	code.	Using	the	Integrate	tab	(as	shown	in
previous	sections	to	connect	a	Queue	to	a	function,	for	example)	you	can	provide
connection	settings	for	such	a	data	binding	activity.

More	Info:	Triggers	and	Bindings

For	additional	details	on	triggers	and	bindings	available	to	Azure
Functions,	and	how	they	work,	see	https://docs.microsoft.com/en-
us/azure/azure-functions/functions-triggers-bindings.

Exam	Tip

You	can	also	create	custom	input	and	output	bindings	to	assist	with
reducing	code	bloat	in	your	functions	by	encapsulating	reusable,
declarative	work	into	the	binding.	For	details	on	how	to	implement
custom	bindings	see	https://github.com/Azure/azure-webjobs-
sdk/wiki/Creating-custom-input-and-output-bindings.

Debug	a	Function
You	can	use	VS	Code	or	Visual	Studio	2017	to	debug	an	Azure	Function.	For
more	information	on	working	with	local	Functions	projects	and	local	debugging,
see:	https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local.

Implement	and	configure	proxies
If	you	have	a	solution	with	many	functions	you’ll	find	it	can	become	work	to
manage	given	the	different	URLs,	naming,	and	versioning	potentially	related	to
each	function.	An	API	Proxy	acts	as	a	single	point	of	entry	to	functions	from	the
outside	world.	Instead	of	calling	the	individual	function	URLs,	you	provide	a
proxy	as	a	facade	to	your	different	function	URLs.

Note:	Api	Proxies

API	Proxies	make	sense	in	HTTP-bound	Azure	Functions.	They

https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://github.com/Azure/azure-webjobs-sdk/wiki/Creating-custom-input-and-output-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local

may	work	for	other	event-driven	functions,	however,	HTTP
triggers	are	best	suited	for	their	functionality.	In	addition,	API
Proxies	are	in	preview	at	the	time	of	this	writing	and	do	not	include
any	security	features.	As	an	alternative,	you	can	use	API
Management	for	a	fully	featured	solution.

To	create	a	simple	API	Proxy,	follow	these	steps	(Figure	4-102):

1.	 Consider	an	existing	function	that	includes	the	function	code	(API	key)	and
any	query	string	parameters	in	the	URL	such	as	the	following	example:
Click	here	to	view	code	image

https://sol-newfunctionapp.azurewebsites.netapi

AirplanesApi?

code=N8eJPFEkD1MkOeQngOqRsaLVxeHRQ4QcxacFRdLtMDBdak3eeN/

kNQ==&id=0099991

2.	 API	proxies	require	two	important	pieces	of	information:

A.	 The	Route	Template	Provides	a	template	of	how	the	proxies	are
triggered,	for	example	a	REST-compliant	API	path	that	removes	the
need	for	the	function	code	and	query	string	parameters:

apiairplanes/86327

B.	 The	Backend	URL	The	function	URL	to	match	to.

FIGURE	4-102	The	settings	while	creating	a	new	API	proxy

3.	 Update	the	Backend	URL	too	so	that	it	uses	the	variables	provided	in	the
route	template.
Click	here	to	view	code	image

https://sol-newfunctionapp.azurewebsites.netapi{rest}Api?

code=q/vTyTaw4wTzyFuY16wuMOnUPEhJLzRFqKRDXaChGz3/HzS0myMaNw==&id=

{id}.

4.	 When	you	request	the	URL,	the	variables	in	the	route	template	(i.e.,	{rest}
and	{id})	are	replaced	with	whatever	is	passed	in	the	request.	For	example,
this	URL:
Click	here	to	view	code	image

https://sol-newfunctionapp.azurewebsites.netapiairplanes/3434

Routes	to	this	URL:
Click	here	to	view	code	image

https://sol-newfunctionapp.azurewebsites.netapiairplanesApi?code=q/

vTyTaw4wTzyFuY16wuMOnUPEhJLzRFqKRDXaChGz3/HzS0myMaNw==&id=3434

Exam	Tip

API	proxies	have	the	ability	to	modify	the	requests	and	responses
on	the	fly.

More	Info:	Api	Proxies

For	more	details	about	API	Proxies	see
https://docs.microsoft.com/en-us/azure/azure-functions/functions-
proxies.

Integrate	with	App	Service	Plan
Functions	can	operate	in	two	different	modes:

	Consumption	Plan	Where	your	function	is	allocated	dynamically	to	the
amount	of	compute	power	required	to	execute	under	the	current	load.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-proxies

	App	Service	Plan	Where	your	function	is	assigned	a	specific	app	service
hosting	plan	and	is	limited	to	the	resources	available	to	that	hosting	plan.
For	more	information	about	the	difference	between	Consumption	and	App

Service	Plans	see:	https://docs.microsoft.com/en-us/azure/azure-
functions/functions-scale.	For	more	information	about	setting	up	an	App	Service
Plan	see:	https://docs.microsoft.com/en-us/azure/app-service/azureweb-sites-
web-hosting-plans-in-depth-overview.

Skill	4.7:	Design	and	Implement	Azure	Service	Fabric	apps
Azure	Service	Fabric	is	a	platform	that	makes	it	easy	to	package,	deploy,	and
manage	distributed	solutions	at	scale.	It	provides	an	easy	programming	model
for	building	microservices	solutions	with	a	simple,	familiar,	and	easy	to
understand	development	experience	that	supports	stateless	and	stateful	services,
and	actor	patterns.	In	addition,	to	providing	a	packaging	and	deployment
solution	for	these	native	components,	Service	Fabric	also	supports	the
deployment	of	guest	executables	and	containers	as	part	of	the	same	managed	and
distributed	system.
The	following	list	summarizes	these	native	and	executable	components:
	Stateless	Services	Stateless	Fabric-aware	services	that	run	without	managed
state.
	Stateful	Services	Stateful	Fabric-aware	services	that	run	with	managed	state
where	the	state	is	close	to	the	compute.
	Actors	A	higher	level	programming	model	built	on	top	of	stateful	services.
	Guest	Executable	Can	be	any	application	or	service	that	may	be	cognizant
or	not	cognizant	of	Service	Fabric.
	Containers	Both	Linux	and	Windows	containers	are	supported	by	Service
Fabric	and	may	be	cognizant	or	not	cognizant	of	Service	Fabric.
This	skill	provides	an	overview	of	the	Service	Fabric	programming

experience.

More	Info:	Service	Fabric	Overview

For	an	overview	of	Service	Fabric	see	https://docs.microsoft.com/en-
us/azure/service-fabric.

This	skill	covers	how	to:

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/app-service/azure-web-sites-web-hosting-plans-in-depth-overview
https://docs.microsoft.com/en-us/azure/service-fabric

	Create	a	Service	Fabric	application
	Add	a	web	front	end	to	a	Service	Fabric	application
	Build	an	Actors-based	service
	Monitor	and	diagnose	services
	Deploy	an	application	to	a	container
	Migrate	apps	from	cloud	services
	Scale	a	Service	Fabric	app
	Create,	secure,	upgrade,	and	scale	Service	Fabric	Cluster	in	Azure

Create	a	Service	Fabric	application
A	Service	Fabric	application	can	consist	of	one	or	more	services.	The
application	defines	the	deployment	package	for	the	services,	and	each	service
can	have	its	own	configuration,	code,	and	data.	A	Service	Fabric	cluster	can	host
multiple	applications,	and	each	has	its	own	independent	deployment	and	upgrade
lifecycle.

More	Info:	Service	Fabric	Applications

The	following	reference	has	additional	information	about	the
Service	Fabric	application	and	related	concepts	at
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
application-model.

In	this	skill	you	create	a	new	Service	Fabric	application	that	has	a	stateful
service.	This	service	is	reachable	via	RPC	and	is	called	by	a	web	front	end
created	in	the	next	section.	The	service	is	called	Lead	Generator	and	returns	the
current	count	for	the	number	of	leads	that	have	been	generated	and	persisted
with	the	service.	Figure	4-103	illustrates	the	service	endpoint.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-model

FIGURE	4-103	A	simple	stateful	service	endpoint	supporting	RPC
communication

To	create	a	new	Service	Fabric	application,	follow	these	steps:

1.	 Launch	Visual	Studio,	and	then	select	File	>	New	>	Project.
2.	 In	the	New	Project	dialog,	select	Service	Fabric	Application	within	the

Cloud	category.	Provide	a	name	and	location	for	your	new	project,	nd	then
click	OK.	In	this	example	the	name	is	LeadGenerator	(Figure	4-104).

FIGURE	4-104	The	New	Project	dialog	where	you	can	select	Service
Fabric	Application	as	the	project	type

3.	 Select	Stateful	Service	from	the	list	of	service	templates	and	provide	a
name,	LeadGenerator.Simulator	as	shown	here.

FIGURE	4-105	The	New	Service	Fabric	Service	dialog	where	you	can
select	Stateful	Service	as	the	service	template

4.	 From	Solution	Explorer,	expand	the	new	LeadGenerator.Simulator	node
and	expand	the	PackageRoot	folder	where	you’ll	find	ServiceManifest.xml.
This	file	describes	the	service	deployment	package	and	related	information.
It	includes	a	section	that	describes	the	service	type	that	is	initialized	when
the	Service	Fabric	runtime	starts	the	service:
Click	here	to	view	code	image

<ServiceTypes>

		<StatefulServiceType	ServiceTypeName="SimulatorType"

HasPersistedState="true"	/>

</ServiceTypes>

5.	 A	service	type	is	created	for	the	project;	in	this	case	the	type	is	defined	in
the	Simulator.cs	file.	This	service	type	is	registered	when	the	program
starts,	in	Program.cs,	so	that	the	Service	Fabric	runtime	knows	which	type
to	initialize	when	it	creates	an	instance	of	the	service.
Click	here	to	view	code	image

private	static	void	Main()

{

				try

				{

								ServiceRuntime.RegisterServiceAsync("SimulatorType",

												context	=>	new

Simulator(context)).GetAwaiter().GetResult();

								ServiceEventSource.Current.ServiceTypeRegistered(Process.

GetCurrentProcess().Id,

	typeof(Simulator).Name);

								Thread.Sleep(Timeout.Infinite);

				}

				catch	(Exception	e)

				{

								ServiceEventSource.Current.ServiceHostInitializationFailed(e.ToString());

								throw;

				}

}

6.	 The	template	produces	a	default	implementation	for	the	service	type,	with	a
RunAsync	method	that	increments	a	counter	every	second.	This	counter
value	is	persisted	with	the	service	in	a	dictionary	using	the	StateManager,
available	through	the	service	base	type	StatefulService.	This	counter	is
used	to	represent	the	number	of	leads	generated	for	the	purpose	of	this
example.
Click	here	to	view	code	image

protected	override	async	Task	RunAsync(CancellationToken

cancellationToken)

{

				var	myDictionary	=	await

this.StateManager.GetOrAddAsync<IReliableDictionary<s

tring,	long>>("myDictionary");

				while	(true)

				{

								cancellationToken.ThrowIfCancellationRequested();

								using	(var	tx	=	this.StateManager.CreateTransaction())

								{

												var	result	=	await	myDictionary.TryGetValueAsync(tx,

"Counter");

												ServiceEventSource.Current.ServiceMessage(this.Context,

"Current	

Counter	Value:	{0}",

																result.HasValue	?	result.Value.ToString()	:	"Value

does	not	

exist.");

												await	myDictionary.AddOrUpdateAsync(tx,	"Counter",	0,

(key,	value)

=>	++value);

												await	tx.CommitAsync();

							}

							await	Task.Delay(TimeSpan.FromSeconds(1),

cancellationToken);

			}

}

7.	 This	service	will	run,	and	increment	the	counter	as	it	runs	persisting	the
value,	but	by	default	this	service	does	not	expose	any	methods	for	a	client
to	call	it.	Before	you	can	create	an	RPC	listener	you	add	the	required	nuget
package,	Microsoft.ServiceFabric.Services.Remoting.

8.	 Create	a	new	service	interface	using	the	IService	marker	interface	from	the
Microsoft.ServiceFabric.Services.Remoting	namespace,	that	indicates	this
service	can	be	called	remotely:
Click	here	to	view	code	image

using	Microsoft.ServiceFabric.Services.Remoting;

using	System.Threading.Tasks;

public	interface	ISimulatorService	:	IService	

{

	Task<long>	GetLeads();

}

9.	 Implement	this	interface	on	the	Simulator	service	type,	and	include	an
implementation	of	the	GetLeads	method	to	return	the	value	of	the	counter:

Click	here	to	view	code	image

public	async	Task<long>	GetLeads()	

{

				var	myDictionary	=	await

StateManager.GetOrAddAsync<IReliableDictionary<stri

ng,	long>>("myDictionary");

				using	(var	tx	=	StateManager.CreateTransaction())	

	{

								var	result	=	await	myDictionary.TryGetValueAsync(tx,

"Counter");

								await	tx.CommitAsync();

								return	result.HasValue	?	result.Value	:	0;

				}

}

10.	 To	expose	this	method	to	clients,	add	an	RPC	listener	to	the	service.
Modify	the	CreateServiceReplicaListeners()	method	in	the	Simulator
service	type	implementation,	to	add	a	call	to
CreateServiceReplicaListeners()	as	shown	here:
Click	here	to	view	code	image

								protected	override	IEnumerable<ServiceReplicaListener>

CreateServiceReplicaListeners()	{

												yield	return	new	ServiceReplicaListener(this.

CreateServiceRemotingListener);

								}

More	Info:	Service	Fabric	Communication

For	more	information	related	to	setting	up	listeners	for	Service
Fabric	stateful	services	see	https://docs.microsoft.com/en-
us/azure/service-fabric/service-fabric-reliable-services-
communication.

Add	a	web	front	end	to	a	Service	Fabric	application
The	previous	section	reviewed	creating	a	simple	stateful	service	that	returns	the
value	of	a	counter	over	RPC.	To	illustrate	calling	this	service	from	a	client
application,	this	section	reviews	how	to	create	a	web	front	end	and	call	a	stateful
service	endpoint,	as	illustrated	in	Figure	4-106.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-communication

FIGURE	4-106	An	HTTP	listener-based	web	app	calling	a	stateful	service
over	RPC

Follow	these	steps	to	add	a	web	app	to	an	existing	Service	Fabric	application:

1.	 From	the	Solution	Explorer	in	Visual	Studio,	expand	the	Service	Fabric
application	node.	Right-click	the	Services	node,	and	select	New	Service
Fabric	Service	(Figure	4-107).

FIGURE	4-107	The	context	menu	for	adding	a	new	Service	Fabric
service	to	the	existing	application	services

2.	 From	the	New	Service	Fabric	Service	dialog,	select	Stateless	ASP.NET
Core	for	the	service	template.	Supply	the	service	name
LeadGenerator.WebApp,	and	click	OK	(Figure	4-108).

http://ASP.NET

FIGURE	4-108	The	New	Service	Fabric	Service	dialog	where	you	can
choose	the	Stateless	ASP.NET	Core	template

3.	 From	the	New	ASP.NET	Core	Web	Application	dialog	select	Web
Application	(Model-View-Controller)	template.	Click	OK.

4.	 From	Solution	Explorer,	expand	the	new	LeadGenerator.WebApp	node,
and	expand	the	PackageRoot	folder	where	you’ll	find	ServiceManifest.xml.
Alongside	the	service	type	definition	there	is	a	section	that	describes	the
HTTP	endpoint	where	the	web	app	will	listen	for	requests:
Click	here	to	view	code	image

	<Endpoints>"

		<Endpoint	Protocol="http"	Name="ServiceEndpoint"	Type="Input"

Port="8168"	/>

</Endpoints>

5.	 The	new	WebApp	type	is	defined	in	WebApp.cs,	which	inherits
StatelessService.	For	the	service	to	listen	for	HTTP	requests,	the
CreateServiceInstanceListeners()	method	sets	up	the	WebListener	as	shown
in	this	listing	for	the	type:

http://ASP.NET
http://ASP.NET

Click	here	to	view	code	image

internal	sealed	class	WebApp	:	StatelessService

{

public	WebApp(StatelessServiceContext	context)	:	base(context)

{	}

protected	override	IEnumerable<ServiceInstanceListener>	

CreateServiceInstanceListeners()

{

				return	new	ServiceInstanceListener[]

				{

								new	ServiceInstanceListener(serviceContext	=>

												new	WebListenerCommunicationListener(serviceContext,	

"ServiceEndpoint",	(url,	listener)	=>

												{

																ServiceEventSource.Current.ServiceMessage(serviceContext,

$"Starting	WebListener	on	{url}");

																return	new	WebHostBuilder().UseWebListener()

																												.ConfigureServices(services	=>	

																																services

																																.AddSingleton<StatelessServiceContext>

(serviceCon

text))

																												.UseContentRoot(Directory.GetCurrentDirectory())

																												.UseStartup<Startup>()

																												.UseApplicationInsights()

																												.UseServiceFabricIntegration(listener,	

ServiceFabricIntegrationOptions.None)

																												.UseUrls(url)

																												.Build();

												}))

				};

}

}

Next	you	call	the	stateful	service	that	returns	the	leads	counter	value,	from	the
stateless	web	application	just	created.

1.	 Make	a	copy	of	the	service	interface	defined	for	the	service	type,	in	this
case	ISimulatorService:
Click	here	to	view	code	image

public	interface	ISimulatorService	:	IService	

{

	Task<long>	GetLeads();

}

2.	 Modify	the	ConfigureServices	instruction	in	WebApp.cs	to	inject	an
instance	of	the	FabricClient	type	(change	shown	in	bold):

Click	here	to	view	code	image

return	new	WebHostBuilder().UseWebListener()

		.ConfigureServices(services	=>	{

		services

		.AddSingleton<StatelessServiceContext>(serviceContext)

		.AddSingleton(new	FabricClient());	

})

3.	 Now	that	FabricClient	is	available	for	dependency	injection,	modify	the
HomeController	to	use	it:
Click	here	to	view	code	image

private	FabricClient	_fabricClient;	

public	HomeController(FabricClient	client)	{	_fabricClient	=

client;	}

4.	 Modify	the	Index	method	in	the	HomeController	to	use	the	FabricClient
instance	to	call	the	Simulator	service:
Click	here	to	view	code	image

public	async	Task<IActionResult>	Index()

{

				ViewData["Message"]	=	"Your	home	page.";

				var	model	=	new	Dictionary<Guid,	long>();

				var	serviceUrl	=	new	Uri("fabric:/LeadGenerator/Simulator");

				foreach	(var	partition	in	await	

_fabricClient.QueryManager.GetPartitionListAsync(serviceUrl))

				{

								var	partitionKey	=	new	ServicePartitionKey

(((Int64RangePartitionInformation)partition.PartitionInformation).LowKey);

								var	proxy	=	ServiceProxy.Create<ISimulatorService>

(serviceUrl,	

partitionKey);

								var	leads	=	await	proxy.GetLeads();

								model.Add(partition.PartitionInformation.Id,	leads);

				}

				return	View(model);

}

5.	 Update	Index.cshtml	to	display	the	counter	for	each	partition:
Click	here	to	view	code	image

@model	IDictionary<Guid,	long>

<h2>@ViewData["Title"].</h2>

<h3>@ViewData["Message"]</h3>

<table	class="table-bordered">

				<tr>

								<td>PARTITION	ID</td>

								<td>#	LEADS</td>

				</tr>

				@foreach	(var	partition	in	Model)

				{

								<tr>

												<td>@partition.Key.ToString()</td>

												<td>@partition.Value</td>

								</tr>

				}

</table>

6.	 To	run	the	web	app	and	stateful	service,	you	can	publish	it	to	the	local
Service	Fabric	cluster.	Right-click	the	Service	Fabric	application	node	from
the	Solution	Explorer	and	select	Publish.	From	the	Publish	Service	Fabric
Application	dialog,	select	a	target	profile	matching	one	of	the	local	cluster
options,	and	click	Publish	(Figure	4-109).

FIGURE	4-109	The	Publish	Service	Fabric	Application	dialog

7.	 Once	the	application	is	deployed,	you	can	access	the	web	app	at
http://localhost:8162	(or,	whatever	the	indicated	port	is	in	the	service
manifest	for	the	web	app.	The	home	page	triggers	a	call	to	the	stateful
service,	which	will	increment	as	the	counter	is	updated	while	it	runs.

http://localhost:8162

Build	an	Actors-based	service
The	actor	model	is	a	superset	of	the	Service	Fabric	stateful	model.	Actors	are
simple	POCO	objects	that	have	many	features	that	make	them	isolated,
independent	unit	of	compute	and	state	with	single-thread	execution.
To	create	a	new	Service	Fabric	application	based	on	the	Actor	service

template,	follow	these	steps:

1.	 Launch	Visual	Studio,	then	select	File	>	New	>	Project.
2.	 In	the	New	Project	dialog,	select	Service	Fabric	Application	within	the

Cloud	category.	Provide	a	name	and	location	for	your	new	project,	and
then	click	OK.

3.	 Select	Actor	Service	from	the	list	of	service	templates	and	provide	a	name,
such	as	SimpleActor.

4.	 This	generates	a	default	implementation	of	the	Actor	Service.

MORE	INFO:	Service	Fabric	Reliable	Actors

For	more	information	on	the	implementation	of	the	actor	pattern
in	Service	Fabric	see	https://docs.microsoft.com/en-us/azure/service-
fabric/service-fabric-reliable-actors-introduction.

Monitor	and	diagnose	services
All	applications	benefit	from	monitoring	and	diagnostics	to	assist	with
troubleshooting	issues,	evaluating	performance	or	resource	consumption,	and
gathering	useful	information	about	the	application	at	runtime.	For	more
information	about	Service	Fabric	specific	approaches	to	this,	see
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-
overview.

Deploy	an	application	to	a	container
Service	Fabric	can	run	processes	and	containers	side	by	side,	and	containers	can
be	Linux	or	Windows	based	containers.	If	you	have	an	existing	container	image
and	wish	to	deploy	this	to	an	existing	Service	Fabric	cluster,	you	can	follow
these	steps	to	create	a	new	Service	Fabric	application	and	set	it	up	to	deploy	and
run	the	container	in	your	cluster:

1.	 Launch	Visual	Studio,	nd	then	select	File	>	New	>	Project.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-overview

2.	 In	the	New	Project	dialog,	select	Service	Fabric	Application	within	the
Cloud	category.	Provide	a	name	and	location	for	your	new	project,	and
then	click	OK.

3.	 From	the	New	Service	Fabric	Service	dialog,	choose	Container	for	the	list
of	templates	and	supply	a	container	image	and	name	for	the	guest
executable	to	be	created	(Figure	4-110).

FIGURE	4-110	The	New	Service	Fabric	Service	dialog	with	Container
selected,	and	an	image	name	specified

4.	 From	Solution	Explorer,	open	the	ServiceManifest.xml	file	and	modify	the
<Resources>	section	to	provide	a	UriScheme,	Port	and	Protocol	setting	for
the	service	endpoint.
Click	here	to	view	code	image

		<Resources>

				<Endpoints>

						<Endpoint	Name="IISGuestTypeEndpoint"	UriScheme="http"

Port="80"

Protocol="http"/>

				</Endpoints>

		</Resources>

5.	 From	Solution	Explorer,	open	the	ApplicationManifest.xml	file.	Create	a
policy	for	container	to	host	<PortBinding>	policy	by	adding	this	<Policies>
section	to	the	<ServiceManifestImports>	section.	Indicate	the	container
port	for	your	container.	In	this	example	the	container	port	is	80.
Click	here	to	view	code	image

		<ServiceManifestImport>

				<ServiceManifestRef	ServiceManifestName="IISGuestPkg"

ServiceManifestVersion="1.0.0"	/>

				<ConfigOverrides	/>

				<Policies>

						<ContainerHostPolicies	CodePackageRef="Code">

								<PortBinding	ContainerPort="80"

EndpointRef="IISGuestTypeEndpoint"/>

					</ContainerHostPolicies>

			</Policies>

	</ServiceManifestImport>

6.	 Now	that	you	have	the	application	configured,	you	can	publish	and	run	the
service.

Exam	Tip

Currently,	you	cannot	run	containers	in	the	local	Service	Fabric
cluster	because	it	requires	Windows	Server	2016	with	container
support.

More	Info:	Windows	Containers

For	more	information	regarding	working	with	Windows	containers
both	locally	and	in	Windows	Server	environments	see
https://docs.microsoft.com/en-
us/virtualization/windowscontainers/index.

Migrate	apps	from	cloud	services
You	can	migrate	your	existing	cloud	services,	both	web	and	worker	roles,	to

https://docs.microsoft.com/en-us/virtualization/windowscontainers/index

Service	Fabric	applications	following	instructions	in	the	following	reference	at
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cloud-
services-migration-worker-role-stateless-service.

Scale	a	Service	Fabric	app
In	order	to	scale	a	Service	Fabric	app,	the	following	terms	are	important	to
understand:	Instances,	Partitions,	and	Replicas.
By	default,	the	Service	Fabric	tooling	produces	three	publish	profiles	that	you

can	use	to	deploy	your	application:
	Local.1Node.xml	To	deploy	against	the	local	1-node	cluster.
	Local.5Node.xml	To	deploy	against	the	local	5-node	cluster.
	Cloud.xml	To	deploy	against	a	Cloud	cluster.
These	publish	profiles	indicate	the	settings	for	the	number	of	instances	and

partitions	for	each	service.	Consider	this	example	of	the	parameters	to	a
Local.5Node.xml:
Click	here	to	view	code	image

<Parameters>

		<Parameter	Name="WebApp_InstanceCount"	Value="3"	/>

		<Parameter	Name="Simulator_PartitionCount"	Value="3"	/>

		<Parameter	Name="Simulator_MinReplicaSetSize"	Value="3"	/>

		<Parameter	Name="Simulator_TargetReplicaSetSize"	Value="3"	/>

</Parameters>

	WebApp_InstanceCount	Specifies	the	number	of	instances	the	WebApp
service	must	have	within	the	cluster.
	Simulator_PartitionCount	Specifies	the	number	of	partitions	(for	the
stateful	service)	the	Simulator	service	must	have	within	the	cluster.
	Simulator_MinReplicaSetSize	Specifies	the	minimum	number	of	replicas
required	for	each	partition	that	the	WebApp	service	should	have	within	the
cluster.
	Simulator_TargetReplicaSetSize	Specifies	the	number	of	target	replicas
required	for	each	partition	that	the	WebApp	service	should	have	within	the
cluster.
Consider	the	following	diagram	illustrating	the	instances	and	partitions

associated	with	the	stateless	Web	App	and	stateful	simulator	service,	as	shown
in	the	Local.5Node.xml	configuration	(Figure	4-111).

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cloud-services-migration-worker-role-stateless-service

FIGURE	4-111	The	instances	for	a	stateless	service,	and	partitions	for	a
stateful	service

	The	Web	App	instance	count	is	set	to	3.	As	the	diagram	illustrates,	when
published	to	a	Service	Fabric	cluster	in	Azure	requests	would	be	load
balanced	across	those	three	instances.
	The	Simulator	service	is	assigned	three	partitions,	each	of	which	have
replicas	to	ensure	durability	of	each	instance’s	state.

Exam	Tip

Sometimes	the	terms	instances	and	replicas	are	used
interchangeably,	however,	instances	are	for	stateless	services
whereas	replicas	are	for	stateful	services.

Create,	secure,	upgrade,	and	scale	Service	Fabric	Cluster	in
Azure
To	publish	your	Service	Fabric	application	to	the	Azure	in	production,	you’ll
create	a	cluster,	learn	how	to	secure	it,	learn	how	to	upgrade	applications	with
zero	downtime,	and	configure	the	application	to	scale	following	some	of	the
practices	already	discussed.	The	following	references	will	start	you	off	with
these	topics:

	For	an	introduction	to	creating	a	Service	Fabric	Cluster	see:
	https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-
started-azure-cluster
	https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
deploy-anywhere

	For	details	on	securing	Azure	Service	Fabric	Clusters	in	production,	see	this
reference:

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started-azure-cluster
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-deploy-anywhere

	https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
cluster-security

	For	details	on	upgrading	clusters,	see	this	reference:
	https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
cluster-upgrade

	You	can	scale	clusters	manually	or	programmatically	as	described	in	these
references:
	https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
cluster-scale-up-down
	https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
cluster-programmatic-scaling

Skill	4.8:	Design	and	implement	third-party	Platform	as	a	Service
(PaaS)
Azure	supports	many	third-party	PaaS	offerings	and	services	through	the	Azure
Marketplace.	These	can	be	deployed	through	the	Azure	portal,	using	ARM,	or
using	other	CLI	tools.	This	skill	helps	you	navigate	those	offerings.

This	skill	covers	how	to:
	Implement	Cloud	Foundry
	Implement	OpenShift
	Provision	applications	by	using	Azure	Quickstart	Templates
	Build	applications	that	leverage	Azure	Marketplace	solutions	and
services

Implement	Cloud	Foundry
Cloud	Foundry	is	an	open-source	PaaS	for	building,	deploying,	and	operating
12-factor	applications	developed	in	various	languages	and	frameworks.	It	is	a
mature	container-based	application	platform	allowing	you	to	easily	deploy	and
manage	production-grade	applications	on	a	platform	that	supports	continuous
delivery	and	horizontal	scale,	and	supports	hybrid	and	multi-cloud	scenarios.
There	are	two	forms	of	Cloud	Foundry	available	to	run	on	Azure:
	Open-source	Cloud	Foundry	(OSS	CF)	An	entirely	open-source	version	of
Cloud	Foundry	managed	by	the	Cloud	Foundry	Foundation.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-security
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-upgrade
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-scale-up-down
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-programmatic-scaling

	Pivotal	Cloud	Foundry	(PCF)	An	enterprise	distribution	of	Cloud	Foundry
from	Pivotal	Software	Inc.,	which	adds	on	a	set	of	proprietary	management
tools	and	enterprise	support.

More	Info:	Azure	Service	Principals

Before	you	can	create	a	Cloud	Foundry	cluster	in	Azure	you	must
first	create	an	Azure	Service	Principal,	following	the	instructions
found	at:	https://github.com/cloudfoundry-incubator/bosh-azure-cpi-
release/blob/master/docs/get-started/create-service-principal.md.

To	deploy	a	basic	Pivotal	Cloud	Foundry	on	Azure	from	the	Azure
Marketplace,	follow	these	steps:

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	Marketplace	from	the	Azure	Dashboard.
3.	 Search	for	“Pivotal	Cloud	Foundry,”	and	select	Pivotal	Cloud	Foundry	On

Azure.
4.	 From	within	the	Pivotal	Cloud	Foundry	On	Azure	blade,	click	Create

(Figure	4-112).
5.	 On	the	Basics	blade,	provide	a	storage	account	name	prefix,	paste	your

SSH	public	key,	upload	the	azure-credentials.json	Service	Principal	file,
enter	the	Pivotal	Network	API	token,	choose	a	resource	group,	and	location
for	the	cluster.	Click	OK.

https://github.com/cloudfoundry-incubator/bosh-azure-cpi-release/blob/master/docs/get-started/create-service-principal.md
https://portal.azure.com

FIGURE	4-112	The	selections	for	a	new	Pivotal	Cloud	Foundry	cluster	in
the	portal

6.	 On	the	Summary	blade,	wait	for	the	validation	to	pas,s	and	click	OK.
7.	 On	the	Buy	blade,	click	Purchase.

To	deploy	the	open-sourced	version	of	Cloud	Foundry	on	Azure,	you	deploy
BOSH	and	then	Cloud	Foundry.	The	steps	can	be	performed	manually,	or	via
Azure	Resource	Manager	(ARM)	templates.	Detailed	instructions	can	be	found
at	https://github.com/cloudfoundry-incubator/bosh-azure-cpi-
release/tree/master/docs.

More	Info:	SSH	Keys

For	more	information	about	creating	SSH	keys	for	creating
clusters	see:	https://docs.microsoft.com/en-us/azure/virtual-
machines/linux/ssh-from-windows.

More	Info:	Deploying	an	App	to	Cloud	Foundry

https://github.com/cloudfoundry-incubator/bosh-azure-cpi-release/tree/master/docs
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/ssh-from-windows

For	more	information	about	deploying	apps	to	your	Cloud
Foundry	cluster	see:	https://docs.microsoft.com/azure/virtual-
machines/linux/cloudfoundry-deploy-your-first-app.

Implement	OpenShift
The	OpenShift	Container	Platform	is	a	PaaS	offering	from	Red	Hat	built	on
Kubernetes.	It	brings	together	Docker	and	Kubernetes,	and	provides	an	API	to
manage	these	services.	OpenShift	simplifies	the	process	of	deploying,	scaling,
and	operating	multi-tenant	applications	onto	containers.
There	are	two	forms	of	OpenShift	that	you	can	deploy	to	Azure:
	The	open-source	OpenShift	Origin
	The	enterprise-grade	Red	Hat	OpenShift	Container	Platform
Both	are	built	on	the	same	open	source	technologies,	with	the	Red	Hat

OpenShift	Container	Platform	offering	enterprise-grade	security,	compliance,
and	container	management.
Prerequisites	for	installing	both	forms	of	OpenShift	include:

1.	 Generate	an	SSH	key	pair	(Public	/	Private),	ensuring	that	you	do	not
include	a	passphrase	with	the	private	key.

2.	 Create	a	Key	Vault	to	store	the	SSH	Private	Key.
3.	 Create	an	Azure	Active	Directory	Service	Principal.
4.	 Install	and	configure	the	OpenShift	CLI	to	manage	the	cluster.

Some	specific	prerequisites	for	deploying	Red	Hat	OpenShift	Container
Platform	include:

5.	 OpenShift	Container	Platform	subscription	eligible	for	use	in	Azure.	You
need	to	specify	the	Pool	ID	that	contains	your	entitlements	for	OpenShift.

6.	 Red	Hat	Customer	Portal	login	credentials.	You	may	use	either	an
Organization	ID	and	Activation	Key,	or	a	Username	and	Password.	It	is
more	secure	to	use	the	Organization	ID	and	Activation	Key.

You	can	deploy	both	from	the	Azure	Marketplace	templates,	or	using	ARM
templates.
To	deploy	Red	Hat	OpenShift	Container	Platform	on	Azure	from	the	Azure

Marketplace,	perform	the	following	steps	(Figure	4-113):

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.

https://docs.microsoft.com/azure/virtual-machines/linux/cloudfoundry-deploy-your-first-app
https://portal.azure.com

2.	 Select	Marketplace	from	the	Azure	Dashboard.
3.	 Search	for	“OpenShift,”	and	select	Red	Hat	OpenShift	Container	Platform

(BYOL).
4.	 From	within	the	Red	Hat	OpenShift	Container	Platform	(BYOL)	blade,

click	Create.
5.	 On	the	Basics	blade,	provide	the	VM	Admin	user	name,	paste	the	SSH

public	key,	choose	a	resource	group	and	location	for	the	platform.	Click
OK.

FIGURE	4-113	The	selections	in	the	Basics	blade	for	a	new	Red	Hat
OpenShift	Container	Platform

6.	 On	the	Infrastructure	Settings	blade,	provide	an	OCP	cluster	name	prefix,
select	a	cluster	size,	provide	the	resource	group	name	for	your	Key	Vault,
as	well	as	the	Key	Vault	name	and	its	secret	name	you	specified	in	the
prerequisites.	Click	OK	(Figure	4-114).

FIGURE	4-114	The	selections	in	the	Infrastructure	Settings	blade	for	a
new	Red	Hat	OpenShift	Container	Platform	in	the	portal

7.	 On	the	OpenShift	Container	Platform	Settings	blade,	provide	an	OpenShift
Admin	user	password,	enter	your	Red	Hat	subscription	manager
credentials,	specify	whether	you	want	to	configure	an	Azure	Cloud
Provider,	and	select	your	default	router	subdomain.	Click	OK	(Figure	4-
115).

FIGURE	4-115	The	selections	in	the	OpenShift	Container	Platform
Settings	blade	for	a	new	Red	Hat	OpenShift	Container	Platform	in	the
portal

8.	 On	the	Summary	blade,	wait	for	the	validation	to	pass,	and	click	OK.
9.	 On	the	Buy	blade,	click	Purchase.

More	Info:	Openshift	Container	Platform	Prerequisites

For	an	alternative	method	to	deploy	the	OpenShift	Container
Platform	using	ARM	templates	instead	of	the	marketplace,	as	well
as	detailed	steps	to	complete	the	prerequisites	see
https://github.com/Microsoft/openshift-container-platform.

More	Info:	Deploying	Openshift	Origin	on	Azure

For	step-by-step	instructions	on	how	to	deploy	OpenShift	Origin
on	Azure,	including	completing	the	prerequisites	see
https://docs.microsoft.com/en-us/azure/virtual-
machines/linux/openshift-get-started.

https://github.com/Microsoft/openshift-container-platform
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/openshift-get-started

Provision	applications	by	using	Azure	Quickstart	Templates
Azure	Quickstart	Templates	are	community-contributed	Azure	Resource
Manager	(ARM)	templates	that	help	you	quickly	provision	applications	and
solutions	with	minimal	effort.	You	can	search	available	Quickstart	Templates	in
the	gallery	located	at	https://azure.microsoft.com/resources/templates.
Resources	that	are	deployed	as	part	of	a	Quickstart	template	can	be	thought	of

as	related	and	interdependent	parts	of	a	single	entity.	ARM	templates	allow	you
to	deploy,	update,	or	delete	all	of	the	resources	within	the	solution	in	a	single,
coordinated	operation.	You	use	a	template	for	deployment	and	that	template	can
work	for	different	environments	such	as	testing,	staging,	and	production,	while
ensuring	your	resources	are	deployed	in	a	consistent	state.
Depending	on	the	Quickstart	Template	you	select,	you	will	provide	a	set	of

parameters	that	get	passed	into	the	deployment	command.
You	can	deploy	a	Quickstart	Template	using	one	of	these	methods	(based	on

the	example	at	https://azure.microsoft.com/resources/templates/101-hdinsight-
hbase-replication-geo):

1.	 Using	PowerShell,	use	the	New-AzureRmResourceGroupDeployment
cmdlet.	You	are	prompted	to	supply	values	for	the	parameters.	For
example:
Click	here	to	view	code	image

New-AzureRmResourceGroupDeployment	-Name	<deployment-name>	-

ResourceGroupName

<resource-group-name>	-TemplateUri

https://raw.githubusercontent.com/azure/azure-

quickstart-templates/master/101-hdinsight-hbase-replication-

geo/azuredeploy.json

2.	 Using	the	Azure	Command-Line	Interface	(CLI),	use	the	group	deployment
create	command.	You	are	prompted	to	supply	values	for	the	parameters.
For	example:
Click	here	to	view	code	image

azure	config	mode	arm

azure	group	deployment	create	<my-resource-group>	<my-deployment-

name>	--template-

uri	https://raw.githubusercontent.com/azure/azure-quickstart-

templates/master/101-

hdinsight-hbase-replication-geo/azuredeploy.json

https://azure.microsoft.com/resources/templates
https://azure.microsoft.com/resources/templates/101-hdinsight-hbase-replication-geo

3.	 Click	the	Deploy	to	Azure	button,	if	provided.	This	opens	a	form	for	the
Quickstart	template	in	Azure,	allowing	you	to	enter	the	parameter	values
from	within	the	portal	(Figure	4-116).

FIGURE	4-116	An	Azure	Quickstart	Template	form	in	the	Azure	Portal	after
clicking	a	Deploy	to	Azure	button

More	Info:	Azure	Quickstart	Template	Gallery

Browse	and	search	Quickstart	Templates	contributed	by	the
community	at	https://azure.microsoft.com/resources/templates.

https://azure.microsoft.com/resources/templates

Build	applications	that	leverage	Azure	Marketplace	solutions	and
services
The	Azure	Marketplace	is	an	online	applications	and	services	marketplace	that
enables	startups	and	independent	software	vendors	(ISVs)	to	offer	their	solutions
to	Azure	customers	around	the	world.	The	marketplace	makes	it	easier	for
consumers	to	search,	purchase,	and	deploy	a	wide	range	of	applications	and
services	in	just	a	few	clicks.	Some	such	applications	and	services	include	virtual
machine	images	and	extensions,	APIs,	applications,	Machine	Learning	services,
and	data	services.
You	can	subscribe	to	and	deploy	a	product	from	the	Azure	Marketplace	by

visiting	https://azuremarketplace.microsoft.com/	or	by	clicking	the	Marketplace
tile	on	the	Azure	Portal	dashboard.
Pricing	varies	based	on	product	types.	ISV	software	charges	and	Azure

infrastructure	costs	are	charged	separately	through	your	Azure	subscription.
Pricing	models	include:

	BYOL	Model	Bring-your-own-license.	You	obtain	outside	of	the	Azure
Marketplace	the	right	to	access	or	use	the	offering	and	are	not	charged	Azure
Marketplace	fees	for	use	of	the	offering	in	the	Azure	Marketplace.
	Free	Free	SKU.	Customers	are	not	charged	Azure	Marketplace	fees	for	use
of	the	offering.
	Free	Software	Trial	(Try	it	now)	Full-featured	version	of	the	offer	that	is
promotionally	free	for	a	limited	period	of	time.	You	are	not	charged	Azure
Marketplace	fees	for	use	of	the	offering	through	a	trial	period.	Upon
expiration	of	the	trial	period,	customers	are	automatically	be	charged	based
on	standard	rates	for	use	of	the	offering.
	Usage-Based	You	are	charged	or	billed	based	on	the	extent	of	your	use	of
the	offering.	For	Virtual	Machines	Images,	you	are	charged	an	hourly	Azure
Marketplace	fee.	For	Data	Services,	Developer	services,	and	APIs,	you	are
charged	per	unit	of	measurement	as	defined	by	the	offering.
	Monthly	Fee	You	are	charged	or	billed	a	fixed	monthly	fee	for	a
subscription	to	the	offering	(from	date	of	subscription	start	for	that	particular
plan).	The	monthly	fee	is	not	prorated	for	mid-month	cancellations	or	unused
services.

You	can	find	the	offer-specific	pricing	details	on	the	solution	details	page.

Skill	4.9:	Design	and	implement	DevOps
DevOps	is	a	combination	of	Development	(Dev)	and	information	technology

https://azuremarketplace.microsoft.com/

DevOps	is	a	combination	of	Development	(Dev)	and	information	technology
Operations	(Ops).	It	describes	a	set	of	practices	emphasizing	the	collaboration
between	both	teams,	while	automating	software	delivery	and	infrastructure
changes	with	the	ultimate	goal	of	reliability	and	repeatability	of	these	processes.
Automation	and	repeatability	allows	for	increased	deployment	frequency,	as	the
manual	burden	of	tending	to	all	of	the	steps	involved	in	deploying	to	one	or
more	target	environments	has	been	removed.	Some	organizations	use	DevOps
practices	to	deploy	hundreds	of	times	a	day,	which	would	otherwise	be	nearly
impossible.	DevOps	improves	reliability	by	ensuring	each	step	of	the	software
delivery	or	infrastructure	change	process	is	monitored,	and	any	automated	tests
successfully	pass.

This	skill	covers	how	to:
	Instrument	an	application	with	telemetry
	Discover	application	performance	issues	by	using	Application	Insights
	Deploy	Visual	Studio	Team	Services	with	Continuous	integration	(CI)
and	Continuous	development	(CD)
	Deploy	CI/CD	with	third-party	platform	tools	(Jenkins,	GitHub,	Chef,
Puppet,	TeamCity)

Instrument	an	application	with	telemetry
Application	Insights	is	an	extensible	analytics	service	for	application	developers
on	multiple	platforms	that	helps	you	understand	the	performance	and	usage	of
your	live	applications.	With	it,	you	can	monitor	your	web	application,	collect
custom	telemetry,	automatically	detect	performance	anomalies,	and	use	its
powerful	analytics	tools	to	help	you	diagnose	issues	and	understand	what	users
actually	do	with	your	app.	It	works	with	web	applications	hosted	on	Azure,	on-
premises,	or	in	another	cloud	provider.	You	can	use	it	from	web	applications
developed	on	multiple	platforms,	like	.NET,	Node.js,	and	J2EE.	To	get	started,
you	just	need	to	provision	an	Application	Insights	resource	in	Azure,	and	then
install	a	small	instrumentation	package	in	your	application.	The	things	you	can
instrument	are	not	limited	just	to	the	web	application,	but	also	any	background
components,	and	JavaScript	within	its	web	pages.	You	can	also	pull	telemetry
from	host	environments,	such	as	performance	counters,	Docker	logs,	or	Azure
diagnostics.
Here	is	a	comprehensive	list	of	telemetry	that	can	be	collected	by	Application

Insights.

From	server	web	apps:
	HTTP	requests
	Dependencies	such	as	calls	to	SQL	Databases;	HTTP	calls	to	external
services;	Azure	Cosmos	DB,	table,	blob	storage,	and	queue
	Exceptions	and	stack	traces
	Performance	Counters,	if	you	use	Status	Monitor,	Azure	monitoring,	or	the
Application	Insights	collected	writer
	Custom	events	and	metrics	that	you	code
	Trace	logs	if	you	configure	the	appropriate	collector
From	client	web	pages:
	Page	view	counts
	AJAX	calls	requests	made	from	a	running	script
	Page	view	load	data
	User	and	session	counts
	Authenticated	user	IDs
From	other	sources,	if	you	configure	them:
	Azure	diagnostics
	Docker	containers
	Import	tables	to	Analytics
	OMS	(Log	Analytics)
	Logstash
The	standard	telemetry	modules	that	run	“out	of	the	box”	when	using	the

Application	Insights	SDK	send	load,	performance	and	usage	metrics,	exception
reports,	client	information	such	as	IP	address,	and	calls	to	external	services.	If
you	install	the	SDK	in	development,	this	allows	you	to	send	your	own	telemetry,
in	addition	to	the	standard	modules.	This	custom	telemetry	can	include	any	data
you	wish	to	send.

More	Info:	About	Application	Insights

For	additional	information	about	Application	Insights	see
https://docs.microsoft.com/azure/application-insights.

More	Info:	Setting	up	Application	Insights

https://docs.microsoft.com/azure/application-insights

For	more	information	about	setting	up	Application	Insights	on	the
portal	and	within	your	application	see
https://docs.microsoft.com/azure/application-insights/app-insights-
create-new-resource.

More	Info:	Collect	Custom	Events	and	Metrics	in	Application
Insights

A	good	resource	for	collecting	custom	event	and	metrics	telemetry
in	Application	Insights	see
https://docs.microsoft.com/azure/application-insights/app-insights-
api-custom-events-metrics.

Discover	application	performance	issues	by	using	Application
Insights
System	performance	depends	on	several	factors.	Each	factor	is	typically
measured	through	key	performance	indicators	(KPIs),	such	as	the	number	of
database	transactions	per	second	or	the	volume	of	network	requests	your
application	can	handle	within	a	specified	time	frame.	You	can	gather	your
application’s	KPIs	through	specific	performance	measures,	or	a	combination	of
metrics.
Application	Insights	can	help	you	quickly	identify	any	application	failures.	It

also	tells	you	about	any	performance	issues	and	exceptions.	With	the	right
configuration	and	tooling,	Application	Insights	can	also	help	you	find	and
diagnose	the	root	causes	of	slowdowns	and	failures.
When	you	open	any	Application	Insights	resource	you	see	basic	performance

data	on	the	overview	blade.	Clicking	on	any	of	the	charts	allows	you	to	drill
down	into	the	related	data	to	see	more	detail	and	related	requests,	as	well	as
viewing	different	time	ranges.

Note:	Performance	Metrics

Earlier	in	this	chapter	performance	metrics	were	discussed	for	API
Apps	and	Logic	Apps	-	and	these	are	also	similar	across	other
resource	blades	in	the	Azure	Portal.

Application	Insights	offers	a	full-screen,	interactive	performance	investigator

https://docs.microsoft.com/azure/application-insights/app-insights-create-new-resource
https://docs.microsoft.com/azure/application-insights/app-insights-api-custom-events-metrics

through	the	Performance	blade.	The	dashboard	arranges	a	set	of	performance-
related	metrics	that	you	can	use	to	quickly	explore	possible	performance
bottlenecks,	and	adds	additional	insights,	such	as	common	properties	of	selected
requests.	The	common	properties	are	the	users’	location,	performance	bucket	(in
milliseconds),	and	cloud	role	of	the	resource.	This	information	can	help	you	find
common	variables	that	affect	groups	of	users,	such	as	response	times	being
lengthier	for	users	coming	from	certain	countries	or	regions	(Figure	4-117).

FIGURE	4-117	The	Application	Insights	Performance	blade

If	your	web	application	is	built	on	ASP.NET	or	ASP.NET	Core,	you	can	turn
on	Application	Insight’s	profiling	tool	to	view	detailed	profiles	of	live	requests.
In	addition	to	displaying	‘hot	paths’	that	are	using	the	most	response	times,	the
Profiler	shows	which	lines	in	the	application	code	slowed	down	performance.
You	can	view	the	profile	request	details	to	see	trace	informa	tion,	showing	the
call	stack	through	your	application.	This	level	of	detail	allows	you	to	quickly

http://ASP.NET
http://ASP.NET

pinpoint	issues	and	address	them	faster	than	digging	through	logs	alone.	There	is
little	overhead	running	the	profiler	because	it	executes	for	two	minutes	per	hour,
but	should	provide	a	satisfactory	sample	set	of	data.
To	enable	the	Profiler,	follow	these	steps:

1.	 From	the	Application	Insights	resource	in	Azure,	select	Performance	from
the	left-hand	menu.

2.	 Select	Profiler	Rules	from	the	top	of	the	Performance	blade.
3.	 Select	Add	Linked	Apps	from	the	top	of	the	Configure	Application	Insights

Profiler	blade.
4.	 Select	the	application	you	wish	to	link	to	see	all	its	available	slots.	Click

Add	to	link	them	to	the	current	Application	Insights	resource.
5.	 After	linking	your	desired	apps,	select	Enable	Profiler	from	the	top	of	the

Configure	Application	Insights	Profiler	blade.	Note,	linked	applications
require	Basic	or	above	service	plans	to	enable	the	profiler	(Figure	4-118).

FIGURE	4-118	The	Application	Insights	Profiler	actions	to	add	linked
apps	and	enable	the	Profiler

More	Info:	About	Application	Insights	Profiler

For	additional	information	about	using	the	Application	Insights
Profiler,	see	this	reference:
https://docs.microsoft.com/azure/application-insights/app-insights-
profiler.

More	Info:	Monitor	Performance	in	Web	Applications

For	more	information	about	using	Application	Insights	to	monitor
performance	in	your	web	applications	see
https://docs.microsoft.com/azure/application-insights/app-insights-
web-monitor-performance.

https://docs.microsoft.com/azure/application-insights/app-insights-profiler
https://docs.microsoft.com/azure/application-insights/app-insights-web-monitor-performance

Deploy	Visual	Studio	Team	Services	with	continuous	integration
(CI)	and	continuous	development	(CD)
Visual	Studio	Team	Services	(VSTS)	is	a	collection	of	hosted	DevOps	services
for	application	developers,	including	Build	and	Release	services,	which	help	you
manage	continuous	integration	and	delivery	of	your	applications.
Continuous	Integration	(CI)	is	a	practice	by	which	the	development	team

members	integrate	their	work	frequently,	usually	daily.	An	automated	build
verifies	each	integration,	typi	cally	along	with	tests	to	detect	integration	errors
quickly,	when	it’s	easier	and	less	costly	to	fix.	Output,	or	artifacts,	generated	by
the	CI	systems	are	fed	to	the	release	pipelines	to	streamline	and	enable	frequent
deployments.	The	Build	service	in	VSTS	helps	you	set	up	and	manage	CI	for
your	applications.
Continuous	Delivery	(CD)	is	a	process	where	the	full	software	delivery

lifecycle	is	automated,	including	tests,	and	deployed	to	one	or	more	test	and
production	environments.	Azure	App	Services	supports	deployment	slots,	into
which	you	can	deploy	development,	staging,	and	production	builds	from	the	CD
process.	Automated	release	pipelines	consume	the	artifacts	that	the	CI	systems
produce,	and	deploys	them	as	new	versions	and	fixes	to	existing	systems.
Monitoring	and	alerting	systems	run	continually	to	drive	visibility	into	the	entire
CD	process.	The	Release	service	in	VSTS	helps	you	set	up	and	manage	CD	for
your	applications.
Because	a	key	component	of	the	Build	system	is	integrating	code	changes	and

automating	builds,	you	must	host	your	source	code	in	a	version	control	system.
VSTS	provides	two	different	version	control	systems:

	Git
	Team	Foundation	Version	Control
You	can	also	host	your	source	code	in	GitHub,	Subversion,	Bitbucket,	or	any

other	Git	repository.	The	Build	service	can	integrate	with	any	one	of	these
options.
VSTS	build	services	provide	preconfigured	tasks	to	build	many	application

types,	such	as	.NET,	Java,	Node,	Android,	XCode,	and	C++.	You	can	also	run
command	line,	PowerShell,	or	Shell	scripts	in	your	automation	to	support	almost
any	type	of	application.
Azure	App	Services	was	mentioned	earlier	as	a	deployment	target	for	the

VSTS	Release	service.	VSTS	Release	services	can	deploy	to	virtual	machines,
containers,	on-premises	and	cloud	platforms,	or	PaaS	services.	You	can	also
publish	your	mobile	applications	to	a	store.

publish	your	mobile	applications	to	a	store.
The	following	steps	show	one	way	to	configure	the	CI/CD	pipeline	from	the

Azure	portal	(Figure	4-119):

1.	 Navigate	to	the	portal	accessed	via	https://portal.azure.com.
2.	 Select	New	on	the	command	bar.
3.	 Select	Web	+	Mobile,	and	then	Web	App.

FIGURE	4-119	Completing	the	Response	action	form	for	the	new
condition’s	“If	true”	block	in	the	Logic	App	Designer

4.	 Provide	a	unique	name	for	your	web	app,	and	then	click	Create	(Figure	4-
120).

https://portal.azure.com

FIGURE	4-120	The	create	Web	App	blade

5.	 After	the	new	web	app	is	provisioned	open	it	in	Azure	portal,	and	then
select	Continuous	Delivery	from	the	left-hand	menu.	Click	Configure	on
the	Continuous	Delivery	blade	(Figure	4-121).

FIGURE	4-121	The	Continuous	Delivery	blade	on	the	provisioned	web
app

6.	 Select	Choose	repository,	and	then	select	VSTS	for	the	code	repository.
Select	the	VSTS	account,	project,	repository,	and	source	code	branch	from
which	you	wish	to	deploy.	Click	OK	(Figure	4-122).

FIGURE	4-122	The	Continuous	Delivery	source	code	configuration
options

7.	 Select	Configure	Continuous	Delivery,	and	then	your	web	application
framework.	In	our	example,	we	selected	ASP.NET	Core.	Click	OK.	Skip
the	other	two	steps	for	now,	and	then	click	OK	to	complete	the
configuration	(Figure	4-123).

http://ASP.NET

FIGURE	4-123	The	Continuous	Delivery	build	options

8.	 At	this	point,	Azure	Continuous	Delivery	configures	and	executes	a	build
and	deployment	in	VSTS.	After	the	build	completes,	the	deployment	is
automatically	initiated.	When	you	commit	a	change	to	the	source	code
repository,	the	automated	deployment	appears	in	the	Continuous	Delivery
application	logs	on	your	web	app,	as	shown	in	Figure	4-124.

FIGURE	4-124	The	Continuous	Delivery	blade	with	activity	logs
showing	the	initial	build

More	Info:	About	Vsts	Build	and	Release	Services

For	additional	information	about	the	VSTS	Build	and	Release
services	see	https://docs.microsoft.com/vsts/build-release.

More	Info:	The	MultiStage	Continuous	Deployment	(CD)	Process

VSTS	supports	releasing	to	multiple	environments,	such	as
development,	staging,	QA,	and	production.	To	learn	more	about
defining	your	multistage	CD	process	see
https://docs.microsoft.com/vsts/build-release/actions/define-
multistage-release-process.

More	Info:	Tutorial	on	Creating	a	CI	Pipeline	with	Vsts	and	Iis

To	follow	a	tutorial	showing	how	to	create	a	continuous	integration
(CI)	pipeline	with	VSTS	and	IIS	on	a	VM	see
https://docs.microsoft.com/azure/virtual-machines/windows/tutorial-

https://docs.microsoft.com/vsts/build-release
https://docs.microsoft.com/vsts/build-release/actions/define-multistage-release-process
https://docs.microsoft.com/azure/virtual-machines/windows/tutorial-vsts-iis-cicd

vsts-iis-cicd.

Deploy	CI/CD	with	third-party	platform	tools	(Jenkins,	GitHub,
Chef,	Puppet,	TeamCity)
Azure	allows	you	to	continuously	integrate	and	deploy	with	any	of	the	leading
DevOps	tools,	targeting	any	Azure	service.	Whether	you	are	following	your
organization’s	established	CI/CD	procedures,	or	just	getting	started	with
DevOps,	use	the	tools	best-suited	for	your	team.
If	you	are	using	VSTS	to	host	your	source	code	or	as	your	CI	service,	you	can

use	various	build	services,	like	Jenkins,	through	service	hooks.	In	this	way,	you
can	use	Jenkins	for	your	continuous	integration	builds,	or	use	both	VSTS	and
Jenkins	as	for	building	parts	of	your	solution.	Refer	to	this	tutorial	for	more
information:	https://docs.microsoft.com/vsts/service-hooks/services/jenkins.
In	addition,	Table	4-5	lists	some	popular	DevOps	tools	that	work	with	Azure.

TABLE	4-5	References	for	using	third-party	DevOps	tools	with	Azure

Tool Description More	Information	and	Tutorials

Chef Use	Chef	to
automate
workloads	on
Azure,
whether
IaaS,	PaaS,
cloud	or
hybrid,
Windows	or
Linux

https://www.chef.io/implementations/azure/
https://docs.microsoft.com/azure/virtual-machines/windows/chef-automation

Puppet Use	Puppet
to	automate
the	lifecycle
of	your
entire	Azure
infrastructure

https://azuremarketplace.microsoft.com/marketplace/apps/PuppetLabs.PuppetEnterprise37
https://puppet.com/resources/whitepaper/getting-started-deploying-puppet-enterprise-
microsoft-azure

Jenkins The	Jenkins
and	Azure

https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-jenkins-github-docker-
cicd

https://docs.microsoft.com/vsts/service-hooks/services/jenkins
https://www.chef.io/implementations/azure/
https://docs.microsoft.com/azure/virtual-machines/windows/chef-automation
https://azuremarketplace.microsoft.com/marketplace/apps/PuppetLabs.PuppetEnterprise37
https://puppet.com/resources/whitepaper/getting-started-deploying-puppet-enterprise-microsoft-azure
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-jenkins-github-docker-cicd

and	Azure
teams	have
been
collaborating
on	making
tighter
integrations
between	the
two.	Benefit
from	the
extensive
tooling	as	a
result

cicd
https://docs.microsoft.com/azure/jenkins/

https://docs.microsoft.com/azure/storage/common/storage-java-jenkins-continuous-
integration-solution

TeamCity Use
TeamCity
with	Azure
for	a	variety
of	DevOps
processes,
such	as
deploying
Azure
services	or
scaling	out
your	build
farm	by
having	it
automatically
start	agents
on	Azure
when	you
need	more
power,	and
stop	them,
when	they
are	no	longer
needed

https://confluence.jetbrains.com/display/TW/Microsoft+Azure+cloud
https://blog.jetbrains.com/teamcity/2016/11/teamcity-dotnet-core/

Out	of	the	box,	Azure	App	Services	integrates	with	source	code	repositories
such	as	GitHub	to	enable	a	continuous	deployment	workflow.	This	is	the

https://docs.microsoft.com/azure/jenkins/
https://docs.microsoft.com/azure/storage/common/storage-java-jenkins-continuous-integration-solution
https://confluence.jetbrains.com/display/TW/Microsoft+Azure+cloud
https://blog.jetbrains.com/teamcity/2016/11/teamcity-dotnet-core/

such	as	GitHub	to	enable	a	continuous	deployment	workflow.	This	is	the
simplest	way	to	integrate	a	CD	process	without	the	need	for	installing	and
configuring	additional	tools	and	services.	Follow	these	simple	steps	to	enable
continuous	deployment	from	a	GitHub	repository:

1.	 Publish	your	application	source	code	to	GithHub.
2.	 Open	your	app’s	Menu	blade	in	the	Azure	portal,	and	then	select

Deployment	Options	under	Deployment	in	the	left-hand	menu.
3.	 In	the	Deployment	option	blade,	select	Choose	Source,	and	then	select

GitHub	from	the	list	of	sources.
4.	 Select	Authorization,	and	then	click	the	Authorize	button	to	enter	your

GitHub	credentials.	When	authorized,	click	OK.
5.	 In	the	Deployment	Option	blade,	select	your	project	and	branch	from

which	you	wish	to	deploy	your	app,	and	click	OK.

App	Service	creates	an	association	with	the	selected	repository,	pulls	in	the
files	from	the	specified	branch,	and	maintains	a	clone	of	your	repository	for	your
App	Service	app.	Now,	when	you	push	a	change	to	your	repository,	your	app	is
automatically	updated	with	the	latest	changes.	More	information	about	this
process	can	be	found	at:	https://docs.microsoft.com/azure/app-service/app-
service-continuous-deployment.

Thought	experiment
In	this	thought	experiment,	apply	what	you’ve	learned	about	implementing	App
Services,	Azure	Functions,	Azure	Service	Fabric,	third-party	PaaS,	and	DevOps
to	evaluate	and	determine	a	recommended	set	of	features	to	use	in	a	particular
solution	implementation.
You	can	find	answers	to	this	thought	experiment	in	the	next	section.	The

following	paragraphs	describe	the	solution	and	the	questions	to	answer.
You	are	designing	a	solution	that	issues	certificates	of	insurance	for	end	users.

You	are	expecting	insurance	companies	who	you	partner	with	to	provide	this
service	to	their	clients,	your	end	user,	through	your	solution.	The	following
describes	core	components	in	the	solution,	and	other	requirements:

	Insurance	companies	can	sign	up	with	your	service	so	that	they	can	call	your
Policy	Sync	APIs	and	send	insurance	policy	data	using	the	X12	EDI
standard.	Their	license	with	your	API	determines	how	much	policy	data	they
can	upload	to	your	service.	This	policy	data	is	what	supports	certificate
issuance	to	the	end	user	owning	the	policy.

https://docs.microsoft.com/azure/app-service/app-service-continuous-deployment

	Insurance	companies	can	manage	access	to	those	policies	through	a	Policy
Management	web	application	that	allows	them	to	create	users	who	can	later
login	and	request	certificates	of	insurance	for	their	policy	data.
	End	users	will,	once	invited	by	the	insurance	company,	be	able	to	login	to
the	Certificate	Issuance	web	application	to	request	certificates	of	insurance
on	demand	for	their	policies.
	When	a	certificate	is	requested,	a	workflow	should	be	kicked	off	to	generate
a	PDF	from	the	policy	data,	save	the	PDF	to	a	secure	location	from	where	it
can	be	securely	shared,	and	email	a	secure	link	to	the	PDF	to	a	specified
email	address.
	While	this	is	a	new	service,	it	is	possible	that	many	100,000s	of	requests	can
be	processed	by	a	single	insurance	company	per	week	so	there	is	potential	for
large	scale	growth	and	the	design	must	be	ready	to	grow	with	demand.
	You	are	expecting	to	use	a	third-party	Java-based	executable	component	for
PDF	generation,	alongside	the	other	work,	which	will	be	based	on	ASP.NET
Core.
	As	a	startup,	you	are	looking	for	a	solution	that	allows	you	to	contain	costs
now,	but	grow	into	an	architecture	that	can	scale	with	your	business	growth.
Consider	how	you	would	answer	the	following	questions	for	this	solution:

1.	 How	would	you	evaluate	the	core	platform	tools	and	hosting	environment
that	you	will	use	for	the	web	apps	and	APIs?	Consider	these	aspects:

A.	 Cost	containment	early	on	with	potential	for	growth.
B.	 Manageability	with	a	small	team.
C.	 Support	for	polyglot	development	and	third-party	application

components.

2.	 How	will	you	control	the	onboarding	process	to	use	your	Policy	Sync	APIs
and	subsequent	throttling	of	their	use	by	license?

3.	 How	will	you	handle	the	inbound	EDI	requests	and	store	those	for	the
partner?

4.	 How	will	you	prepare	to	scale	the	requests	for	certificates	of	insurance
based	on	the	potential	growth?

Thought	experiment	answers
This	section	contains	the	solution	to	the	thought	experiment.

http://ASP.NET

1.	 Consider	the	following:
	deploying	the	application	to	Web	Apps	on	an	App	Service	Plan	that	can
scale	as	needed.
	Consider	if	the	main	components	of	the	application	can	be	deployed	as
containers—in	particular	verifying	that	the	Java	component	can	be
containerized.	If	so,	standardizing	around	container	deployments	to	Web
Apps	will	keep	things	consistent	and	enable	a	future	deployment	to	a
container	orchestration	platform.	If	not,	traditional	Web	App
deployments	for	the	ASP.NET	Core	applications	will	still	reduce
management	overhead.	The	Java	application	may	require	a	VM	if	it
cannot	be	deployed	to	a	Linux-based	Web	App	due	to	underlying
requirements.
	Consider	moving	to	a	container	orchestration	platform,	or	Service	Fabric
cluster	as	the	application	needs	to	scale.	Keep	in	mind	the	Service	Fabric
can	support	deployment	of	both	ASP.NET	Core	applications	alongside
guest	executables	such	as	the	Java	application.

2.	 Consider	using	API	Management	for	onboarding	partners,	setting	up
licensing,	throttling	access	to	the	EDI	process	through	licensing,	and
providing	statistics	on	usage.

3.	 Consider	using	Logic	App	to	handle	X12	EDI	transforms	from	API
Management	initiated	calls.	The	Logic	App	can	convert	this	payload	to	the
target	data	format	required	for	the	application.

4.	 Look	to	scale	out	the	requests	for	certificates	of	insurance	by	writing
requests	to	a	queue	that	triggers	a	Logic	App	to	handle	calls	to	generate
PDFs	and	send	emails	through	a	workflow.	Make	sure	the	Java	component
is	deployed	to	a	tier	that	can	scale	independently	given	the	potential	for
scale.

Chapter	summary
	Azure	App	Services	provide	a	simple	PaaS	solution	for	deploying,
managing,	and	scaling	web	applications,	APIs,	API	Apps,	Logic	Apps,	and
Mobile	Apps.
	API	Apps	and	API	Management	both	provide	ways	to	publish	APIs	for
partner	integration.	API	Management	provides	richer	features	for	partner
management,	licensing,	throttling,	security,	and	related	management	tools.
	Logic	Apps	provide	an	easy	way	to	create	workflows,	modern	integrations,

http://ASP.NET
http://ASP.NET

and	even	legacy	integration	with	EDI	formats.
	Azure	Functions	provide	an	easy	way	to	trigger	workloads	that	can	scale
based	on	consumption	or	a	hosting	plan.	There	are	many	integration	points
for	triggering	functions	including	queues,	HTTP	requests,	and	data	triggers.
	Azure	Service	Fabric	is	a	modern	orchestration	platform	that	can	support
native	services	that	leverage	unique	features	such	as	stateful	services	and
actor	patterns,	in	addition	to	guest	and	container	processes.
	Azure	supports	several	third-party	PaaS	platforms	for	containers	and
microservices	including	Cloud	Foundry	and	OpenShift.
	You	have	many	choices	for	DevOps	and	CI/CD	workflows	in	Azure
including	Application	Insights	for	diagnostics,	monitoring	and	alerts;	and
VSTS,	Jenkins,	Chef,	Puppet	and	more	for	CI/CD	integration.

Index

A
access	control
anonymous	access	133
Azure	Key	Vault	228–232
blobs	115–116
DevTest	Labs	95–100
role-based	95–96
shared	access	signatures	132–135
storage	132–136
stored	access	policies	135

access	keys	111–112,	179
access	policies	113,	262
Active	Directory	(AD)	176–177
activity	logs	362
actors	379,	387–388
AD.	See	Active	Directory
ADE.	See	Azure	Disk	Encryption
Advanced	Message	Queuing	Protocol	(AMQP)	239
advanced	rate	limiting	359–360
alerts
configuration	55

AMQP.	See	Advanced	Message	Queuing	Protocol
anonymous	access	127,	133
anonymous	logs	141–142
API	Apps	305–318
client	code	generation	314–316
creating	and	deploying	305–310
diagnostic	logs	317–318
discovery	automation	using	Swashbuckle	310–314
enabling	CORS	314

metrics	316,	318
monitoring	316–318
quotas	316

API	Management	281,	351–366
adding	product	353–354
APIs
adding	operation	to	355–356
creating	352–356
monitoring	362–363
publishing	356
rate	limits	358–360

caching	360–362
components	351–352
developer	portal	363–366
overview	351–352
policies	356–358
service	creation	352–353

API	Proxies	377–378
append	blobs	115
Application	Insights	400–403
performance	issues	and	401–403
Profiler	403
telemetry	400–401

application	logs	49,	52,	56–57
applications
ASP.NET	181
availability	of	57–66
Azure	Marketplace	and	398–399
Azure	Service	Fabric	379–392
directory	queries	207–216
enterprise	265
instrumenting,	with	telemetry	400–401
integration	with	Azure	AD	191–216
directory	creation	194–195
preparation	for	192–198

http://ASP.NET

querying	directory	207–216
viewing	endpoints	197–198
with	OAuth	202–203
with	OpenID	Connect	199–202
with	SAML-P	206–207
with	WS-Federation	203–206

listener	242–245
Microsoft	Application	Registry	208–209
mobile	343–351
multi-tier	58
passwords	209
performance	issues	401–403
provisioning,	with	Azure	Quickstart	Templates	397–398
registering	195–197,	221–223
remote	debugging	16
sender	245–246
single	page	192
using	Azure	AD	B2B	225
using	Azure	AD	B2C	216–225
using	social	identity	provider	authentication	217–225
web	281
Web/API	195–196

application	tiers	58
App	Service	plans	282–287
creating	283–285
function	integration	with	379
pricing	tiers	282
settings	286–287

A	records	291–292,	293–294
ARM.	See	Azure	Resource	Manager
ARR	affinity	settings	288
ASP.NET	306
ASP.NET	applications	181
asynchronous	polling	340–341
asynchronous	webhooks	341

http://ASP.NET
http://ASP.NET

authenticated	logs	141–142
authentication
Azure	AD	192–193
mobile	apps	343,	346–348
multi-factor	210–216,	225
scenarios	193
social	identity	provider	217–225
storage	account	135–136
users	203–206

authorization
mobile	apps	343

authorization	protocols
202–203

automatic	asynchronous	replication	150
automatic	failover	172–173
Autoscale
configuration	25–29

AutoScale	18
auto-shutdown	policy	87–89
auto-start	policy	90–91
Auto	Swap	settings	289
availability
high	59
sets	19
application	tiers	and	58
configuration	58–60
Load	Balancer	and	60–66

virtual	machines	57–66
AZCopy	44
Azure	Active	Directory	(Azure	AD)
application	integration	191–216
directory	creation	194–195
preparation	for	192–198
querying	directory	207–216
registering	application	195–197

viewing	endpoints	197–198
with	OAuth	202–203
with	OpenID	Connect	199–202
with	SAML-P	206–207
WS-Federation	203–206

B2B	225
B2C	216–225
code	samples	194
documentation	192
PowerShell	with	192
uses	of	191

Azure	AD	B2B	225
Azure	AD	B2C	216–225
application	registration	221–223
identity	provider	configuration	223–224
policy	configuration	224
tenant	creation	218–221

Azure	AD	Connect	195
Azure	AD	Graph	API	207
Azure	App	Services	281,	404
API	Apps	305–318
integration	with	source	code	repositories	409
Logic	Apps	318–342
Mobile	Apps	343–351
plans	282–287
quotas	296
Web	Apps	282–305

Azure	Autoscale.	See	Autoscale
Azure	Command	Line	Interface	(Azure	CLI)	7–8
Web	Apps	and	296

Azure-connected	functions	372–374
Azure	Cosmos	DB	accounts
creating	164

Azure	Cosmos	DB	DocumentDB	160,	162–177
accessing	from	REST	API	174

choosing	surface	163
consistency	170
database	and	collections	creation	164–167
Graph	API	database	creation	168
GraphDB	API	queries	168
MongoDB	database	and	169
multiple	regions,	managing	171–173
query	documents	167–168
scaling	169–171
security	174–176
stored	procedures	173–174
users	and	permissions	175

Azure	Cosmos	DB	Table	API	131,	163
Azure	Disk	Encryption	(ADE)	46–47
Azure	Files	109
connections	to	120–121
storage	119

Azure	File	storage	41–45
Azure	Functions	281,	366–379
Azure-connected	functions	372–374
creating	367–368
custom	bindings	376–377
debugging	377
event	processing	371–372
integration	with	App	Service	plan	379
integration	with	storage	374–376
overview	366–367
proxies	377–378
triggers	376–377
webhook	function,	implementing	369–371

Azure	Key	Vault	46,	225–236
access	management	228–232
configuration	226–228
HSM	protected	keys	232–233
key	rotation	235–236

logging	implementation	233–235
uses	of	225

Azure	Marketplace	2,	398–399
Azure	Portal
adding	owners	and	users	to	lab	with	97–98
API	app	creation	from	306
Autoscale	configuration	with	25–29
custom	image	creation	with	74–75
load	balancing	with	61–66
metrics	monitoring	with	55–56
monitoring	configuration	with	49–54
Scale	Set	deployment	using	19–21
scaling	VMs	using	17
VM	configuration	using	14–15

Azure	queues	253
Azure	Queues	372–373
Azure	Quickstart	Templates	281,	397–398
Azure	Relay	236,	239–253
Hybrid	Connections	240–247
namespaces	240
scaling	273–274
WCF	Relay	247–253

Azure	Resource	Manager	(ARM)
deployment	111
templates	2,	22,	100–104,	393,	397–398
virtual	machines
availability	57–66
configuration	management	7–16
DevTest	Labs	67–104
load	balancing	61–67
monitoring	47–57
scaling	16–29
storage	29–47
workload	deployment	1–7

Web	Apps	and	296

Azure	Samples	210
Azure	Search	182–186
adding	data	183–184
index	search	185
search	results	186
service	indexes	182–183

Azure	Service	Fabric	281,	379–392
actors-based	service	387–388
applications
adding	web	front	end	to	383–387
creating	380–383
deployment	to	container	388–390
migration	from	cloud	services	390
scaling	390–391

clusters	391–392
monitoring	and	diagnose	services	388
overview	379–380

Azure	SQL	Database	123
backups	147
database	tiers,	choosing	144–147
geo-replication	149–150
graph	database	functionality	in	160–161
implementation	144–161
managed	elastic	pools	157–159
performance	level,	choosing	144–147
point	in	time	recovery	147–149
scaling	155–157
schema	and	data,	import	and	export	151–155
secondary	databases
offline	150
online	150–151

SQL	Data	Sync	159–160
vs.	Azure	Tables	123

Azure	Storage.	See	storage
Azure	Storage	accounts	42

Azure	Storage	Analytics	132
Azure	Storage	Queue	128–131
adding	messages	to	128–129
batch	message	retrieval	130
processing	messages	129–130
scaling	queues	130–131

Azure	Storage	Tables	48–49
Azure	Tables	122–128
creating	123–124
CRUD	operations	123–127
deleting	records	127
inserting	multiple	records	125–126
partitions	123–124,	128–129
querying,	usnig	OData	127
record	insertion	124–125
records	in	partitions	126
transactions	125–126
updating	records	126–127
vs.	Azure	Cosmos	DB	Table	API	131
vs.	Azure	SQL	Database	123

Azure	Virtual	Machine	Agent.	See	VM	Agent

B
back	off	polling	131
backups
Azure	SQL	Database	147

BACPAC	files	151–155
batch	messages	130
blobs	30,	42,	109–122
about	110
access	control	132
append	115
block	115,	141
containers	112–113,	117,	122
copying	116

geo-replication	for	41
hierarchies	117–118
integration	of	function	with	374–376
leasing	119–120
metadata	113–114
page	115
partition	keys	122
read	and	change	data	112–113
SAS	tokens	133
scaling	119–120
secure	access	115–116
storage	account	creation	110–112
streaming	115
types	of	115
URIs	113

Blob	storage	30,	111
Content	Delivery	Network	with	116–117
naming	requirements	42

block	blobs	115,	141
boot	diagnostic	logs	57
BrokeredMessage	type	257
business-to-business	(B2B)	workflows
Logic	Apps	supporting	322–331

C
cache
CDN	116–117
configuration	39–41
expiry	period	117
host	39–41
local	39–41
providers	181
Redis	177–182
tiers	177–178

caching

adding	360–362
capacity	metrics	137
CDN.	See	Content	Delivery	Network
certificate	authority	(CA)	291
certificate	permissions	230
certificates
SSL	291,	294–295

Chef	408
cifs-utils	package	121
CLI.	See	Azure	Command	Line	Interface
client-side	logging	141
Cloud	Foundry	392–393
cloud	services	390
clusters
Redis	180
Service	Fabric	391–392

CNAME	records	291,	292,	294
collections
Cosmos	DB	API	164–167,	169–170

compute	resources	282
compute	time	119,	123
configuration
alerts	55
API	Management	policies	356–358
Autoscale	25–29
availability	sets	58–60
Azure	AD	B2C	policies	224
Azure	Key	Vault	226–228
Content	Delivery	Network	116–117
custom	domains	118,	292–294
DevTest	Labs
cost	management	92–95
policies	and	procedures	83–91

diagnostics	49–54
disk	caching	39–41

endpoint	monitoring	300–303
geo-replication	41
identity	providers	223–224
Load	Balancer	61–67
Mobile	Apps	345–346
monitoring	49–54
proxies	377–378
shared	storage	41–45
SSL	certificates	294–295
Storage	Analytics	Logging	140–141
Storage	Analytics	Metrics	137–140
storage	pools	32–39
Web	Apps	287–295

Configuration	keyword	11–12
configuration	management
virtual	machines	7–16
using	Azure	Portal	14–15
using	DSC	13–15
with	Custom	Script	Extension	8–10
with	DSC	11–12

configuration	scripts	13
connection	strings
accessing	290
settings	289

connectivity	issues	239
consistency	131,	170,	171
consumer	groups	269
Consumption	plans	379
containers	112–113,	117,	122,	379
Service	Fabric	application	deployment	to	388–390
Windows	390

Content	Delivery	Network	(CDN)	116–117
continuous	development	(CD)
VSTS	with	404–409
with	third-party	platform	tools	408–409

continuous	integration	(CI)

continuous	integration	(CI)
VSTS	with	404–409
with	third-party	platform	tools	408–409

CORS	314
cost	by	resource	95
cost	management
DevTest	Labs	92–95

Cost	Trend	chart	92
crash	dumps	49,	53–54
Create	Alert	Rule	dialog	box	146–147
CreateServiceReplicaListeners()	383
credentials
Event	Hub	267
Service	Bus	queue	255–256
Service	Bus	topic	262
WCF	Relay	249–250

Cross-Origin	Resource	Sharing	(CORS)	136–141
CRUD	operations	348
custom	actions
in	Logic	Apps	340–341

custom	domains
configuration	118,	292–294
mapping	names	291–292

custom	images
creating	72–76
from	provisioned	VM	72–74
with	Azure	Portal	74–75
with	PowerShell	76

deleting	77
pros	and	cons	of	72
Scale	Set	deployment	using	22–24

custom	resources	12
Custom	Script	Extension
VM	configuration	with	8–10

D
data
consistency	170,	171
import	and	export	151–155
loading	into	storage	account	112
logging.	See	logs
persistence	178–179
read	and	change	112–113
redundancy	149
replication	111,	171–172
storing
using	blobs	115

streaming	115
validation	135

data	access	343
databases
Cosmos	DB	API	164–167
graph	163,	168
graph	database	functionality	160–161
relational	161,	171
sharding	156

database	throughput	units	(DTUs)	144–146,	157–159
data	products	109
datasets
sharding	large	122–123

dead	letter	queues	259
deployment
API	Apps	305–310
ARM	templates	22
Azure	Relay	namespaces	240
Azure	Resource	Manager	111
Hybrid	Connection	240–241
Mobile	Apps	345
Service	Fabric	applications	388–390

Virtual	Machine	Scale	Sets	18–24
WCF	Relay	248–249

Desired	State	Configuration	(DSC)	7
Configuration	keyword	11–12
configuration	management	7–8,	11–15
custom	resources	12
Local	Configuration	Manager	12–13
resources	11

developer	portal	363–366
DevOps	399–409
Application	Insights	400–403
overview	399
telemetry	400–401
third-party	platform	tools	408–409
Visual	Studio	Team	Services	403–408

DevTest	Labs	67–104
adding	owner	or	user	97–99
adding	VM	70–71
ARM	templates	100–104
configuration
cost	management	92–95
policies	and	procedures	83–91

custom	images
creating	72–76
deleting	77

environments	100–104
formulas
creating	77–81
deleting	83
modifying	81–82
pros	and	cons	of	77

lab	creation	67–70
lab	settings	99–100
policies	and	procedures
auto-shutdown	policy	87–89

auto-start	policy	90–91
per	lab	policy	86–87
per	user	policy	85–86
set	expiration	date	policy	91
virtual	machine	sizes	policy	83–85

security	access	95–100
diagnostic	infrastructure	logs	49,	54,	56–57
diagnostic	logs	317–318,	362
diagnostics	48–50
boot	57
configuration	49–54
services	388
Web	Apps	296–300

Diagnostics	extension	48
differential	backups	147
directories
creating	194–195
premium	195
querying	207–216

disaster	recovery	149–150
disk	caching
configuration	39–41

disks
encryption	46–47
managed	30–31
premium	30–31,	45
standard	30–31,	45
storage	30–32
unmanaged	30–31

Docker	394
DocumentDB	API	173
documents
retrieving	from	Azure	Cosmos	DB	DocumentDB	167–168
searching	185

domain	name	system	(DNS)	records	291
domains

domains
custom	118,	291–294
fault	58
update	58

domain	specific	language	(DSL)	161
DSC.	See	Desired	State	Configuration
dump	files	49
duplicate	logs	140

E
easy	tables	348
eDTUs	157–159
Elastic	Database	Tools	156–157
elastic	Database	Transaction	Units	(eDTUs)	157–159
elastic	pools	157–159
encryption
at	rest	174
Azure	Disk	Encryption	46–47
disk	46–48
in	flight	174
storage	service	111
Storage	Service	Encryption	46–47

endpoints
HTTP	338–339
listener	250–252
monitoring	300–303
OAuth	202
relay	250–252
SAML-P	207
WS-Federation	206

enterprise	applications	265
Enterprise	Integration	Pack	322–323,	331,	333.	See	also	integration	accounts
environments
DevTest	Lab	100–104

error	message	logs	297

ETag	124
Event	Hubs	237,	265–270
connection	strings	268
creating	266–267
credentials	267
monitoring	276–277
overview	265
pricing	tiers	272
properties	266
receiving	messages	from	consumer	groups	269–270
scaling	275
sending	messages	to	268
when	to	use	277–278

event	logs	52–53,	56–57,	297
EventProcessorHost	270,	278
event	tracing	49
external	users
adding	to	DevTest	Labs	97–99

F
failed	request	trace	logs	297
fault	domains	58
file	locking	43
files.	See	also	Azure	Files
accessing	42
BACPAC	151–155
connections	to	120–121

file	shares	42–45
accessing	files	44–45
creating	43
mounting	43–44

file	storage.	See	storage
firewalls
network	175

First	In	First	Out	(FIFO)	buffer	253
formulas

formulas
creating	77–81
deleting	83
modifying	81–82
pros	and	cons	of	77

full	backups	147
full	text	search	182
functions	164.	See	Azure	Functions

G
General	Purpose	storage	111
geo-replication	149–150
configuration	41

Get-AzureRmAdUser	cmdlet	99
Get-AzureRmResource	cmdlet	76,	99
GetContainerReference()	114
GetMessage()	129
GetMessages()	130
Git	404
GitHub	409
Graph	API	databases
creating	168

graph	databases	160–161,	163
GraphDB	API	queries	168
Gremlin	161,	163,	168
guest	executables	379

H
Hardware	Security	Module	(HSM)	protected	keys	232–233
HDD	disks	30
high	availability	59
high	availability/disaster	recovery	(HADR)	scenarios	171
host	cache	39–41
HTTP	endpoints	338–339
HTTP	protocol	239,	248

HTTP	requests	115
HTTPS	requests	115,	174
Hybrid	Connections	240–247
Azure	Relay	namespace	deployment	240
configuration	retrieval	241–242
deployment	240–241
listener	application	creation	242–245
running	applications	246–247
sender	application	creation	245–246

I
IaaSDiagnostics	extension	48
identity	providers	223–224.	See	also	social	identity	provider	authentication
IIS	logs	49,	57
IIS	settings	290
ImageToUpload	variable	112
incremental	log	backups	147
Infrastructure-as-a-Service	(IaaS)	1
InsertOrReplace()	126
integration	accounts
adding	agreements	325–326
adding	maps	to	332–333
adding	partners	to	324–325
adding	schemas	to	332
creating	322–324
linking	Logic	app	to	326–327

Internet	of	Things	(IoT)	265,	278
IP	addresses
changes	in	294

J
Jenkins	408,	409
JSON	document	storage	160,	162–163,	171.	See	also	Azure	Cosmos	DB
DocumentDB

K
key	performance	indicators	(KPIs)	401
key	permissions	229
key-value	stores	160,	177
Key	Vault	46,	225–236
Kubernetes	394
Kudu	299,	300

L
lambda	LINQ	167
leases
blob	119–120

LINQ	queries	167
Linux	virtual	machines
creating	6
metrics	data	48

listener	applications	242–245
listener	endpoints	250–252
Load	Balancer
availability	sets	and	60–66

local	cache	39–41
Local	Configuration	Manager	12–13
locally	redundant	replication	41
Locally	Redundant	Storage	(LRS)	111
Logic	App	Designer	318
Logic	Apps	318–342
creating
connecting	SaaS	services	319–322
with	B2B	capabilities	322–331
with	XML	capabilities	331–337

custom	and	long-running	actions	340–341
HTTP	endpoints	for	338–339
integration	accounts
adding	agreement	325–326
adding	maps	to	332–333

adding	partners	to	324–325
adding	schemas	to	332
creating	322–324
linking	to	326–327

metric	341–342
monitoring	341–342
overview	318
receiving	data	in	327–331
triggering	from	another	app	337–339

Login-AzureRmAccount	cmdlet	98
logs
activity	362
analyzing	141–143
anonymous	141
API	Apps	317–318
application	49,	52,	56–57
authenticated	141
boot	diagnostics	57
client-side	141
configuration	49–54
diagnostic	297–300,	317–318,	362
diagnostic	infrastructure	49,	54,	56–57
duplicate	140
error	message	297
event	49,	52–53,	56–57,	297
failed	request	tracing	297
finding	142–143
IIS	49,	57
Key	Vault	233–235
metadata	143
operation	142
retention	140
status	messages	142
storage	140–143
Storage	Analytics	132,	140–141

system	48
viewing	56–57
viewing,	with	Microsoft	Excel	143
Web	Apps	296–300
web	server	297,	318

long-running	actions	340–341
LRS.	See	Locally	Redundant	Storage

M
managed	disks	30
managed	elastic	pools	157–159
maps
adding	to	integration	account	332–333
XML	331

messages
adding	to	queue	128–129
batch	130
batching	264,	274
duplicate	259
filtering	264–265
identifiers	129
invisibility	129
pre-fetching	274
processing	129
receiving
from	consumer	group	269–270
from	queues	257–259
from	subscriptions	263–264

sending
through	relay	252
to	a	topic	262–263
to	Event	Hubs	268
to	queues	256–257

messaging	protocols	238–239
messaging	strategy	236–278

Azure	Relay	236,	239–253
Event	Hubs	237,	265–270
Hybrid	Connections	240–247
Notification	Hubs	237,	270–271
scaling	and	monitoring	271–277
Service	Bus	queues	237,	253–259
Service	Bus	topics	and	subscriptions	259–265
WCF	Relay	247–253

metadata
log	143
reading	114
setting	113–114
system	properties	113,	114
user-defined	113–114
WS-Federation	206

metrics	48,	132
analyzing	139
API	Apps	316,	318
capacity	137
levels	of	137–138,	138
Logic	Apps	341–342
monitoring	55–57,	139
performance	402
retention	138
storage	137–140
transaction	137
Web	Apps	300–303

MFA.	See	multi-factor	authentication
Microsoft	Application	Registry	208–209
Microsoft	Azure	Traffic	Manager	304
Microsoft	Excel
viewing	logs	with	143

Microsoft	Graph	API	207–210
Microsoft	SQL	Server	164
minidumps	49

Mobile	Apps	343–351
authentication	346–348
client	application	346
configuration	345–346
creating	343–346
deployment	345
development	environment	344–345
offline	sync	for	348–350
overview	343
push	notifications	350–351
target	device	platforms	344

MongoDB	database	163,	169
monitoring
alerts	55
API	Apps	316–318
APIs	362–363
diagnostics	47–49
Event	Hubs	276–277
Logic	Apps	341–342
metrics	55–57
Notification	Hubs	277
Service	Bus	features	275–277
services	388
storage	metrics	139
viewing	logs	56–57
virtual	machines	47–57
configuration	49–54

Web	Apps	296
Monthly	Estimated	Cost	Trend	chart	92
multi-factor	authentication	(MFA)	210–216,	225
multi-tier	applications	58

N
namespaces	274
Azure	Relay	240

Event	Hubs	275
Service	Bus	237–238,	273

.NET	Storage	Client	Library	141
NetTcpRelayBinding	relay	248
network	firewalls	175
network	isolation	179–180
New-AzureRmResourceGroupDeployment	cmdlet	76
New-AzureRmRoleAssignment	cmdlet	99
Newtonsoft.Json	307
Node.js	310
nodes	160–161
Notification	Hubs	237,	270–271,	272
monitoring	277
when	to	use	277–278

O
OAuth	2.0	198,	202–203
OData
querying	using	127

offline	secondary	databases	150
offline	sync	343,	348–350
online	secondary	databases	150–151
OpenAPI	Specification	(OAS)	310
OpenID	Connect	192–193,	198,	199–202,	217
OpenShift	Container	Platform	394–396
OpenShift	Origin	394,	396
Open-source	Cloud	Foundry	(OSS	CF)	392
operation	logs	142
owners
adding	to	DevTest	Labs	97–98

P
page	blobs	115
partition	keys	123–125,	126–128,	170,	269
partitions	128–129,	169–170,	269,	274,	275

partner-managed	identities	225
passwords
application	209

PeekLock	mode	257
Performance	Counters	51
performance	metrics	402
permissions	95
certificate	230
Cosmos	DB	175
key	229
secret	230

Pivotal	Cloud	Foundry	(PCF)	392–393
Placement	groups	19
plain-old	CLR	objects	(POCOs)	166
Platform-as-a-Service	(PaaS)	1,	281
Azure	Marketplace	398–399
Azure	Quickstart	Templates	397–398
Cloud	Foundry	392–393
OpenShift	Container	Platform	394–396
third-party	392–399

point	in	time	restores	147–149
PowerShell
accessing	file	share	using	44
adding	external	users	to	lab	with	98–99
availability	set	configuration	using	60
Azure	AD	management	with	192
custom	image	creation	with	76
disk	encryption	using	46–47
scaling	VMs	with	17
Web	Apps	and	296

PowerShell	Desired	State	Configuration.	See	Desired	State	Configuration
pre-fetching	messages	274
premium	directories	195
premium	disks	30–31,	45
premium	storage	45

pricing	tier	271–272,	282
primary	keys	132
proxies	377–378
Publish-AzureRMVmDscConfiguration	cmdlet	13
Publish-AzureVMDscConfiguration	cmdlet	14
Puppet	408
push	notifications	343,	350–351

Q
queues	128–131
Azure	253
SAS	tokens	for	134–135
Service	Bus	237,	253–259

QueueSender	256
Quickstart	Templates	397–398
quotas
API	Apps	316

R
rate	limits
for	APIs	358–360

RBAC.	See	Role-Based	Access	Control
ReceiveAndDelete	mode	257
ReceiveBatch()	264
ReceiveBatchAsync()	264
receiver	keys	250
records
deleting	127
in	partitions	126
inserting,	into	tables	124–125
inserting	multiple	125–126
updating	126

Redis	caching	177–182
Redis	clusters	180
relational	databases	161,	171

relationships	160–161
relays	237.	See	also	Azure	Relay;	See	also	WCF	Relay	scaling	273–274
relay	service	endpoints	250–252
remote	debugging	16,	289
Remote	Desktop	(RDP)	44
replication
automatic	asynchronous	150
data	111,	171–172
geo-replication	41,	149–150
locally	redundant	41
options	111

Request	Units	(RUs)	131
resilience
Web	Apps	303–305

resources
custom	12
DSC	11

REST	API	174
REST	APIs	43,	45
RESTful	APIs	296,	305,	310,	340
restores
point	in	time	147–149

REST	services	248
retention
backups	147

Role-Based	Access	Control	(RBAC)	95–96
roles	95,	96
row	keys	123,	124
RPC	listeners	383
RUs.	See	Request	Units

S
SAML	2.0	Protocol	(SAML-P)	192,	198,	206–207
SAS.	See	secure	access	signature
SBMP.	See	Service	Bus	Messaging	Protocol

Scale	Sets	18–24
scaling
Azure	Cosmos	DB	DocumentDB	169–171
Azure	SQL	Database	155–157
blob	storage	119–120
Event	Hubs	275
queues	130
relays	273–274
Service	Bus	features	272–273
Service	Bus	queues	274
Service	Bus	topics	274
Service	Fabric	apps	390–391
Web	Apps	303–305

schema
import	and	export	151–155

schemas
adding	to	integration	account	332
XML	331

scopes	95
search
Azure	Search	182–186
full	text	182

Search	Units	(SUs)	182
secondary	databases
offline	150
online	150–151

secondary	keys	132
secret	permissions	230
secrets
managing,	with	Key	Vault	225–236

secure	access	signature	(SAS)
data	validation	135
tokens
recommendations	for	135
renewing	135

Secure	Socket	Layer	(SSL)	291
security.	See	also	access	control;	See	also	authentication
Cosmos	DB	174–176
DevTest	Labs	95–100
Redis	179–180

Select-AzureRmSubscription	cmdlet	76,	98
sender	applications	245–246
sender	keys	250
Server	Manager	32
Server	Message	Block	(SMB)	protocol	42
Service	Bus
messaging	protocols	238–239
monitoring	275–277
namespaces	237–238,	273
pricing	tier	271–272
quotas	273
scaling	features	272–273
when	to	use	277–278

Service	Bus	Messaging	Protocol	(SBMP)	239
Service	Bus	queues	237,	253–259,	278
connection	strings	256
creating	255
credentials	255–256
dead	letter	259
duplicate	messages	and	259
monitoring	275
properties	of	254
receiving	messages	257–259
scaling	274
sending	messages	to	256–257

Service	Bus	subscriptions	237,	259–265,	278
creating	261
filtering	messages	264–265
properties	260
receiving	messages	from	263–264

Service	Bus	topics	237,	259–265,	278
creating	261
credentials	262
filtering	messages	264–265
monitoring	276
properties	260
scaling	274
sending	messages	to	262–263

Service	Fabric.	See	Azure	Service	Fabric
Service	Tiers	144–147
session	state	181
SetAzureRmVmDscExtension	cmdlet	13
set	expiration	date	policy	91
shard	maps	156
shared	access	signatures	116
Shared	Access	Signature	(SAS)	127
shared	access	signatures	(SAS)	132–135
Shared	Key	116
Shared	Key	Lite	116
shared	storage
configuration	41–45

single	page	applications	(SPAs)	192
Site	Control	Management	(SCM)	website	300
SOAP	protocol	248
social	identity	provider	authentication	217–225
Software	as	a	Service	(SaaS)	319–322
SQL	Data	Sync	159–160
SQL	queries	167
SQL	Server
virtual	machines
creating	7

SQL	Server	Management	Studio	(SSMS)	151–155
SSD	disks	30
SSH	keys	393
SSH	public	keys

generation	of	6
SSL	certificates	291,	294–295
standard	disks	30–31,	45
standard	storage	45
stateful	Fabric-aware	services	379
stateless	Fabric-aware	services	379
status	messages	142
storage
access	control	132–136
access	policies	113
accounts	42
blob	110–112
CDN	configuration	116–117
geographic	location	111
key	regneration	135–136
read	and	change	data	112–113
types	111

Azure	File	41–45
Azure	Files	119
Azure	Storage	Queue	128–131
Azure	Tables	122–128
blob	30,	42
blobs	109–122
append	115
block	115
copying	116
hierarchies	117–118
leasing	119–120
metadata	113–114
page	115
read	and	change	data	112–113
scaling	119–120
secure	access	115–116
streaming	data	115
types	of	115

containers	112–113,	117,	122
Cross-Origin	Resource	Sharing	136–141
custom	domains	118
disk	caching	39–41
disk	encryption	46–48
geo-replication	41
integration	of	function	with	374–376
locally	redundant	111
logs	140–143
metrics	132
pools	32–39
shared	41–45
virtual	machines	29–47
capacity	planning	30–32
premium	45
standard	45

storage	access	signatures	(SAS)
tokens
creating	133–134

Storage	Analytics	Logging	140–141
Storage	Analytics	Metrics	132
analysis	139
configuration	137–140
monitoring	139

Storage	API	114
Storage	Client	Library	44–45,	133
Storage	Service	Encryption	(SSE)	46–47
stored	access	policies	135
stored	procedures	164,	170,	173–174
Stream	Analytics	278
Swagger	308–310,	312–316,	340
Swagger	Specification	310
Swashbuckle	308,	310–314,	340
Sync	Groups	159
Sync	Schemas	159

SyncTable	348
Syslog	48
system	logs	48
system	properties
metadata	113
reading	114

T
tables.	See	also	Azure	Tables
easy	348
SAS	tokens	for	134

TeamCity	409
Team	Foundation	Version	Control	404
telemetry	400–401
temp	drive	30
third-party	Platform-as-a-Service	(PaaS)	392–399
Azure	Marketplace	398–399
Azure	Quickstart	Templates	397–398
Cloud	Foundry	392–393
OpenShift	Container	Platform	394–396

throughput	units	275
tiered	pricing	144
Timestamp	124
Time-to-Live	(TTL)	117,	265
tokens	203
transaction	metrics	137
transforms	331
Transform	XML	334–336
Transport	Layer	Security	(TLS)	291
triggers	164,	173,	373–374,	376–377
for	Logic	Apps	337–339

T-SQL	161

U
UDFs.	See	user-defined	functions

Universal	Naming	Convention	(UNC)	41
unmanaged	disks	30
update	domains	58
URIs	111,	113
user	defined	functions	(UDFs)	173
user-defined	metadata	113–114
users
adding	to	DevTest	Labs	97–99
authentication	of	192,	203–206
Cosmos	DB	175

V
vent	processing	functions	371–372
version	control	404
virtual	hard	disks	(VHDs)	30,	72
custom	image	creation	from	74–76

virtual	machine	disks	30
Virtual	Machine	Scale	Sets	(VMSS)
configuring	Autoscale	on	existing	27–29
configuring	Autoscale	when	provisioning	25–26
deployment	18–24

virtual	machines	(VMs)	1–108
alerts,	configuration	55
auto-shutdown	policy	87–89
auto-start	policy	90–91
availability	57–66
configuration	management	7–16
with	Azure	Portal	14–15
with	Custom	Script	Extension	8–10
with	DSC	7–8,	11–12,	13–15
with	VM	Agent	7–8

creating
Linux	6
SQL	Server	7
Windows	Server	3–5

DevTest	Labs	67–104
adding	VM	to	lab	70–71
cost	management	92–95
custom	images	72–78
environments	100–104
formulas	77–83
lab	creation	67–70
policies	and	procedures	83–91
security	access	95–100

disks
creating	generalized	22

extensions	7–8
images	2
load	balancing	61–67
monitoring	47–57
configuration	49–54
diagnostics	47–49
metrics	55–57

per	lab	policy	86–87
per	user	policy	85–86
remote	debugging	16
scaling	16–29
set	expiration	date	policy	91
sizes	17
sizes	policy	83–85
storage	29–47
capacity	planning	30–32
disk	caching	39–41
disk	encryption	46–48
geo-replication	41
pools	32–39
premium	45
shared	41–45
standard	45

workload	deployment	1–7

virtual	networks	(VNet)	179
Visual	Studio	2017
API	app	creation	with	306–310

Visual	Studio	Server	Explorer	300
Visual	Studio	Team	Services	(VSTS)	403–408
VM	Agent	7,	47
configuration	management	using	7–8

VM	Depot	2

W
WADDiagnosticInfrastructureLogsTable	49
WADETWEventTable	49
WADLogsTable	49
WADPerformanceCountersTable	48
WCF	Relay	240,	247–253
credentials	249–250
deployment	248–249
protocols	247
relay	and	listener	endpoints	250–252
sending	messages	252–253

Web/API	applications	195–196
web	applications	281
Web	Apps	282–305
analytics	296
configuration
certificates	291,	294
settings	287–290

creating	284–285
custom	domains	291–294
diagnostics	296–300
managing	295–296
monitoring	296,	300–303
resilience	303–305
scaling	303–305

webhook	functions	369–371

Webhooks	94,	341
WebJobs	366–367
web	server	logs	297,	318
web	services	281
WebSockets	239
Windows	containers	390
Windows	virtual	machines
creating	3–5,	45
metrics	data	48
remote	debugging	16

workloads
deployment,	on	ARM	VMs	1–7
identifying	supported	2–3
requirements	3–4

WS-Federation	192,	198,	203–206

X
XML	capabilities
Logic	Apps	with	331–337

XML	documents	331
XML	Validation	333–334
XplatCLI	296

About	the	authors

ZOINER	TEJADA	has	more	than	18	years	of	experience	in	the	software
industry	as	a	software	architect,	CTO,	and	start-up	CEO,	with	particular
expertise	in	cloud	computing,	big	data,	analytics,	and	machine	learning.	He	was
among	the	first	to	receive	a	Microsoft	Azure	MVP	(“Most	Valuable
Professional”)	designation	and	has	since	been	awarded	the	MVP	for	six
consecutive	years,	and	most	recently	a	dual	MVP	award	for	Azure	and	Data
Platform.	Additionally,	he	was	recently	recognized	by	Microsoft	as	a	Microsoft
Regional	Director.

MICHELE	LEROUX	BUSTAMANTE	is	cofounder	/	CIO	of	Solliance,	a
Microsoft	Regional	Director	and	Azure	MVP,	has	been	awarded	Azure	Elite	and
Azure	Insider	status	as	well	as	the	ASP.NET	Insider	designation.	Michele	is	a
respected	technology	executive	/	thought	leader,	who	builds	high	performance
teams	and	infrastructure.	With	over	20	years	of	experience	Michele	has	held
senior	executive	positions,	assembled	software	development	teams	and
implemented	processes	for	all	aspects	of	the	software	development	lifecycle,	and
actively	facilitated	large-scale	enterprise	application	deployments.	Michele	is	a
recognized	expert	in	many	fields	including	distributed	systems	architecture,
cloud	computing	and	identity	and	access	management	–	the	latter,	an	area	with
very	few	deep	technical	experts.	Today,	Michele	specializes	in	delivering	cloud-
enabled	solutions	at	scale,	cloud	migration,	security,	compliance,	and	micro-
services	platforms.

IKE	ELLIS	is	a	data	architect	who	stays	current	on	many	database
technologies.	He	specializes	in	the	Microsoft	Data	Platform,	including
DocumentDB,	Azure	SQL	Datawarehouse,	and	Azure	Data	Lake.	He	also	loves
visualizing	data	using	Microsoft	tools	like	Power	BI,	SQL	Server	Reporting
Services,	and	mobile	dashboarding.	Ike	is	a	current	Microsoft	MVP	for	the	data
platform	team.

http://ASP.NET

Code	Snippets

Many	titles	include	programming	code	or	configuration	examples.	To	optimize
the	presentation	of	these	elements,	view	the	eBook	in	single-column,	landscape
mode	and	adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting
code	and	configurations	in	the	reflowable	text	format,	we	have	included	images
of	the	code	that	mimic	the	presentation	found	in	the	print	book;	therefore,	where
the	reflowable	format	may	compromise	the	presentation	of	the	code	listing,	you
will	see	a	“Click	here	to	view	code	image”	link.	Click	the	link	to	view	the	print-
fidelity	code	image.	To	return	to	the	previous	page	viewed,	click	the	Back	button
on	your	device	or	app.

	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Introduction
	Organization of this book
	Microsoft certifications
	Acknowledgments
	Microsoft Virtual Academy
	Quick access to online references
	Errata, updates, & book support
	We want to hear from you
	Stay in touch

	Preparing for the exam
	Chapter 1 Create and manage virtual machines
	Skill 1.1: Deploy workloads on Azure ARM virtual machines
	Identify supported workloads
	Create a Windows Server VM
	Create a Linux VM
	Create a SQL Server VM

	Skill 1.2: Perform configuration management
	Automate configuration management by using PowerShell Desired State Configuration (DSC) and the VM Agent (using custom script extensions)
	Configure VMs with Custom Script Extension
	Use PowerShell DSC
	Configure VMs with DSC
	Enable remote debugging

	Skill 1.3: Scale ARM VMs
	Scale up and scale down VM sizes
	Deploy ARM VM Scale Sets (VMSS)
	Configure Autoscale

	Skill 1.4: Design and implement ARM VM storage
	Plan for storage capacity
	Configure storage pools
	Configure disk caching
	Configure geo-replication
	Configure shared storage using Azure File storage
	Implement ARM VMs with Standard and Premium Storage
	Implement Azure Disk Encryption for Windows and Linux ARM VMs

	Skill 1.5: Monitor VMs
	Configure monitoring and diagnostics for a new VM
	Configure monitoring and diagnostics for an existing VM
	Configure alerts
	Monitor metrics

	Skill 1.6: Manage ARM VM Availability
	Configure availability sets
	Combine the Load Balancer with availability sets

	Skill 1.7: Design and implement DevTest Labs
	Create a lab
	Add a VM to a lab
	Create and manage custom images and formulas
	Configure a lab to include policies and procedures
	Configure cost management
	Secure access to labs
	Use environments in a lab

	Thought experiment
	Thought experiment answer
	Chapter summary

	Chapter 2 Design and implement a storage and data strategy
	Skill 2.1: Implement Azure Storage blobs and Azure files
	Azure Storage blobs
	Create a blob storage account
	Read and change data
	Set metadata on a container
	Setting user-defined metadata
	Reading user-defined metadata
	Store data using block and page blobs
	Stream data using blobs
	Access blobs securely
	Implement Async blob copy
	Configure a Content Delivery Network with Azure Blob Storage
	Design blob hierarchies
	Configure custom domains
	Scale blob storage
	Azure files
	Implement blob leasing
	Create connections to files from on-premises or cloudbased Windows or, Linux machines
	Shard large datasets

	Skill 2.2: Implement Azure Storage tables, queues, and Azure Cosmos DB Table API
	Azure Table Storage
	Using basic CRUD operations
	Querying using ODATA
	Designing, managing, and scaling table partitions
	Azure Storage Queues
	Adding messages to a queue
	Processing messages
	Retrieving a batch of messages
	Scaling queues
	Choose between Azure Storage Tables and Azure Cosmos DB Table API

	Skill 2.3: Manage access and monitor storage
	Generate shared access signatures
	Create stored access policies
	Regenerate storage account keys
	Configure and use Cross-Origin Resource Sharing
	Analyze logs

	Skill 2.4: Implement Azure SQL databases
	Choosing the appropriate database tier and performance level
	Configuring and performing point in time recovery
	Enabling geo-replication
	Creating an offline secondary database
	Creating an online secondary database
	Creating an online secondary database
	Import and export schema and data
	Scale Azure SQL databases
	Managed elastic pools, including DTUs and eDTUs
	Implement Azure SQL Data Sync
	Implement graph database functionality in Azure SQL Database

	Skill 2.5: Implement Azure Cosmos DB DocumentDB
	Choose the Cosmos DB API surface
	Create Cosmos DB API Database and Collections
	Query documents
	Run Cosmos DB queries
	Create Graph API databases
	Execute GraphDB queries
	Implement MongoDB database
	Manage scaling of Cosmos DB, including managing partitioning, consistency, and RUs
	Manage multiple regions
	Implement stored procedures
	Access Cosmos DB from REST interface
	Manage Cosmos DB security

	Skill 2.6: Implement Redis caching
	Choose a cache tier
	Implement data persistence
	Implement security and network isolation
	Tune cluster performance
	Integrate Redis caching with ASP.NET session and cache providers

	Skill 2.7: Implement Azure Search
	Create a service index
	Add data
	Search an index
	Handle Search results

	Thought experiment
	Thought experiment answers
	Chapter summary

	Chapter 3 Manage identity, application and network services
	Skill 3.1: Integrate an app with Azure AD
	Preparing to integrate an app with Azure AD
	Develop apps that use WS-Federation, SAML-P, OpenID Connect and OAuth endpoints
	Query the directory using Microsoft Graph API, MFA and MFA API

	Skill 3.2: Develop apps that use Azure AD B2C and Azure AD B2B
	Design and implement apps that leverage social identity provider authentication
	Leverage Azure AD B2B to design and implement applications that support partner-managed identities and enforce multi-factor authentication

	Skill 3.3: Manage Secrets using Azure Key Vault
	Configure Azure Key Vault
	Manage access, including tenants
	Implement HSM protected keys
	Implement logging
	Implement key rotation

	Skill 3.4: Design and implement a messaging strategy
	Develop and scale messaging solutions using Service Bus queues, topics, relays and Notification Hubs
	Scale and monitor messaging
	Determine when to use Event Hubs, Service Bus, IoT Hub, Stream Analytics and Notification Hubs

	Thought experiment
	Thought experiment answers
	Chapter summary

	Chapter 4 Design and implement Azure PaaS compute and web and mobile services
	Skill 4.1: Design Azure App Service Web Apps
	Define and manage App Service plans
	Configure Web App settings
	Configure Web App certificates and custom domains
	Manage Web Apps by using the API, Azure PowerShell, and Xplat-CLI
	Implement diagnostics, monitoring, and analytics
	Design and configure Web Apps for scale and resilience

	Skill 4.2: Design Azure App Service API Apps
	Create and deploy API Apps
	Automate API discovery by using Swashbuckle
	Use Swagger API metadata to generate client code for an API app
	Monitor API Apps

	Skill 4.3: Develop Azure App Service Logic Apps
	Create a Logic App connecting SaaS services
	Create a Logic App with B2B capabilities
	Create a Logic App with XML capabilities
	Trigger a Logic App from another app
	Create custom and long-running actions
	Monitor Logic Apps

	Skill 4.4: Develop Azure App Service Mobile Apps
	Create a mobile app
	Add authentication to a mobile app
	Add offline sync to a mobile app
	Add push notifications to a mobile app

	Skill 4.5: Implement API Management
	Create managed APIs
	Configure API Management policies
	Protect APIs with rate limits
	Add caching to improve performance
	Monitor APIs
	Customize the developer portal

	Skill 4.6: Implement Azure Functions and WebJobs
	Create Azure Functions
	Implement a Webhook function
	Create an event processing function
	Implement an Azure-connected function
	Integrate a function with storage
	Design and implement a custom binding
	Debug a Function
	Implement and configure proxies
	Integrate with App Service Plan

	Skill 4.7: Design and Implement Azure Service Fabric apps
	Create a Service Fabric application
	Add a web front end to a Service Fabric application
	Build an Actors-based service
	Monitor and diagnose services
	Deploy an application to a container
	Migrate apps from cloud services
	Scale a Service Fabric app
	Create, secure, upgrade, and scale Service Fabric Cluster in Azure

	Skill 4.8: Design and implement third-party Platform as a Service (PaaS)
	Implement Cloud Foundry
	Implement OpenShift
	Provision applications by using Azure Quickstart Templates
	Build applications that leverage Azure Marketplace solutions and services

	Skill 4.9: Design and implement DevOps
	Instrument an application with telemetry
	Discover application performance issues by using Application Insights
	Deploy Visual Studio Team Services with continuous integration (CI) and continuous development (CD)
	Deploy CI/CD with third-party platform tools (Jenkins, GitHub, Chef, Puppet, TeamCity)

	Thought experiment
	Thought experiment answers
	Chapter summary

	Index
	About the authors
	Code Snippets

