
LPIC-1®

Study Guide
Fifth Edition

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

LPIC-1®

Linux Professional
Institute Certification

Study Guide
Fifth Edition

Christine Bresnahan

Richard Blum

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Copyright © 2020 by John Wiley & Sons, Inc, Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-58212-0
ISBN: 978-1-119-58209-0 (ebk.)
ISBN: 978-1-119-58208-3 (ebk.)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty
may be created or extended by sales or promotional materials. The advice and strategies contained herein
may not be suitable for every situation. This work is sold with the understanding that the publisher is not
engaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may
make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or
fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2019950102

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used
without written permission. LPIC-1 is a registered trademark of Linux Professional Institute, Inc. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Acknowledgments
First, all glory and praise go to God, who through His Son, Jesus Christ, makes all things
possible, and gives us the gift of eternal life.

Many thanks go to the fantastic team of people at Sybex for their outstanding work
on this project. Thanks to Kenyon Brown, the senior acquisitions editor, for offering us
the opportunity to work on this book. Also thanks to Stephanie Barton, the development
editor, for keeping things on track and making the book more presentable. Thanks
Steph, for all your hard work and diligence. The technical editor, David Clinton, did
a wonderful job of double-checking all of the work in the book in addition to making
suggestions to improve the content. Thanks also goes to the young and talented Daniel
Anez (theanez.com) for his illustration work. We would also like to thank Carole Jelen
at Waterside Productions, Inc., for arranging this opportunity for us and for helping us
out in our writing careers.

Christine would particularly like to thank her husband, Timothy, for his encouragement,
patience, and willingness to listen, even when he has no idea what she is talking about.
Christine would also like to express her love for Samantha and Cameron, “May God bless
your marriage richly.”

Rich would particularly like to thank his wife, Barbara, for enduring his grouchy attitude
during this project, and helping to keep up his spirits with baked goods.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

About the Authors

Christine Bresnahan, CompTIA Linux+, started working with computers more than
30 years ago in the IT industry as a systems administrator. Christine is an adjunct professor
at Ivy Tech Community College where she teaches Linux certification and Python program-
ming classes. She also writes books and produces instructional resources for the classroom.

Richard Blum, CompTIA Linux+ ce, CompTIA Security+ ce, has also worked in the IT
industry for more than 30 years as both a system and network administrator, and he has
published numerous Linux and open source books. Rich is an online instructor for Linux
and web programming courses that are used by colleges and universities across the United
States. When he is not being a computer nerd, Rich enjoys spending time with his wife
Barbara and his two daughters, Katie and Jessica.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Contents at a Glance
Introduction xxi

Assessment Test xxxix

Part I Exam 101-500 1

Chapter 1 Exploring Linux Command-Line Tools 3

Chapter 2 Managing Software and Processes 67

Chapter 3 Configuring Hardware 133

Chapter 4 Managing Files 181

Chapter 5 Booting, Initializing, and Virtualizing Linux 245

Part II Exam 102-500 303

Chapter 6 Configuring the GUI, Localization, and Printing 305

Chapter 7 Administering the System 353

Chapter 8 Configuring Basic Networking 423

Chapter 9 Writing Scripts 465

Chapter 10 Securing Your System 523

Appendix Answers to Review Questions 583

Index 619

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Contents
Introduction xxi

Assessment Test xxxix

Part I Exam 101-500 1

Chapter 1 Exploring Linux Command-Line Tools 3

Understanding Command-Line Basics 4
Discussing Distributions 4
Reaching a Shell 5
Exploring Your Linux Shell Options 5
Using a Shell 7
Using Environment Variables 11
Getting Help 17

Editing Text Files 20
Looking at Text Editors 20
Understanding vim Modes 24
Exploring Basic Text-Editing Procedures 24
Saving Changes 27

Processing Text Using Filters 28
File-Combining Commands 28
File-Transforming Commands 31
File-Formatting Commands 33
File-Viewing Commands 36
File-Summarizing Commands 40

Using Regular Expressions 45
Using grep 45
Understanding Basic Regular Expressions 47
Understanding Extended Regular Expressions 50

Using Streams, Redirection, and Pipes 50
Redirecting Input and Output 51
Piping Data between Programs 55
Using sed 56
Generating Command Lines 60

Summary 61
Exam Essentials 61
Review Questions 62

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xii Contents

Chapter 2 Managing Software and Processes 67

Looking at Package Concepts 68
Using RPM 69

RPM Distributions and Conventions 69
The rpm Command Set 71
Extracting Data from RPMs 77
Using YUM 78
Using ZYpp 83

Using Debian Packages 86
Debian Package File Conventions 87
The dpkg Command Set 87
Looking at the APT Suite 92
Using apt-cache 93
Using apt-get 94
Reconfiguring Packages 97

Managing Shared Libraries 98
Library Principles 98
Locating Library Files 99
Loading Dynamically 100
Library Management Commands 100

Managing Processes 102
Examining Process Lists 102
Employing Multiple Screens 109
Understanding Foreground and Background Processes 116
Managing Process Priorities 120
Sending Signals to Processes 121

Summary 126
Exam Essentials 127
Review Questions 129

Chapter 3 Configuring Hardware 133

Configuring the Firmware and Core Hardware 134
Understanding the Role of Firmware 134
Device Interfaces 136
The /dev Directory 138
The /proc Directory 139
The /sys Directory 143
Working with Devices 144
Hardware Modules 148

Storage Basics 154
Types of Drives 154
Drive Partitions 155
Automatic Drive Detection 155

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Contents xiii

Storage Alternatives 156
Multipath 156
Logical Volume Manager 157
Using RAID Technology 158

Partitioning Tools 158
Working with fdisk 158
Working with gdisk 161
The GNU parted Command 162
Graphical Tools 163

Understanding Filesystems 164
The Virtual Directory 164
Maneuvering Around the Filesystem 166

Formatting Filesystems 167
Common Filesystem Types 167
Creating Filesystems 169

Mounting Filesystems 170
Manually Mounting Devices 170
Automatically Mounting Devices 172

Managing Filesystems 173
Retrieving Filesystem Stats 173
Filesystem Tools 173

Summary 174
Exam Essentials 175
Review Questions 177

Chapter 4 Managing Files 181

Using File Management Commands 182
Naming and Listing Files 182
Exploring Wildcard Expansion Rules 186
Understanding the File Commands 189
Compressing File Commands 199
Archiving File Commands 202
Managing Links 213

Managing File Ownership 218
Assessing File Ownership 219
Changing a File’s Owner 219
Changing a File’s Group 220

Controlling Access to Files 221
Understanding Permissions 221
Changing a File’s Mode 223
Setting the Default Mode 226
Changing Special Access Modes 228

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xiv Contents

Locating Files 229
Getting to Know the FHS 229
Employing Tools to Locate Files 231

Summary 239
Exam Essentials 239
Review Questions 241

Chapter 5 Booting, Initializing, and Virtualizing Linux 245

Understanding the Boot Process 246
The Boot Process 246
Extracting Information about the Boot Process 247

Looking at Firmware 249
The BIOS Startup 249
The UEFI Startup 250

Looking at Boot Loaders 251
Boot Loader Principles 251
Using GRUB Legacy as the Boot Loader 251
Using GRUB 2 as the Boot Loader 255
Adding Kernel Boot Parameters 259
Using Alternative Boot Loaders 260

The Initialization Process 261
Using the systemd Initialization Process 262

Exploring Unit Files 263
Focusing on Service Unit Files 265
Focusing on Target Unit Files 268
Looking at systemctl 270
Examining Special systemd Commands 273

Using the SysV Initialization Process 276
Understanding Runlevels 277
Investigating SysVinit Commands 280

Stopping the System 283
Notifying the Users 284
Virtualizing Linux 286

Looking at Virtual Machines 287
Understanding Containers 291
Looking at Infrastructure as a Service 293

Summary 295
Exam Essentials 295
Review Questions 298

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Contents xv

Part II Exam 102-500 303

Chapter 6 Configuring the GUI, Localization, and Printing 305

Understanding the GUI 306
Understanding the X11 Architecture 307

Examining X.Org 308
Figuring Out Wayland 309

Managing the GUI 311
Standard GUI Features 311
The X GUI Login System 313
Common Linux Desktop Environments 314

Providing Accessibility 323
Using X11 for Remote Access 325

Remote X11 Connections 326
Tunneling your X11 Connection 326

Using Remote Desktop Software 328
Viewing VNC 328
Grasping Xrdp 330
Exploring NX 332
Studying SPICE 332

Understanding Localization 333
Character Sets 333
Environment Variables 334

Setting Your Locale 335
Installation Locale Decisions 335
Changing Your Locale 336

Looking at Time 338
Working with Time Zones 338
Setting the Time and Date 339

Configuring Printing 343
Summary 345
Exam Essentials 346
Review Questions 348

Chapter 7 Administering the System 353

Managing Users and Groups 354
Understanding Users and Groups 354
Configuring User Accounts 355
Configuring Groups 371

Managing Email 375
Understanding Email 375
Choosing Email Software 376
Working with Email 377

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xvi Contents

Using Log and Journal Files 384
Examining the syslog Protocol 385
Viewing the History of Linux Logging 387
Logging Basics Using rsyslogd 387
Journaling with systemd-journald 394

Maintaining the System Time 403
Understanding Linux Time Concepts 403
Viewing and Setting Time 404
Understanding the Network Time Protocol 408
Using the NTP Daemon 411
Using the chrony Daemon 413

Summary 416
Exam Essentials 416
Review Questions 419

Chapter 8 Configuring Basic Networking 423

Networking Basics 424
The Physical Layer 424
The Network Layer 426
The Transport Layer 430
The Application Layer 431

Configuring Network Features 433
Network Configuration Files 433
Graphical Tools 436
Command-Line Tools 438
Getting Network Settings Automatically 445
Bonding Network Cards 445

Basic Network Troubleshooting 447
Sending Test Packets 447
Tracing Routes 448
Finding Host Information 449

Advanced Network Troubleshooting 452
The netstat Command 452
Examining Sockets 455
The netcat Utility 456

Summary 457
Exam Essentials 458
Review Questions 460

Chapter 9 Writing Scripts 465

Shell Variables 466
Global Environment Variables 466
Local Environment Variables 468
Setting Local Environment Variables 470

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Contents xvii

Setting Global Environment Variables 472
Locating System Environment Variables 472
Using Command Aliases 474

The Basics of Shell Scripting 475
Running Multiple Commands 475
Redirecting Output 476
Piping Data 477
The Shell Script Format 478
Running the Shell Script 479

Advanced Shell Scripting 481
Displaying Messages 481
Using Variables in Scripts 482
Command-Line Arguments 484
Getting User Input 484
The Exit Status 488

Writing Script Programs 489
Command Substitution 489
Performing Math 490
Logic Statements 492
Loops 496
Functions 498

Running Scripts in Background Mode 500
Running in the Background 501
Running Multiple Background Jobs 502

Running Scripts Without a Console 503
Sending Signals 504

Interrupting a Process 504
Pausing a Process 504

Job Control 506
Viewing Jobs 506
Restarting Stopped Jobs 508

Running Like Clockwork 509
Scheduling a Job Using the at Command 509
Scheduling Regular Scripts 513

Summary 515
Exam Essentials 516
Review Questions 518

Chapter 10 Securing Your System 523

Administering Network Security 524
Disabling Unused Services 524
Using Super Server Restrictions 534
Restricting via TCP Wrappers 538

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xviii Contents

Administering Local Security 539
Securing Passwords 539
Limiting root Access 543
Auditing User Access 547
Setting Login, Process, and Memory Limits 549
Locating SUID/SGID Files 551

Exploring Cryptography Concepts 553
Discovering Key Concepts 553
Securing Data 554
Signing Transmissions 555

Looking at SSH 555
Exploring Basic SSH Concepts 555
Configuring SSH 558
Generating SSH Keys 560
Authenticating with SSH Keys 561
Authenticating with the Authentication Agent 564
Tunneling 565
Using SSH Securely 567

Using GPG 567
Generating Keys 568
Importing Keys 569
Encrypting and Decrypting Data 570
Signing Messages and Verifying Signatures 571
Revoking a Key 573

Summary 574
Exam Essentials 575
Review Questions 577

Appendix Answers to Review Questions 583

Chapter 1: Exploring Linux Command-Line Tools 584
Chapter 2: Managing Software and Processes 587
Chapter 3: Configuring Hardware 590
Chapter 4: Managing Files 593
Chapter 5: Booting, Initializing, and Virtualizing Linux 597
Chapter 6: Configuring the GUI, Localization, and Printing 601
Chapter 7: Administering the System 605
Chapter 8: Configuring Basic Networking 608
Chapter 9: Writing Scripts 611
Chapter 10: Securing Your System 615

Index 619

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table of Exercises
Exercise 8.1 Determining the Network Environment . 457

Exercise 9.1 Writing a Bash Script to View the Password Information for
System Users . 514

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Introduction
Linux has become one of the fastest-growing operating systems used in server environ-
ments. Most companies utilize some type of Linux system within their infrastructure,
and Linux is one of the major players in the cloud computing world. The ability to build
and manage Linux systems is a skill that many companies are now looking for. The
more you know about Linux, the more marketable you’ll become in today’s computer
industry.

The Linux Professional Institute (LPI) has developed a series of certifications to help
guide you through a career in the Linux world. Its LPIC-1 certification is an introductory
certification for people who want to enter careers involving Linux. The exam is meant to
certify that you have the skills necessary to install, operate, and troubleshoot a Linux sys-
tem and are familiar with Linux-specific concepts and basic hardware.

The purpose of this book is to help you pass the LPIC-1 exams (101 and 102), updated
in 2019 to version 5 (commonly called 101-500 and 102-500). Because these exams cover
basic Linux installation, configuration, maintenance, applications, networking, and secu-
rity, those are the topics that are emphasized in this book. You’ll learn enough to get a
Linux system up and running and to configure it for many common tasks. Even after you’ve
taken and passed the LPIC-1 exams, this book should remain a useful reference.

Why Become Linux Certified?
With the growing popularity of Linux (and the increase in Linux-related jobs) comes hype.
With all the hype that surrounds Linux, it’s become hard for employers to distinguish
employees who are competent Linux administrators from those who just know the buzz-
words. This is where the LPIC-1 certification comes in.

With an LPIC-1 certification, you will establish yourself as a Linux administrator who
is familiar with the Linux platform and can install, maintain, and troubleshoot any type
of Linux system. LPI has created the LPIC-1 exams as a way for employers to have confi-
dence in knowing their employees who pass the exam will have the skills necessary to get
the job done.

How to Become Certified
The certification is available to anyone who passes the two required exams: 101 and
102. The current versions of the exams are version 5 and are denoted as 101-500 and
102-500.

The exam is administered by Pearson VUE. The exam can be taken at any Pearson VUE
testing center. If you pass, you will get a certificate in the mail saying that you have passed.
Contact (877) 619-2096 for Pearson VUE contact information.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xxii Introduction

 To register for the exam with Pearson VUE, call (877) 619-2096 or register
online at www.vue.com . However you do it, you’ll be asked for your name,
mailing address, phone number, employer, when and where you want
to take the test (i.e., which testing center), and your credit card number
(arrangement for payment must be made at the time of registration).

 Who Should Buy This Book
 Anyone who wants to pass the LPIC-1 certifi cation exams would benefi t from this book,
but that’s not the only reason for purchasing the book. This book covers all of the material
someone new to the Linux world would need to know to start out in Linux. After you’ve
become familiar with the basics of Linux, the book will serve as an excellent reference
book for quickly fi nding answers to your everyday Linux questions.

 The book is written with the assumption that you have a familiarity with basic com-
puter and networking principles. Although no experience with Linux is required in order to
benefi t from this book, it will help if you know your way around a computer in either the
Windows or macOS world, such as how to use a keyboard, use optical disks, and work
with USB thumb drives.

 It will also help to have a Linux system available to follow along with. Each chapter con-
tains a simple exercise that will walk you through the basic concepts presented in the chap-
ter. This provides the crucial hands-on experience that you’ll need, both to pass the exam
and to do well in the Linux world.

 While the LPI LPIC-1 exams are Linux distribution neutral, it’s impossible to
write exercises that work in all Linux distributions. That said, the exercises
in this book assume you have either Ubuntu 18.04 LTS or CentOS 7 avail-
able. You can install either or both of these Linux distributions in a virtual
environment using the Oracle VirtualBox software, available at https://
virtualbox.org .

 How This Book Is Organized
 This book consists of 10 chapters plus supplementary information: an online glossary, this
introduction, and the assessment test after the introduction. The chapters are organized as
follows:

 ■ Chapter 1, “Exploring Linux Command-Line Tools,” covers the basic tools you need
to interact with Linux. These include shells, redirection, pipes, text filters, and regular
expressions.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Introduction xxiii

 ■ Chapter 2, “Managing Software and Processes,” describes the programs you’ll use to
manage software. Much of this task is centered around the RPM and Debian package
management systems. The chapter also covers handling shared libraries and managing
processes (that is, running programs).

 ■ Chapter 3, “Configuring Hardware,” focuses on Linux’s interactions with the hard-
ware on which it runs. Specific hardware and procedures for using it include the BIOS,
expansion cards, USB devices, hard disks, and partitions and filesystems used on hard
disks.

 ■ Chapter 4, “Managing Files,” covers the tools used to manage files. This includes com-
mands to manage files, ownership, and permissions, as well as Linux’s standard direc-
tory tree and tools for archiving files.

 ■ Chapter 5, “Booting, Initializing, and Virtualizing Linux,” explains how Linux boots
up and how you can edit files in Linux. Specific topics include the GRUB Legacy and
GRUB 2 boot loaders, boot diagnostics, and runlevels. It also takes a look at how to
run Linux in a virtual machine environment.

 ■ Chapter 6, “Configuring the GUI, Localization, and Printing,” describes the Linux
GUI and printing subsystems. Topics include X configuration, managing GUI logins,
configuring location-specific features, enabling accessibility features, and setting up
Linux to use a printer.

 ■ Chapter 7, “Administering the System,” describes miscellaneous administrative tasks.
These include user and group management, tuning user environments, managing log
files, and setting the clock.

 ■ Chapter 8, “Configuring Basic Networking,” focuses on basic network configuration.
Topics include TCP/IP basics, setting up Linux on a TCP/IP network, and network
diagnostics.

 ■ Chapter 9, “Writing Scripts,” covers how to automate simple tasks in Linux. Scripts are
small programs that administrators often use to help automate common tasks. Being
able to build simple scripts and have them run automatically at specified times can
greatly simplify your administrator job.

 ■ Chapter 10, “Securing Your System,” covers security. Specific subjects include network
security, local security, and the use of encryption to improve security.

Chapters 1 through 5 cover the 101-500 exam, and Chapters 6 through 10 cover the
102-500 exam. These make up Part I and Part II of the book, respectively.

Each chapter begins with a list of the exam objectives that are covered in that chapter.
The book doesn’t cover the objectives in order. Thus, you shouldn’t be alarmed at some of
the odd ordering of the objectives within the book. At the end of each chapter, you’ll find a
couple of elements you can use to prepare for the exam:

Exam Essentials This section summarizes important information that was covered in
the chapter. You should be able to perform each of the tasks or convey the information
requested.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xxiv Introduction

Review Questions Each chapter concludes with 20 review questions. You should answer
these questions and check your answers against the ones provided after the questions. If
you can’t answer at least 80 percent of these questions correctly, go back and review the
chapter or at least those sections that seem to be giving you diffi culty.

 The review questions, assessment test, and other testing elements
included in this book are not derived from the actual exam questions, so
don’t memorize the answers to these questions and assume that doing so
will enable you to pass the exam. You should learn the underlying topic,
as described in the text of the book. This will let you answer the questions
provided with this book and pass the exam. Learning the underlying topic
is also the approach that will serve you best in the workplace—the ultimate
goal of a certification.

 To get the most out of this book, you should read each chapter from start to fi nish and
then check your memory and understanding with the chapter-end elements. Even if you’re
already familiar with a topic, you should skim the chapter; Linux is complex enough that
there are often multiple ways to accomplish a task, so you may learn something even if
you’re already competent in an area.

 Additional Study Tools
 Readers of this book can access a website that contains several additional study tools,
including the following:

 Readers can access these tools by visiting www.sybex.com/go/lpic5e .

Sample Tests All of the questions in this book will be included, along with the assessment
test at the end of this introduction and the 200 questions from the review sections at the
end of each chapter. In addition, there are two 50-question bonus exams. The test engine
runs on Windows, Linux, and macOS.

Electronic Flashcards The additional study tools include 150 questions in fl ashcard for-
mat (a question followed by a single correct answer). You can use these to review your
knowledge of the exam objectives. The fl ashcards run on both Windows and Linux.

Glossary of Terms as a PDF File In addition, there is a searchable glossary in PDF format,
which can be read on all platforms that support PDF.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Introduction xxv

 Conventions Used in This Book
 This book uses certain typographic styles in order to help you quickly identify important
information and to avoid confusion over the meaning of words such as on-screen prompts.
In particular, look for the following styles:

 ■ Italicized text indicates key terms that are described at length for the first time in a
chapter. (Italics are also used for emphasis.)

 ■ A monospaced font indicates the contents of configuration files, messages displayed at a
text-mode Linux shell prompt, filenames, text-mode command names, and Internet URLs.

 ■ Italicized monospaced text indicates a variable—information that differs from one
system or command run to another, such as the name of a client computer or a process
ID number.

 ■ Bold monospaced text is information that you’re to type into the computer, usu-
ally at a Linux shell prompt. This text can also be italicized to indicate that you should
substitute an appropriate value for your system. (When isolated on their own lines,
commands are preceded by non-bold monospaced $ or # command prompts, denoting
regular user or system administrator use, respectively.)

 In addition to these text conventions, which can apply to individual words or entire
paragraphs, a few conventions highlight segments of text:

 A note indicates information that’s useful or interesting but that’s some-
what peripheral to the main text. A note might be relevant to a small num-
ber of networks, for instance, or it may refer to an outdated feature.

 A tip provides information that can save you time or frustration and that
may not be entirely obvious. A tip might describe how to get around a limi-
tation or how to use a feature to perform an unusual task.

 Warnings describe potential pitfalls or dangers. If you fail to heed a warn-
ing, you may end up spending a lot of time recovering from a bug, or you
may even end up restoring your entire system from scratch.

 E X E R C I S E

Exercise

 An exercise is a procedure you should try on your own computer to help you learn about
the material in the chapter. Don’t limit yourself to the procedures described in the exer-
cises, though! Try other commands and procedures to really learn about Linux.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xxvi Introduction

 Real-World Scenario

 A real-world scenario is a type of sidebar that describes a task or example that’s particu-
larly grounded in the real world. This may be a situation we or somebody we know has
encountered, or it may be advice on how to work around problems that are common in
real, working Linux environments.

 The Exam Objectives
 Behind every computer industry exam you can be sure to fi nd exam objectives—the broad top-
ics in which exam developers want to ensure your competency. The offi cial exam objectives
are listed here. (They’re also printed at the start of the chapters in which they’re covered.)

 Exam objectives are subject to change at any time without prior notice and
at LPI’s sole discretion. Please visit LPI’s website (www.lpi.org) for the
most current listing of exam objectives.

 Exam 101-500 Objectives
 The following are the areas in which you must be profi cient in order to pass the 101-500
exam. This exam is broken into four topics (101–104), each of which has three to eight
objectives. Each objective has an associated weight, which refl ects its importance to the
exam as a whole. Refer to the LPI website to view the weights associated with each objec-
tive. The four main topics are:

Subject Area

101 System Architecture

102 Linux Installation and Package Management

103 GNU and Unix Commands

104 Devices, Linux Filesystems, Filesystem Hierarchy Standard

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Introduction xxvii

101 System Architecture

101.1 Determine and Configure hardware settings (Chapter 3)

 ■ Enable and disable integrated peripherals.

 ■ Differentiate between the various types of mass storage devices.

 ■ Determine hardware resources for devices.

 ■ Tools and utilities to list various hardware information (e.g., lsusb, lspci, etc.).

 ■ Tools and utilities to manipulate USB devices.

 ■ Conceptual understanding of sysfs, udev, hald, dbus.

 ■ The following is a partial list of the used files, terms, and utilities: /sys, /proc, /dev,
modprobe, lsmod, lspci, lsusb.

101.2 Boot the System (Chapter 5)

 ■ Provide common commands to the boot loader and options to the kernel at boot time.

 ■ Demonstrate knowledge of the boot sequence from BIOS/UEFI to boot completion.

 ■ Understanding of SysVinit and system.

 ■ Awareness of Upstart.

 ■ Check boot events in the log file.

 ■ The following is a partial list of the used files, terms and utilities: dmesg, journalctl,
BIOS, UEFI, bootloader, kernel, init, initramfs, SysVinit, systemd.

101.3 Change runlevels/boot targets and shutdown or reboot
system (Chapter 5)

 ■ Set the default run level or boot target.

 ■ Change between run levels/boot targets including single user mode.

 ■ Shutdown and reboot from the command line.

 ■ Alert users before switching run levels/boot targets or other major system events.

 ■ Properly terminate processes.

 ■ Awareness of acpid.

 ■ The following is a partial list of the used files, terms and utilities: /etc/inittab,
shutdown, init, /etc/init.d, telinit, systemd, systemctl, /etc/systemd/,
/usr/lib/system/, wall.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xxviii Introduction

102 Linux Installation and Package Management

102.1 Design hard disk layout (Chapter 3)

 ■ Allocate filesystems and swap space to separate partitions or disks.

 ■ Tailor the design to the intended use of the system.

 ■ Ensure the /boot partition conforms to the hardware architecture requirements for
booting.

 ■ Knowledge of basic features of LVM.

 ■ The following is a partial list of the used files, terms and utilities: / (root) filesystem,
/var filesystem, /home filesystem, /boot filesystem, swap space, mount points, parti-
tions, EFI System Partition (ESP).

102.2 Install a boot manager (Chapter 5)

 ■ Providing alternative boot locations and backup boot options.

 ■ Install and configure a boot loader such as GRUB Legacy.

 ■ Perform basic configuration changes for GRUB 2.

 ■ Interact with the boot loader.

 ■ The following is a partial list of the used files, terms, and utilities: /boot/grub/menu
.lst, grub.cfg and grub.conf, grub-install, grub-mkconfig, MBR.

102.3 Manage shared libraries (Chapter 2)

 ■ Identify shared libraries.

 ■ Identify the typical locations of system libraries.

 ■ Load shared libraries.

 ■ The following is a partial list of the used files, terms, and utilities: ldd, ldconfig,
/etc/ld.so.conf, LD_LIBRARY_PATH.

102.4 Use Debian package management (Chapter 2)

 ■ Install, upgrade and uninstall Debian binary packages.

 ■ Find packages containing specific files or libraries which may or may not be installed.

 ■ Obtain package information like version, content, dependencies, package integrity and
installation status (whether or not the package is installed).

 ■ Awareness of apt.

 ■ The following is a partial list of the used files, terms, and utilities: /etc/apt/sources
.list, dpkg, dpkg-reconfigure, apt-get, apt-cache.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Introduction xxix

102.5 Use RPM and YUM package management (Chapter 2)

 ■ Install, re-install, upgrade and remove packages using RPM, YUM, and Zypper.

 ■ Obtain information on RPM packages such as version, status, dependencies, integrity
and signatures.

 ■ Determine what files a package provides, as well as find which package a specific file
comes from.

 ■ The following is a partial list of the used files, terms, and utilities: rpm, rpm2cpio,
/etc/yum.conf, /etc/yum.repos.d/, yum, zypper.

102.6 Linux as a virtualization guest (Chapter 5)

 ■ Understand the general concept of virtual machines and containers.

 ■ Understand common elements virtual machines in an IaaS cloud, such as computing
instances, block storage and networking.

 ■ Understand unique properties of a Linux system which have to changed when a system
is cloned or used as a template.

 ■ Understand how system images are used to deploy virtual machines, cloud instances
and containers.

 ■ Understand Linux extensions which integrate Linux with a virtualization product.

 ■ Awareness of cloud-init.

 ■ The following is a partial list of the used files, terms, and utilities: Virtual machine,
Linux container, Application container, Guest drivers, SSH host keys, D-Bus
machine ID.

103 GNU and Unix Commands

103.1 Work on the command line (Chapter 1)

 ■ Use single shell commands and one-line command sequences to perform basic tasks on
the command line.

 ■ Use and modify the shell environment including defining, referencing and exporting
environment variables.

 ■ Use and edit command history.

 ■ Invoke commands inside and outside the defined path.

 ■ The following is a partial list of the used files, terms, and utilities: bash, echo, env,
export, pwd, set, unset, type, which, man, uname, history, .bash_history, Quoting.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xxx Introduction

103.2 Process text streams using filters (Chapter 1)

 ■ Send text files and output streams through text utility filters to modify the output
using standard UNIX commands found in the GNU textutils package.

 ■ The following is a partial list of the used files, terms, and utilities: bzcat, cat, cut,
head, less, md5sum, nl, od, paste, sed, sha256sum, sha512sum, sort, split, tail, tr,
uniq, wc, xzcat, zcat.

103.3 Perform basic file management (Chapter 4)

 ■ Copy, move and remove files and directories individually.

 ■ Copy multiple files and directories recursively.

 ■ Remove files and directories recursively.

 ■ Use simple and advanced wildcard specifications in commands.

 ■ Using find to locate and act on files based on type, size, or time.

 ■ Usage of tar, cpio, and dd.

 ■ The following is a partial list of the used files, terms, and utilities: cp, find, mkdir, mv,
ls, rm, rmdir, touch, tar, cpio, dd, file, gzip, gunzip, bzip2, bunzip2, xz, unxz, file
globbing.

103.4 Use streams, pipes and redirects (Chapter 1)

 ■ Redirecting standard input, standard output and standard error.

 ■ Pipe the output of one command to the input of another command.

 ■ Use the output of one command as arguments to another command.

 ■ Send output to both stdout and a file.

 ■ The following is a partial list of the used files, terms, and utilities: tee, xargs.

103.5 Create, monitor and kill processes (Chapter 2)

 ■ Run jobs in the foreground and background.

 ■ Signal a program to continue running after logout.

 ■ Monitor active processes.

 ■ Select and sort processes for display.

 ■ Send signals to processes.

 ■ The following is a partial list of the used files, terms, and utilities: &, bg, fg, jobs,
kill, nohup, ps, top, free, uptime, pgrep, pkill, killall, watch, screen, tmux.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Introduction xxxi

103.6 Modify process execution priorities (Chapter 2)

 ■ Know the default priority of a job that is created.

 ■ Run a program with higher or lower priority than the default.

 ■ Change the priority of a running process.

 ■ The following is a partial list of the used files, terms, and utilities: nice, ps, renice,
top

103.7 Search text files using regular expressions (Chapter 1)

 ■ Create simple regular expressions containing several notational elements.

 ■ Understand the difference between basic and extended regular expressions.

 ■ Understand the concepts of special characters, character classes, quantifiers, and
anchors.

 ■ Use regular expression tools to perform searches through a filesystem or file content.

 ■ Use regular expressions to delete, change, and substitute text.

 ■ The following is a partial list of the used files, terms, and utilities: grep, egrep, fgrep,
sed, regex(7).

103.8 Basic file editing (Chapter 5)

 ■ Navigate a document using vi.

 ■ Understand and use vi modes.

 ■ Insert, edit, delete, copy and find text in vi.

 ■ Awareness of Emacs, nano, and vim.

 ■ Configure the standard editor.

 ■ The following is a partial list of the used files, terms, and utilities: vi, /, ?, h, j, k, l, i,
o, a, d, p, y, dd, yy, ZZ, :w!, :q!, EDITOR.

104 Devices, Linux Filesystems, Filesystem Hierarchy
Standard

104.1 Create partitions and filesystems (Chapter 3)

 ■ Manage MBR and GPT partition tables.

 ■ Use various mkfs commands to create various filesystems such as: ext2, ext3,ext4,
XFS, VFAT, and exFAT.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xxxii Introduction

 ■ Basic feature knowledge of Btrfs, including multi-device filesystems, compression, and
subvolumes.

 ■ The following is a partial list of the used files, terms, and utilities: fdisk, gdisk,
parted, mkfs, mkswap.

104.2 Maintain the integrity of filesystems (Chapter 3)

 ■ Verify the integrity of filesystems.

 ■ Monitor free space and inodes.

 ■ Repair simple filesystem problems.

 ■ The following is a partial list of the used files, terms, and utilities: du, df, fsck, e2fsck,
mke2fs, tune2fs, xfs tools (such as xfs_repair, xfs_fsr, and xfs_db).

104.3 Control mounting and unmounting of filesystems (Chapter 3)

 ■ Manually mount and unmount filesystems.

 ■ Configure filesystem mounting on bootup.

 ■ Configure user mountable removeable filesystems.

 ■ Use of labels and UUIDs for identifying and mounting file systems.

 ■ Awareness of systemd mount units.

 ■ The following is a partial list of the used files, terms, and utilities: /etc/fstab, /
media/, mount, umount, blkid, lsblk.

104.4 (Removed)

104.5 Manage file permissions and ownership (Chapter 4)

 ■ Manage access permissions on regular and special files as well as directories.

 ■ Use access modes such as suid, sgid and the sticky bit to maintain security.

 ■ Know how to change the file creation mask.

 ■ Use the group field to grant file access to group members.

 ■ The following is a partial list of the used files, terms, and utilities: chmod, umask,
chown, chgrp.

104.6 Create and change hard and symbolic links (Chapter 4)

 ■ Create links.

 ■ Identify hard and/or soft links.

 ■ Copying versus linking files.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Introduction xxxiii

 ■ Use links to support system administration tasks.

 ■ The following is a partial list of the used files, terms, and utilities: ln, ls.

104.7 Find system files and place files in the correct location
(Chapter 4)

 ■ Understand the correct locations of files under the FHS.

 ■ Find files and commands on a Linux system.

 ■ Know the location and propose of important file and directories as defined in the FHS.

 ■ The following is a partial list of the used files, terms, and utilities: find, locate,
updatedb, whereis, which, type, /etc/updatedb.conf.

Exam 102-500 Objectives
The 102-500 exam comprises six topics (105–110), each of which contains three or four
objectives. The six major topics are:

Subject Area

105 Shells and Shell Scripting

106 User Interfaces and Desktops

107 Administrative Tasks

108 Essential System Services

109 Networking Fundamentals

110 Security

105 Shells, Scripting and Data Management

105.1 Customize and use the shell environment (Chapter 9)

 ■ Set environment variables (e.g., PATH) at login or when spawning a new shell.

 ■ Write Bash functions for frequently used sequences of commands.

 ■ Maintain skeleton directories for new user accounts.

 ■ Set command search path with the proper directory.

 ■ The following is a partial list of the used files, terms, and utilities: ., source,
etc/bash.bashrc, /etc/profile, env, export, set, unset, ~/.bash_profile,
~/.bash_login, ~/.profile, ~/.bashrc, ~/.bash_logout, function, alias.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xxxiv Introduction

105.2 Customize or write simple scripts (Chapter 9)

 ■ Use standard sh syntax (loops, tests).

 ■ Use command substitution.

 ■ Test return values for success or failure or other information provided by a command.

 ■ Execute chained commands.

 ■ Perform conditional mailing to the superuser.

 ■ Correctly select the script interpreter through the shebang (#!) line.

 ■ Manage the location, ownership, execution and suid-rights of scripts.

 ■ The following is a partial list of the used files, terms, and utilities: for, while, test, if,
read, seq, exec, ||, &&.

106 User Interfaces and Desktops

106.1 Install and configure X11 (Chapter 6)

 ■ Understanding of the X11 architecture.

 ■ Basic understanding and knowledge of the X Window configuration file.

 ■ Overwrite specific aspects of Xorg configuration, such as keyboard layout.

 ■ Understand the components of desktop environments, such as display managers and
window managers.

 ■ Manage access to the X server and display applications on remote X servers.

 ■ Awareness of Wayland.

 ■ The following is a partial list of the used files, terms, and utilities: /etc/X11/xorg
.conf, /etc/X11/xorg.conf.d, ~/.xsession-errors, xhost, xauth, DISPLAY, X.

106.2 Graphical Desktops (Chapter 6)

 ■ Awareness of major desktop environments.

 ■ Awareness of protocols to access remote desktop sessions.

 ■ The following is a partial list of the used files, terms, and utilities: KDE, Gnome, Xfce,
X11, XDMCP, VNC, Spice, RDP.

106.3 Accessibility (Chapter 6)

 ■ Basic knowledge of visual settings and themes.

 ■ Basic knowledge of Assistive Technologies (ATs).

 ■ The following is a partial list of the used files, terms, and utilities: High Contrast/
Large Print Desktop Themes, Screen Reader, Braille Display, Screen Magnifier,
On-Screen Keyboard, Sticky/Repeat keys, Slow/Bounce/Toggle keys, Mouse keys,
Gestures, Voice recognition.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Introduction xxxv

107 Administrative Tasks

107.1 Manage user and group accounts and related system files
(Chapter 7)

 ■ Add, modify and remove users and groups.

 ■ Manage user/group info in password/group databases.

 ■ Create and manage special purpose and limited accounts.

 ■ The following is a partial list of the used files, terms, and utilities: /etc/passwd,
/etc/shadow, /etc/group, /etc/skel, chage, getent, groupadd, groupdel, groupmod,
passwd, useradd, userdel, usermod.

107.2 Automate system administration tasks by scheduling jobs
(Chapter 9)

 ■ Manage cron and at jobs.

 ■ Configure user access to cron and at services.

 ■ Understand systemd timer units.

 ■ The following is a partial list of the used files, terms, and utilities: /etc/cron.{d,
daily,hourly,monthly,weekly}, /etc/at.deny, /etc/at.allow, /etc/crontab, /etc/
cron.allow, /etc/cron.deny, /var/spool/cron/, crontab, at, atq, atrm, systemctl,
systemd-run.

107.3 Localization and internationalization (Chapter 6)

 ■ Configure locale settings and environment variables.

 ■ Configure timezone settings and environment variables.

 ■ The following is a partial list of the used files, terms, and utilities: /etc/timezone,
/etc/localtime, /usr/share/zoneinfo, environment variables (LC_*, LC_ALL, LANG,
TZ), /usr/bin/locale, tzselect, timedatectl, date, iconv, UTF-8, ISO-8859,
ASCII, Unicode.

108 Essential System Services

108.1 Maintain system time (Chapter 7)

 ■ Set the system date and time.

 ■ Set the hardware clock to the correct time in UTC.

 ■ Configure the correct timezone.

 ■ Basic NTP configuration using ntpd and chrony.

 ■ Knowledge of using the pool.ntp.org service.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xxxvi Introduction

 ■ Awareness of the ntpq command.

 ■ The following is a partial list of the used files, terms, and utilities: /usr/share/
zoneinfo, /etc/timezone, /etc/localtime, /etc/ntp.conf, /etc/chrony.conf, date,
hwclock, timedatectl, ntpd, ntpdate, chronyc, pool.ntp.org.

108.2 System logging (Chapter 7)

 ■ Basic configuration of rsyslogd.

 ■ Understanding of standard facilities, priorities, and actions.

 ■ Query the systemd journal.

 ■ Filter systemd journal data by criteria such as date, service, or priority.

 ■ Delete old systemd journal data.

 ■ Retrieve systemd journal data from a rescue system or file system copy.

 ■ Understand the interaction of rsyslogd with systemd-journald.

 ■ Configuration of logrotate.

 ■ Awareness of syslog and syslog-ng.

 ■ The following is a partial list of the used files, terms, and utilities: /etc/rsyslog.conf,
/var/log, logger, logrotate, /etc/logrotate.conf, /etc/logrotate.d/,
journalctl, systemd-cat, /etc/system/journal.conf, /var/log/journal/.

108.3 Mail Transfer Agent (MTA) basics (Chapter 7)

 ■ Create e-mail aliases.

 ■ Configure e-mail forwarding.

 ■ Knowledge of commonly available MTA programs (postfix, sendmail, qmail, exim) (no
configuration).

 ■ The following is a partial list of the used files, terms, and utilities: ~/.forward,
sendmail emulation layer commands, newaliases, mail, mailq, postfix, sendmail,
exim.

108.4 Manage printers and printing (Chapter 6)

 ■ Basic CUPS configuration (for local and remote printers).

 ■ Manage user print queues.

 ■ Troubleshoot general printing problems.

 ■ Add and remove jobs from configured printer queues.

 ■ The following is a partial list of the used files, terms, and utilities: CUPS configuration
files, tools and utilities; /etc/cups; lpd legacy interface (lpr, lprm, lpq).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Introduction xxxvii

109 Networking Fundamentals

109.1 Fundamentals of internet protocols (Chapter 8)

 ■ Demonstrate an understanding of network masks and CIDR notation.

 ■ Knowledge of the differences between private and public “dotted quad” IP-Addresses.

 ■ Knowledge about common TCP and UDP ports (20, 21, 22, 23, 25, 53, 80, 110, 123,
139, 143, 161, 162, 389, 443, 465, 514, 636, 993, 995).

 ■ Knowledge about the differences and major features of UDP, TCP and ICMP.

 ■ Knowledge of the major differences between IPv4 and IPV6.

 ■ Knowledge of the basic features of IPv6.

 ■ The following is a partial list of the used files, terms, and utilities: /etc/services,
IPv4, IPv6, subnetting, TCP, UDP, ICMP.

109.2 Persistent network configuration (Chapter 8)

 ■ Understand basic TCP/IP host configuration.

 ■ Configure Ethernet and wi-fi configuration using NetworkManager.

 ■ Awareness of systemd-networkd.

 ■ The following is a partial list of the used files, terms, and utilities: /etc/hostname,
/etc/hosts, /etc/nsswitch.conf, /etc/resolv.conf, nmcli, hostnamectl, ifup,
ifdown.

109.3 Basic network troubleshooting (Chapter 8)

 ■ Manually configure network interfaces, including viewing and changing the configura-
tion of network interfaces using iproute2.

 ■ Manually configure routing, including viewing and changing routing tables and setting
the default route using iproute2.

 ■ Debug problems associated with the network configuration.

 ■ Awareness of legacy net-tools commands.

 ■ The following is a partial list of the used files, terms, and utilities: ip, hostname, ss,
ping, ping6, traceroute, traceroute6, tracepath, tracepath6, netcat, ifconfig,
netstat, route.

109.4 Configure client side DNS (Chapter 8)

 ■ Query remote DNS servers.

 ■ Configure local name resolution and use remote DNS servers.

 ■ Modify the order in which name resolution is done.

 ■ Debug errors related to name resolution.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xxxviii Introduction

 ■ Awareness of systemd-resolved.

 ■ The following is a partial list of the used files, terms, and utilities: /etc/hosts, /etc/
resolv.conf, /etc/nsswitch.conf, host, dig, getent.

110 Security

110.1 Perform security administration tasks (Chapter 10)

 ■ Audit a system to find files with the suid/sgid bit set.

 ■ Set or change user passwords and password aging information.

 ■ Being able to use nmap and netstat to discover open ports on a system.

 ■ Set up limits on user logins, processes and memory usage.

 ■ Determine which users have logged in to the system or are currently logged in.

 ■ Basic sudo configuration and usage.

 ■ The following is a partial list of the used files, terms, and utilities: find, passwd, fuser,
lsof, nmap, chage, netstat, sudo, /etc/sudoers, su, usermod, ulimit, who, w, last.

110.2 Setup host security (Chapter 10)

 ■ Awareness of shadow passwords and how they work.

 ■ Turn off network services not in use.

 ■ Understand the role of TCP wrappers.

 ■ The following is a partial list of the used files, terms, and utilities: /etc/nologin, /
etc/passwd, /etc/shadow, /etc/xinetd.d/, /etc/xinetd.conf, /etc/inetd.d/, /etc/
inetd.conf, systemd-socket, /etc/inittab, /etc/init.d/, /etc/hosts.allow, /etc/
hosts.deny.

110.3 Securing data with encryption (Chapter 10)

 ■ Perform basic OpenSSH 2 client configuration and usage.

 ■ Understand the role of OpenSSH 2 server host keys.

 ■ Perform basic GnuPG configuration, usage, and revocation.

 ■ Use GPG to encrypt, decrypt, sign, and verify files.

 ■ Understand SSH port tunnels (including X11 tunnels).

 ■ The following is a partial list of the used files, terms, and utilities: ssh, ssh-keygen,
ssh-agent, ssh-add, ~/.ssh/id_rsa and id_rsa.pub, ~/.ssh/id_rsa and id_rsa.pub,
~/.ssh/id_dsa and id_dsa.pub, ~/.ssh/id_ecdsa and ecdsa.pub, ~/.ssh/id_ed25519
and id_ed25519.pub, /etc/ssh/ssh_host_rsa_key and ssh_host_rsa_key.pub,
/etc/ssh/ssh_host_dsa_key and ssh_host_dsa_key.pub, /etc/ssh/ssh_host_ecdsa_
key and host_ecdsa_key.pub, /etc/ssh/ssh_host_ed25519_key and host_ed25519_key
.pub, ~/.ssh/authorized_keys, /etc/ssh_known_hosts, gpg, gpg-agent, ~/.gnupg/.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Assessment Test
1. Which of the following are names of shell programs? (Choose all that apply.)

A. Bash

B. Korn Shell

C. Born Shell

D. Dash

E. Z Shell

2. You are a system administrator on a CentOS Linux server. You need to view records in the
/var/log/messages file that start with the date May 30 and end with the IPv4 address
192.168.10.42. Which of the following is the best grep command to use?

A. grep "May 30?192.168.10.42" /var/log/messages

B. grep "May 30.*192.168.10.42" /var/log/messages

C. grep -i "May 30.*192.168.10.42" /var/log/messages

D. grep -i "May 30?192.168.10.42" /var/log/messages

E. grep -v "May 30.*192.168.10.42" /var/log/messages

3. Which of the following commands will determine how many records in the file
Problems.txt contain the word error?

A. grep error Problems.txt | wc -b

B. grep error Problems.txt | wc -w

C. grep error Problems.txt | wc -l

D. grep Problems.txt error | wc -w

E. grep Problems.txt error | wc -l

4. Which of the following conforms to the standard naming format of a Debian package file?
(Choose all that apply.)

A. openssh-client_1%3a7.6pl-4ubuntu0.3_amd64.deb

B. openssh-client-3a7-24_86_x64.rpm

C. zsh_5.4.2-3ubuntu3.1_amd64.deb

D. zsh_5.4.2-3ubuntu3.1_amd64.dpkg

E. emacs_47.0_all.dpkg

5. What does placing an ampersand sign (&) after a command on the command line do?

A. Disconnects the command from the terminal session.

B. Runs the command in foreground mode.

C. Runs the command in background mode.

D. Redirects the output to another command.

E. Redirects the output to a file.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xl Assessment Test

6. If you are using the tmux utility how do you create a new window?

A. screen

B. tmux create

C. tmux ls

D. screen -ls

E. tmux new

7. What type of hardware interface uses interrupts, I/O ports, and DMA channels to
communicate with the PC motherboard?

A. USB

B. GPIO

C. PCI

D. Monitors

E. Printers

8. What directory does the Linux FHS set aside specifically for installing third party
 programs?

A. /usr/bin

B. /usr

C. /opt

D. /usr/sbin

E. /tmp

9. Which command allows you to append a partition to the virtual directory on a running
Linux system?

A. mount

B. umount

C. fsck

D. dmesg

E. mkinitramfs

10. The system admin took an archive file and applied a compression utility to it. The resulting
file extension is .gz. Which compression utility was used?

A. The xz utility

B. The gzip utility

C. The bzip2 utility

D. The zip utility

E. The dd utility

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Assessment Test xli

11. Before the umask setting is applied, a directory has a default permission octal code of which
of the following?

A. 111

B. 755

C. 666

D. 777

E. 888

12. You need to locate files within the /tmp directory or one of its subdirectories. These files
should be empty. Assuming you have super user privileges, what command should you use?

A. find / -name tmp

B. find /tmp -empty

C. find /tmp -empty 0

D. find /tmp/* -name empty

E. find / -empty

13. Where does the system BIOS attempt to find a bootloader program? (Choose all that apply.)

A. An internal hard drive

B. An external hard drive

C. A DVD drive

D. A USB flash drive

E. A network server

14. Which firmware method has replaced BIOS on most modern IBM-compatible computers?

A. FTP

B. UEFI

C. PXE

D. NFS

E. HTTPS

15. Which of the following are system initialization methods? (Choose all that apply.)

A. /sbin/init

B. /etc/init

C. SysVinit

D. systemd

E. cloud-init

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xlii Assessment Test

16. The Cinnamon desktop environment uses which windows manager?

A. Mutter

B. Muffin

C. Nemo

D. Dolphin

E. LightDM

17. Your X.org session has become hung. What keystrokes do you use to restart the session?

A. Ctrl+C

B. Ctrl+Z

C. Ctrl+Q

D. Ctrl+Alt+Delete

E. Ctrl+Alt+Backspace

18. What folder contains the time zone template files in Linux?

A. /etc/timezone

B. /etc/localtime

C. /usr/share/zoneinfo

D. /usr/share/timezone

E. /usr/share/localtime

19. Which field contains the same data for both a /etc/passwd and /etc/shadow file record?

A. Password

B. Account expiration date

C. UID

D. GID

E. User account’s username

20. What facility and priority setting would log kernel messages that are warnings and higher
severity?

A. kern.=warn

B. kern.*

C. *.info

D. kern.warn

E. kern.alert

21. Which of the following can implement NTP on Linux? (Choose all that apply.)

A. Exim

B. ntpd

C. Sendmail

D. Postfix

E. chronyd

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Assessment Test xliii

22. Which network layer uses the Wi-Fi Protected Access (WPA) encryption?

A. network

B. physical

C. transport

D. application

23. Which two commands set the IP address, subnet mask, and default router information on
an interface using the command line?

A. netstat

B. ping

C. nmtui

D. ip

E. route

24. What tool allows you to send ICMP messages to a remote host to test network
connectivity?

A. netstat

B. ifconfig

C. ping

D. iwconfig

E. ss

25. Which Bash shell script command allows you to iterate through a series of data until the
data is complete?

A. if

B. case

C. for

D. exit

E. $()

26. Which environment variable allows you to retrieve the numeric user ID value for the user
account running a shell script?

A. $USER

B. $UID

C. $BASH

D. $HOME

E. $1

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xliv Assessment Test

27. When will the cron table entry 0 0 1 * * myscript run the specified command?

A. At 1AM every day.

B. At midnight on the first day of every month.

C. At midnight on the first day of every week.

D. At 1PM every day.

E. At midnight every day.

28. Which of the following utilities allows you to scan a system and see what network services
are being offered or used via the files that are open?

A. fuser

B. lsof

C. nmap

D. netstat

E. ss

29. Which of the following OpenSSH directives should you review in order to ensure the
public-facing system’s users are employing SSH securely?

A. Port directive

B. Protocol directive

C. PermitRootLogin directive

D. AllowTCPForwarding directive

E. ForwardX11 directive

30. Which of the following is true about gpg-agent? (Choose all that apply.)

A. It starts a special agent shell, so you don’t have to re-enter passwords to authenticate to
remote systems.

B. It manages GPG secret keys separately from any protocol.

C. It is managed by either SysVinit or systemd, depending on your system’s initialization
method.

D. It keeps previously used private keys in RAM.

E. If it needs a private key that is not in RAM, it asks the users for the passphrase
protecting the key.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Answers to Assessment Test
1. A, B, D, E. The shell names in options A, B, D, and E are all legitimate shell program

names, and thus are correct answer. There is no Born shell (you may have confused that
name with the original Bourne shell), so option C is an incorrect choice.

2. B. Option B is the best command because this grep command employs the correct
syntax. It uses the quotation marks around the PATTERN to avoid unexpected results, and
uses the .* regular expression characters to indicate that anything can be between May
30 and the IPv4 address. No additional switches are necessary. Option A is not the best
grep command, because it uses the wrong regular expression of ?, which only allows one
character to exist between May 30 and the IPv4 address. Options C and D are not the best
grep commands, because they employ the use of the -i switch to ignore case, which is not
needed in this case. The grep command in option E is an incorrect choice, because it uses
the -v switch will display text records that do not match the PATTERN.

3. C. To find records within the Problems.txt file that contain the word error at least one
time, the grep command is employed. The correct syntax is grep error Problems.txt.
To count the records, the grep command’s STDOUT is piped as STDIN into the wc utility.
The correct syntax to count the records, is wc -l. Therefore, option C is the correct
answer. The command in option A is incorrect, because its wc command is counting the
number of bytes within each input record. Option B is a wrong answer, because its wc
command is counting the number of words within each input record. The command in
option D has two problems. First its grep command syntax has the item for which to search
and the file to search backwards. Also, its wc command is counting the number of words
within each input record. Therefore, option D is a wrong choice. Option E is an incorrect
answer, because its grep command syntax has the item for which to search and the file to
search backwards.

4. A, C. Debian package files following a standard naming format of PACKAGE-NAME-VERSION-
RELEASE_ARCHITECTURE.deb. Therefore, options A and C are correct answers. The package
file name in option B has the .rpm file extension, which immediately disqualifies it from
following the Debian package file standard naming format. Thus, option B is a wrong
answer. Options D and E use .dpkg as their file extension, so they are incorrect choices as
well.

5. C. The ampersand sign (&) tells the shell to run the specified command in background
mode in the terminal session, so Option C is correct. The nohup command is used to
disconnect the command from the terminal session, so Option A is incorrect. The fg
command moves a command running in background mode to the foreground, so Option
B is incorrect. The pipe symbol (|) redirects the output from the command to another
command, so Option D is incorrect. The greater-than symbol (>) redirects the output from
the command to a file, so Option E is an incorrect choice as well.

6. E. The tmux new will create a new window. Therefore, option E is the correct answer. The
GNU Screen utility employs the screen commands to create a new window. Thus, option A
is a wrong answer. The tmux create is a made-up tmux command, and therefore option B
is also a wrong choice. The tmux -ls will display detached windows, but not create them,
so option C is a wrong choice. The screen -ls command will display any detached GNU
screen widows, so option D is an incorrect choice as well.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xlvi Answers to Assessment Test

7. C. PCI boards use interrupts, I/O ports, and DMA channels to send and receive data with
the PC motherboard, so Option C is correct. USB devices transmit data using a serial bus
connected to the motherboard and don’t use DMA channels, so Option A is incorrect. The
GPIO interface uses memory-mapped specialty IC chips and not interrupts and I/O ports,
so option B is incorrect. Monitors and printers are hardware devices and not hardware
interfaces, so Options D and E are incorrect.

8. C. The /opt directory is designated for installing optional third party applications, so
Option C is correct. The /usr/bin directory is designated for local user programs, not
third party programs, so Option A is incorrect. The /usr directory is designated for
standard Linux programs, not third party programs, so Option B is incorrect. The
/usr/sbin directory is designated for system programs and data, not third party
programs, so Option D is incorrect. The /tmp directory is designated for temporary files
that are commonly erased when the system reboots, not third party programs, so Option E
is incorrect.

9. A. The mount command allows you to specify both the partition and the location in
the virtual directory where to append the partition files and directories. The files and
directories contained in the partition then appear at that location in the virtual directory.
The umount command (option B) is used to remove a mounted partition. Option C, the
fsck command, is used to fix a hard drive that is corrupted and can’t be mounted, it
doesn’t actually mount the drive itself. The dmesg command in option D is used to view
boot messages for the system , which may tell you where a hard drive is appended to the
virtual directory, but it doesn’t’ actually to the appending. Option E, the mkinitramfs
command, creates an initrd RAM disk, and doesn’t directly handle mounting hard drives to
the virtual directory.

10. B. The gzip utility compresses data files and gives them the .gz file extension. Therefore,
option B is the correct answer. The xz, bzip2, and zip compression utilities compress a
data file and give it a different file extension, so options A, C, and D are wrong answers.
The dd utility is not a compression program. Therefore, option E is also a wrong choice.

11. D. Before the umask setting is applied, a directory has a default permission octal code of
777. Thus, option D is the correct answer. The 111 octal code in option A does not apply to
any created files or directories, prior to the umask setting being applied. Therefore, option A
is a wrong answer. The 755 octal code is the typical resulting directory permission setting
after a umask setting of 0022 is applied. Thus, option B is a wrong choice. The 666 octal
coded is the default permission octal code for files prior to applying the umask setting.
Thus, option C is an incorrect answer. The 888 octal code does not exist, so option E is an
incorrect choice.

12. B. The find /tmp -empty command will locate files within the /tmp directory or one
of its subdirectories, which are empty. Therefore, option B is the right answer. The
find / -name tmp command, starts at the root directory, instead of the /tmp directory,
and searches for files/directories whose names are tmp. Thus, option A is a wrong answer.
The find /tmp -empty 0 command adds an incorrect additional argument, 0, at the end
of the command, so option C is also an incorrect answer. The find /tmp/* -name empty
command searches for files/directories whose names are tmp, and adds an unnecessary
wildcard, *, to the directory name to search. Thus, option D is also a wrong choice. The
find / -empty command starts at the root directory instead of the /tmp directory.
Therefore, option E is an incorrect choice.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Answers to Assessment Test xlvii

13. A, B, C, D, and E. The BIOS firmware can look in multiple locations for a bootloader
program. Most commonly it looks at the internal hard drive installed on the system,
however, if none is found, it can search other places. Most systems allow you to boot from
an external hard drive, or from a DVD drive. Modern systems now also provide the option
to boot from a USB memory stick inserted into a USB port on the workstation. Finally,
many systems provide the PXE boot option, which allows the system to boot remotely from
a network server.

14. B. The UEFI firmware method has replaced the BIOS in most IBM-compatible computers,
so option B is correct. FTP, PXE, NFS, and HTTPS are not firmware methods, but methods
for loading the Linux bootloader, so options A, C, D, and E are all incorrect.

15. C, D. SysVinit and systemd are both system initialization methods. Thus, options C and
D are the correct answers. The init program can live in the /sbin/, /etc/, or /bin/
directory, and while it is used by the initialization methods, it is not a method itself. Thus,
options A and B are wrong answers. The cloud-init program is a tool that allows you to
create VMs out of system images locally or cloud images on an IaaS platform. However, it
is not a system initialization method. Therefore, option E is an incorrect answer as well.

16. B. The Cinnamon desktop environment uses the Muffin windows manager. Therefore,
option B is the correct answer. Mutter is the windows manager for the GNOME Shell
desktop environment, though Muffin did fork from that project. Thus, option A is a wrong
answer. Nemo is the file manager for Cinnamon, and therefore, option C is a wrong choice.
Dolphin is the file manager for the KDE Plasma desktop environment. Thus, option D is a
wrong choice. LightDM is display manager for Cinnamon, and therefore, option E is also
an incorrect choice.

17. E. The Ctrl+Alt+Backspace will kill your X.org session and then restart it, putting you
at the login screen (display manager.) Therefore, option E is the correct answer. The
Ctrl+C combination sends an interrupt signal, but does not restart an X.org session. Thus,
option A is a wrong answer. The Ctrl+Z keystroke combination sends a stop signal, but
it will not restart the X.org session. Therefore, option B is also an incorrect answer. The
Ctrl+Q combination will release a terminal that has been paused by Ctrl+S. However,
it does not restart a X.org session, so it too is a wrong choice. The Ctrl+Alt+Delete
keystroke combination, can be set to do a number of tasks, depending upon your desktop
environment. In some cases, it brings up a shutdown, logout, or reboot menu. However, it
does not restart the X.org session, so option D is an incorrect choice.

18. C. Both Debian-based and Red Hat-based Linux distributions store the time zone template
files in the /usr/share/zoneinfo folder, so option C is correct. The /etc/timezone and
/etc/localtime files contain the current time zone file for Debian and Red Hat-based
systems, not the time zone template files, so options A and B are incorrect. The /usr/
share/timezone and /usr/share/localtime folders don’t exist in either Debian-based or
Red Hat-based Linux distributions, so options D and E are also incorrect.

19. E. The user account’s username is the only field within a /etc/passwd and /etc/shadow
record that contains the same data. Therefore, option E is the correct answer. While both
files have a password field, they do not contain the same data. The password can only exist
in one of the two files, preferably the /etc/shadow file. Thus, option A is a wrong answer.
The account expiration date only exists in the /etc/shadow file, so option B is also a wrong
choice. The UID and GID fields only exist in the /etc/passwd file, so options C and D are
also incorrect answers.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

xlviii Answers to Assessment Test

20. D. The rsyslogd application priorities log event messages with the defined severity or
higher, so Option D would log all kernel event messages at the warn, alert, or emerg
severities, so it is correct. The Option A facility and priority setting would only log kernel
messages with a severity of warning, so it is incorrect. Option B would log all kernel event
messages, not just warnings or higher, so it is incorrect. Option C would log all facility
type event messages, but include the information or higher level severity, so it is incorrect.
Option E would log kernel event messages, but only at the alert or emerg severity levels,
not the warning level, so it is also incorrect.

21. B, E. Both ntpd and chronyd can implement network time protocol client services on
Linux, so options B and E are correct. Exim, Sendmail, and Postfix are all mail transfer
agents (MTAs) for use on Linux, so options A, C, and D are incorrect choices.

22. B. The Wi-Fi Protected Access (WPA) encryption protocol protects access to wireless
access points. The wireless network operates at the physical network, so option B is correct.
The network level uses addressing protocols such as IP to send data between systems on
the network, buy doesn’t interact with the wireless signal, so answer A is incorrect. The
transport layer uses ports to direct network traffic to specific applications, running at the
application layer, so options C and D are both incorrect.

23. C and D. The nmtui command provides an interactive text menu for selecting a network
interface and setting the network parameters, and the ip command provides a command
line tool tool for setting network parameters, so both Options C and D are correct. The
netstat command displays information about network connections, but doesn’t set the
network parameters, so option A is incorrect. The ping command can send ICMP packets
to a remote host, but doesn’t set the local network parameters, so option B is incorrect.
The route command sets the routing network parameters, but not the IP address or subnet
mask, so option E is incorrect.

24. C. The ping command sends ICMP packets to a specified remote host and waits for a
response, making option C the correct answer. The netstat command displays statistics
about the network interface, so it’s incorrect. The ifconfig command displays or sets
network information, but doesn’t send ICMP packets, making option B incorrect. The
iwconfig command displays or sets wireless network information, but doesn’t handle
ICMP packets, making option D incorrect. The ss command display information about
open connections and ports on the system, so option E is also incorrect.

25. C. The for command allows you to iterate through a series of data one by one until the
data set is exhausted, so Option C is correct. The if-then and case statements perform
a single test on an object to determine if a block of commands should be run, they don’t
iterate through data, so Options A and B are incorrect. The exit command stops the shell
script and exits to the parent shell, so Option D is incorrect. The $() command redirects
the output of a command to a variable in the shell script, it doesn’t iterate through a series
of data, so Option E is incorrect.

26. B. The $UID environment variable contains the numeric user ID value of the user account
running the shell script, so Option B is correct. The $USER environment variable contains
the text user name of the user account running the shell script, not the numerical user ID
value, so Option A is incorrect. The $BASH environment variable contains the path to the
executable Bash shell, so Option C is incorrect. The $HOME environment variable contains
the location of the home directory of the user account running the shell, so Option D is
incorrect. The $1 positional variable contains the first parameter listed on the command
line command when the shell script was run, so Option E is incorrect.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Answers to Assessment Test xlix

27. B. The cron table format specifies the times to run the script by minute, hour, day of
month, month, and day of week. Thus the format 0 0 1 * * will run the command at
00:00 (midnight) on the first day of the month for every month. That makes Option B
correct, and Options A, C, D, and E incorrect.

28. A, B. The fuser and lsof utilities allow you to see what network services are being
offered or used via files that are open. Therefore, options A and B are correct answers.
While the nmap, netstart, and ss utilities will allow you to see the various network
services being offered (or used) on your system, they do not do so via files that are open.
Thus, options C, D, and E are incorrect choices.

29. A, B, C. The Port directive determines what port the OpenSSH daemon (sshd) listens
on for incoming connection requests, so any public-facing systems should have it changed
from its default of 22. Therefore, option A is a correct answer. The Protocol directive
determines what SSH protocol is used, and to ensure OpenSSH 2 is employed, it should be
set to 2. Therefore, option B is another correct answer. The PermitRootLogin directive
does just what it says — permits or denies the root account to login via OpenSSH, and you
do not want to permit the root account to use ssh to log into the system, so option C is also
a correct choice. The AllowTCPForwarding directive toggles whether or not OpenSSH port
forwarding is allowed, and the ForwardX11 toggles whether or not X11 commands can be
forwarded over an OpenSSH encrypted tunnel, which can enhance security in those cases,
but don’t need to be reviewed, unless those features are desired. Thus, options D and E are
incorrect choices.

30. B, D, E. The gpg-agent manages GPG secret keys separately from any protocol, keeps
previously used private keys in RAM, and if it needs a private key that is not in RAM, it
asks the users for the passphrase protecting the key. Therefore, options B, D, and E are
all correct answers. The gpg-agent does not start a special agent shell (that’s something
the ssh-agent does), so option A is a wrong answer. The gpg-agent is not managed by
SysVinit or systemd, but instead is started automatically by the gpg utility. Thus, option C
is a wrong choice as well.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Part

I
Exam 101-500

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

By

Chapter

1
Exploring Linux
Command-Line Tools

ObjECTivEs

 ✓ 103.1 Work on the command line

 ✓ 103.2 Process text streams using filters

 ✓ 103.4 Use streams, pipes, and redirects

 ✓ 103.7 Search text files using regular expressions

 ✓ 103.8 Basic file editing

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 In the original Linux years, to get anything done you had to
work with the Gnu/Linux shell . The shell is a special interac-
tive utility that allows users to run programs, manage fi les,

supervise processes, and so on. The shell provides a prompt at which you can enter text-
based commands. These commands are actually programs. Although there are literally
thousands of these programs, in this chapter we’ll be focusing on a few basic commands as
well as fundamental shell concepts.

 Understanding Command-Line Basics
 While it is highly likely that you have had multiple exposures to many of the commands in
this chapter, you may not know all of them, and there may be some shell commands you
are using in an ineffective manner. In addition, you may have incorrect ideas concerning
distributions. Thus, we’ll start with the basics, such as distribution differences, how to
reach a shell, the various shell options available, how to use a shell, and so on.

 Discussing Distributions
 Before we look at shells, an important topic to discuss is distributions (also called distros).
Although it is tempting to think that Linux distributions are all the same and only a few dif-
ferences exist between them, that is a fallacy. Think of the Linux kernel as a car’s engine and
a distribution as the car’s features. Between manufacturers and models, car features are often
different. If you use a rented car, you have to take a few minutes to adjust the seat, view the
various car controls, and fi gure out how to use them prior to driving it. This is also true with
different distributions. While they all have the Linux kernel (car engine) at their core, their
various features are different, and that can include differences at the command line.

 If would like to follow along and try out the various commands in this
book, it is helpful to know which distros to use. Because the LPIC-1 V5.0
certification exam is not going to change after its release, it is best to use
a selection of Linux distributions that were available during the exam’s
development. It is incorrect to think that using a distribution’s latest ver-
sion is better. Instead, it is fine to use the same distributions we did while
writing the book, which were the CentOS 7 Everything, Ubuntu Desktop
18-04 LTS, Fedora 29 Workstation, and openSUSE 15 Leap distros.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding Command-Line Basics 5

Reaching a Shell
After you install your Linux system or virtual environment distro, set it up, and boot it,
you can typically reach a command-line terminal by pressing the Ctrl+Alt+F2 key combina-
tion (which gets you to the tty2 terminal), and log in using a standard user account (one
without super user privileges). Typically, you create a standard user account when installing
a Linux distribution.

If you want to use your Linux distribution’s graphical user interface (GUI), you can log
in and then open a terminal emulator to reach the command line via the following:

 ■ On an Ubuntu Workstation distro, press Ctrl+Alt+T.

 ■ On a CentOS 7 Everything and a Fedora 29 Workstation distro, click the Activities
menu option, enter term in the search bar, and select the resulting terminal icon.

 ■ On an openSUSE 15 Leap distro, click the Application Menu icon on the screen’s bot-
tom left side, enter term in the search bar, and select one of the resulting terminal
icons.

Exploring Your Linux Shell Options
When you successfully log into a tty terminal (such as tty2) or open a GUI terminal emu-
lator program to reach a command-line prompt, the program providing that prompt is a
shell. While the Bash shell program is the most popular and commonly used by the various
Linux distributions, there are a few others you need to know:

Bash The GNU Bourne Again shell (Bash), first released in 1989, is commonly used as the
default shell for Linux user accounts. The Bash shell was developed by the GNU project as
a replacement for the standard Unix operating system shell, called the Bourne shell (named
for its creator). It is also available for Windows 10, macOS, and Solaris operating systems.

Dash The Debian Almquist shell (Dash) was originally released in 2002. This smaller
shell does not allow command-line editing or command history (covered later in this chap-
ter), but it does provide faster shell program (also called a script) execution.

KornShell The KornShell was initially released in 1983 but was proprietary software until
2000. It was invented by David Korn of Bell Labs. It is a programming shell compatible
with the Bourne shell but supports advanced programming features, such as those available
in the C programming languages.

tcsh Originally released in 1981, the TENEX C shell is an upgraded version of the C
Shell. It added command completion, which was a nice feature in the TENEX operating
system. In addition, tcsh incorporates elements from the C programming language into
shell scripts.

Z shell The Z shell was first released in 1990. This advanced shell incorporates features
from Bash, tcsh, and KornShell. Advanced programming features, shared history files, and
themed prompts are a few of the extended Bourne shell components it provides.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

6 Chapter 1 ■ Exploring Linux Command-Line Tools

When looking at shells, it is important to understand the history and current use of the
/bin/sh file. Originally, this file was the location of the system’s shell. For example, on
Unix systems, you would typically find the Bourne shell installed here. On Linux systems,
the /bin/sh file is now a symbolic link (covered in Chapter 4) to a shell. Typically the file
points to the Bash shell (bash) as shown in Listing 1.1 on a CentOS distribution via the
readlink command.

Listing 1.1: Showing to which shell /bin/sh points on a CentOS distribution

$ readlink /bin/sh
bash
$

It is always a good idea to check which shell the file is linked to. In Listing 1.2, you can
see that the /bin/sh file is a symbolic link to the Dash shell (dash).

Listing 1.2: Showing to which shell /bin/sh points on an Ubuntu distribution

$ readlink /bin/sh
dash
$

To quickly determine what shell you are using at the command line, you can employ
an environment variable (environment variables are covered in detail later in this chap-
ter) along with the echo command. The echo command allows you to display data to the
screen. In Listing 1.3, on a CentOS distro, the environment variable (SHELL) has its data
(the current shell program) displayed by using the echo command. The $ is added prior to
the variable’s name in order to tap into the data stored within that variable.

Listing 1.3: Displaying the current shell on a CentOS distribution

$ echo $SHELL
/bin/bash
$
$ echo $BASH_VERSION
4.2.46(2)-release
$

Notice in Listing 1.3 that the current shell is the Bash (/bin/bash) shell. You can also
show the current version of the Bash shell via the BASH_VERSION environment variable as
also shown in the listing.

While you are exploring your shell environment, you should learn information about
your system’s Linux kernel as well. The uname utility is helpful here. A few examples are
shown in Listing 1.4.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding Command-Line Basics 7

Listing 1.4: Displaying the current shell on an Ubuntu distribution

$ uname
Linux
$
$ uname -r
4.15.0-46-generic
$
$ uname -a
Linux Ubuntu1804 4.15.0-46-generic #49-Ubuntu SMP Wed Feb 6
09:33:07 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux
$

When used by itself, the uname command displays only the kernel’s name (Linux). If you
want to know the current kernel version (called the revision), add the -r command option,
as shown in Listing 1.4. To see all system information this utility provides, such as the pro-
cessor type (x86_64) and operating system name (GNU/Linux), tack on the -a option to the
uname command.

Using a Shell
To run a program from the shell, at the command line you simply type its command, using
the proper syntax, and press Enter to execute it. The echo command, used earlier, is a great
program to start with. Its basic syntax is as follows:

echo [OPTION]… [STRING]…

In the echo command’s syntax structure, [OPTION] means there are various options (also
called switches) you can add to modify the display. The brackets indicate that switches
are optional. The [STRING] argument allows you to designate a string to display. It too is
optional, as denoted by the brackets.

An example is helpful to understand the echo command’s syntax. In Listing 1.5 the echo
command is employed with no arguments or options and simply displays a blank line. In its
second use, the command shows the string provided as an argument to the echo program.

Listing 1.5: Using the echo command

$ echo

$ echo I Love Linux
I Love Linux
$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

8 Chapter 1 ■ Exploring Linux Command-Line Tools

Quoting Metacharacters
The echo command is handy to demonstrate another useful shell feature: shell quot-
ing. Within the Bash shell are several characters that have special meanings and func-
tions. These characters are called metacharacters. Bash shell metacharacters include the
following:

* ? [] ' " \ $; & () | ^ < >

For example, the dollar sign ($) often indicates that the characters following it are a vari-
able name. When used with the echo command, the program will attempt to retrieve the
variable’s value and display it. An example is shown in Listing 1.6.

Listing 1.6: Using the echo command with a $ metacharacter

$ echo $SHELL
/bin/bash
$
$ echo It cost $1.00
It cost .00
$

Due to the $ metacharacter, the echo command treats both the $SHELL and $1 as vari-
ables. Since $1 is not a variable in the second echo command and has no value, in its output
echo displays nothing for $1. To fix this problem, you can employ shell quoting. Shell quot-
ing allows you to use metacharacters as regular characters. To shell quote a single charac-
ter, use the backslash (\) as shown in Listing 1.7.

Listing 1.7: Using the echo command and shell quoting a single metacharacter

$ echo It cost \$1.00
It cost $1.00
$
$ echo Is Schrodinger\'s cat alive or dead\?
Is Schrodinger's cat alive or dead?
$

While the backslash is handy for shell quoting a single metacharacter, it can be tiresome
when you have multiple ones. For several metacharacters, consider surrounding them with
either single or double quotation marks, depending on the situation. A few examples of this
shell quoting method are shown in Listing 1.8.

Listing 1.8: Using the echo command and shell quoting multiple metacharacters

$ echo Is "Schrodinger's" cat alive or "dead?"
Is Schrodinger's cat alive or dead?
$

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding Command-Line Basics 9

 $ echo "Is Schrodinger's cat alive or dead?"
 Is Schrodinger's cat alive or dead?
 $
 $ echo 'Is Schrodinger's cat alive or dead?'
 > ^C
 $

 Notice the fi rst two quoting methods work in Listing 1.8. The last one does not work.
When the metacharacter to be shell quoted is a single quotation mark, you will need to
employ another shell quoting method, such as the backslash or double quotation marks.

 Navigating the Directory Structure
 Files on a Linux system are stored within a single directory structure, called a virtual direc-
tory . The virtual directory contains fi les from all the computer’s storage devices and merges
them into a single directory structure. This structure has a single base directory called the
root directory , often simply called root .

 When you log into the Linux system, your process’s current working directory is your
account’s home directory . A current working directory is the directory your process is cur-
rently using within the virtual directory structure. Think of the current working directory
as the room you are currently in within your home.

 You can navigate through this virtual directory structure via the cd command. A help-
ful partner to cd is the pwd command. The cd command moves your working directory to
a new location in the virtual directory structure, and the pwd program displays (prints) the
current working directory. A few examples are shown in Listing 1.9.

 Listing 1.9: Using the cd and pwd commands

 $ pwd
 /home/Christine
 $
 $ cd /etc
 $ pwd
 /etc
 $

 It is vital to know your current working directory, especially as you traverse
the virtual structure. By default, many shell commands operate on the cur-
rent working directory.

 When using the cd command, you can employ either absolute or relative directory ref-
erences. Absolute directory references always begin with a forward slash (/) in reference
to the root directory and use the full name of the directory location. Listing 1.9 contains
absolute directory references.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

10 Chapter 1 ■ Exploring Linux Command-Line Tools

Relative directory references allow you to move with the cd command to a new position
in the directory structure in relation to your current working directory using shorter direc-
tory arguments. Examples of relative moves are shown in Listing 1.10.

Listing 1.10: Using the cd command with relative directory references

 $ pwd
 /etc
 $
 $ cd cups
 $ pwd
 /etc/cups
 $
 $ cd ..
 $ pwd
 /etc
 $

 In Listing 1.10 the current working directory is /etc . By issuing the cd cups command,
which is a relative directory reference, you change the current working directory to
/etc/cups . Notice that pwd always displays the directory using an absolute directory refer-
ence. The last command (cd ..) is also a relative move. The two dots (..) represent the
directory above the current directory, which is the parent directory.

 You can also employ the single dot (.) directory reference, which refers to
the current working directory. Although the single dot is not used with the
 cd command, it is commonly employed for tasks such as copying or mov-
ing files.

 The cd command has several other shortcuts you can employ besides just the two dots.
For example, to change your current working directory to your user account’s home direc-
tory, use one of the following:

 ■ cd

 ■ cd ~

 ■ cd $HOME

 You can also quickly return to your most recent working directory by employing the
 cd - shortcut command. An example is shown in Listing 1.11.

 Listing 1.11: Using the cd - shortcut command

 $ pwd
 /etc
 $

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding Command-Line Basics 11

 $ cd /var
 $ pwd
 /var
 $
 $ cd -
 /etc
 $ pwd
 /etc
 $

 Understanding Internal and External Commands
 Within a shell, some commands that you type at the command line are part of (internal
to) the shell program. These internal commands are sometimes called built-in commands .
Other commands are external programs, because they are not part of the shell.

 You can tell whether a command is an internal or external program via the type com-
mand. A few examples are shown in Listing 1.12.

Listing 1.12: Using type to determine whether a command is external or internal

 $ type echo
 echo is a shell builtin
 $
 $ type pwd
 pwd is a shell builtin
 $
 $ type uname
 uname is /usr/bin/uname
 $

 Notice in Listing 1.12 that both the echo and pwd commands are internal (built-in) pro-
grams. However, the uname command is an external program, which is indicated by the
 type command displaying the uname program’s absolute directory reference within the vir-
tual directory structure.

 A command may be available both internally and externally to the shell. In
this case, it is important to know their differences, because they may pro-
duce slightly different results or require different options.

 Using Environment Variables
Environment variables track specifi c system information, such as the name of the user
logged into the shell, the default home directory for the user, the search path the shell uses

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

12 Chapter 1 ■ Exploring Linux Command-Line Tools

to find executable programs, and so on. Table 1.1 shows some of the more commonly used
environment variables.

Ta b LE 1.1 Commonly used environment variables

Name Description

BASH_VERSION Current Bash shell instance’s version number (Chapter 1)

EDITOR Default editor used by some shell commands (Chapter 1)

GROUPS User account’s group memberships (Chapter 7)

HISTFILE Name of the user’s shell command history file (Chapter 1)

HISTSIZE Maximum number of commands stored in history file (Chapter 1)

HOME Current user’s home directory name (Chapter 1)

HOSTNAME Current system’s host name (Chapter 8)

LANG Locale category for the shell (Chapter 6)

LC_* Various locale settings that override LANG (Chapter 6)

LC_ALL Locale category for the shell that overrides LANG (Chapter 6)

LD_LIBRARY_PATH Colon-separated list of library directories to search prior to looking
through the standard library directories (Chapter 2)

PATH Colon-separated list of directories to search for commands
(Chapter 1)

PS1 Primary shell command-line interface prompt string (Chapter 1)

PS2 Secondary shell command-line interface prompt string

PWD User account’s current working directory (Chapter 1)

SHLVL Current shell level (Chapter 1)

TZ User’s time zone, if different from system’s time zone (Chapter 6)

UID User account’s user identification number (Chapter 7)

VISUAL Default screen-based editor used by some shell commands
(Chapter 1)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding Command-Line Basics 13

 You can display a complete list of active environment variables available in your shell by
using the set command, as shown snipped in Listing 1.13.

Listing 1.13: Using set to display active environment variables

 $ set
 […]
 BASH=/bin/bash
 […]
 HISTFILE=/home/Christine/.bash_history
 […]
 HISTSIZE=1000
 HOME=/home/Christine
 HOSTNAME=localhost.localdomain
 […]
 PS1='$ '
 PS2='> '
 […]
 SHELL=/bin/bash
 […]
 $

 Besides the set utility, you can also employ the env and printenv com-
mands to display variables. The env and printenv utilities allow you to see
locally defined variables, such as those created in a shell script (covered in
Chapter 9) as well as environment variables.

 When you enter a program name (command) at the shell prompt, the shell will search all
the directories listed in the PATH environment variable for that program. If the shell cannot
fi nd the program, you will receive a command not found error message. Listing 1.14 shows
an example.

 Listing 1.14: Viewing how PATH affects command execution

 $ echo $PATH
 /usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:
 /home/Christine/.local/bin:/home/Christine/bin
 $
 $ ls /home/Christine/Hello.sh
 /home/Christine/Hello.sh
 $
 $ Hello.sh
 bash: Hello.sh: command not found…
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

14 Chapter 1 ■ Exploring Linux Command-Line Tools

Notice in Listing 1.14 that program Hello.sh is in a directory that is not in the PATH
environment variable’s directories. Thus, when the Hello.sh program name is entered at
the shell prompt, the command not found error message is displayed.

To run a program that does not reside in a PATH directory location, you must provide the
command’s absolute directory reference when entering the program’s name at the command
line, as shown in Listing 1.15.

Listing 1.15: Executing a program outside the PATH directories

$ /home/Christine/Hello.sh
Hello World
$

The which utility is helpful in these cases. It searches through the PATH directories to
find the program. If it locates the program, it displays its absolute directory reference. This
saves you from having to look through the PATH variable’s output yourself, as Listing 1.16
shows.

Listing 1.16: Using the which utility

$ which Hello.sh
/usr/bin/which: no Hello.sh in (/usr/local/bin:/usr/bin:
/usr/local/sbin:/usr/sbin:/home/Christine/.local/bin:/home/Christine/bin)
$
$ which echo
/usr/bin/echo
$

Notice that the which utility does not find the Hello.sh program and displays all the
PATH directories it searched. However, it does locate the echo command.

If a program resides in a PATH directory, you can run it by simply entering the com-
mand’s name. If desired, you can also execute it by including its absolute directory refer-
ence, as shown in Listing 1.17.

Listing 1.17: Using different references to run a command

$ echo Hello World
Hello World
$
$ /usr/bin/echo Hello World
Hello World
$

You can modify environment variables. An easy one to change is the variable controlling
your shell prompt (PS1). An example of changing this variable is shown in Listing 1.18.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding Command-Line Basics 15

Listing 1.18: Setting the PS1 variable

$ PS1="My new prompt: "
My new prompt:

Notice that to change the environment variable, you simply enter the variable’s name,
followed by an equal sign (=), and then type the new value. Because the PS1 variable con-
trols the shell prompt, the effect of changing it shows immediately.

However, you can run into problems if you use that simple method of modifying an
environment variable. For example, the setting will not survive entering into a subshell. A
subshell (sometimes called a child shell) is created when you perform certain tasks, such as
running a shell script (covered in Chapter 9) or running particular commands.

You can determine whether your process is currently in a subshell by looking at the data
stored in the SHLVL environment variable. A 1 indicates you are not in a subshell, because
subshells have higher numbers. Thus, if SHLVL contains a number higher than 1, this indi-
cates you’re in a subshell.

The bash command automatically creates a subshell, which is helpful for demonstrating
the temporary nature of employing the simple environment variable modification method,
shown in Listing 1.19.

Listing 1.19: Demonstrating a subshell’s effect on the PS1 variable

My new prompt: echo $SHLVL
1
My new prompt: bash
$
$ echo $PS1
$
$ echo $SHLVL
2
$ exit
exit
My new prompt:

Notice that the SHLVL environment variable is set to 1, until a subshell is entered via the
bash command. Also note that the PS1 environment variable controlling the prompt does
not survive entering into a subshell.

To preserve an environment variable’s setting, you need to employ the export com-
mand. You can either use export when typing in the original variable definition, as shown
in Listing 1.20, or use it after the variable is defined, by typing export variable-name at
the command-line prompt.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

16 Chapter 1 ■ Exploring Linux Command-Line Tools

Listing 1.20: Using export to preserve an environment variable’s definition

 My new prompt: export PS1="KeepPrompt: "
 KeepPrompt:
 KeepPrompt: bash
 KeepPrompt:
 KeepPrompt: echo $SHLVL
 2
 KeepPrompt:
 KeepPrompt: PS1="$ "
 $ export PS1
 $

 Notice in Listing 1.20 that the fi rst method used the export command on the same line
as the PS1 environment variable setting and that the defi nition survives the subshell. The
second change to the PS1 variable defi nes it fi rst and then employs the export command, so
it too will survive a subshell.

 If a variable is originally set to nothing (blank), such as is typically the EDITOR environ-
ment variable, you can simply reverse any modifi cations you make to the variable by using
the unset command. An example of this is shown in Listing 1.21.

Listing 1.21: Using the unset command

 $ echo $EDITOR

 $ export EDITOR=nano
 $
 $ echo $EDITOR
 nano
 $
 $ unset EDITOR
 $
 $ echo $EDITOR

 $

 Use caution when employing the unset command. If you use it on envi-
ronment variables, such as PS1 , you can cause confusing things to hap-
pen. If the variable had a different definition before you modified it, it is
best to change it back to its original setting instead of using unset on the
variable.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding Command-Line Basics 17

 Getting Help
 When using the various utilities at the command line, sometimes you need a little extra
help on a command’s options or syntax. While a search engine is useful, there may be times
you cannot access the Internet. Fortunately, Linux systems typically have the man pages
installed locally. The man pages contain documentation on a command’s purpose, various
options, program syntax, and so on. This information is often created by the programmer
who wrote the utility.

 To access a man page for a particular program—for example, the uname command—just
type in man uname at the command line. This text-based help system will take over the
entire terminal display, allowing you to read through the documentation for the chosen
command.

 By default, the man pages use the less pager utility (covered later in this chapter), allow-
ing you to go back and forth through the display using either the PageUp or PageDown key.
You can also employ the arrow keys or the spacebar as desired.

 If you use the man pages to read through a built-in command’s documen-
tation, you’ll reach the General Commands Manual page for Bash built-ins.
It can be tedious using keys to find a command in this page. Instead, type
/ and follow it with the command name. You may have to do this two or
three times to reach the utility’s documentation, but it is much faster than
continually pressing arrow or PageDown keys.

 A handy feature of the man utility is the ability to search for keywords in the documenta-
tion. Just employ the -k option as shown snipped in Listing 1.22.

 Listing 1.22: Using the man -k command to search for keywords

 $ man -k passwd
 […]
 passwd (1) - update user's authentication tokens
 […]
 passwd (5) - password file
 […]
 smbpasswd (5) - The Samba encrypted password file
 […]
 $

 Instead of man -k , you can use the apropos command. For example, enter
apropos passwd at the command line. However, man -k is easier to type.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

18 Chapter 1 ■ Exploring Linux Command-Line Tools

 Notice in Listing 1.22 that several items are found in the man pages using the keyword
search. Next to the utility name, the man page section number is displayed in parentheses.
The man pages have nine sections that contain various types of documentation. Type
man man at the command line to view help information on using the man pages as well as
the different section names.

 Although it is a nice feature that the man pages contain more than just documentation
on commands, it can cause you problems if a utility has the same name as other items, such
as a fi le in the case of passwd . Typically the man command follows a predefi ned search
order and, in the case of duplicate names, will show you only the utility’s man page. If you
need to see a different page, use the section number along with the item’s name. There are a
few methods for doing this, using as an example the passwd fi le documented in section 5:

 man -S 5 passwd
 man -s 5 passwd
 man 5 passwd

 If you use the man utility and receive a message similar to nothing
appropriate , first check the spelling of the search term. If the spelling is
correct, it’s possible that the man utility’s database has not been updated.
You’ll need to use super user privileges and issue the makewhatis com-
mand (on older Linux distributions) or the mandb command.

 Besides getting help from the man pages, you can get help from your command-line
history . The shell keeps track of all the commands you have recently used and stores them
in your login session’s history list. To see your history list, enter history at the shell
prompt, as shown snipped in Listing 1.23.

Listing 1.23: Using the history command to view recent commands

 $ history
 […]
 915 echo $EDITOR
 916 export EDITOR=nano
 917 echo $EDITOR
 918 unset EDITOR
 919 echo $EDITOR
 920 man -k passwd
 […]
 $

 Notice that each command is preceded by a number. This allows you to recall a com-
mand from your history list via its number and have it automatically executed, as shown
snipped in Listing 1.24.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding Command-Line Basics 19

Listing 1.24: Reexecuting commands in the command history

 $!920
 man -k passwd
 […]
 passwd (1) - update user's authentication tokens
 […]
 passwd (5) - password file
 […]
 $

 Note that in order to rerun the command, you must put an exclamation mark (!) prior
to the number. The shell will display the command you are recalling and then execute it,
which is handy.

 If the history command does not work for you, your user account may
be using a different shell than the Bash shell. You can quickly check by
entering echo $SHELL at the command line. If you do not see /bin/bash
displayed, that is a problem. Modify your user account to use /bin/bash
as your default shell (modifying users’ accounts is covered in Chapter 7).
You’ll need to log out and back in again for the change to take effect.

 To reexecute your most recent command, enter !! at the command line and press Enter.
A faster alternative is to press the up arrow key and then press Enter. Another advantage of
this last method is that you can edit the command as needed prior to running it.

 The history list is preserved between login sessions in the fi le designated by the
$HISTFILE environment variable. It is typically the .bash_history fi le in your home direc-
tory, as shown in Listing 1.25.

Listing 1.25: Viewing the history filename

 $ echo $HISTFILE
 /home/Christine/.bash_history
 $

 Keep in mind that the history fi le will not have commands you have used during your
current login session. These commands are stored only in the history list.

 If you desire to update the history fi le or the current history list, you’ll need to issue the
history command with the correct option. The following is a brief list of history options
to help you make the right choice:

 ■ -a appends the current history list commands to the end of the history file.

 ■ -n appends the history file commands from the current Bash shell session to the current
history list.

 ■ -r overwrites the current history list commands with the commands stored in the
history file.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

20 Chapter 1 ■ Exploring Linux Command-Line Tools

 If you want to remove your command-line history, it is fairly easy to do.
First, clear your current history list by typing history -c at the command
line. After that, wipe the history file by issuing the history -w command,
which copies the now blank history list to the .bash_history file, overwrit-
ing its contents.

 Editing Text Files
 Manipulating text is performed on a regular basis when managing a Linux system.
Whether you need to modify a confi guration fi le or create a shell script, being able to use an
interactive text fi le editor at the command line is an important skill.

 Looking at Text Editors
 Three popular Linux command-line text editors are

 ■ emacs

 ■ nano

 ■ vim

 The nano editor is a good text editor to start using if you have never dealt with an editor
or have used only GUI editors. To start using the nano text editor, type nano followed by
the fi le’s name you wish to edit or create. Figure 1.1 shows a nano text editor in action, edit-
ing a fi le named numbers.txt .

 F i GU R E 1.1 Using the nano text editor

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Editing Text Files 21

 The shortcut list is one of the nano text editor’s most useful features. This list at the
window’s bottom displays the most common commands and their associated shortcut keys.
The caret (̂) symbol in this list indicates that the Ctrl key must be used. For example, to
move down a page, you press and hold the Ctrl key and then press the V key. To see addi-
tional commands, press the Ctrl+G key combination for help.

 Within the nano text editor’s help subsystem, you’ll see some key combina-
tions denoted by M-k . An example is M-W for repeating a search. These are
metacharacter key combinations, and the M represents the Esc, Alt, or Meta
key, depending on your keyboard’s setup. The k simply represents a key-
board key, such as W.

 The nano text editor is wonderful to use for simple text fi le modifi cations. However, if
you need a more powerful text editor for creating programs or shell scripts, popular choices
include the emacs and the vim editor.

 Dealing with Default Editors

 Some utilities such as crontab (covered in Chapter 9) use a default editor (also called a
 standard editor) such as vim . If you are new to text editing, you may prefer to use a text
editor that is fairly easy to use, so being forced to use an advanced editor is problematic.

 You can change your account’s standard editor via the EDITOR and VISUAL environment
variables. The EDITOR variable was originally for line-based editors, such as the old ed
utility. The VISUAL variable is for screen-based editors (text editors that take up the whole
screen, such as nano , emacs , and vim).

 Change your standard editor to your desired editor by typing, for example, export EDITOR=nano
at the command line. Do the same for the VISUAL environment variable. Even better, add
these lines to an environment fi le (covered in Chapter 9) so that they are set up automati-
cally for you each time you log into the Linux system.

 To start using the emacs text editor, type emacs followed by the fi le’s name you wish
to edit or create. Figure 1.2 shows an emacs text editor screen editing a newly created fi le
named MyFile.txt .

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

22 Chapter 1 ■ Exploring Linux Command-Line Tools

 F i GU R E 1. 2 Using the emacs text editor

 Adding and modifying text, as well as moving around this editor, is fairly straightfor-
ward. However, to tap into the power of the emacs editor, you need to learn the various
shortcut keystrokes. Here are a few examples:

 ■ Press the Ctrl+X and then the Ctrl+S key combinations to save the editor buffer’s con-
tents to the file.

 ■ Press the Ctrl+X and then the Ctrl+C key combinations to leave the editor.

 ■ Press the Ctrl+H key combination and then the T key to reach the emacs tutorial.

 Note that in the emacs editor documentation the Ctrl key is represented by a single C
letter, and to add an additional key to it, the documentation uses a hyphen (-), instead of
the traditional plus sign (+).

 Though emacs commands are a little tricky as you begin using this editor, the benefi ts of
learning the emacs editor include the following:

 ■ Editing commands used in emacs can also be used to quickly edit your commands
entered at the shell’s command line.

 ■ The emacs editor has a GUI counterpart with all the same editing features.

 ■ You can focus on the editor’s features you need most and learn its advanced capabili-
ties later.

 The emacs text editor is typically not installed by default. Installing soft-
ware is covered in Chapter 2. Its software package name is also emacs .

 Before we take a look at using the vim editor, we need to talk about vim versus vi . The
 vi editor was a Unix text editor, and when it was rewritten as an open source tool, it was
improved. Thus, vim stands for “ vi improved.”

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Editing Text Files 23

 Often you’ll fi nd the vi command will start the vim editor. In other distributions, only
the vim command will start the vim editor. Sometimes both commands work. Listing 1.26
demonstrates using the which utility to determine what command a CentOS distribution is
using.

Listing 1.26: Using which to determine the editor command

 $ which vim
 /usr/bin/vim
 $
 $ which vi
 alias vi='vim'
 /usr/bin/vim
 $

 Listing 1.26 shows that this CentOS distribution has aliased the vi command to point to
the vim command. Thus, for this distribution both the vi and vim commands will start the
vim editor.

 Some distributions, such as Ubuntu, do not have the vim editor installed
by default. Instead, they use an alternative, called vim.tiny , which will not
allow you to try out all the various vim commands discussed here. You can
check your distribution to see if vim is installed by obtaining the vim pro-
gram filename. Type type vi and press Enter, and if you get an error or an
alias, then enter type vim . After you receive the program’s directory and
filename, type the command readlink -f and follow it up with the direc-
tory and filename—for example, readlink -f /usr/bin/vi . If you see
/usr/bin/vi.tiny , you need to either switch to a different distribution to
practice the vim commands or install the vim package (see Chapter 2).

 To start using the vim text editor, type vim or vi , depending on your distribution, fol-
lowed by the name of the fi le you wish to edit or create. Figure 1.3 shows a vim text editor
screen in action.

 F i GU R E 1. 3 Using the vim text editor

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

24 Chapter 1 ■ Exploring Linux Command-Line Tools

In Figure 1.3 the file being edited is named numbers.txt. The vim editor works the file
data in a memory buffer, and this buffer is displayed on the screen. If you open vim without
a filename or the filename you entered doesn’t yet exist, vim starts a new buffer area for
editing.

The vim editor has a message area near the bottom line. If you have just opened an
already created file, it will display the filename along with the number of lines and charac-
ters read into the buffer area. If you are creating a new file, you will see [New File] in the
message area.

Understanding vim Modes
The vim editor has three standard modes as follows:

Command Mode This is the mode vim uses when you first enter the buffer area; it is
sometimes called normal mode. Here you enter keystrokes to enact commands. For exam-
ple, pressing the J key will move your cursor down one line. Command is the best mode to
use for quickly moving around the buffer area.

Insert Mode Insert mode is also called edit or entry mode. This is the mode where you
can perform simple editing. There are not many commands or special mode keystrokes.
You enter this mode from command mode by pressing the I key. At this point, the message
--Insert-- will display in the message area. You leave this mode by pressing the Esc key.

Ex Mode This mode is sometimes also called colon commands because every command
entered here is preceded with a colon (:). For example, to leave the vim editor and not save
any changes you type :q and press the Enter key.

Exploring Basic Text-Editing Procedures
Since you start in command mode when entering the vim editor’s buffer area, it’s good to
understand a few of the commonly used commands to move around in this mode. Table 1.2
contains several moving commands.

Ta b LE 1. 2 Commonly used vim command mode moving commands

Keystroke(s) Description

h Move cursor left one character.

l Move cursor right one character.

j Move cursor down one line (the next line in the text).

k Move cursor up one line (the previous line in the text).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Editing Text Files 25

Keystroke(s) Description

w Move cursor forward one word to front of next word.

e Move cursor to end of current word.

b Move cursor backward one word.

^ Move cursor to beginning of line.

$ Move cursor to end of line.

gg Move cursor to the file’s first line.

G Move cursor to the file’s last line.

n G Move cursor to file line number n .

Ctrl+B Scroll up almost one full screen.

Ctrl+F Scroll down almost one full screen.

Ctrl+U Scroll up half of a screen.

Ctrl+D Scroll down half of a screen.

Ctrl+Y Scroll up one line.

Ctrl+E Scroll down one line.

 If you have a large text file and need to search for something, there are
keystrokes in command mode to do that as well. Type ? to start a forward
search or / to start a backward search. The keystroke will display at the
vim editor’s bottom and allow you to type the text to find. If the first item
found is not what you need, press Enter, and then keep pressing the n key
to move to the next matching text pattern.

 Quickly moving around in the vim editor buffer is useful. However, there are also sev-
eral editing commands that help to speed up your modifi cation process. Table 1.3 lists the
more commonly used command mode editing commands. Pay close attention to each let-
ter’s case, because lowercase keystrokes often perform different operations than uppercase
keystrokes.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

26 Chapter 1 ■ Exploring Linux Command-Line Tools

 Ta b LE 1. 3 Commonly used vim command mode editing commands

Keystroke(s) Description

a Insert text after cursor.

A Insert text at end of text line.

dd Delete current line.

dw Delete current word.

i Insert text before cursor.

I Insert text before beginning of text line.

o Open a new text line below cursor, and move to insert mode.

O Open a new text line above cursor, and move to insert mode.

p Paste copied text after cursor.

P Paste copied (yanked) text before cursor.

yw Yank (copy) current word.

yy Yank (copy) current line.

 In command mode, you can take the editing commands a step further by using their full
syntax, which is as follows:

COMMAND [NUMBER-OF-TIMES] ITEM

 For example, if you wanted to delete three words, you would press the D, 3, and W keys.
If you wanted to copy (yank) the text from the cursor to the end of the text line, you would
press the Y $ keys, move to the location you desired to paste the text, and press the P key.

 Keep in mind that some people stay in command mode to get where they
need to be within a file and then press the I key to jump into insert mode
for easier text editing. This is a convenient method to employ.

 The third vim mode, Ex mode, has additional handy commands. You must be in com-
mand mode to enter into Ex mode. You cannot jump from insert mode to Ex mode.
Therefore, if you’re currently in insert mode, press the Esc key to go back to command
mode fi rst.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Editing Text Files 27

Table 1.4 shows a few Ex commands that can help you manage your text file. Notice
that all the keystrokes include the necessary colon (:) to use Ex commands.

Ta b LE 1. 4 Commonly used vim Ex mode commands

Keystrokes Description

:! command Execute shell command and display results, but don’t quit editor.

:r! command Execute shell command and include the results in editor buffer area.

:r file Read file contents and include them in editor buffer area.

Saving Changes
After you have made any needed text changes in the vim buffer area, it’s time to save your
work. You can use one of many methods as shown in Table 1.5. Type ZZ in command mode
to write the buffer to disk and exit your process from the vim editor.

Ta b LE 1.5 Saving changes in the vim text editor

Mode Keystrokes Description

Ex :x Write buffer to file and quit editor.

Ex :wq Write buffer to file and quit editor.

Ex :wq! Write buffer to file and quit editor (overrides protection).

Ex :w Write buffer to file and stay in editor.

Ex :w! Write buffer to file and stay in editor (overrides protection).

Ex :q Quit editor without writing buffer to file.

Ex :q! Quit editor without writing buffer to file (overrides
protection).

Command ZZ Write buffer to file and quit editor.

After reading through the various mode commands, you may see why some people
despise the vim editor. There are a lot of obscure commands to know. However, some peo-
ple love the vim editor because it is so powerful.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

28 Chapter 1 ■ Exploring Linux Command-Line Tools

 Some distributions have a vim tutorial installed by default. This is a handy
way to learn to use the vim editor. To get started, just type vimtutor at the
command line. If you need to leave the tutorial before it is complete, just
type the Ex mode command :q to quit.

 It’s tempting to learn only one text editor and ignore the others. Knowing at least two
text editors is useful in your day-to-day Linux work. For simple modifi cations, the nano
text editor shines. For more complex editing, the vim and emacs editors are preferred. All
are worth your time to master.

 Processing Text Using Filters
 At the Linux command line, you often need to view fi les or portions of them. In addi-
tion, you may need to employ tools that allow you to gather data chunks or fi le statistics
for troubleshooting or analysis purposes. The utilities in this section can assist in all these
activities.

 File-Combining Commands
 Putting together short text fi les for viewing on your screen and comparing them is useful.
The fi le-combining commands covered here will do just that.

 The basic utility for viewing entire text fi les is the concatenate command. Though this
tool’s primary purpose in life is to join together text fi les and display them, it is often used
just to display a single small text fi le. To view a small text fi le, use the cat command with
the basic syntax that follows:

 cat [OPTION]… [FILE]…

 The cat command is simple to use. You just enter the command followed by any text fi le
you want to read, such as shown in Listing 1.27.

Listing 1.27: Using the cat command to display a file

 $ cat numbers.txt
 42
 2A
 52
 0010 1010
 *
 $

 The cat command spits out the entire text fi le to your screen. When you get your
prompt back, you know that the line above the prompt is the fi le’s last line.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Processing Text Using Filters 29

 There is a handy new clone of the cat command called bat . Its developer
calls it “ cat with wings,” because of the bat utility’s many additional
features. You can read about its features at github.com/sharkdp/bat .

 In Listing 1.28 is an example of concatenating two fi les together to display their text
contents one after the other using the cat command.

 Listing 1.28: Using the cat command to concatenate files

 $ cat numbers.txt random.txt
 42
 2A
 52
 0010 1010
 *
 42
 Flat Land
 Schrodinger's Cat
 0010 1010
 0000 0010
 $

 Both of the fi les displayed in Listing 1.28 have the number 42 as their fi rst line. This is
the only way you can tell where one fi le ends and the other begins, because the cat utility
does not denote a fi le’s beginning or end in its output.

 Unfortunately, often the cat utility’s useful formatting options go unexplored. Table 1.6
has a few of the more commonly used switches.

 Ta b LE 1.6 The cat command’s commonly used options

Short Long Description

 -A --show-all Equivalent to using the option -vET combination.

 -E --show-ends Display a $ when a newline linefeed is encountered.

 -n --number Number all text file lines and display that number in the output.

 -s --squeeze-blank Do not display repeated blank empty text file lines.

 -T --show-tabs Display a ̂ I when a tab character is encountered.

 -v --show-nonprinting Display nonprinting characters when encountered using
either ^ and/or M- notation.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

30 Chapter 1 ■ Exploring Linux Command-Line Tools

 Being able to display nonprinting characters with the cat command is handy. If you have
a text fi le that is causing some sort of odd problem when processing it, you can quickly see
if there are any nonprintable characters embedded. In Listing 1.29 an example is shown of
this method.

 Listing 1.29: Using the cat command to display nonprintable characters

 $ cat bell.txt

 $ cat -v bell.txt
 ̂G
 $

 In Listing 1.29, the fi rst cat command displays the fi le, and it appears to simply contain a
blank line. However, when the -v option is employed, you can see that a nonprintable char-
acter exists within the fi le. The ̂ G is in caret notation and indicates that the nonprintable
Unicode character BEL is embedded in the fi le. This character causes a bell sound when the
fi le is displayed.

 There are interesting variants of the cat command— bzcat , xzcat , and
zcat . These utilities are used to display the contents of compressed files.
(File compression is covered in Chapter 4.)

 If you want to display two fi les side-by-side and you do not care how sloppy the output
is, you can use the paste command. Just like school paste, it will glue them together, but
the result will not necessarily be pretty. An example of using the paste command is shown
in Listing 1.30.

Listing 1.30: Using the paste command to join together files side-by-side

 $ cat random.txt
 42
 Flat Land
 Schrodinger's Cat
 0010 1010
 0000 0010
 $
 $ cat numbers.txt
 42
 2A
 52
 0010 1010
 *
 $

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Processing Text Using Filters 31

 $ paste random.txt numbers.txt
 42 42
 Flat Land 2A
 Schrodinger's Cat 52
 0010 1010 0010 1010
 0000 0010 *

 If you need a nicer display than paste can provide, consider using the pr
command. If the files share the same data in a particular field, you can
employ the join command as well.

 File-Transforming Commands
 Looking at a fi le’s data in different ways is helpful not only in troubleshooting but in testing
as well. We’ll take a look at a few helpful fi le- transforming commands in this section.

 Uncovering with od
 Occasionally you may need to do a little detective work with fi les. These situations may
include trying to review a graphics fi le or troubleshooting a text fi le that has been modifi ed
by a program. The od utility can help, because it allows you to display a fi le’s contents in
octal (base 8), hexadecimal (base 16), decimal (base 10), and ASCII. Its basic syntax is as
follows:

 od [OPTION]... [FILE]...

 By default od displays a fi le’s text in octal. An example is shown in Listing 1.31.

Listing 1.31: Using the od command to display a file’s text in octal

 $ cat fourtytwo.txt
 42
 fourty two
 quarante deux
 zweiundvierzig
 forti to
 $
 $ od fourtytwo.txt
 0000000 031064 063012 072557 072162 020171 073564 005157 072561
 0000020 071141 067141 062564 062040 072545 005170 073572 064545
 0000040 067165 073144 062551 075162 063551 063012 071157 064564
 0000060 072040 005157
 0000064

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

32 Chapter 1 ■ Exploring Linux Command-Line Tools

 The fi rst column of the od command’s output is an index number for each displayed line.
For example, in Listing 1.31, the line beginning with 0000040 indicates that the third line
starts at octal 40 (decimal 32) bytes in the fi le.

 You can use other options to improve the “readability” of the od command’s display or
to view different outputs (see the man pages for additional od utility options and their pre-
sentation). Listing 1.32 is an example of using the -cb options to display the characters in
the fi le, along with each character’s octal byte location in the text fi le.

 Listing 1.32: Using the od -cb command to display additional information

 $ od -cb fourtytwo.txt
 0000000 4 2 \n f o u r t y t w o \n q u
 064 062 012 146 157 165 162 164 171 040 164 167 157 012 161 165
 0000020 a r a n t e d e u x \n z w e i
 141 162 141 156 164 145 040 144 145 165 170 012 172 167 145 151
 0000040 u n d v i e r z i g \n f o r t i
 165 156 144 166 151 145 162 172 151 147 012 146 157 162 164 151
 0000060 t o \n
 040 164 157 012
 0000064
 $

 There is a proposal on the table to add a -u option to the od command.
This option would allow the display of all Unicode characters, besides just
the ASCII character subset now available. This would be a handy addition,
so watch for this potential utility improvement.

 Separating with split
 One nice command to use is split . This utility allows you to divide a large fi le into smaller
chunks, which is handy when you want to quickly create a smaller text fi le for testing pur-
poses. The basic syntax for the split command is as follows:

 split [OPTION]... [INPUT [PREFIX]]

 You can divide up a fi le using size, bytes, lines, and so on. The original fi le (INPUT)
remains unchanged, and additional new fi les are created, depending on the command
options chosen. In Listing 1.33 an example shows using the option to split up a fi le by its
line count.

Listing 1.33: Using the split -l command to split a file by line count

 $ cat fourtytwo.txt
 42

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Processing Text Using Filters 33

 fourty two
 quarante deux
 zweiundvierzig
 forti to
 $
 $ split -l 3 fourtytwo.txt split42
 $
 $ ls split42*
 split42aa split42ab
 $
 $ cat split42aa
 42
 fourty two
 quarante deux
 $
 $ cat split42ab
 zweiundvierzig
 forti to
 $

 Notice that to split a fi le by its line count, you need to employ the -l (lowercase L)
option and provide the number of text fi le lines to attempt to put into each new fi le. In
the example, the original fi le has fi ve text lines, so one new fi le (split42aa) gets the fi rst
three lines of the original fi le, and the second new fi le (split42ab) has the last two lines.
Be aware that even though you specify the new fi les’ name (PREFIX), the split utility tacks
additional characters, such as aa and ab , onto the names, as shown in Listing 1.33.

 The tr command is another handy file-transforming command. It is cov-
ered later in this chapter.

 File-Formatting Commands
 Often to understand the data within text fi les, you need to reformat the data in some way.
There are a couple of simple utilities you can use to do this.

 Organizing with sort
 The sort utility sorts a fi le’s data. Keep in mind that it makes no changes to the original
fi le; only the output is sorted. The basic syntax of this command is as follows:

 sort [OPTION]... [FILE]...

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

34 Chapter 1 ■ Exploring Linux Command-Line Tools

If you want to order a file’s content using the system’s standard sort order, enter the sort
command followed by the name of the file you wish to sort. Listing 1.34 shows an example
of this.

Listing 1.34: Employing the sort command

$ cat alphabet.txt
Alpha
Tango
Bravo
Echo
Foxtrot
$
$ sort alphabet.txt
Alpha
Bravo
Echo
Foxtrot
Tango
$

If a file contains numbers, the data may not be in the order you desire using the sort
utility. To obtain proper numeric order, add the -n option to the command, as shown in
Listing 1.35.

Listing 1.35: Using the sort -n command

$ sort counts.txt
105
37
42
54
8
$ sort -n counts.txt
8
37
42
54
105
$

In Listing 1.35, notice that the first attempt to numerically order the file, using the sort
command with no options, yields incorrect results. However, the second attempt uses the
sort -n command, which properly orders the file numerically.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Processing Text Using Filters 35

 If you’d like to save the output from the sort command to a file, all it takes
is adding the -o switch. For example, sort -o newfile.txt alphabet
.txt will sort the alphabet.txt file and store its sorted contents in the
 newfile.txt file.

 Numbering with nl
 Another useful fi le-formatting command is the nl utility (number line utility). This little
command allows you to number lines in a text fi le in powerful ways. It even allows you to
use regular expressions (covered later in this chapter) to designate which lines to number.
The nl command’s syntax is fairly simple:

 nl [OPTION]... [FILE]...

 If you do not use any options with the nl utility, it will number only non-blank text
lines. An example is shown in Listing 1.36.

 Listing 1.36: Using the nl command to add numbers to non-blank lines

 $ nl ContainsBlankLines.txt
 1 Alpha
 2 Tango

 3 Bravo
 4 Echo

 5 Foxtrot
 $

 If you would like all fi le’s lines to be numbered, including blank ones, then you’ll need to
employ the -ba switch. An example is shown in Listing 1.37.

 Listing 1.37: Using the nl -ba command to number all text file lines

 $ nl -ba ContainsBlankLines.txt
 1 Alpha
 2 Tango
 3
 4 Bravo
 5 Echo
 6
 7
 8 Foxtrot
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

36 Chapter 1 ■ Exploring Linux Command-Line Tools

 The sed command also allows you to format text files. However, because
this utility uses regular expressions, it is covered after the regular expres-
sion section in this chapter.

 File-Viewing Commands
 When you operate at the command line, viewing fi les is a daily activity. For a short text fi le,
using the cat command is suffi cient. However, when you need to look at a large fi le or a
portion of it, other commands are available that work better than cat , and they are covered
in this section.

 Using more or less
 One way to read through a large text fi le is by using a pager . A pager utility allows you to
view one text page at a time and move through the text at your own pace. The two most
commonly used pagers are the more and less utilities.

 Though rather simple, the more utility is a nice little pager utility. The command’s syn-
tax is as follows:

 more [OPTION] FILE [...]

 With more , you can move forward through a text fi le by pressing the spacebar (one page
down) or the Enter key (one line down). However, you cannot move backward through a
fi le. The utility displays at the screen’s bottom how far along you are in the fi le. When you
wish to exit from the more pager, you must press the Q key.

 A more fl exible pager is the less utility. Figure 1.4 shows using the less utility on the
/etc/nsswitch.conf text fi le.

 F i GU R E 1. 4 Using the less text pager

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Processing Text Using Filters 37

 Though similar to the more utility in its syntax as well as the fact that you can move
through a fi le a page (or line) at a time, this pager utility also allows you to move back-
ward. Yet the less utility has far more capabilities than just that, which leads to the
famous description of this pager, “ less is more.”

 The less pager utility allows faster fi le traversal because it does not read the entire fi le
prior to displaying the fi le’s fi rst page. You can also employ the up and down arrow keys to
traverse the fi le as well as the spacebar to move forward a page and the Esc+V key combina-
tion to move back a page. You can search for a particular word within the fi le by pressing
the ? key, typing in the word you want to fi nd, and pressing Enter to search backward.
Replace the ? key with the / key and you can search forward. Like the more pager, you do
need to use the Q key to exit.

 By default, the Linux man page utility uses less as its pager. Learning the
less utility’s commands will allow you to search through various manual
pages with ease.

 The less utility has amazing capabilities. It would be well worth your time to peruse
the less pager’s man pages and play around using its various fi le search and traversal com-
mands on a large text fi le.

 Looking at files with head
 Another handy tool for displaying portions of a text fi le is the head utility. The head com-
mand’s syntax is shown as follows:

 head [OPTION]... [FILE]...

 By default, the head command displays the fi rst 10 lines of a text fi le. An example is
shown in Listing 1.38.

Listing 1.38: Employing the head command

 $ head /etc/passwd
 root:x:0:0:root:/root:/bin/bash
 bin:x:1:1:bin:/bin:/sbin/nologin
 daemon:x:2:2:daemon:/sbin:/sbin/nologin
 adm:x:3:4:adm:/var/adm:/sbin/nologin
 lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
 sync:x:5:0:sync:/sbin:/bin/sync
 shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
 halt:x:7:0:halt:/sbin:/sbin/halt
 mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
 operator:x:11:0:operator:/root:/sbin/nologin
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

38 Chapter 1 ■ Exploring Linux Command-Line Tools

A good command option to try allows you to override the default behavior of only
displaying a file’s first 10 lines. The switch to use is -n (or --lines=), followed by an
argument. The argument determines the number of file lines to display, as shown in
Listing 1.39.

Listing 1.39: Using the head command to display fewer lines

$ head -n 2 /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
$
$ head -2 /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
$

Notice in Listing 1.38 that the -n 2 switch and argument used with the head command
display only the file’s first two lines. However, the second command eliminates the n por-
tion of the switch, and the command behaves just the same as the first command.

Viewing Files with tail
If you want to display a file’s last lines instead of its first lines, employ the tail utility. Its
general syntax is similar to the head command’s syntax and is shown as follows:

tail [OPTION]... [FILE]...

By default, the tail command will show a file’s last 10 text lines. However, you can
override that behavior by using the -n (or --lines=) switch with an argument. The argu-
ment tells tail how many lines from the file’s bottom to display. If you add a plus sign (+)
in front of the argument, the tail utility will start displaying the file’s text lines starting at
the designated line number to the file’s end. There are three examples of using tail in these
ways in Listing 1.40.

Listing 1.40: Employing the tail command

$ tail /etc/passwd
saslauth:x:992:76:Saslauthd user:/run/saslauthd:/sbin/nologin
pulse:x:171:171:PulseAudio System Daemon:/var/run/pulse:/sbin/nologin
gdm:x:42:42::/var/lib/gdm:/sbin/nologin
setroubleshoot:x:991:985::/var/lib/setroubleshoot:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
sssd:x:990:984:User for sssd:/:/sbin/nologin
gnome-initial-setup:x:989:983::/run/gnome-initial-setup/:/sbin/nologin

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Processing Text Using Filters 39

 tcpdump:x:72:72::/:/sbin/nologin
 avahi:x:70:70:Avahi mDNS/DNS-SD Stack:/var/run/avahi-daemon:/sbin/nologin
 $
 $ tail -n 2 /etc/passwd
 tcpdump:x:72:72::/:/sbin/nologin
 avahi:x:70:70:Avahi mDNS/DNS-SD Stack:/var/run/avahi-daemon:/sbin/nologin
 $
 $ tail -n +42 /etc/passwd
 gnome-initial-setup:x:989:983::/run/gnome-initial-setup/:/sbin/nologin
 tcpdump:x:72:72::/:/sbin/nologin
 avahi:x:70:70:Avahi mDNS/DNS-SD Stack:/var/run/avahi-daemon:/sbin/nologin
 $

 One of the most useful tail utility features is its ability to watch log fi les. Log fi les typi-
cally have new messages appended to the fi le’s bottom. Watching new messages as they are
added is very handy. Use the -f (or --follow) switch on the tail command and provide the
log fi lename to watch as the command’s argument. You will see a few recent log fi le entries
immediately. As you keep watching, additional messages will display as they are being
added to the log fi le.

 Some log files have been replaced on various Linux distributions, and now
the messages are kept in a journal file managed by journald . To watch
messages being added to the journal file, use the journalctl --follow
command.

 To end your monitoring session using tail , you must use the Ctrl+C key combination.
An example of watching a log fi le using the tail utility is shown snipped in Listing 1.41.

Listing 1.41: Watching a log file with the tail command

 $ sudo tail -f /var/log/auth.log
 [sudo] password for Christine:
 Aug 27 10:15:14 Ubuntu1804 sshd[15662]: Accepted password […]
 Aug 27 10:15:14 Ubuntu1804 sshd[15662]: pam_unix(sshd:sess[…]
 Aug 27 10:15:14 Ubuntu1804 systemd-logind[588]: New sessio[…]
 Aug 27 10:15:50 Ubuntu1804 sudo: Christine : TTY=pts/1 ; P[…]
 Aug 27 10:15:50 Ubuntu1804 sudo: pam_unix(sudo:session): s[…]
 Aug 27 10:16:21 Ubuntu1804 login[10703]: pam_unix(login:se[…]
 Aug 27 10:16:21 Ubuntu1804 systemd-logind[588]: Removed se[…]
 ̂C
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

40 Chapter 1 ■ Exploring Linux Command-Line Tools

 If you are following along on your own system with the commands in this
book, your Linux distribution may not have the /var/log/auth.log file.
Try the /var/log/secure file instead.

 File-Summarizing Commands
 Summary information is handy to have when analyzing problems and understanding your
fi les. Several utilities covered in this section will help you in summarizing activities.

 Counting with wc
 The easiest and most common utility for determining counts in a text fi le is the wc utility.
The command’s basic syntax is as follows:

 wc [OPTION]... [FILE]...

 When you issue the wc command with no options and pass it a fi lename, the utility will
display the fi le’s number of lines, words, and bytes in that order. Listing 1.42 shows an
example.

Listing 1.42: Employing the wc command

 $ wc random.txt
 5 9 52 random.txt
 $

 There a few useful and commonly used options for the wc command. These are shown in
Table 1.7 .

 Ta b LE 1.7 The wc command’s commonly used options

Short Long Description

-c --bytes Display the file’s byte count.

-L --max-line-length Display the byte count of the file’s longest line.

-l --lines Display the file’s line count.

-m --chars Display the file’s character count.

-w --words Display the file’s word count.

 An interesting wc option for troubleshooting confi guration fi les is the -L switch.
Generally speaking, line length for a confi guration fi le will be under 150 bytes, though

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Processing Text Using Filters 41

there are exceptions. Thus, if you have just edited a configuration file and that service is no
longer working, check the file’s longest line length. A longer than usual line length indicates
you might have accidently merged two configuration file lines. An example is shown in
Listing 1.43.

Listing 1.43: Using the wc command to check line length

$ wc -L /etc/nsswitch.conf
72 /etc/nsswitch.conf
$

In Listing 1.43, the file’s line length shows a normal maximum line length of 72 bytes.
This wc command switch can also be useful if you have other utilities that cannot process
text files exceeding certain line lengths.

Pulling Out Portions with cut
To sift through the data in a large text file, it helps to quickly extract small data sections.
The cut utility is a handy tool for doing this. It will allow you to view particular fields
within a file’s records. The command’s basic syntax is as follows:

cut OPTION... [FILE]...

Before we delve into using this command, there are few basics to understand concerning
the cut command. They are as follows:

Text File Records A text file record is a single-file line that ends in a newline linefeed,
which is the ASCII character LF. You can see if your text file uses this end-of-line charac-
ter via the cat -E command. It will display every newline linefeed as a $. If your text file
records end in the ASCII character NUL, you can also use cut on them, but you must use
the -z option.

Text File Record Delimiter For some of the cut command options to be properly used,
fields must exist within each text file record. These fields are not database-style fields but
instead data that is separated by some delimiter. A delimiter is one or more characters that
create a boundary between different data items within a record. A single space can be a
delimiter. The password file, /etc/passwd, uses colons (:) to separate data items within a
record.

Text File Changes Contrary to its name, the cut command does not change any data
within the text file. It simply copies the data you wish to view and displays it to you. Rest
assured that no modifications are made to the file.

The cut utility has a few options you will use on a regular basis. These options are listed
in Table 1.8.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

42 Chapter 1 ■ Exploring Linux Command-Line Tools

 Ta b LE 1. 8 The cut command’s commonly used options

Short Long Description

 -c nlist --characters nlist Display only the record characters in the nlist (e.g.,
1–5).

 -b blist --bytes blist Display only the record bytes in the blist (e.g., 1–2).

-d d --delimiter d Designate the record’s field delimiter as d . This over-
rides the Tab default delimiter. Put d within quotation
marks to avoid unexpected results.

 -f flist --fields flist Display only the record’s fields denoted by flist
(e.g., 1,3).

-s --only-delimited Display only records that contain the designated
delimiter.

 -z --zero-terminated Designate the record end-of-line character as the ASCII
character NUL.

 A cut command in action is shown in Listing 1.44.

Listing 1.44: Employing the cut command

 $ head -2 /etc/passwd
 root:x:0:0:root:/root:/bin/bash
 bin:x:1:1:bin:/bin:/sbin/nologin
 $
 $ cut -d ":" -f 1,7 /etc/passwd
 root:/bin/bash
 bin:/sbin/nologin
 […]
 $

 In Listing 1.44, the head command displays the password fi le’s fi rst two lines. This
text fi le employs colons (:) to delimit the fi elds within each record. The fi rst use of the cut
command designates the colon delimiter using the -d option. Notice the colon is encased
in quotation marks to avoid unexpected results. The -f option specifi es that only fi elds 1
(username) and 7 (shell) should be displayed.

 Occasionally it is worthwhile to save a cut command’s output. You can do
this by redirecting standard output, which is covered later in this chapter.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Processing Text Using Filters 43

Discovering Repeated Lines with uniq
A quick way to find repeated lines in a text file is with the uniq utility. Just type uniq and
follow it with the filename whose contents you want to check.

The uniq utility will find repeated text lines only if they come right after one another.
Used without any options, the command will display only unique (non-repeated) lines. An
example of using this command is shown in Listing 1.45.

Listing 1.45: Using the uniq command

$ cat NonUniqueLines.txt
A
C
C
A
$
$ uniq NonUniqueLines.txt
A
C
A
$

Notice that in the cat command’s output there are actually two sets of repeated lines in
this file. One set is the C lines, and the other set is the A lines. Because the uniq utility rec-
ognizes only repeated lines that are one after the other in a text file, only one of the C text
lines is removed from the display. The two A lines are still both shown.

Digesting an MD5 Algorithm
The md5sum utility is based on the MD5 message-digest algorithm. It was originally created
to be used in cryptography. It is no longer used in such capacities due to various known
vulnerabilities. However, it is still excellent for checking a file’s integrity. A simple example
is shown in Listing 1.46.

Listing 1.46: Using md5sum to check the original file

$ md5sum fourtytwo.txt
0ddaa12f06a2b7dcd469ad779b7c2a33 fourtytwo.txt
$

The md5sum produces a 128-bit hash value. If you copy the file to another system on your
network, run the md5sum on the copied file. If you find that the hash values of the original
and copied file match, this indicates no file corruption occurred during its transfer.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

44 Chapter 1 ■ Exploring Linux Command-Line Tools

 A malicious attacker can create two files that have the same MD5 hash
value. However, at this point in time, a file that is not under the attacker’s
control cannot have its MD5 hash value modified. Therefore, it is impera-
tive that you have checks in place to ensure that your file was not created
by a third-party malicious user. An even better solution is to use a stronger
hash algorithm.

 Securing Hash Algorithms
 The Secure Hash Algorithms (SHA) is a family of various hash functions. Though typically
used for cryptography purposes, they can also be used to verify a fi le’s integrity after it is
copied or moved to another location.

 Several utilities implement these various algorithms on Linux. The quickest way to fi nd
them is via the method shown in Listing 1.47. Keep in mind your particular distribution
may store them in the /bin directory instead.

Listing 1.47: Looking at the SHA utility names

 $ ls -1 /usr/bin/sha???sum
 /usr/bin/sha224sum
 /usr/bin/sha256sum
 /usr/bin/sha384sum
 /usr/bin/sha512sum
 $

 Each utility includes the SHA message digest it employs within its name. Therefore,
sha256sum uses the SHA-256 algorithm. These utilities are used in a similar manner to the
md5sum command. A few examples are shown in Listing 1.48.

Listing 1.48: Using sha256sum and sha512sum to check a file

 $ sha256sum fourtytwo.txt
 0b2b6e2d8eab41e73baf0961ec707ef98978bcd8c7
 74ba8d32d3784aed4d286b fourtytwo.txt
 $
 $ sha512sum fourtytwo.txt
 ac72599025322643e0e56cff41bb6e22ca4fbb76b1d
 7fac1b15a16085edad65ef55bbc733b8b68367723ced
 3b080dbaedb7669197a51b3b6a31db814802e2f31 fourtytwo.txt
 $

 Notice in Listing 1.48 the different hash value lengths produced by the different com-
mands. The sha512sum utility uses the SHA-512 algorithm, which is the best to use for
security purposes and is typically employed to hash salted passwords in the /etc/shadow
fi le on Linux.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Regular Expressions 45

You can use these SHA utilities, just like the md5sum program was used in Listing 1.46,
to ensure a file’s integrity when it is transferred. That way, file corruption is avoided as well
as any malicious modifications to the file.

Using Regular Expressions
Many commands use regular expressions. A regular expression is a pattern template you
define for a utility such as grep, which then uses the pattern to filter text. Employing regu-
lar expressions along with text-filtering commands expands your mastery of the Linux
command line.

Using grep
A wonderful tool for sifting text is the grep command. The grep command is powerful in
its use of regular expressions, which will help with filtering text files. But before we cover
those, peruse Table 1.9 for commonly used grep utility options.

Ta b LE 1. 9 The grep command’s commonly used options

Short Long Description

-c --count Display a count of text file records that contain a
PATTERN match.

-d action --directories=action When a file is a directory, if action is set to read,
read the directory as if it were a regular text file;
if action is set to skip, ignore the directory; and
if action is set to recurse, act as if the - R, -r, or
--recursive option was used.

-E --extended-regexp Designate the PATTERN as an extended regular
expression.

-i --ignore-case Ignore the case in the PATTERN as well as in any
text file records.

-R, -r --recursive Search a directory’s contents, and for any subdi-
rectory within the original directory tree, consecu-
tively search its contents as well (recursively).

-v --invert-match Display only text files records that do not contain a
PATTERN match.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

46 Chapter 1 ■ Exploring Linux Command-Line Tools

The basic syntax for the grep utility is as follows:

grep [OPTION] PATTERN [FILE...]

A simple example is shown in Listing 1.49. No options are used, and the grep utility is
used to search for the word root (PATTERN) within /etc/passwd (FILE).

Listing 1.49: Using a simple grep command to search a file

$ grep root /etc/passwd
root:x:0:0:root:/root:/bin/bash
operator:x:11:0:operator:/root:/sbin/nologin
$

Notice that the grep command returns each file record (line) that contains an instance of
the PATTERN, which in this case was the word root.

You can also use a series of patterns stored in a file with a variation of the grep utility.
An example of doing this is shown in Listing 1.50.

Listing 1.50: Using the grep command to search for patterns stored in a text file

$ cat accounts.txt
sshd
Christine
nfsnobody
$
$ fgrep -f accounts.txt /etc/passwd
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
Christine:x:1001:1001::/home/Christine:/bin/bash
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
$
$ grep -F -f accounts.txt /etc/passwd
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
Christine:x:1001:1001::/home/Christine:/bin/bash
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
$

The patterns are stored in the accounts.txt file, which is first displayed using the cat
command. Next, the fgrep command is employed, along with the -f option to indicate
the file that holds the patterns. The /etc/passwd file is searched for all the patterns stored
within the accounts.txt file, and the results are displayed.

Also notice in Listing 1.49 that the third command is the grep -F command. The
grep -F command is equivalent to using the fgrep command, which is why the two com-
mands produce identical results.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Regular Expressions 47

 Understanding Basic Regular Expressions
 Basic regular expressions (BREs) include characters, such as a dot followed by an asterisk
(.*) to represent multiple characters and a single dot (.) to represent one character. They
also may use brackets to represent multiple characters, such as [a,e,i,o,u] (you do not
have to include the commas) or a range of characters, such as [A-z] . When brackets are
employed, it is called a bracket expression .

 To fi nd text fi le records that begin with particular characters, you can precede them
with a caret (̂) symbol. For fi nding text fi le records where particular characters are at
the record’s end, append them with a dollar sign ($) symbol. Both the caret and the dollar
sign symbols are called anchor characters for BREs, because they fasten the pattern to the
beginning or the end of a text line.

 You will see in documentation and technical descriptions different
names for regular expressions. The name may be shortened to regex or
regexp.

 Using a BRE pattern is fairly straightforward with the grep utility. Listing 1.51 shows
some examples.

 Listing 1.51: Using the grep command with a BRE pattern

 $ grep daemon.*nologin /etc/passwd
 daemon:x:2:2:daemon:/sbin:/sbin/nologin
 […]
 daemon:/dev/null:/sbin/nologin
 […]
 $
 $ grep root /etc/passwd
 root:x:0:0:root:/root:/bin/bash
 operator:x:11:0:operator:/root:/sbin/nologin
 $
 $ grep ^root /etc/passwd
 root:x:0:0:root:/root:/bin/bash
 $

 In the fi rst snipped grep example within Listing 1.51, the grep command employs a pat-
tern using the BRE .* characters. In this case, the grep utility will search the password fi le
for any instances of the word daemon within a record and display that record if it also con-
tains the word nologin after the word daemon .

 The next two grep examples in Listing 1.51 are searching for instances of the word root
within the password fi le. Notice that the one command displays two lines from the fi le. The
next command employs the BRE ̂ character and places it before the word root . This regular
expression pattern causes grep to display only lines in the password fi le that begin with root .

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

48 Chapter 1 ■ Exploring Linux Command-Line Tools

 If you would like to get a better handle on regular expressions, there are sev-
eral good resources. Our favorite is Chapter 20 in the book Linux Command
Line and Shell Scripting Bible by Blum and Bresnahan (Wiley, 2015).

 You can also look at the man pages, section 7, on regular expressions
(called regex(7) in the certification objectives). View this information by
typing man 7 regex or man -S 7 regex at the command line.

 The -v option is useful when auditing your confi guration fi les with the grep utility. It
produces a list of text fi le records that do not contain the pattern. Listing 1.52 shows an
example of fi nding all the records in the password fi le that do not end in nologin . Notice
that the BRE pattern puts the $ at the end of the word. If you were to place the $ before the
word, it would be treated as a variable name instead of a BRE pattern.

Listing 1.52: Using the grep command to audit the password file

 $ grep -v nologin$ /etc/passwd
 root:x:0:0:root:/root:/bin/bash
 sync:x:5:0:sync:/sbin:/bin/sync
 […]
 Christine:x:1001:1001::/home/Christine:/bin/bash
 $

 If you need to filter out all the blank lines in a file (display only lines with
text), use grep with the -v option to invert the matching pattern. Then
employ the ̂ and $ anchor characters like grep -v ^$ filename at the
command line.

 A special group of bracket expressions are character classes . These bracket expres-
sions have predefi ned names and could be considered bracket expression shortcuts. Their
interpretation is based on the LC_CTYPE locale environment variable (locales are covered in
Chapter 6). Table 1.10 shows the more commonly used character classes.

 Ta b LE 1.10 Commonly used character classes

Class Description

 [:alnum:] Matches any alphanumeric characters (any case), and is equal to using
the [0-9A-Za-z] bracket expression

 [:alpha:] Matches any alphabetic characters (any case), and is equal to using the
 [A-Za-z] bracket expression

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Regular Expressions 49

Class Description

[:blank:] Matches any blank characters, such as tab and space

[:digit:] Matches any numeric characters, and is equal to using the [0-9] bracket
expression

 [:lower:] Matches any lowercase alphabetic characters, and is equal to using the
 [a-z] bracket expression

 [:punct:] Matches punctuation characters, such as !, #, $, and @

 [:space:] Matches space characters, such as tab, form feed, and space

 [:upper:] Matches any uppercase alphabetic characters, and is equal to using the
 [A-Z] bracket expression

 For using character classes with the grep command, enclose the bracketed character
class in another set of brackets. An example of using grep with the digit character class is
shown in Listing 1.53.

Listing 1.53: Using the grep command and a character class

 $ cat random.txt
 42
 Flat Land
 Schrodinger's Cat
 0010 1010
 0000 0010
 $
 $ grep [[:digit:]] random.txt
 42
 0010 1010
 0000 0010
 $

 Notice the extra brackets needed to properly use a character class. Thus, to use [:digit:] ,
you must type [[:digit:]] when employing this character class with the grep command.

If you need to search for a character in a file that has special meaning inan
expression or at the command line, such as the $ anchor character, pre-
cede it with a backslash (\). This lets the grep utility know you are search-
ing for that character and not using it in an expression.
Tech net 24 .ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

50 Chapter 1 ■ Exploring Linux Command-Line Tools

Understanding Extended Regular Expressions
Extended regular expressions (EREs) allow more complex patterns. For example, a vertical
bar symbol (|) allows you to specify two possible words or character sets to match. You can
also employ parentheses to designate additional subexpressions.

Using ERE patterns can be rather tricky. A few examples employing grep with EREs are
helpful, such as the ones shown in Listing 1.54.

Listing 1.54: Using the grep command with an ERE pattern

$ grep -E "^root|^dbus" /etc/passwd
root:x:0:0:root:/root:/bin/bash
dbus:x:81:81:System message bus:/:/sbin/nologin
$
$ egrep "(daemon|s).*nologin" /etc/passwd
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
[…]
$

In the first example, the grep command uses the -E option to indicate the pattern is an
extended regular expression. If you did not employ the -E option, unpredictable results
would occur. Quotation marks around the ERE pattern protect it from misinterpretation.
The command searches for any password file records that start with either the word root
or the word dbus. Thus, a caret (̂) is placed prior to each word, and a vertical bar (|) sepa-
rates the words to indicate that the record can start with either word.

In the second example in Listing 1.54, notice that the egrep command is employed. The
egrep command is equivalent to using the grep -E command. The ERE pattern here also
uses quotation marks to avoid misinterpretation and employs parentheses to issue a subex-
pression. The subexpression consists of a choice, indicated by the vertical bar (|), between
the word daemon and the letter s. Also in the ERE pattern, the .* symbols are used to indi-
cate there can be anything in between the subexpression choice and the word nologin in
the text file record.

Take a deep breath. That was a lot to take in. However, as hard as BRE and ERE pat-
terns are, they are worth using with the grep command to filter out data from your text files.

Using Streams, Redirection, and Pipes
One of the neat things about commands at the command line is that you can employ com-
plex frameworks. These structures allow you to build commands from other commands,
use a program’s output as input to another program, put together utilities to perform cus-
tom operations, and so on.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Streams, Redirection, and Pipes 51

Redirecting Input and Output
When processing and filtering text files, you may want to save the data produced. In addi-
tion, you may need to combine multiple refinement steps to obtain the information you need.

Handling Standard Output
It is important to know that Linux treats every object as a file. This includes the output
process, such as displaying a text file on the screen. Each file object is identified using a file
descriptor, an integer that classifies a process’s open files. The file descriptor that identifies
output from a command or script file is 1. It is also identified by the abbreviation STDOUT,
which describes standard output.

By default, STDOUT directs output to your current terminal. Your process’s current ter-
minal is represented by the /dev/tty file.

A simple command to use when discussing standard output is the echo command. Issue
the echo command along with a text string, and the text string will display to your process’s
STDOUT, which is typically the terminal screen. An example is shown in Listing 1.55.

Listing 1.55: Employing the echo command to display text to STDOUT

$ echo "Hello World"
Hello World
$

The neat thing about STDOUT is that you can redirect it via redirection operators on
the command line. A redirection operator allows you to change the default behavior of
where input and output are sent. For STDOUT, you redirect the output using the > redirec-
tion operator as shown in Listing 1.56.

Listing 1.56: Employing a STDOUT redirection operator

$ grep nologin$ /etc/passwd
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
[…]
$ grep nologin$ /etc/passwd > NologinAccts.txt
$
$ less NologinAccts.txt
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
[…]
$

In Listing 1.56, the password file is being audited for all accounts that use the
/sbin/nologin shell via the grep command. The grep command’s output is lengthy
and was snipped in the listing. It would be so much easier to redirect STDOUT to a file.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

52 Chapter 1 ■ Exploring Linux Command-Line Tools

This was done in Listing 1.56 by issuing the same grep command but tacking on a redirec-
tion operator, > , and a fi lename to the command’s end. The effect was to send the com-
mand’s output to the fi le NologinAccts.txt instead of the screen. Now the data fi le can be
viewed using the less utility.

 If you use the > redirection operator and send the output to a file that
already exists, that file’s current data will be deleted. Use caution when
employing this operator.

 To append data to a preexisting fi le, you need to use a slightly different redirection
operator. The >> operator will append data to a preexisting fi le. If the fi le does not exist,
it is created, and the outputted data is added to it. Listing 1.57 shows an example of using
this redirection operator.

 Listing 1.57: Using a STDOUT redirection operator to append text

 $ echo "Nov 16, 2019" > AccountAudit.txt
 $
 $ wc -l /etc/passwd >> AccountAudit.txt
 $
 $ cat AccountAudit.txt
 Nov 16, 2019
 44 /etc/passwd
 $

 The fi rst command in Listing 1.57 puts a date stamp into the AccountAudit.txt fi le.
Because that date stamp needs to be preserved, the next command appends STDOUT to
the fi le using the >> redirection operator. The fi le can continue to be appended to using the
>> operator for future commands.

 Redirecting Standard Error
 Another handy item to redirect is standard error. The fi le descriptor that identifi es a com-
mand or script fi le error is 2. It is also identifi ed by the abbreviation STDERR, which
describes standard error. STDERR, like STDOUT, is by default sent to your terminal
(/dev/tty).

 The basic redirection operator to send STDERR to a fi le is the 2> operator. If you need
to append the fi le, use the 2>> operator. Listing 1.58 shows a snipped example of redirect-
ing standard error.

Listing 1.58: Employing a STDERR redirection operator

 $ grep -d skip hosts: /etc/*
 grep: /etc/anacrontab: Permission denied
 grep: /etc/audisp: Permission denied

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Streams, Redirection, and Pipes 53

 […]
 $
 $ grep -d skip hosts: /etc/* 2> err.txt
 /etc/nsswitch.conf:#hosts: db files nisplus nis dns
 /etc/nsswitch.conf:hosts: files dns myhostname
 […]
 $
 $ cat err.txt
 grep: /etc/anacrontab: Permission denied
 grep: /etc/audisp: Permission denied
 […]
 $

 The fi rst command in Listing 1.58 was issued to fi nd any fi les with the /etc/ directory
that contain the hosts: directive. Unfortunately, since the user does not have super user
privileges, several permission denied error messages are generated. This clutters up the out-
put and makes it diffi cult to see what fi les contain this directive.

 To declutter the output, the second command in Listing 1.58 redirects STDERR to the
 err.txt fi le using the 2> redirection operator. This makes it much easier to see what fi les
contain the hosts: directive. If needed, the error messages can be reviewed because they
reside now in the err.txt fi le.

 Sometimes you want to send standard error and standard output to the
same file. In these cases, use the &> redirection operator to accomplish
your goal.

 If you don’t care to keep a copy of the error messages, you can always throw them away.
This is done by redirecting STDERR to the /dev/null fi le as shown snipped in Listing 1.59.

 Listing 1.59: Using a STDERR redirection operator to remove error messages

 $ grep -d skip hosts: /etc/* 2> /dev/null
 /etc/nsswitch.conf:#hosts: db files nisplus nis dns
 /etc/nsswitch.conf:hosts: files dns myhostname
 […]
 $

 The /dev/null fi le is sometimes called the black hole. This name comes from the fact
that anything you put into it, you cannot retrieve.

 Regulating Standard Input
 Standard input, by default, comes into your Linux system via the keyboard and/or other
input devices. The fi le descriptor that identifi es an input into a command or script fi le is 0.
It is also identifi ed by the abbreviation STDIN, which describes standard input.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

54 Chapter 1 ■ Exploring Linux Command-Line Tools

As with STDOUT and STDERR, you can redirect STDIN. The basic redirection opera-
tor is the < symbol. The tr command is one of the few utilities that require you to redirect
standard input. An example is shown in Listing 1.60.

Listing 1.60: Employing an STDIN redirection operator

$ cat Grades.txt
89 76 100 92 68 84 73
$
$ tr " " "," < Grades.txt
89,76,100,92,68,84,73
$

In Listing 1.60, the file Grades.txt contains various integers separated by a space. The
second command utilizes the tr utility to change each space into a comma (,). Because the tr
command requires the STDIN redirection symbol, it is also employed in the second command
followed by the filename. Keep in mind that this command did not change the Grades.txt
file. It only displayed to STDOUT what the file would look like with these changes.

It’s nice to have a concise summary of the redirection operators. Therefore, we have pro-
vided one in Table 1.11.

Ta b LE 1.11 Commonly used redirection operators

Operator Description

> Redirect STDOUT to specified file. If file exists, overwrite it. If it does not
exist, create it.

>> Redirect STDOUT to specified file. If file exists, append to it. If it does not
exist, create it.

2> Redirect STDERR to specified file. If file exists, overwrite it. If it does not
exist, create it.

2>> Redirect STDERR to specified file. If file exists, append to it. If it does not
exist, create it.

&> Redirect STDOUT and STDERR to specified file. If file exists, overwrite it. If it
does not exist, create it.

&>> Redirect STDOUT and STDERR to specified file. If file exists, append to it. If it
does not exist, create it.

< Redirect STDIN from specified file into command.

<> Redirect STDIN from specified file into command and redirect STDOUT to
specified file.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Streams, Redirection, and Pipes 55

 Piping Data between Programs
 If you really want to enact powerful and quick results at the Linux command line, you need
to explore pipes. The pipe is a simple redirection operator represented by the ASCII charac-
ter 124 (|), which is called the vertical bar, vertical slash, or vertical line.

 Be aware that some keyboards and text display the vertical bar not as a
single vertical line. Instead, it looks like a vertical double dash.

 With the pipe, you can redirect STDOUT, STDIN, and STDERR between multiple com-
mands all on one command line. Now that is powerful redirection.

 The basic syntax for redirection with the pipe symbol is as follows:

 COMMAND1 | COMMAND2 [| COMMANDN]…

 The syntax for pipe redirection shows that the fi rst command, COMMAND1 , is executed. Its
STDOUT is redirected as STDIN into the second command, COMMAND2 . Also, you can pipe
more commands together than just two. Keep in mind that any command in the pipeline
has its STDOUT redirected as STDIN to the next command in the pipeline. Listing 1.61
shows a simple use of pipe redirection.

Listing 1.61: Employing pipe redirection

 $ grep /bin/bash$ /etc/passwd | wc -l
 3
 $

 In Listing 1.61, the fi rst command in the pipe searches the password fi le for any records
that end in /bin/bash . This is essentially fi nding all user accounts that use the Bash shell as
their default account shell. The output from the fi rst command in the pipe is passed as input
into the second command in the pipe. The wc -l command will count how many lines have
been produced by the grep command. The results show that there are only three accounts
on this Linux system that have the Bash shell set as their default shell.

 You can get very creative using pipe redirection. Listing 1.62 shows a command employing
four different utilities in a pipeline to audit accounts using the /sbin/nologin default shell.

 Listing 1.62: Employing pipe redirection for several commands

 $ grep /sbin/nologin$ /etc/passwd | cut -d ":" -f 1 | sort | less
 abrt
 adm
 avahi
 bin
 chrony
 […]
 :

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

56 Chapter 1 ■ Exploring Linux Command-Line Tools

In Listing 1.62, the output from the grep command is fed as input into the cut com-
mand. The cut utility removes only the first field from each password record, which is the
account username. The output of the cut command is used as input into the sort com-
mand, which alphabetically sorts the usernames. Finally, the sort utility’s output is piped
as input into the less command for leisurely perusing through the account usernames.

In cases where you want to keep a copy of the command pipeline’s output as well as view
it, the tee command will help. Similar to a tee pipe fitting in plumbing, where the water
flow is sent in multiple directions, the tee command allows you to both save the output to a
file and display it to STDOUT. Listing 1.63 contains an example of this handy command.

Listing 1.63: Employing the tee command

$ grep /bin/bash$ /etc/passwd | tee BashUsers.txt
root:x:0:0:root:/root:/bin/bash
user1:x:1000:1000:Student User One:/home/user1:/bin/bash
Christine:x:1001:1001::/home/Christine:/bin/bash
$
$ cat BashUsers.txt
root:x:0:0:root:/root:/bin/bash
user1:x:1000:1000:Student User One:/home/user1:/bin/bash
Christine:x:1001:1001::/home/Christine:/bin/bash
$

The first command in Listing 1.63 searches the password file for any user account
records that end in /bin/bash. That output is piped into the tee command, which displays
the output as well as saves it to the BashUsers.txt file. The tee command is handy when
you are installing software from the command line and want to see what is happening as
well as keep a log file of the transaction for later review.

Using sed
Another interesting command-line program is a stream editor. There are times where you
will want to edit text without having to pull out a full-fledged text editor. A stream editor
modifies text that is passed to it via a file or output from a pipeline. This editor uses special
commands to make text changes as the text “streams” through the editor utility.

The command to invoke the stream editor is sed. The sed utility edits a stream of text
data based on a set of commands you supply ahead of time. It is a very quick editor because
it makes only one pass through the text to apply the modifications.

The sed editor changes data based on commands either entered into the command line
or stored in a text file. The process the editor goes through is as follows:

1. Reads one text line at a time from the input stream

2. Matches that text with the supplied editor commands

3. Modifies the text as specified in the commands

4. Displays the modified text

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Streams, Redirection, and Pipes 57

After the sed editor matches all the specified commands against a text line, it reads the
next text line and repeats the editorial process. Once sed reaches the end of the text lines,
it stops.

Before looking at some sed examples, it is important to understand the command’s basic
syntax. It is as follows:

sed [OPTIONS] [SCRIPT]… [FILENAME]

By default, sed will use the text from STDIN to modify it according to the specified
commands. An example is shown in Listing 1.64.

Listing 1.64: Using sed to modify STDIN text

$ echo "I like cake." | sed 's/cake/donuts/'
I like donuts.
$

Notice that the text output from the echo command is piped as input into the stream
editor. The sed utility’s s command (substitute) specifies that if the first text string, cake,
is found, it is changed to donuts in the output. Note that the entire command after sed is
considered to be the SCRIPT, and it is encased in single quotation marks. Also notice that
the text words are delimited from the s command, the quotation marks, and each other via
the forward slashes (/).

Keep in mind that just using the s command will not change all instances of a word
within a text stream. Listing 1.65 shows an example of this.

Listing 1.65: Using sed to globally modify STDIN text

$ echo "I love cake and more cake." | sed 's/cake/donuts/'
I love donuts and more cake.
$
$ echo "I love cake and more cake." | sed 's/cake/donuts/g'
I love donuts and more donuts.
$

In the first command in Listing 1.65, only the first occurrence of the word cake was
modified. However, in the second command a g, which stands for global, was added to the
sed script’s end. This caused all occurrences of cake to change to donuts.

You can also modify text stored in a file. Listing 1.66 shows an example of this.

Listing 1.66: Using sed to modify file text

$ cat cake.txt
Christine likes chocolate cake.
Rich likes lemon cake.
Tim only likes yellow cake.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

58 Chapter 1 ■ Exploring Linux Command-Line Tools

 Samantha does not like cake.
 $
 $ sed 's/cake/donuts/' cake.txt
 Christine likes chocolate donuts.
 Rich likes lemon donuts.
 Tim only likes yellow donuts.
 Samantha does not like donuts.
 $
 $ cat cake.txt
 Christine likes chocolate cake.
 Rich likes lemon cake.
 Tim only likes yellow cake.
 Samantha does not like cake.
 $

 In Listing 1.66, the fi le contains text lines that contain the word cake . When the
cake.txt fi le is added as an argument to the sed command, its data is modifi ed according
to the script. Notice that the data in the fi le is not modifi ed. The stream editor only displays
the modifi ed text to STDOUT. You could save the modifi ed text to another fi le name via a
STDOUT redirection operator, if desired.

 It may be tempting to think that the sed utility is operating on the text file
as a whole, but it is not. The stream editor applies its commands to each
text file line individually. Thus, in our previous example, if the word cake
was found multiple times within a single text file line, you’d need to use the
g global command to change all instances.

 So far we’ve shown you only sed substitution commands, but you can also delete lines
using the stream editor. To do so, you use the syntax of ' PATTERN /d' for the sed command’s
SCRIPT . An example is shown in Listing 1.67. Notice the cake.txt fi le line that contains
the word Christine is not displayed to STDOUT. It was “deleted” in the output, but it still
exists within the text fi le.

 Listing 1.67: Using sed to delete file text

 $ sed '/Christine/d' cake.txt
 Rich likes lemon cake.
 Tim only likes yellow cake.
 Samantha does not like cake.
 $

 You can also change an entire line of text. To accomplish this, you use the syntax of
 ' ADDRESS c NEWTEXT ' for the sed command’s SCRIPT . The ADDRESS refers to the fi le’s line

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Streams, Redirection, and Pipes 59

number, and the NEWTEXT is the different text line you want displayed. An example of this
method is shown in Listing 1.68.

Listing 1.68: Using sed to change an entire file line

$ sed '4cI am a new line' cake.txt
Christine likes chocolate cake.
Rich likes lemon cake.
Tim only likes yellow cake.
I am a new line
$

The stream editor has some rather useful command options. The more commonly used
ones are displayed in Table 1.12.

Ta b LE 1.12 The sed command’s commonly used options

Short Long Description

-e script --expression=script Add commands in script to text processing. The
script is written as part of the sed command.

-f script --file=script Add commands in script to text processing. The
script is a file.

-r --regexp-extended Use extended regular expressions in script.

A handy option to use is the -e option. This allows you to employ multiple scripts in the
sed command. An example is shown in Listing 1.69.

Listing 1.69: Using sed -e to use multiple scripts

$ sed -e 's/cake/donuts/ ; s/like/love/' cake.txt
Christine loves chocolate donuts.
Rich loves lemon donuts.
Tim only loves yellow donuts.
Samantha does not love donuts.
$

Pay close attention to the syntax change in Listing 1.69. Not only is the -e option
employed, but the script is slightly different too. Now the script contains a semicolon (;)
between the two script commands. This allows both commands to be processed on the
text stream.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

60 Chapter 1 ■ Exploring Linux Command-Line Tools

Generating Command Lines
Creating command-line commands is a useful skill. There are several different methods you
can use. One such method employs the xargs utility. The best thing about this tool is that
you sound like a pirate when you pronounce it, but it has other practical values as well.

By piping STDOUT from other commands into the xargs utility, you can build
command-line commands on the fly. Listing 1.70 shows an example of doing this.

Listing 1.70: Employing the xargs command

$ touch EmptyFile1.txt EmptyFile2.txt EmptyFile3.txt
$
$ ls EmptyFile?.txt
EmptyFile1.txt EmptyFile2.txt EmptyFile3.txt
$
$ ls -1 EmptyFile?.txt | xargs -p /usr/bin/rm
/usr/bin/rm EmptyFile1.txt EmptyFile2.txt EmptyFile3.txt ?...n
$

In Listing 1.70, three blank files are created using the touch command. The third com-
mand uses a pipeline. The first command in the pipeline lists any files that have the name
EmptyFilen.txt. The output from the ls command is piped as STDIN into the xargs utility.
The xargs command uses the -p option. This option causes the xargs utility to stop and ask
permission before enacting the constructed command-line command. Notice that the absolute
directory reference for the rm command is used (the rm command is covered in more detail in
Chapter 4). This is sometimes needed when employing xargs, depending on your distribution.

The created command, in Listing 1.70, attempts to remove all three empty files with one
rm command. We typed n and pressed the Enter key to preserve the three files instead of
deleting them, because they are needed for the next example.

Another method to created command-line commands on the fly uses shell expansion.
The technique here puts a command to execute within parentheses and precedes it with a
dollar sign. An example of this method is shown in Listing 1.71.

Listing 1.71: Using the $() method to create commands

$ rm -i $(ls EmptyFile?.txt)
rm: remove regular empty file ‘EmptyFile1.txt’? y
rm: remove regular empty file ‘EmptyFile2.txt’? y
rm: remove regular empty file ‘EmptyFile3.txt’? y
$

In Listing 1.71, the ls command is again used to list any files that have the name
EmptyFilen.txt. Because the command is encased by the $() symbols, it does not display
to STDOUT. Instead, the filenames are passed to the rm -i command, which inquires as
whether or not to delete each found file. This method allows you to get very creative when
building commands on the fly.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam Essentials 61

Summary
Understanding fundamental shell concepts and being able to effectively and swiftly use the
right commands at the shell command line is important for your daily job. It allows you to
gather information, peruse text files, filter data, and so on.

This chapter’s purpose was to improve your Linux command-line tool belt. Not only
will this help you in your day-to-day work life, but it will also help you successfully pass
the LPI certification exam.

Exam Essentials
Express the different basic shell concepts. The shell program provides the command-line
prompt, which can be reached through a tty terminal or by employing a GUI terminal
emulator. There are multiple shell programs, but the most popular is the Bash shell, which
is typically located in the /bin/bash file. The /bin/sh file is often linked to the Bash shell
program, but it may be linked to other shells, such as the Dash shell (/bin/dash). The shell
in use can be checked via displaying the SHELL environment variable’s contents with the
echo utility. The current Linux kernel can be shown with the uname -a command.

Summarize the various utilities that can be employed to read text files. To read entire
small text files, you can use the cat and bat utilities. If you need to read only the first or
last lines of a text file, employ either the head or tail command. For a single text line out
of a file, the grep utility is useful. For reviewing a file a page at a time, you can use either
the less or the more pager utility.

Describe the various methods used for editing text. Editing text files is part of a system
administrator’s life. You can use full-screen editors such as the rather complicated vim text
editor or the simple and easy-to-use nano editor. For fast and powerful text stream editing,
employ the use of sed and its scripts.

Summarize the various utilities used in processing text files. Filtering text file data can
be made much easier with utilities such as grep, egrep, fgrep, and cut. Once that data is
filtered, you may want to format it for viewing using sort, nl, or even the cat utility. If you
need some statistical information on your text file, such as the number of lines it contains,
the wc command is handy.

Explain both the structures and commands for redirection. Employing STDOUT,
STDERR, and STDIN redirection allows rather complex filtering and processing of text.
The echo command can assist in this process. You can also use pipelines of commands to
perform redirection and produce excellent data for review. In addition, pipelines can be
used in creating commands on the fly with utilities, such as xargs.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

62 Chapter 1 ■ Exploring Linux Command-Line Tools

Review Questions
You can find the answers in the appendix.

1. On Linux systems, which file typically now points to a shell program instead of holding a
shell program?

A. /bin/bash

B. /bin/dash

C. /bin/zsh

D. /bin/sh

E. /bin/tcsh

2. To see only the current Linux kernel version, which command should you use?

A. uname

B. echo $BASH_VERSION

C. uname -r

D. uname -a

E. echo $SHELL

3. What will the echo \^New \^Style command display?

A. \^New \^Style

B. New Style

C. Style New

D. ^New ^Style

E. \ew \tyle

4. You need to determine if the fortytwo.sh program is in a $PATH directory. Which of the
following commands will assist you in this task? (Choose all that apply.)

A. which fortytwo.sh

B. cat fortytwo.sh

C. echo $PATH

D. fortytwo.sh

E. /usr/bin/fortytwo.sh

5. You want to edit the file SpaceOpera.txt and decide to use the vim editor to complete this
task. Which of the following are vim modes you might employ? (Choose all that apply.)

A. Insert

B. Change

C. Command

D. Ex

E. Edit

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 63

6. You have a lengthy file named FileA.txt. What will the head -15 FileA.txt
command do?

A. Display all but the last 15 lines of the file

B. Display all but the first 15 lines of the file

C. Display the first 15 lines of the file

D. Display the last 15 lines of the file

E. Generate an error message

7. You are trying to peruse a rather large text file. A co-worker suggests you use a pager.
Which of the following best describes what your co-worker is recommending?

A. Use a utility that allows you to view the first few lines of the file.

B. Use a utility that allows you to view one text page at time.

C. Use a utility that allows you to search through the file.

D. Use a utility that allows you to filter out text in the file.

E. Use a utility that allows you to view the last few lines of the file.

8. Which of the following does not describe the less utility?

A. It does not read the entire file prior to displaying the file’s first page.

B. You can use the up and down arrow keys to move through the file.

C. You press the spacebar to move forward a page.

D. You can use the Esc+V key combination to move backward a page.

E. You can press the X key to exit from the utility.

9. The cat -E MyFile.txt command is entered and at the end of every line displayed is a $.
What does this indicate?

A. The text file has been corrupted somehow.

B. The text file records end in the ASCII character NUL.

C. The text file records end in the ASCII character LF.

D. The text file records end in the ASCII character $.

E. The text file records contain a $ at their end.

10. The cut utility often needs delimiters to process text records. Which of the following best
describes a delimiter?

A. One or more characters that designate the beginning of a line in a record

B. One or more characters that designate the end of a line in a record

C. One or more characters that designate the end of a text file to a command-line text
processing utility

D. A single space or a colon (:) that creates a boundary between different data items in a
record

E. One or more characters that create a boundary between different data items in a record

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

64 Chapter 1 ■ Exploring Linux Command-Line Tools

11. Which of the following utilities change text within a file? (Choose all that apply.)

A. cut

B. sort

C. vim

D. nano

E. sed

12. A Unicode-encoded text file, MyUCode.txt, needs to be perused. Before you decide what
utility to use in order to view the file’s contents, you employ the wc command on it. This
utility displays 2020 6786 11328 to STDOUT. What of the following is true? (Choose all
that apply.)

A. The file has 2,020 lines in it.

B. The file has 2,020 characters in it.

C. The file has 6,786 words in it.

D. The file has 11,328 characters in it.

E. The file has 11,328 lines in it.

13. The grep utility can employ regular expressions in its PATTERN. Which of the following best
describes a regular expression?

A. A series of characters you define for a utility, which uses the characters to match the
same characters in text files

B. ASCII characters, such as LF and NUL, that a utility uses to filter text

C. Wildcard characters, such as * and ?, that a utility uses to filter text

D. A pattern template you define for a utility, which uses the pattern to filter text

E. Quotation marks (single or double) used around characters to prevent unexpected
results

14. Which of the following is a BRE pattern that could be used with the grep command?
(Choose all that apply.)

A. Sp?ce

B. "Space, the .*frontier"

C. ^Space

D. (lasting | final)

E. frontier$

15. You need to search through a large text file and find any record that contains either Luke or
Laura at the record’s beginning. Also, the phrase "Father is" must be located somewhere
in the record’s middle. Which of the following is an ERE pattern that could be used with
the egrep command to find this record?

A. "Luke$|Laura$.*Father is"

B. "̂ Luke|^Laura.Father is"

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 65

C. "(^Luke|^Laura).Father is"

D. "(Luke$|Laura$).* Father is$"

E. "(^Luke|^Laura).*Father is.* "

16. Which of the following best defines a file descriptor?

A. An environment variable, such as $PS1

B. A number that represents a process’s open files

C. Another term for the file’s name

D. A six character name that represents standard output

E. A symbol that indicates the file’s classification

17. A file data.txt needs to be sorted numerically and its output saved to a new file
newdata.txt. Which of the following commands can accomplish this task? (Choose
all that apply.)

A. sort -n -o newdata.txt data.txt

B. sort -n data.txt > newdata.txt

C. sort -n -o data.txt newdata.txt

D. sort -o newdata.txt data.txt

E. sort data.txt > newdata.txt

18. By default, STDOUT goes to what item?

A. /dev/ttyn, where n is a number

B. /dev/null

C. >

D. /dev/tty

E. pwd

19. Which of the following commands will display the file SpaceOpera.txt to output as well
as a copy of it to the file SciFi.txt?

A. cat SpaceOpera.txt | tee SciFi.txt

B. cat SpaceOpera.txt > SciFi.txt

C. cat SpaceOpera.txt 2> SciFi.txt

D. cat SpaceOpera.txt SciFi.txt

E. cat SpaceOpera.txt &> SciFi.txt

20. Which of the following commands will put any generated error messages into the
black hole?

A. sort SpaceOpera.txt 2> BlackHole

B. sort SpaceOpera.txt &> BlackHole

C. sort SpaceOpera.txt > BlackHole

D. sort SpaceOpera.txt 2> /dev/null

E. sort SpaceOpera.txt > /dev/null

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

By

Chapter

2
Managing Software
and Processes

ObjectiveS

 ✓ 102.3 Manage shared libraries

 ✓ 102.4 Use Debian package management

 ✓ 102.5 Use RPM and YUM package management

 ✓ 103.5 Create, monitor, and kill processes

 ✓ 103.6 Modify process execution priorities

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

A Linux system is only as good as the software you install
on it. The Linux kernel by itself is pretty boring; you need
applications such as web servers, database servers, browsers,

and word processing tools to do anything useful with your Linux system. This chapter
addresses the role of software on your Linux system and how you get and manage it.

We also discuss how Linux handles applications running on the system. Linux must
keep track of lots of different programs, all running at the same time. Your goal as the
Linux administrator is to make sure everything runs smoothly! This chapter shows just
how Linux keeps track of all the active programs and how you can peek at that informa-
tion. You’ll also see how to use command-line tools to manage the programs running on
your Linux system.

Looking at Package Concepts
Most Linux users want to download an application and use it. Thus, Linux distributions
have created a system for bundling already compiled applications for distribution. This
bundle is called a package, and it consists of most of the files required to run a single appli-
cation. You can then install, remove, and manage the entire application as a single package
rather than as a group of disjointed files.

Tracking software packages on a Linux system is called package management. Linux
implements package management by using a database to track the installed packages
on the system. The package management database keeps track of not only what pack-
ages are installed but also the exact files and file locations required for each application.
Determining what applications are installed on your system is as easy as querying the pack-
age management database.

As you would expect, different Linux distributions have created different package man-
agement systems. However, over the years, two of these systems have risen to the top and
become standards:

 ■ Red Hat package management (RPM)

 ■ Debian package management (Apt)

Each package management system uses a different method of tracking application pack-
ages and files, but they both track similar information:

 ■ Application files: The package database tracks each individual file as well as the folder
where it’s located.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using RPM 69

 ■ Library dependencies: The package database tracks what library files are required for
each application and can warn you if a dependent library file is not present when you
install a package.

 ■ Application version: The package database tracks version numbers of applications so
that you know when an updated version of the application is available.

 The sections that follow discuss the tools for using each of these package management
systems.

 Using RPM
 Developed at Red Hat, the RPM Package Manager (RPM) utility lets you install, modify,
and remove software packages. It also eases the process of updating software.

 Recursive acronyms use the acronym as part of the words that compose it.
A famous example in the Linux world is GNU, which stands for “GNU’s not
Unix.” RPM is a recursive acronym.

 RPM Distributions and Conventions
 The Red Hat Linux distribution, along with other Red Hat–based distros such as Fedora
and CentOS, use RPM. In addition, there are other distributions that are not Red Hat
based, such as openSUSE and OpenMandriva Lx, that employ RPM as well.

 RPM package fi les have an .rpm fi le extension and follow this naming format:

PACKAGE-NAME - VERSION - RELEASE . ARCHITECTURE .rpm

PACKAGE-NAME The PACKAGE-NAME is as you would expect—the name of the software
package. For example, if you wanted to install the emacs text editor, most likely its RPM
fi le would have a software package name of emacs . However, be aware that different distri-
butions may have different PACKAGE-NAME s for the same program and that software package
names may differ from program names.

 VERSION The VERSION is the program’s version number and represents software modifi ca-
tions that are more recent than older version numbers. Traditionally a package’s version
number is formatted as two to three numbers and/or letters separated by dots (.). Examples
include 1.13.1 and 7.4p1 .

 RELEASE The RELEASE is also called the build number . It represents a smaller program
modifi cation than does the version number. In addition, due to the rise of continuous soft-
ware delivery models, you often fi nd version control system (VCS) numbers listed in the
release number after a dot. Examples include 22 and 94.gitb2f74b2 .

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

70 Chapter 2 ■ Managing Software and Processes

 Some distros include the distribution version in the build number. For example, you fi nd
el7 (Red Hat Enterprise Linux v7) or fc29 (Fedora, formerly called Fedora Core, v29)
after a dot.

 ARCHITECTURE This is a designation of the CPU architecture for which the software
package was optimized. Typically you’ll see x86_64 listed for 64-bit processors. Sometimes
 noarch is used, which indicates the package is architecturally neutral. Older CPU architec-
ture designations include i386 (x86), ppc (PowerPC), and i586 and i686 (Pentium).

 There are two types of RPM packages: source and binary. Most of the
time, you’ll want the binary package, because it contains the program
bundle needed to successfully run the software. A source RPM contains
the program’s source code, which can be useful for analysis (or for incor-
porating your own package customizations). You can tell the difference
between these two package file types because a source RPM has src as its
 ARCHITECTURE in the RPM filename.

 It’s helpful to look at some example RPM fi les. Listing 2.1 shows four different RPM
fi les we downloaded on a CentOS distribution.

 Listing 2.1: Viewing RPM package files on a CentOS distribution

 # ls -1 *.rpm
 docker-1.13.1-94.gitb2f74b2.el7.centos.x86_64.rpm
 emacs-24.3-22.el7.x86_64.rpm
 openssh-7.4p1-16.el7.x86_64.rpm
 zsh-5.0.2-31.el7.x86_64.rpm
 #

 Notice the format naming variations between the version and release numbers. Although
it can be diffi cult to determine where a version number ends and a release number begins,
the trick is to look for the second dash (-) in the fi lename, which separates them.

 If you want to obtain copies of RPM files on a Red Hat–based distro such
as CentOS or Fedora, employ the yumdownloader utility. For example, use
super user privileges and type yumdownloader emacs at the command
line to download the emacs RPM file to your current working directory. On
openSUSE, you’ll need to employ the zypper install -d package-name
command, using super user privileges. This will download the RPM pack-
age file(s) to a /var/cache/zypp/packages/ subdirectory.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using RPM 71

 The rpm Command Set
 The main tool for working with RPM fi les is the rpm program. The rpm utility is a command-
line program that installs, modifi es, and removes RPM software packages. Its basic format
is as follows:

 rpm ACTION [OPTION] PACKAGE-FILE

 Some common actions for the rpm command are described in Table 2.1 .

 ta b Le 2 .1 The rpm command actions

Short Long Description

 -e --erase Removes the specified package

 -F --freshen Upgrades a package only if an earlier version already exists

 -i --install Installs the specified package

 -q --query Queries whether the specified package is installed

 -U --upgrade Installs or upgrades the specified package

 -V --verify Verifies whether the package files are present and the package’s
integrity

 Installing and Updating RPM Packages
 To use the rpm command, you must have the .rpm package fi le downloaded onto your sys-
tem. While you can use the -i action to install packages, it’s more common to use the -U
action, which installs the new package or upgrades the package if it’s already installed.

 You will always need to obtain super user privileges to install or update
software packages. Many other package management commands need
these privileges as well. You can typically gain the needed privileges by
logging into the root account or by using the sudo utility, which requires
your account be configured to be able to do so (see Chapter 10 for addi-
tional details).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

72 Chapter 2 ■ Managing Software and Processes

 Adding the -vh option is a popular combination that shows the progress of an update
and what it’s doing. An example of this is shown in Listing 2.2. Be aware that you need to
employ super user privileges to install and/or update software packages.

 Listing 2.2: Installing/upgrading an RPM package file

 # rpm -Uvh zsh-5.0.2-31.el7.x86_64.rpm
 Preparing... ################################# [100%]
 Updating / installing...
 1:zsh-5.0.2-31.el7 ################################# [100%]
 #

 No one wants to type those hideously long package filenames. It is too
easy to make typographical errors with all the dashes, dots, and numbers.
Instead, employ the shell’s command completion feature (also called
tab autocomplete). Type in the PACKAGE-NAME portion of the package’s file
name and press the Tab key. As long as there are no other files with similar
names, the shell will complete the rest of the package file’s name for you.
That’s a nice feature!

 Querying RPM Packages
 Use the -q action to perform a simple query on the package management database for
installed packages. An example is shown in Listing 2.3. Notice that for installed packages,
such as zsh , the entire package fi lename, minus the .rpm fi le extension, displays.

 Listing 2.3: Performing a simple query on an RPM package

 # rpm -q zsh
 zsh-5.0.2-31.el7.x86_64
 #
 # rpm -q docker
 package docker is not installed
 #

 You can add several options to the query action to obtain more detailed information.
Table 2.2 shows a few of the more commonly used query options.

 ta b Le 2 . 2 The rpm command query action options

Short option Long option Description

-c --configfiles Lists the names and absolute directory references of
package configuration files

-i --info Provides detailed information, including version, instal-
lation date, and signatures

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using RPM 73

Short option Long option Description

N/A --provides Shows what facilities the package provides

-R --requires Displays various package requirements (dependencies)

-s --state Provides states of the different files in a package, such
as normal (installed), not installed, or replaced

N/A --what-provides Shows to what package a file belongs

The -qi options provide a great deal of information on the package, as shown snipped in
Listing 2.4.

Listing 2.4: Performing a detailed query on an RPM package

rpm -qi zsh
Name : zsh
Version : 5.0.2
Release : 31.el7
Architecture: x86_64
Install Date: Tue 09 Apr 2019 02:51:26 PM EDT
Group : System Environment/Shells
Size : 5854390
License : MIT
Signature : RSA/SHA256, Mon 12 Nov 2018 09:49:55 AM EST, Key ID 24c6a[…]
Source RPM : zsh-5.0.2-31.el7.src.rpm
Build Date : Tue 30 Oct 2018 12:48:17 PM EDT
Build Host : x86-01.bsys.centos.org
Relocations : (not relocatable)
Packager : CentOS BuildSystem <http://bugs.centos.org>
Vendor : CentOS
URL : http://zsh.sourceforge.net/
Summary : Powerful interactive shell
Description :
The zsh shell is a command interpreter usable as an interactive login
[…]
#

Notice that from this detailed query, you can determine the package’s version number,
installation date, signature, and so on. However, there are a few missing data items, such as
the package’s dependencies.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

74 Chapter 2 ■ Managing Software and Processes

 To display a list of all the installed packages on your system that use RPM
package management, type rpm -qa at the command line. Interestingly,
you get the same detailed information on a specific package if you enter
 rpm -qa PACKAGE-NAME as you would using the -qi options.

 Discovering an installed package’s dependencies (requirements) is a handy troubleshoot-
ing tool. They are easily determined by employing the -qR options as shown snipped in
Listing 2.5.

 Listing 2.5: Determining an RPM package’s dependencies

 # rpm -qR zsh
 […]
 libc.so.6()(64bit)
 libc.so.6(GLIBC_2.11)(64bit)
 […]
 libncursesw.so.5()(64bit)
 librt.so.1()(64bit)
 librt.so.1(GLIBC_2.2.5)(64bit)
 libtinfo.so.5()(64bit)
 […]
 #

 An example of using the -qc options to determine what confi guration fi les belong to a
package is shown in Listing 2.6.

 Listing 2.6: Determining configuration filenames that belong to an RPM package

 # rpm -qc zsh
 /etc/skel/.zshrc
 /etc/zlogin
 /etc/zlogout
 /etc/zprofile
 /etc/zshenv
 /etc/zshrc
 #

 At some point in time, you may want to determine information such as an
RPM package’s signature or license from an uninstalled package file. It’s
fairly simple. Just add the -p option to your query, and use the package
file name as an argument. For example, to query dependency information
from the zsh package file we’ve been using in our examples, you would
type rpm -qRp zsh-5.0.2-31.el7.x86_64.rpm at the command line.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using RPM 75

Another handy RPM package database query uses the -q --whatprovides options
and allows you to see to what package a file belongs. An example is shown in Listing 2.7.
Notice you’ll need to provide the file’s absolute directory reference to the query.

Listing 2.7: Determining to what RPM package a file belongs

rpm -q --whatprovides /usr/bin/zsh
zsh-5.0.2-31.el7.x86_64
#

Verifying RPM Packages
Keeping a watchful eye on your system’s packages is an important security measure. For
these operations, the rpm utility’s verify action is helpful. If you receive nothing or a single
dot (.) from the rpm -V command, that’s a good thing. Table 2.3 shows the potential integ-
rity response codes and what they mean.

ta b Le 2 . 3 Verify action response codes for the rpm command

Code Description

? Unable to perform verification tests

5 Digest number has changed

c File is a configuration file for the package

D Device number (major or minor) has changed

G Group ownership has changed

L Link path has changed

missing Missing file

M Mode (permission or file type) has changed

P Capabilities have changed

S Size of file has changed

T Time stamp (modification) has changed

U User ownership has changed

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

76 Chapter 2 ■ Managing Software and Processes

 An example of the verifi cation process is shown in Listing 2.8.

 Listing 2.8: Checking an RPM package’s integrity

 # rpm -V zsh
UGT. /bin/zsh
T. c /etc/zlogin
 missing c /etc/zprofile
 #

 In this example, response codes appear for the integrity check in Listing 2.8. Each fi le
that has a discrepancy is listed. Using the code interpretations from Table 2.3 , you can
determine that the /bin/zsh fi le has had both its owner and group changed, and the modi-
fi cation time stamp differs from the one in the package database. The /etc/zlogin fi le is
a zsh package confi guration fi le, and its modifi cation time stamp has also been changed.
Notice too that the /etc/zprofile confi guration fi le is missing.

 If you are having problems with a program due to a missing library file,
you can start the troubleshooting process by looking at the various librar-
ies employed by the application using the ldd command. This utility is cov-
ered later in this chapter.

 Removing RPM Packages
 To remove an installed package, just use the -e action for the rpm command. An example is
shown in Listing 2.9.

 Listing 2.9: Removing an RPM package

 # rpm -e zsh
 warning: file /etc/zprofile: remove failed: No such file or directory
 #
 # rpm -q zsh
 package zsh is not installed
 #

 The -e action doesn’t show if it was successful, but it will display an error message if
something goes wrong with the removal. Notice that in this case the /etc/zprofile fi le
that we discovered was missing via the rpm -V command in Listing 2.8 is also noted by the
removal process.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using RPM 77

Extracting Data from RPMs
Occasionally you may need to extract files from an RPM package file without installing
it. The rpm2cpio utility is helpful in these situations. It allows you to build a cpio archive
(covered in detail in Chapter 4) from an RPM file as shown in Listing 2.10. This is the first
step in extracting the files. Notice that you need to use the > redirection symbol (STDOUT
redirection was covered in Chapter 1) in order to create the archive file.

Listing 2.10: Creating a cpio archive from an RPM package

$ rpm2cpio emacs-24.3-22.el7.x86_64.rpm > emacs.cpio
$

The next step is to move the files from the cpio archive into directories. This is accom-
plished via the cpio command using the -id options. The -i switch employs copy-in mode,
which allows files to be copied in from an archive file. The -d switch creates subdirectories
in the current working directory whose names match the directory names in the archive,
with the exception of adding a preceding dot (.) to each name. A snipped example is shown
in Listing 2.11. Notice we added the verbose option (-v) to display what the command was
doing as it created the needed subdirectories and extracted the files.

Listing 2.11: Extracting the files from a cpio archive

$ cpio -idv < emacs.cpio
./usr/bin/emacs-24.3
./usr/share/applications/emacs.desktop
./usr/share/applications/emacsclient.desktop
./usr/share/icons/hicolor/128x128/apps/emacs.png
./usr/share/icons/hicolor/16x16/apps/emacs.png
./usr/share/icons/hicolor/24x24/apps/emacs.png
./usr/share/icons/hicolor/32x32/apps/emacs.png
./usr/share/icons/hicolor/48x48/apps/emacs.png
./usr/share/icons/hicolor/scalable/apps/emacs.svg
./usr/share/icons/hicolor/scalable/mimetypes/emacs-document.svg
28996 blocks
$
$ ls ./usr/bin/emacs-24.3
./usr/bin/emacs-24.3

After the files are finally extracted from the RPM package file and the subsequent cpio
archive, you can explore them as needed.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

78 Chapter 2 ■ Managing Software and Processes

Using YUM
The rpm commands are useful tools, but they have limitations. If you’re looking for new
software packages to install, it’s up to you to find them. Also, if a package depends on
other packages to be installed, it’s up to you to install those packages first, and in the cor-
rect order. That can become somewhat of a pain to keep up with.

To solve that problem, each Linux distribution has its own central clearinghouse of
packages, called a repository. The repository contains software packages that have been
tested and known to install and work correctly in the distribution environment. By placing
all known packages into a single repository, the Linux distribution can create a one-stop
shopping location for installing all applications.

Most Linux distributions create and maintain their own repositories of packages. There
are also additional tools for working with package repositories. These tools can interface
directly with the package repository to find new software and even automatically find and
install any dependent packages the application requires to operate.

Many third-party package repositories have also sprung up on the Internet that contain
specialized or custom software packages not distributed as part of the official Linux distri-
bution repository. The repository tools allow you to retrieve those packages as well.

The core tool used for working with Red Hat repositories is the YUM utility (short for
YellowDog Update Manager, originally developed for the YellowDog Linux distribution).
Its yum command allows you to query, install, and remove software packages on your sys-
tem directly from an official Red Hat repository.

The yum command uses the /etc/yum.repos.d/ directory to hold files that list the differ-
ent repositories it checks for packages. For a default CentOS system, that directory contains
several repository files, as shown in Listing 2.12.

Listing 2.12: Viewing the /etc/yum.repos.d/ repository files on a CentOS distro

$ ls /etc/yum.repos.d/
CentOS-Base.repo CentOS-CR.repo
CentOS-Debuginfo.repo CentOS-fasttrack.repo
CentOS-Media.repo CentOS-Sources.repo
CentOS-Vault.repo
$

Each file in the yum.repos.d folder contains information on a repository, such as its
URL address and the location of additional package files within the repository. The yum
program checks each of these defined repositories for the package requested on the com-
mand line.

The basic yum command syntax is

yum [OPTIONS] [COMMAND] [PACKAGE…]

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using RPM 79

The yum program is very versatile, and Table 2.4 shows the some of the commands you
can use with it.

ta b Le 2 . 4 The yum commands

Command Description

check-update Checks the repository for updates to installed packages

clean Removes temporary files downloaded during installs

deplist Displays dependencies for the specified package

groupinstall Installs the specified package group

info Displays information about the specified package

install Installs the specified package

list Displays information about installed packages

localinstall Installs a package from a specified RPM file

localupdate Updates the system from specified RPM files

provides Shows to what package a file belongs

reinstall Reinstalls the specified package

remove Removes a package from the system

resolvedep Displays packages matching the specified dependency

search Searches repository package names and descriptions for
specified keyword

shell Enters yum command-line mode

update Updates the specified package(s) to the latest version in the
repository

upgrade Updates specified package(s) but removes obsolete packages

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

80 Chapter 2 ■ Managing Software and Processes

Installing new applications is a breeze with yum as shown snipped in Listing 2.13.

Listing 2.13: Installing software with yum on a CentOS distro

yum install emacs
[…]
Resolving Dependencies
--> Running transaction check
---> Package emacs.x86_64 1:24.3-22.el7 will be installed
--> Processing Dependency: emacs-common = 1:24.3-22.el7 for
package: 1:emacs-24.3-22.el7.x86_64
[…]
--> Running transaction check
---> Package ImageMagick.x86_64 0:6.7.8.9-16.el7_6 will be installed
[…]
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository Size
==
Installing:
 emacs x86_64 1:24.3-22.el7 base 2.9 M
Installing for dependencies:
 ImageMagick x86_64 6.7.8.9-16.el7_6 updates 2.1 M
[…]
Transaction Summary
==
Install 1 Package (+8 Dependent packages)

Total download size: 26 M
Installed size: 92 M
Is this ok [y/d/N]: y
Downloading packages:
(1/9): OpenEXR-libs-1.7.1-7.el7.x86_64.rpm | 217 kB 00:01
[…]
(9/9): emacs-common-24.3-22.el7.x86_64.rpm | 20 MB 00:22
--
Total 1.2 MB/s | 26 MB 00:22

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using RPM 81

 Running transaction check
 Running transaction test
 Transaction test succeeded
 Running transaction
 […]
 Installing : ImageMagick-6.7.8.9-16.el7_6.x86_64 8/9
 Installing : 1:emacs-24.3-22.el7.x86_64 9/9
 […]
 Verifying : ImageMagick-6.7.8.9-16.el7_6.x86_64 8/9
 Verifying : 1:emacs-24.3-22.el7.x86_64 9/9

 Installed:
 emacs.x86_64 1:24.3-22.el7

 Dependency Installed:
 ImageMagick.x86_64 0:6.7.8.9-16.el7_6 […]
 emacs-common.x86_64 1:24.3-22.el7 […]
 libXaw.x86_64 0:1.0.13-4.el7 […]
 libotf.x86_64 0:0.9.13-4.el7 […]

 Complete!
 #

 One nice feature of yum is the ability to group packages together for distribution.
Instead of having to download all of the packages needed for a specifi c environment
(such as for a web server that uses the Apache, MySQL, and PHP servers), you can down-
load the package group that bundles the packages together. Employ the yum grouplist
command to see a list of the various package groups available, and use yum groupinstall
group-package-name for an even easier way to get packages installed on your system.

 Recently, another RPM package management tool has been gaining in
popularity. The dnf program (short for dandified yum) is included as part
of the Fedora Linux distribution as a replacement for yum . As its name sug-
gests, dnf provides some advanced features that yum is missing. One such
feature is speeding up resolving dependency searches with library files.

 Another nice feature of yum is the ability to reinstall software packages. If you fi nd that
a package fi le is missing or modifi ed in some way, it can be easily fi xed through a package
reinstallation. A snipped example is shown in Listing 2.14.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

82 Chapter 2 ■ Managing Software and Processes

Listing 2.14: Reinstalling software with the yum utility

rpm -V emacs
missing /usr/bin/emacs-24.3
#
yum reinstall emacs
[…]
---> Package emacs.x86_64 1:24.3-22.el7 will be reinstalled
 […]
Total download size: 2.9 M
Installed size: 14 M
Is this ok [y/d/N]: y

[…]
Installed:
 emacs.x86_64 1:24.3-22.el7

Complete!
#
rpm -V emacs

#

Notice in Listing 2.14 that the rpm -V emacs command discovers a missing file in the
package. Using the yum reinstall feature quickly fixes the issue.

Removing a package with yum is just as easy as installing it. An example is shown snipped
in Listing 2.15.

Listing 2.15: Removing software with the yum utility

yum remove emacs
[…]
Remove 1 Package

Installed size: 14 M
Is this ok [y/N]: y
[…]
Removed:
 emacs.x86_64 1:24.3-22.el7

Complete!
#

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using RPM 83

 Typically there is no need to modify the primary YUM configuration that is
stored in the /etc/yum.conf file. This file contains settings (also called direc-
tives) that determine things such as where to record YUM log data. Although
you can add third-party repositories by editing the primary configuration file
or creating a /etc/yum.repos.d/ repository file manually, it is not recom-
mended. The desired method is to install new repositories via RPM or YUM.

 Using ZYpp
 The openSUSE Linux distribution uses the RPM package management system and distributes
software in .rpm fi les but doesn’t use the yum or dnf tool. Instead, openSUSE has created its
own package management tool called ZYpp (also called libzypp). Its zypper command allows
you to query, install, and remove software packages on your system directly from an open-
SUSE repository. Table 2.5 lists the more commonly used zypper utility commands.

 ta b Le 2 .5 The zypper commands

Command Description

 help Displays overall general help information or help on a specified com-
mand

 install Installs the specified package

 info Displays information about the specified package

 list-updates Displays all available package updates for installed packages from the
repository

 lr Displays repository information

 packages Lists all available packages or lists available packages from a specified
repository

 what-provides Shows to what package a file belongs

 refresh Refreshes a repository’s information

 remove Removes a package from the system

 search Searches for the specified package(s)

 update Updates the specified package(s) or if no package is specified, updates
all currently installed packages to the latest version(s) in the repository

 verify Verifies that installed packages have their needed dependencies satisfied

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

84 Chapter 2 ■ Managing Software and Processes

For package installation, zypper operates in a similar manner to the yum utility. A
snipped example is shown in Listing 2.16.

Listing 2.16: Installing software with the zypper utility

$ sudo zypper install emacs
[sudo] password for root:
[…]
Reading installed packages...
Resolving package dependencies...

The following 9 NEW packages are going to be installed:
 emacs emacs-info emacs-x11 etags libm17n0 libotf0 libXaw3d8 m17n-db
 m17n-db-lang

The following recommended package was automatically selected:
 m17n-db-lang

9 new packages to install.
Overall download size: 0 B. Already cached: 27.4 MiB. After the operation,
additional 111.6 MiB will be used.
Continue? [y/n/...? shows all options] (y): y

[…]
Checking for file conflicts:[done]
[…]
 (9/9) Installing: emacs-x11-25.3-lp150.2.3.1.x86_64[done]
$

The info command is helpful in that it displays information for the specified package as
shown snipped in Listing 2.17.

Listing 2.17: Displaying package information with the zypper info command

$ zypper info emacs
[…]
Information for package emacs:

Repository : openSUSE-Leap-15.0-Update
Name : emacs
Version : 25.3-lp150.2.3.1
Arch : x86_64

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using RPM 85

Vendor : openSUSE
Installed Size : 67.7 MiB
Installed : Yes
Status : up-to-date
Source package : emacs-25.3-lp150.2.3.1.src
Summary : GNU Emacs Base Package
Description :
 Basic package for the GNU Emacs editor. Requires emacs-x11 or
 emacs-nox.

$

The zypper utility is user-friendly and continually provides helpful messages to guide
your package management process. For example, in Listing 2.18, the older method of deter-
mining what package a particular file belongs to is used (what-provides). In response, the
zypper utility not only enacts the command but also provides information on the newer
method to employ in the future.

Listing 2.18: Determining to which package a file belongs

$ which emacs
/usr/bin/emacs
$
$ zypper what-provides /usr/bin/emacs
Command 'what-provides' is replaced by 'search --provides --match-exact'.
See 'help search' for all available options.
Loading repository data...
Reading installed packages...

S | Name | Summary | Type
---+-------+------------------------+--------
i+ | emacs | GNU Emacs Base Package | package
$

You can easily obtain help on the zypper tool through its man pages and interactively
using the zypper help for general help or zypper help command for specific assistance.

In addition, the zypper utility allows you to shorten some of its commands. For example,
you can shorten install to in, remove to re, and search to se, as shown in Listing 2.19.

Listing 2.19: Searching for a package with the zypper search command

$ zypper se nmap
Loading repository data...

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

86 Chapter 2 ■ Managing Software and Processes

Reading installed packages...

S | Name | Summary | Type
--+---------+--------------------------------+--------
 | nmap | Portscanner | package
 | nmapsi4 | A Graphical Front-End for Nmap | package
 | zenmap | A Graphical Front-End for Nmap | package
$

Removing packages with zypper is simple as well. An example of the command, process,
and utility’s helpful messages is shown snipped in Listing 2.20.

Listing 2.20: Removing a package with the zypper remove command

$ sudo zypper remove emacs
[sudo] password for root:
[…]
The following application is going to be REMOVED:
 "GNU Emacs"

The following 2 packages are going to be REMOVED:
 emacs emacs-x11

2 packages to remove.
After the operation, 99.6 MiB will be freed.
Continue? [y/n/...? shows all options] (y): y
(1/2) Removing emacs-25.3-lp150.2.3.1.x86_64[done]
(2/2) Removing emacs-x11-25.3-lp150.2.3.1.x86_64[done]
There are some running programs that might use files deleted by recent upgrade. You
may wish to check and restart some of them. Run 'zypper ps -s' to list these programs.
$

Managing software packages with RPM, YUM, and ZYpp is fairly easy once you
understand when and how to use each utility. The same is true for Debian package
management.

Using Debian Packages
As you can probably guess, the Debian package management system is mostly used on
Debian-based Linux distros, such as Ubuntu. With this system you can install, modify,
upgrade, and remove software packages. We’ll explore this popular software package man-
agement system in this section.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Debian Packages 87

 Debian Package File Conventions
 Debian bundles application fi les into a single .deb package fi le for distribution that uses the
following fi lename format:

 PACKAGE-NAME - VERSION - RELEASE _ ARCHITECTURE .deb

 This fi lenaming convention for .deb packages is very similar to the .rpm fi le format.
However, in the ARCHITECTURE , you typically fi nd amd64 , denoting it was optimized for the
AMD64/Intel64 CPU architecture. Sometimes all is used, indicating the package is archi-
tecturally neutral. A few .deb package fi les are shown in Listing 2.21.

 Listing 2.21: Software packages with the .deb filenaming conventions

 $ ls -1 *.deb
 docker_1.5-1build1_amd64.deb
 emacs_47.0_all.deb
 openssh-client_1%3a7.6p1-4ubuntu0.3_amd64.deb
 vim_2%3a8.0.1453-1ubuntu1_amd64.deb
 zsh_5.4.2-3ubuntu3.1_amd64.deb
 $

 Keep in mind that packaging naming conventions are acceptable standards, but (within
limits) do not have to be followed by the package developer. Thus, you may encounter
variations.

 If you want to obtain copies of Debian package files on a Debian-based dis-
tro, such as Ubuntu, employ the apt-get download command. For exam-
ple, using super user privileges, type sudo apt-get download vim at
the command line to download the vim Debian package file to your current
working directory.

 The dpkg Command Set
 The core tool to use for handling .deb fi les is the dpkg program, which is a command-line
utility that has options for installing, updating, and removing .deb package fi les on your
Linux system. The basic format for the dpkg command is as follows:

 dpkg [OPTIONS] ACTION PACKAGE-FILE

 The ACTION parameter defi nes the action to be taken on the fi le. Table 2.6 lists the more
common actions you’ll need to use.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

88 Chapter 2 ■ Managing Software and Processes

 ta b Le 2 .6 The dpkg command actions

Short Long Description

-c --contents Displays the contents of a package file

-C --audit Searches for broken installed packages and suggests how to
fix them

N/A --configure Reconfigures an installed package

N/A --get-selections Displays currently installed packages

-i --install Installs the package; if package is already installed,
upgrades it

-I --info Displays information about an uninstalled package file

-l --list Lists all installed packages matching a specified pattern

-L --listfiles Lists the installed files associated with a package

-p --print-avail Displays information about an installed package

-P --purge Removes an installed package, including configuration files

-r --remove Removes an installed package but leaves the configuration
files

-s --status Displays the status of the specified package

-S --search Locates the package that owns the specified files

 Each action has a set of options that you can use to modify its basic behavior, such as
forcing the overwrite of an already installed package or ignoring any dependency errors.

 To use the dpkg program, you must have the .deb software package available on your
system. Often you can fi nd .deb versions of application packages ready for distribution on
the application website. Also, most distributions maintain a central location for packages to
download.

 The Debian distribution also provides a central clearinghouse for Debian
packages at www.debian.org/distrib/packages .

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Debian Packages 89

After you obtain the .deb package, you can look at the package’s information stored in
the file, including the version number and any dependencies, with the dpkg -I command.
An example is shown snipped in Listing 2.22.

Listing 2.22: Looking at an uninstalled .deb package with the dpkg -I command

$ dpkg -I zsh_5.4.2-3ubuntu3.1_amd64.deb
 new Debian package, version 2.0.
 size 689912 bytes: control archive=2544 bytes.
 909 bytes, 20 lines control
 3332 bytes, 42 lines md5sums
[…]
Package: zsh
 Version: 5.4.2-3ubuntu3.1
 Architecture: amd64
 Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
 Installed-Size: 2070
 Depends: zsh-common (= 5.4.2-3ubuntu3.1), libc6 (>= 2.15),
libcap2 (>= 1:2.10), libtinfo5 (>= 6)
 Recommends: libc6 (>= 2.23), libncursesw5 (>= 6), libpcre3
 Suggests: zsh-doc
 Section: shells
 Priority: optional
 Homepage: https://www.zsh.org/
 Description: shell with lots of features
 Zsh is a UNIX command interpreter (shell) usable as an
[…]
 Original-Maintainer: Debian Zsh Maintainers <pkg-zsh-devel@li[…]
$

If you want to see the package file’s contents, replace the -I option with the --contents
switch. Be aware that you may need to pipe the output into a pager utility (see Chapter 1)
for easier viewing.

When you determine you’ve got the right package, use dpkg with the -i action to install
it, as shown in Listing 2.23. (Be aware that if the software is already installed, this process
will upgrade it to the version in the package file.)

Listing 2.23: Installing a .deb package with the dpkg -i command

$ sudo dpkg -i zsh_5.4.2-3ubuntu3.1_amd64.deb
Selecting previously unselected package zsh.
(Reading database ... 171250 files and directories currently installed.)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

90 Chapter 2 ■ Managing Software and Processes

Preparing to unpack zsh_5.4.2-3ubuntu3.1_amd64.deb ...
Unpacking zsh (5.4.2-3ubuntu3.1) ...
dpkg: dependency problems prevent configuration of zsh:
 zsh depends on zsh-common (= 5.4.2-3ubuntu3.1); however:
 Package zsh-common is not installed.

dpkg: error processing package zsh (--install):
 dependency problems - leaving unconfigured
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
Errors were encountered while processing:
 zsh
$

You can see in this example that the package management software checks to ensure
that any required packages are installed and produces an error message if any are missing.
This gives you a clue as to what other packages you need to install.

After installation you can view the package’s status via the dpkg -s command. An
example is shown snipped in Listing 2.24. Notice that the command’s output shows the
package is installed, as well as its version number and dependencies.

Listing 2.24: Displaying an installed package status with the dpkg -s command

$ dpkg -s zsh
Package: zsh
Status: install ok unpacked
Priority: optional
Section: shells
Installed-Size: 2070
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Architecture: amd64
Version: 5.4.2-3ubuntu3.1
Depends: zsh-common (= 5.4.2-3ubuntu3.1), libc6 (>= 2.15), libcap2 (>= 1:2.10),
libtinfo5 (>= 6)
Recommends: libc6 (>= 2.23), libncursesw5 (>= 6), libpcre3
Suggests: zsh-doc
Description: shell with lots of features
[…]
$

If you’d like to see all of the packages installed on your system, use the -l (lowercase L)
option as shown snipped in Listing 2.25.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Debian Packages 91

 Listing 2.25: Displaying all installed packages with the dpkg -l command

 $ dpkg -l
 Desired=Unknown/Install/Remove/Purge/Hold
 | Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig
 |/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
 ||/ Name Version Architecture Description
 +++-==============-============-============-===========================
 ii accountsservic 0.6.45-1ubun amd64 query and manipulate accounts
 ii acl 2.2.52-3buil amd64 Access control list utilities
 ii acpi-support 0.142 amd64 scripts for handling ACPI
 ii acpid 1:2.0.28-1ub amd64 Advanced Config and Power
 ii adduser 3.116ubuntu1 all add and remove users
 […]
 iU zsh 5.4.2-3ubunt amd64 shell with lots of features
 $

 Notice in Listing 2.25 that the installed packages have a status code before their name.
The possible package status codes are shown in the fi rst few lines as output by the dpkg
command. For example, the last line that shows the zsh package displays the iU code. This
means that while the package is installed (i), it is unpacked (U), but not confi gured, which
is a problem. Earlier in Listing 2.23, we installed the packages, and the installation process
denoted that a dependency, zsh-common , was missing.

 Imagine not having to deal with missing package dependencies! Well, a
new trend in package management may do just that. It revolves around
building software packages to include not only the primary application,
but all its dependencies as well. One new package management system
that employs this new and exciting method is Snappy for the Ubuntu dis-
tribution. It uses the .snap file extension. The packages are called snap
 packages , and using Snappy requires installation of the snapd daemon.

 For missing dependency problems, you can quickly check whether a particular package
or library is installed via the dpkg -s action as shown snipped in Listing 2.26. Notice that
as expected, the needed zsh-common package is not installed.

 Listing 2.26: Displaying an uninstalled package status with the dpkg -s command

 $ sudo dpkg -s zsh-common
 dpkg-query: package 'zsh-common' is not installed and
 no information is available
 […]
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

92 Chapter 2 ■ Managing Software and Processes

 If you need to remove a package, you have two options. The -r action removes the pack-
age but keeps any confi guration and data fi les associated with the package installed. This is
useful if you’re just trying to reinstall an existing package and don’t want to have to recon-
fi gure things.

 If you really do want to remove the entire package, use the -P option, which purges the
entire package, including confi guration fi les and data fi les from the system. An example of
this is shown in Listing 2.27.

 Listing 2.27: Purging an installed package with the dpkg -P command

 $ sudo dpkg -P zsh
 (Reading database ... […]
 Removing zsh (5.4.2-3ubuntu3.1) ...
 Purging configuration files for zsh (5.4.2-3ubuntu3.1) ...
 Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
 $

 Be very careful with the -p and -P options. They’re easy to mix up. The
-p option lists the packages, whereas the -P option purges the packages.
Quite a difference!

 The dpkg tool gives you direct access to the package management system, making it
easier to install and manage applications on your Debian-based system.

 Looking at the APT Suite
 The Advanced Package Tool (APT) suite is used for working with Debian repositories. This
includes the apt-cache program that provides information about the package database, and
the apt-get program that does the work of installing, updating, and removing packages.

 Just like dnf for RPM package management, Debian package manage-
ment also has a new tool that is gaining in popularity — apt . (This utility
should not be confused with the APT suite or the Python wrapper used on
Linux Mint by the same name.) The new apt tool provides improved user
interface features and simpler commands for managing Debian packages.
In addition, apt uses easier-to-understand action names, such as full-
upgrade . Its quick rise in popularity has gained it enough attention to land
it on the LPIC-1 certification exam.

 The APT suite of tools relies on the /etc/apt/sources.list fi le to identify the locations
of where to look for repositories. By default, each Linux distribution enters its own reposi-
tory location in that fi le. However, you can include additional repository locations if you
install third-party applications not supported by the distribution.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Debian Packages 93

Using apt-cache
Here are a few useful command options in the apt-cache program for displaying informa-
tion about packages:

 ■ depends: Displays the dependencies required for the package

 ■ pkgnames: Shows all the packages installed on the system

 ■ search: Displays the name of packages matching the specified item

 ■ showpkg: Lists information about the specified package

 ■ stats: Displays package statistics for the system

 ■ unmet: Shows any unmet dependencies for all installed packages or the specified
installed package

Typically you can issue the apt-cache commands without employing super user privi-
leges. One handy command is apt-cache pkgnames, which displays all installed Debian
packages on the system. An example is shown snipped in Listing 2.28. Notice that the pipe
symbol (|) and the grep command (both covered in Chapter 1) are employed to quickly
determine if any nano packages are currently installed.

Listing 2.28: Displaying all installed packages with the apt-cache pkgnames command

$ apt-cache pkgnames | grep ^nano
nano
[…]
nano-tiny
[…]
$

If you need to look for a particular package to install, the apt-cache search command
is useful. A snipped example is shown in Listing 2.29.

Listing 2.29: Searching for a package with the apt-cache search command

$ apt-cache search zsh
zsh - shell with lots of features
zsh-common - architecture independent files for Zsh
zsh-dev - shell with lots of features (development files)
zsh-doc - zsh documentation - info/HTML format
[…]
$

When you have found the desired package, peruse its detailed information via the
apt-cache showpkg command. The snipped example in Listing 2.30 provides data on
the zsh package.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

94 Chapter 2 ■ Managing Software and Processes

Listing 2.30: Displaying package information with the apt-cache showpkg command

$ apt-cache showpkg zsh
Package: zsh
Versions:
5.4.2-3ubuntu3.1 […]
[…]
Reverse Depends:
 usrmerge,zsh 5.2-4~
 zsh-static,zsh
 zsh:i386,zsh
 zsh-common,zsh 5.0.2-1
[…]
Dependencies:
5.4.2-3ubuntu3.1 - […]
5.4.2-3ubuntu3 - […]
Provides:
5.4.2-3ubuntu3.1 -
5.4.2-3ubuntu3 -
Reverse Provides:
$

The apt-cache utility provides several ways to discover package information. But you
need another program to handle other package management functions.

Using apt-get
The workhorse of the APT suite of tools is the apt-get program. It’s what you use to
install, update, and remove packages from a Debian package repository. Table 2.7 lists the
apt-get commands.

ta b Le 2 .7 The apt-get program action commands

Action Description

autoclean Removes information about packages that are no longer in the
repository

check Checks the package management database for inconsistencies

clean Cleans up the database and any temporary download files

dist-upgrade Upgrades all packages, but monitors for package dependencies

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Debian Packages 95

Action Description

dselect-upgrade Completes any package changes left undone

install Installs or updates a package and updates the package management
database

remove Removes a package from the package management database

source Retrieves the source code package for the specified package

update Retrieves updated information about packages in the repository

upgrade Upgrades all installed packages to newest versions

Installing a new package from the repository is as simple as specifying the package name
with the install action. A snipped example of installing the zsh package with apt-get is
shown in Listing 2.31.

Listing 2.31: Installing a package with the apt-get install command

$ sudo apt-get install zsh
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
 zsh-common
Suggested packages:
 zsh-doc
The following NEW packages will be installed:
 zsh zsh-common
0 upgraded, 2 newly installed, 0 to remove and 0 not upgraded.
[…]
Unpacking zsh (5.4.2-3ubuntu3.1) ...
Setting up zsh-common (5.4.2-3ubuntu3.1) ...
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
Setting up zsh (5.4.2-3ubuntu3.1) ...
$

If any dependencies are required, the apt-get program retrieves those as well and
installs them automatically. Notice in Listing 2.31 that the zsh-common package, which
is a zsh dependency, is also installed.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

96 Chapter 2 ■ Managing Software and Processes

 The dist-upgrade action provides a great way to keep your entire Debian-
based system up-to-date with the packages released to the distribution
repository. Running that command will ensure that your packages have
all the security and bug fixes installed and will not break packages due to
unmet dependencies. However, that also means that you fully trust the
distribution developers to put only tested packages in the repository. Occa-
sionally a package may make its way into the repository before being fully
tested and cause issues.

 The install action does more than install packages. You can upgrade individual
packages as well. An example of upgrading the emacs software is shown snipped in
Listing 2.32.

 Listing 2.32: Upgrading a package with the apt-get install command

 $ sudo apt-get install emacs
 Reading package lists... Done
 Building dependency tree
 Reading state information... Done
 The following packages will be upgraded:
 emacs
 1 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
 1 not fully installed or removed.
 Need to get 1,748 B of archives.
 After this operation, 17.4 kB disk space will be freed.
 […]
 Preparing to unpack .../archives/emacs_47.0_all.deb ...
 Unpacking emacs (47.0) over (46.1) ...
 Setting up emacs (47.0) ...
 $

 The APT suite is helpful in taking care of software package management. You just need
to remember when to use apt-cache and when to use apt-get .

 On modern Ubuntu distro versions, unattended upgrades are con-
figured. This allows automatic security upgrades to software and
requires no human intervention. If you want to turn this off, change the
APT::Periodic::Update-Package-Lists directive in the /etc/apt/apt
.conf.d/10periodic file from 1 to 0 . Find out more about this feature by
typing man unattended-upgrade at the command line.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Debian Packages 97

Reconfiguring Packages
Typically everyone needs to modify configuration files to meet the needs of their system
and users. However, if you make changes that cause serious unexpected problems, you may
want to return to the package’s initial installation state.

If the package required configuration when it was installed, you are in luck! Instead of
purging the package and reinstalling it, you can employ the handy dpkg-reconfigure tool.

To use it, just type the command, followed by the name of the package you need to
reconfigure. For example, if you needed to fix the cups (printing software covered in
Chapter 6) utility, you would enter

sudo dpkg-reconfigure cups

This command will throw you into a text-based menu screen that will lead you through
a series of simple configuration questions. An example of this screen is shown in Figure 2.1.

F i gu r e 2 .1 Using the dpkg-reconfigure utility

It’s a good idea to employ the debconf-show utility, too. This tool allows you to view the
package’s configuration. An example is shown in Listing 2.33.

Listing 2.33: Displaying a package’s configuration with the debconf-show utility

$ sudo debconf-show cups
* cupsys/backend: lpd, socket, usb, snmp, dnssd
* cupsys/raw-print: true
$

It would be worthwhile to run the debconf-show command and record the settings
before and after running the dpkg-reconfigure utility. That way, you’ll have documenta-
tion on the configuration before and after the package is reconfigured.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

98 Chapter 2 ■ Managing Software and Processes

 Another interesting trend in package management includes not only what
is in the package but how the package’s application is executed. Using
virtualization concepts (covered in Chapter 5), Flatpak combines package
management, software deployment, and application sandboxing (isolated
in a separate environment) all together in one utility. It provides all the
needed package dependencies as well as a sandbox for application execu-
tion. Thus, you can run the application in a confined virtualized environ-
ment, protecting the rest of your system from any application effects.

 Managing Shared Libraries
 In managing your system’s applications, you need to understand libraries and, more spe-
cifi cally, shared libraries. In this section, we’ll take a look at a few ways to oversee these
resources.

 Library Principles
 A system library is a collection of items, such as program functions. Functions are self-
contained code modules that perform a specifi c task within an application, such as opening
and reading a data fi le.

 The benefi t of splitting functions into separate library fi les is that multiple applications
that use the same functions can share the same library fi les. These fi les full of functions
make it easier to distribute applications, but also make it more complicated to keep track of
what library fi les are installed with which applications.

 Linux supports two different fl avors of libraries. One is static libraries (also called stati-
cally linked libraries) that are copied into an application when it is compiled. The other fl a-
vor is shared libraries (also called dynamic libraries) where the library functions are copied
into memory and bound to the application when the program is launched. This is called
loading a library .

 If you have ever worked with Microsoft’s Windows Server, you most likely
have dealt with dynamic linked libraries (DLLs) files that have the .dll file
extension. DLLs are similar to Linux shared libraries.

 On Linux, like application packages, library fi les have naming conventions. A shared
library fi le employs the following fi lename format:

 lib LIBRARYNAME .so. VERSION

 Keep in mind that just as with packages, these are naming guidelines (similar to pirate
codes) and not laws.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Shared Libraries 99

 Locating Library Files
 When a program is using a shared function, the system will search for the function’s library
fi le in a specifi c order; looking in directories stored within the

 1. LD_LIBRARY_PATH environment variable

 2. Program’s PATH environment variable

 3. /etc/ld.so.conf.d/ folder

 4. /etc/ld.so.conf file

 5. /lib*/ and /usr/lib*/ folders

 Be aware that the order of #3 and #4 may be fl ip-fl opped on your system. This is
because the /etc/ld.so.conf fi le loads confi guration fi les from the /etc/ld.so.conf.d/
folder. An example of this fi le from a CentOS distro is shown (along with fi les residing in
the /etc/ld.so.conf.d directory) in Listing 2.34.

 Listing 2.34: Displaying the /etc/ld.so.conf file contents on CentOS

 $ cat /etc/ld.so.conf
 include ld.so.conf.d/*.conf
 $
 $ ls -1 /etc/ld.so.conf.d/
 dyninst-x86_64.conf
 kernel-3.10.0-862.9.1.el7.x86_64.conf
 kernel-3.10.0-862.el7.x86_64.conf
 kernel-3.10.0-957.10.1.el7.x86_64.conf
 libiscsi-x86_64.conf
 mariadb-x86_64.conf
 $

 If another library is located in the /etc/ld.so.conf fi le and it is listed above the
 include operation, then the system will search that library directory before the fi les in the
 /etc/ld.so.conf.d/ folder. This is something to keep in mind if you are troubleshooting
library problems.

 It is important to know that the /lib*/ folders, such as /lib/ and /lib64/ ,
are for libraries needed by system utilities that reside in the /bin/ and /
sbin/ directories, whereas the /usr/lib*/ folders, such as /usr/lib/ and
/usr/lib64/ , are for libraries needed by additional software, such as data-
base utilities like MariaDB.

 If you peer inside one of the fi les within the /etc/ld.so.conf.d/ folder, you’ll fi nd that
it contains a shared library directory name. Within that particular directory are the shared
library fi les needed by an application. An example is shown in Listing 2.35.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

100 Chapter 2 ■ Managing Software and Processes

Listing 2.35: Looking at the /etc/ld.so.conf.d/ file contents on CentOS

$ cat /etc/ld.so.conf.d/mariadb-x86_64.conf
/usr/lib64/mysql
$
$ ls /usr/lib64/mysql
libmysqlclient.so.18 libmysqlclient.so.18.0.0 plugin
$

Loading Dynamically
When a program is started, the dynamic linker (also called the dynamic linker/loader) is
responsible for finding the program’s needed library functions. After they are located, the
dynamic linker will copy them into memory and bind them to the program.

Historically, the dynamic linker executable has a name like ld.so and ld-linux.so*,
but its actual name and location on your Linux distribution may vary. You can employ the
locate utility (covered in more detail in Chapter 4) to find its actual name and location, as
shown snipped in Listing 2.36 on a CentOS distribution.

Listing 2.36: Locating the dynamic linker executable on CentOS

$ locate ld-linux
/usr/lib64/ld-linux-x86-64.so.2
/usr/share/man/man8/ld-linux.8.gz
/usr/share/man/man8/ld-linux.so.8.gz
$

When you’ve located the dynamic linker utility, you can try it out by using it to manu-
ally load a program and its libraries (it will run the program as well). An example of this on
a CentOS distribution and employing the echo utility is shown in Listing 2.37.

Listing 2.37: Loading and running the echo command with the dynamic linker utility

$ /usr/lib64/ld-linux-x86-64.so.2 /usr/bin/echo "Hello World"
Hello World
$

Unfortunately in Listing 2.37, you cannot see all the shared libraries the dynamic linker
loaded when it initiated the echo utility. However, if desired, you can use the ldd command
to view a program’s needed libraries, and it is covered later in this chapter.

Library Management Commands
Library directories are not the only resources for managing and troubleshooting application
libraries. There are also a few useful tools you can employ. Along with those utilities are a
few additional library concepts you should understand.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Shared Libraries 101

Managing the Library Cache
The library cache is a catalog of library directories and all the various libraries contained
within them. The system reads this cache file to quickly find needed libraries when it is
loading programs. This makes it much faster for loading libraries than searching through
all the possible directory locations for a particular required library file.

When new libraries or library directories are added to the system, this library cache file
must be updated. However, it is not a simple text file you can just edit. Instead, you have to
employ the ldconfig command.

Fortunately, when you are installing software via one of the package managers, the
ldconfig command is typically run automatically. Thus, the library cache is updated
without any needed intervention from you. Unfortunately, you’ll have to manually run the
ldconfig command for any applications you are developing yourself.

Developing New Libraries

Imagine you’re on an open source development team that is creating a new dynamic
function library for a Linux app, which will be offered in your favorite distribution’s repos-
itory. The library file is stored in a development directory (/home/devops/library), and it
is ready for testing.

To accommodate testing of the newly created program library, you’ll need to modify
the LD_LIBRARY_PATH environment variable by including the program in its definition
as such:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/devops/library/

After testing and refinement of the new function library is completed, move the library
file to its production folder (most likely somewhere in the /usr/lib*/ directory tree).
And then create a library configuration file within the /etc/ld.so.conf.d/ directory that
points to the library file’s location.

When those items are completed, you’ll need to manually update the library cache.
Using super user privileges, issue the ldconfig command to load the new library into
the catalog.

If you are troubleshooting the library cache, you can easily see what library files are cata-
loged by using the ldconfig -v command. An example of this is shown in Listing 2.38. The
example command employs a pipe and the grep utility to search for a particular library, as
well as redirects any errors into the black hole (these concepts were covered in Chapter 1).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

102 Chapter 2 ■ Managing Software and Processes

 Listing 2.38: Listing files in the library cache via the /ldconfig -v command

 $ ldconfig -v 2> /dev/null | grep libmysqlclient
 libmysqlclient.so.18 -> libmysqlclient.so.18.0.0
 $

 Troubleshooting Shared Library Dependencies
 The ldd utility can come in handy if you need to track down missing library fi les for an
application. It displays a list of the library fi les required for the specifi ed application. An
example is shown using the echo command’s fi le in Listing 2.39.

 Listing 2.39: Using the ldd command to view an application’s libraries

 $ ldd /usr/bin/echo
 linux-vdso.so.1 => (0x00007ffd3bd64000)
 libc.so.6 => /lib64/libc.so.6 (0x00007f7c39eff000)
 /lib64/ld-linux-x86-64.so.2 (0x00007f7c3a2cc000)
 $

 The ldd utility output shows the echo program requires two external library fi les: the
standard linux-vdso.so.1 and libc.so.6 fi les. The ldd utility also shows where those
fi les are found on the Linux system, which can be helpful when troubleshooting issues with
applications involving their library fi les.

 Sometimes a library is dependent on another library. So when you are
troubleshooting a missing library file, you may need to use the ldd com-
mand on the libraries listed for the application in order to get to the root of
the problem.

 Managing Processes
 Linux must keep track of lots of different programs, all running at the same time. This sec-
tion covers how Linux keeps track of all the active applications, how you can peek at that
information, as well as how to use command-line tools to manage the running programs.

 Examining Process Lists
 At any given time lots of active programs are running on the Linux system. Linux calls
each running program a process . The Linux system assigns each process a process ID
(PID) and manages how the process uses memory and CPU time based on that PID.

 When a Linux system fi rst boots, it starts a special process called the init process .
The init process is the core of the Linux system; it runs scripts that start all of the other

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Processes 103

processes running on the system, including the processes that start the text consoles and
graphical windows you use to log in (see Chapter 5).

Viewing Processes with ps
You can look at processes that are currently running on the Linux system by using the ps
command. The default output of this command is shown in Listing 2.40.

Listing 2.40: Viewing your processes with the ps command

$ ps
 PID TTY TIME CMD
 1615 pts/0 00:00:00 bash
 1765 pts/0 00:00:00 ps
$

By default, the ps program shows only the processes that are running in the current
user shell. In this example, we only had the command prompt shell running (Bash) and, of
course, the ps command.

The basic output of the ps command shows the PID assigned to each process, the termi-
nal (TTY) that they were started from, and the CPU time that the process has used.

The tricky feature of the ps command (and the reason that makes it so complicated) is
that at one time there were two versions of it in Linux. Each version had its own set of
command-line options controlling the information it displayed. That made switching
between systems somewhat complicated.

The GNU developers decided to merge the two versions into a single ps program, and
of course, they added some additional switches of their own. Thus, the current ps program
used in Linux supports three different styles of command-line options:

 ■ Unix-style options, which are preceded by a dash

 ■ Berkley Software Distribution (BSD)–style options, which are not preceded by a dash

 ■ GNU long options, which are preceded by a double dash

This makes for lots of possible switches to use with the ps command. You can consult
the ps manual page to see all possible options that are available. Most Linux administrators
have their own set of commonly used switches that they remember for extracting pertinent
information. For example, if you need to see every process running on the system, use the
Unix-style -ef option combination, as shown snipped in Listing 2.41.

Listing 2.41: Viewing processes with the ps command and Unix-style options

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 10:18 ? 00:00:03 /sbin/init splash
root 2 0 0 10:18 ? 00:00:00 [kthreadd]
root 4 2 0 10:18 ? 00:00:00 [kworker/0:0H]

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

104 Chapter 2 ■ Managing Software and Processes

root 5 2 0 10:18 ? 00:00:00 [kworker/u2:0]
root 6 2 0 10:18 ? 00:00:00 [mm_percpu_wq]
root 7 2 0 10:18 ? 00:00:00 [ksoftirqd/0]
root 8 2 0 10:18 ? 00:00:00 [rcu_sched]
root 9 2 0 10:18 ? 00:00:00 [rcu_bh]
[…]
$

This format provides some useful information about the processes running:

 ■ UID: The user responsible for running the process

 ■ PID: The process ID of the process

 ■ PPID: The process ID of the parent process (if the process was started by another
process)

 ■ C: The processor utilization over the lifetime of the process

 ■ STIME: The system time when the process was started

 ■ TTY: The terminal device from which the process was started

 ■ TIME: The cumulative CPU time required to run the process

 ■ CMD: The name of the program that was started in the process

Also notice in the -ef output that some process command names are shown in brackets.
That indicates processes that are currently swapped out from physical memory into virtual
memory on the hard drive.

Understanding Process States
Processes that are swapped into virtual memory are called sleeping. Often the Linux kernel
places a process into sleep mode while the process is waiting for an event.

When the event triggers, the kernel sends the process a signal. If the process is in inter-
ruptible sleep mode, it will receive the signal immediately and wake up. If the process is in
uninterruptible sleep mode, it only wakes up based on an external event, such as hardware
becoming available. It will save any other signals sent while it was sleeping and act on them
once it wakes up.

If a process has ended but its parent process hasn’t acknowledged the termination signal
because it’s sleeping, the process is considered a zombie. It’s stuck in a limbo state between
running and terminating until the parent process acknowledges the termination signal.

Selecting Processes with ps
When troubleshooting or monitoring a system, it’s helpful to narrow the ps utility’s focus
by viewing only a selected subset of processes. You may just want to view processes using
a particular terminal or ones belonging to a specific group. Table 2.8 provides several ps
command options you can employ to limit what is displayed. Keep in mind that these are
not all the various selection switches available.

Listing 2.41: Viewing processes with the ps command and Unix-style options (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Processes 105

ta b Le 2 . 8 Some ps program selection options

Option(s) Description

a Display every process on the system associated
with a tty terminal

-A, -e Display every process on the system

-C CommandList Only display processes running a command in
the CommandList

-g GIDList, or -group GIDList Only display processes whose current effective
group is in GIDList

-G GIDList, or -Group GIDList Only display processes whose current real group
is in GIDList

-N Display every process except selected processes

p PIDList, -p PIDList or --pid PIDList Only display PIDList processes

-r Only display selected processes that are in a
state of running

-t ttyList, or --tty ttyList List every process associated with the ttyList
terminals

-T List every process associated with the current tty
terminal

-u UserList, or --user UserList Only display processes whose effective user
(username or UID) is in UserList

-U UserList, or --User UserList Only display processes whose real user (user-
name or UID) is in UserList

x Remove restriction of “associated with a tty ter-
minal”; typically used with the a option

Notice that in Table 2.8 groups and users are designated as real or effective. Real indi-
cates that this is the user or group the account is associated with when logging into the sys-
tem and/or the primary account’s group. Effective indicates that the user or group is using
a temporary alternative user or group identification, as in the case of SUID and GUID
permissions (covered in Chapter 10). Thus, if you want to make sure you see every process
associated with a particular user or group, it’s best to employ both the effective and real
options. An example is shown in Listing 2.42.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

106 Chapter 2 ■ Managing Software and Processes

Listing 2.42: Viewing effective and real username processes with the ps command

$ ps -u Christine -U Christine
 PID TTY TIME CMD
 7802 ? 00:00:00 systemd
 7803 ? 00:00:00 (sd-pam)
 7876 ? 00:00:00 sshd
 7877 pts/0 00:00:00 bash
 7888 pts/0 00:00:00 ps
$

Viewing Processes with top
The ps command is a great way to get a snapshot of the processes running on the system,
but sometimes you need to see more information. For example, if you’re trying to find
trends about processes that are frequently swapped in and out of memory, it’s hard to do
that with the ps command.

The top command can solve this problem. It displays process information similar to the
ps command, but it does it in real-time mode. Figure 2.2 shows a snapshot of the top com-
mand in action.

F i gu r e 2 . 2 The output of the top command

The first section of the top output shows general system information. The first line
shows the current time, how long the system has been up, the number of users logged in,
and the load average on the system.

The load average appears as three numbers: the 1-minute, 5-minute, and 15-minute load
averages. The higher the values, the more load the system is experiencing. It’s not uncom-
mon for the 1-minute load value to be high for short bursts of activity. If the 15-minute
load value is high, your system may be in trouble.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Processes 107

 For a quick look at system load averages, employ the uptime command:

 $ uptime
 11:19:43 up 1:01, 3 users, load average: 1.03, 0.69, 0.37
 $

 It provides the exact same system load average information as does the
top utility as well as data on how long the Linux system has been running.

 The top utility’s second line shows general process information (called tasks in top):
how many processes are running, sleeping, stopped, or in a zombie state.

 The next line shows general CPU information. The top display breaks down the CPU
utilization into several categories depending on the owner of the process (user versus system
processes) and the state of the processes (running, idle, or waiting).

 Following that, in the top utility’s output there are two lines that detail the status of
the system memory. The fi rst line shows the status of the physical memory in the system,
how much total memory there is, how much is currently being used, and how much is free.
The second memory line shows the status of the swap memory area in the system (if any is
installed), with the same information.

 For a quick look at memory usage, employ the free command:

 $ free -h
 total used free shared buff/cache available
 Mem: 3.9G 1.0G 2.2G 30M 710M 2.6G
 Swap: 472M 0B 472M
 $

 It provides similar memory information as does the top utility, but you
have a wider choice of options. For example, the -h switch (human read-
able), as shown in the proceeding example, adds unit labels for easier
reading.

 Finally, the next top utility section shows a detailed list of the currently running pro-
cesses, with some information columns that should look familiar from the ps command
output:

 ■ PID: The process ID of the process

 ■ USER: The username of the owner of the process

 ■ PR: The priority of the process

 ■ NI: The nice value of the process

 ■ VIRT: The total amount of virtual memory used by the process

 ■ RES: The amount of physical memory the process is using

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

108 Chapter 2 ■ Managing Software and Processes

 ■ SHR: The amount of memory the process is sharing with other processes

 ■ S: The process status (D = interruptible sleep, I = idle, R = running, S = sleeping, T =
traced or stopped, and Z = zombie)

 ■ %CPU: The share of CPU time that the process is using

 ■ %MEM: The share of available physical memory the process is using

 ■ TIME+: The total CPU time the process has used since starting

 ■ COMMAND: The command-line name of the process (program started)

By default, when you start top, it sorts the processes based on the %CPU value. You can
change the sort order by using one of several interactive commands. Each interactive com-
mand is a single character you can press while top is running and changes the behavior of
the program. These commands are shown in Table 2.9.

ta b Le 2 . 9 The top interactive commands

Command Description

1 Toggles the single CPU and Symmetric Multiprocessor (SMP) state

b Toggles the bolding of important numbers in the tables

I Toggles Irix/Solaris mode

z Configures color for the table

l Toggles display of the load average information line

t Toggles display of the CPU information line

m Toggles display of the MEM and SWAP information lines

f Adds or removes different information columns

o Changes the display order of information columns

F or O Selects a field on which to sort the processes (%CPU by default)

< or > Moves the sort field one column left (<) or right (>)

R Toggles normal or reverse sort order

h Toggles showing of threads

c Toggles showing of the command name or the full command line (includ-
ing parameters) of processes

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Processes 109

Command Description

 i Toggles showing of idle processes

 S Toggles showing of the cumulative CPU time or relative CPU time

 x Toggles highlighting of the sort field

 y Toggles highlighting of running tasks

 z Toggles color and mono mode

 u Shows processes for a specific user

 n or # Sets the number of processes to display

 k Kills a specific process (only if process owner or if root user)

 r Changes the priority (renice) of a specific process (only if process owner
or if root user)

 d or s Changes the update interval (default three seconds)

 W Writes current settings to a configuration file

 q Exits the top command

 You have lots of control over the output of the top command. Use the F or O command
to toggle which fi eld the sort order is based on. You can also use the r interactive command
to reverse the current sorting. Using this tool, you can often fi nd offending processes that
have taken over your system.

 A handy little utility for monitoring process information is the watch
command. To use it, you enter watch and follow it by a command you’d
like to enact over and over again. By default watch will reissue the
command every two seconds. For example, you can type watch uptime
to only monitor the system load. But you aren’t limited to just process
tracking commands. You can monitor a directory’s changes in real time
and more. See the watch utility’s man pages for more information.

 Employing Multiple Screens
 If your Linux system has a GUI, it’s simple to open multiple terminal emulators and
arrange them side-by-side to monitor processes and enact commands, all while keeping an
eye on additional items. However, if you are limited to using terminals in a nongraphical

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

110 Chapter 2 ■ Managing Software and Processes

environment, you can still open window sessions side-by-side to perform multiple opera-
tions and monitor their displays. This is accomplished through a terminal multiplexer. Two
popular multiplexers we’ll cover in this section are screen and tmux.

Multiplexing with screen
The screen utility (also called GNU Screen) is often available in a distribution’s repository,
but typically it is not installed by default. After you install it, you can get started by typing
screen at the command line to create your first window. A “welcome” display will ordi-
narily appear as shown in Figure 2.3.

F i gu r e 2 . 3 The screen command’s “welcome” display

After you press the Enter key, a shell provides a command prompt. While it’s a little
hard to tell you are inside a screen window by using commands like ps, the screen -ls
command and the w command can help, as shown in Listing 2.43.

Listing 2.43: Viewing your screen window with the screen -ls and w commands

$ ps
 PID TTY TIME CMD
 9151 pts/5 00:00:00 bash
 9162 pts/5 00:00:00 ps
$
$ screen -ls
There is a screen on:
 9150.pts-0.Ubuntu1804 (04/16/2019 05:09:43 PM) (Attached)
1 Socket in /run/screen/S-Christine.
$
$ w
 17:19:39 up 4:34, 2 users, load average: 0.71, 0.54, 0.38

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Processes 111

 USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
 Christin pts/0 192.168.0.101 16:14 2.00s 0.14s 0.00s screen
 Christin pts/5 :pts/0:S.0 17:09 2.00s 0.07s 0.00s w
 $

 Notice the output from the screen -ls command displays an Attached window. The
ID number in this case is 9150 (which also happens to be its PID). The w command’s output
shows two logged-in users; one is using the screen command, and the other is using the w
command. The fi rst user issued the screen command that created a second user process.
The FROM column for the second user’s process shows that this user was employing the
 pts/0 terminal and is now residing in screen window 0 (s.0) on the pts/5 terminal.

 A pts terminal is a pseudo-terminal. The / # after pts indicates which
pseudo-terminal the user is employing. For example, pts/5 means that
pseudo-terminal #5 is in use. You’ll often see these terminal types when
using a terminal emulator within a GUI, but they may also be used when
using OpenSSH to reach and log into a Linux system, as is the case in this
section.

 The neat thing about the screen window is that you can issue a command within the
window, detach from the window, and come back to it later, causing no ill effects on the
command running in that window. To detach from a screen window, press Ctrl+A and then
the D key. The screen -ls command will then display your detached window session. An
example is shown in Listing 2.44.

 Listing 2.44: Displaying a detached screen window with the screen -ls command

 [detached from 9394.pts-0.Ubuntu1804]
 $
 $ screen -ls

 There is a screen on:
 9394.pts-0.Ubuntu1804 (04/16/2019 05:42:45 PM) (Detached)
 1 Socket in /run/screen/S-Christine.
 $

 To reattach to the screen, you need to employ the screen -r screen-id command.

Using the window screen in Listing 2.44, you would type screen -r 9394 at the
command line.

 You can also split a window screen up into multiple windows, called focuses . To do
this and to control the screen window(s), press the Ctrl+A key combination (called a
 prefi x shortcut) and follow it with an additional key or key combination. A few of these
additional key or key combinations are shown in Table 2.10 .

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

112 Chapter 2 ■ Managing Software and Processes

ta b Le 2 .10 The screen utility prefix shortcut Ctrl+A commands

Key/Key Combination Description

\ Kill all of a processes’ windows and terminate screen

Shift+| Split current screen window vertically into two focuses

Tab Jump to next window focus

D Detach from current screen window

K Kill current window

N Move to next screen window

P Move to previous screen window

Shift+S Split current screen window horizontally into two focuses

A handy setup to have is a screen window with three focuses, allowing you to monitor
two items and issue commands from the third focus. To accomplish this, after logging into
a terminal, do the following:

1. Type screen to create the first window screen.

2. Press the Enter key to exit the Welcome screen, if one is shown.

3. Issue your desired monitoring command, such as top.

4. Press the Ctrl+A prefix and then the Shift+S key combinations to split the window into
two regions (focuses).

5. Press the Ctrl+A prefix and then the Tab key to jump to the bottom focus. You will not
receive a shell prompt, because there is currently no window screen in this focus.

6. Press the Ctrl+A prefix and then the C key to create a window within the bottom
focus. You should now have a command-line prompt.

7. Issue a monitoring command of your choice.

8. Press the Ctrl+A prefix and then the | key to split the current window vertically. Now
the focus is in the lower-left window.

9. Press the Ctrl+A prefix and then the Tab key to jump to the lower-right focus. You will
not receive a shell prompt, because there is currently no window screen in this focus.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Processes 113

10. Press the Ctrl+A prefix and then the C key to create a window within the lower-right
focus. You should now have a command-line prompt.

11. Issue any commands of your choice in this third window focus.

12. After you are done using this three-way split window, press the Ctrl+A key combination
and then the \ key. The screen command will ask if you want to quit and kill all your
windows. Type Y and press Enter to enact the command.

In Figure 2.4, we created a three-focus monitoring window using the previous steps. In
addition, we issued a stress test on the system’s CPU and memory by installing and running
the stress-ng utility.

F i gu r e 2 . 4 A three-focus monitoring window using the screen utility

Multiplexing with tmux
The tmux utility is the new kid on the block, and it was released 20 years after the initial
distribution of GNU Screen. It provides similar features and functionality as the screen
program, with some additional niceties. Like GNU Screen, tmux is typically not installed by
default but available with many distributions’ repositories.

After you install it, you can get started by typing tmux new at the command line to cre-
ate your first window. You immediately receive a shell prompt and can begin issuing com-
mands, as shown in Figure 2.5.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

114 Chapter 2 ■ Managing Software and Processes

F i gu r e 2 .5 The tmux new command’s first window

The tmux utility also employs a prefix shortcut. By default, it is the Ctrl+B key combina-
tion. To detach from a tmux window session, press the Ctrl+B prefix and then the D key.
Similar to screen, you can employ tmux ls to see all your created and detached window
sessions as shown in Listing 2.45.

Listing 2.45: Displaying a detached window with the tmux -ls command

$ tmux new
[detached (from session 0)]
$
$ tmux ls
0: 1 windows (created Thu Apr 18 16:28:13 2019) [80x23]
$

To reattach to a particular detached window session, use the attach-session argument
as shown in Listing 2.46. The -t switch indicates to which window number you wish to
attach. Window numbers are displayed in the tmux ls command output as the first number
shown in each line.

Listing 2.46: Attaching to a detached window with the tmux attach-session command

$ tmux new
[detached (from session 1)]
$
$ tmux ls
0: 1 windows (created Thu Apr 18 16:28:13 2019) [80x23]
1: 1 windows (created Thu Apr 18 16:31:04 2019) [80x23]
$
$ tmux attach-session -t 0

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Processes 115

 You can also split a window screen up into multiple windows, called panes . There are
several prefi x shortcut commands (also called key bindings) that allow you to quickly create
a pane and move between, destroy, or arrange windows. A few are shown in Table 2.11 .

 ta b Le 2 .11 The tmux utility prefix shortcut Ctrl+B commands

Key/Key Combination Description

& Kill the current window

% Split current screen window vertically into two panes

" Split current screen window horizontally into two panes

D Detach from current window

L Move to previous window

N Move to next window

O Move to next pane

Ctrl+O Rotate panes forward in current window

 If you are in a tmux window and cannot remember a particular needed key
binding, there’s a prefix shortcut command for that. Press the Ctrl+B key
combination and then the ? key to view a complete list of all the various
key bindings and more.

 In Figure 2.6 , we created another three-focus monitoring window, this time using the
tmux utility.

 F i gu r e 2 .6 A three-pane monitoring window using the tmux utility

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

116 Chapter 2 ■ Managing Software and Processes

Understanding Foreground and Background Processes
Some programs can take a long time to run, and you may not want to tie up the command-
line interface. Fortunately, there’s a simple solution to that problem: run the program in
background mode.

Sending a Job to the Background
Running a program in background mode is a fairly easy thing to do; just place an amper-
sand symbol (&) after the command. A great program to use for background mode dem-
onstration purposes is the sleep command. This utility is useful for adding pauses in shell
scripts. You simply add an argument indicating the number of seconds you wish the script
to freeze. Thus, sleep 3 would pause for three seconds. An example of sending this com-
mand to background mode is shown in Listing 2.47.

Listing 2.47: Sending a command to the background via the & symbol

$ sleep 3000 &
[1] 1539
$
$ jobs
[1]+ Running sleep 3000 &
$
$ jobs -l
[1]+ 1539 Running sleep 3000 &
$

When you send a command into the background, the system assigns it a job number as
well as a PID. The job number is listed in brackets, [1], and in the Listing 2.47 example,
the background process is assigned a PID of 1539. As soon as the system displays these
items, a new command-line interface prompt appears. You are returned to the shell, and the
command you executed runs safely in background mode.

Notice that in Listing 2.47 the jobs command is also employed. This utility allows you
to see any processes that belong to you that are running in background mode. However,
it displays only the job number. If you need the job’s PID, you have to issue the jobs -l
command.

When the background process finishes, it may display a message on the terminal similar
to

 [1]+ Done sleep 3000

This shows the job number and the status of the job (Done), along with the command
that ran in the background.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Processes 117

 Sending Multiple Jobs to the Background
 You can start any number of background jobs from the command-line prompt. Each time
you start a new job, the shell assigns it a new job number, and the Linux system assigns it a
new PID, as shown in Listing 2.48.

 Listing 2.48: Showing multiple background jobs with the jobs command

 $ bash CriticalBackups.sh &
 [2] 1540
 $
 $ jobs -l

 [1]- 1539 Running sleep 3000 &
 [2]+ 1540 Running bash CriticalBackups.sh &
 $

 The second program sent to the background is a shell script (shell scripts are covered in
Chapter 9) that performs important backups. This may take a while to run, so it is sent to
the background and assigned the 2 job number.

 In Listing 2.48, notice the plus sign (+) next to the new background job’s number. It
denotes the last job added to the background job stack. The minus sign (-) indicates that
this particular job is the second-to-last process, which was added to the job stack.

 Bringing Jobs to the Foreground
 You don’t have to leave your running programs in the background. If desired, you can
return them to foreground mode. To accomplish this, use the fg command and the back-
ground job’s number, preceded by a percent sign (%). An example is shown in Listing 2.49.

 Listing 2.49: Bringing a background job to the foreground with the fg command

 $ jobs -l
 [1]- 1539 Running sleep 3000 &
 [2]+ 1540 Running bash CriticalBackups.sh &
 $
 $ fg %2
 bash CriticalBackups.sh

 The downside to moving a job back into foreground mode is you now have your termi-
nal session tied up until the program completes.

 You don’t have to run a program in foreground mode to see its output. By
default, STDOUT (covered in Chapter 1) is sent to the terminal where a job
was put into the background.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

118 Chapter 2 ■ Managing Software and Processes

 Sending a Running Program to the Background
 If you have started a program in foreground mode and realize that it will take a while to
run, you can still send it to background mode. First you must pause the process using the
Ctrl+Z key combination; this will stop (pause) the program and assign it a job number.

 After you have the paused program’s job number, employ the bg command to send it to
the background. An example is shown in Listing 2.50.

 Listing 2.50: Sending a paused job to the background with the bg command

 $ bash CriticalBackups.sh
 ̂Z
 [2]+ Stopped bash CriticalBackups.sh
 $
 $ bg %2
 [2]+ bash CriticalBackups.sh &
 $
 $ jobs -l
 [1]- 1539 Running sleep 3000 &
 [2]+ 1540 Running bash CriticalBackups.sh &
 $

 Thus, you can send programs to run in background mode before they are started or after
they are initiated.

 When moving programs into the background or foreground, you are not
required to add a percent sign (%) on the job number. However, it’s a good
habit to acquire, because when you stop programs using their job number,
the percent sign is required. If you don’t use it in this case, you may acci-
dently stop the wrong process!

 Stopping a Job
 Stopping a background job before it has completed is fairly easy. It’s accomplished with the
 kill command and the job’s number. An example is shown in Listing 2.51.

 Listing 2.51: Stopping a background job with the kill command

 $ jobs -l
 [1]- 1539 Running sleep 3000 &
 [2]+ 1540 Running bash CriticalBackups.sh &
 $
 $ kill %1
 [1]- Terminated sleep 3000

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Processes 119

 $
 $ jobs -l

 [2]+ 1540 Running bash CriticalBackups.sh &
 $

 Notice that with the kill command, the background job’s number is preceded with a
percentage sign (%). When the command is issued, a message indicating the job has been
eradicated is displayed (terminated or killed). You should confi rm this by reissuing the
 jobs command. Be aware that some background jobs need a stronger method to remove
them. This topic is covered later in this chapter.

 When stopping a program running in background mode with the kill
command, it is critical to add a percent sign before the job’s number. If
you leave the sign off and have enough privileges, you could accidentally
stop an important process on your Linux system, causing it to crash or
hang.

 Keeping a Job Running after Logout
 Each background process is tied to your session’s terminal. If the terminal session exits
(for example, you log out of the system), the background process also exits. Some terminal
emulators warn you if you have any running background processes associated with the ter-
minal, but others don’t.

 If you want your script to continue running in background mode after you’ve logged off
the terminal, you’ll need to employ the nohup utility. This command will make your back-
ground jobs immune to hang-up signals, which are sent to the job when a terminal session
exits. An example of using this command is shown in Listing 2.52.

 Listing 2.52: Keeping a background job running after log out with the nohup
command

 $ nohup bash CriticalBackups.sh &
 [1] 2090
 $ nohup: ignoring input and appending output to 'nohup.out'

 $

 Notice that the nohup command will force the application to ignore any input
from STDIN (covered in Chapter 1). By default STDOUT and STDERR are redirected
to the $HOME/nohup.out fi le. If you want to change the output fi lename for the command
to use, you’ll need to employ the appropriate redirection operators on the nohup command
string.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

120 Chapter 2 ■ Managing Software and Processes

Managing Process Priorities
The scheduling priority for a process determines when it obtains CPU time and memory
resources in comparison to other processes that operate at a different priority. However,
you may run some applications that need either a higher or lower level of priority.

The nice and renice commands allow you to set and change a program’s niceness level,
which in turn modifies the priority level assigned by the system to an application. The nice
command allows you to start an application with a nondefault niceness level setting. The
format looks like this:

nice -n VALUE COMMAND

The VALUE parameter is a numeric value from –20 to 19. The lower the number, the
higher priority the process receives. The default niceness level is zero.

The COMMAND argument indicates the program must start at the specified niceness level.
An example is shown in Listing 2.53.

Listing 2.53: Modifying an program’s niceness level with the nice command

$ nice -n 10 bash CriticalBackups.sh

When the program is running, you can open another terminal and view the application
process via the ps command. An example is shown in Listing 2.54. Notice the value in the
NI (nice) column is 10.

Listing 2.54: Displaying an program’s non-default niceness level with the ps command

$ ps -l 1949
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 1001 1949 1527 0 90 10 - 4998 wait pts/1 0:00 bash CriticalBac
$

To change the priority of a process that’s already running, use the renice command:

renice PRIORITY [-p PIDS] [-u USERS] [-g GROUPS]

The renice command allows you to change the priority of multiple processes based
on a list of PID values, all of the processes started by one or more users, or all of the
processes started by one or more groups. An example of changing our already running
CriticalBackup.sh program is shown in Listing 2.55.

Listing 2.55: Changing a running program’s niceness level with the renice command

$ renice 15 -p 1949
1949 (process ID) old priority 10, new priority 15
$

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Processes 121

 Only if you have super user privileges can you set a nice value less than 0 (increase the
priority) of a running process, as shown in Listing 2.56.

 Listing 2.56: Increasing a running program’s priority level with super user privileges

 $ sudo renice -n -5 -p 1949
 1949 (process ID) old priority 15, new priority -5
 $
 $ sudo renice -10 -p 1949
 1949 (process ID) old priority -5, new priority -10
 $

 Notice that you can either employ the -n option or just leave it off. This works for both
the nice and renice commands.

 For older Linux distributions, if you do not employ the -n option, you may
need to use a dash in front of the niceness value. For example, to start a
program with a nice value of 10, you would type nice -10 followed by the
application’s name. To start a program with a nice value of negative 10,
you would type nice --10 followed by the application’s name. That can be
confusing!

 Sending Signals to Processes
 Sometimes a process gets hung up and just needs a gentle nudge to either get going again
or stop. Other times, a process runs away with the CPU and refuses to give it up. In both
cases, you need a command that will allow you to control a process. To do that, Linux fol-
lows the Unix method of interprocess communication.

 In Linux, processes communicate with each other using process signals. A process signal
is a predefi ned message that processes recognize and may choose to ignore or act on. The
developers program how a process handles signals. Most well-written applications have the
ability to receive and act on the standard Unix process signals. A few of these signals are
shown in Table 2.12 .

 ta b Le 2 .12 Linux process signals

Number Name Description

1 HUP Hangs up

2 INT Interrupts

3 QUIT Stops running

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

122 Chapter 2 ■ Managing Software and Processes

Number Name Description

9 KILL Unconditionally terminates

11 SEGV Segments violation

15 TERM Terminates if possible

17 STOP Stops unconditionally, but doesn’t terminate

18 TSTP Stops or pauses, but continues to run in background

19 CONT Resumes execution after STOP or TSTP

 Although a process can send a signal to another process, several commands are available
in Linux that allow you to send signals to running processes.

 You’ll often see the Linux process signals written with SIG attached to
them. For example, TERM is also written as SIGTERM , and KILL is also
SIGKILL .

 Sending Signals with the kill Command
 Besides stopping jobs, the kill command allows you to send signals to processes based on
their process ID (PID). By default, the kill command sends a TERM signal to all the PIDs
listed on the command line.

 To send a process signal, you must either be the owner of the process or have super user
privileges. The TERM signal only asks the process to kindly stop running. Most processes
will comply as shown in Listing 2.57.

 Listing 2.57: Stopping a process with the kill command and the default TERM signal

 $ ps 2285
 PID TTY STAT TIME COMMAND
 2285 pts/0 S 0:00 bash SecurityAudit.sh
 $
 $ kill 2285
 [1]+ Terminated bash SecurityAudit.sh
 $
 $ ps 2285
 PID TTY STAT TIME COMMAND
 $

ta b Le 2 .12 Linux process signals (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Processes 123

 When you use the kill utility to stop a process, you use the process’s
PID. When you employ the kill command to terminate a background job,
you use its job number preceded by a percent sign. It’s easy to forget that
percent sign when stopping background jobs. If you do, the system will
attempt to stop the process whose PID you have specified—for example,
typing kill -9 1 when you meant to type kill -9 %1 . With enough
privileges, you can accidentally shut down or hang your system, so use
caution!

 Unfortunately, some processes will ignore the request. When you need to get forceful,
the - s option allows you to specify other signals (using either their name or signal number).
You can also leave off the -s switch and just precede the signal with a dash. An example of
trying to kill off a stubborn process is shown in Listing 2.58.

 Listing 2.58: Stopping a process with the kill command and a higher signal

 $ ps 2305
 PID TTY STAT TIME COMMAND
 2305 pts/0 T 0:00 vi
 $
 $ kill 2305
 $
 $ ps 2305
 PID TTY STAT TIME COMMAND
 2305 pts/0 T 0:00 vi
 $
 $ kill -s HUP 2305
 $
 $ ps 2305
 PID TTY STAT TIME COMMAND
 2305 pts/0 T 0:00 vi
 $
 $ kill -9 2305
 [1]+ Killed vi
 $
 $ ps 2305
 PID TTY STAT TIME COMMAND
 $

 Notice that the process was unaffected by the default TERM signal and the HUP signal.
Thus, kill signal number 9 (KILL) had to be employed to stop the process.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

124 Chapter 2 ■ Managing Software and Processes

 The generally accepted procedure is to first try the TERM signal. If the
process ignores that, try the INT or HUP signal. If the program recognizes
these signals, it will try to gracefully stop doing what it was doing before
shutting down. The most forceful signal is the KILL signal. When a process
receives this signal, it immediately stops running. Use this as a last resort,
as it can lead to corrupted files.

 Sending Signals with the killall Command
 Unfortunately, you can only use the process PID instead of its command name, making the
 kill utility diffi cult to use sometimes. The killall command is a nice solution, because it
can select a process based on the command it is executing and send it a signal.

 The killall utility operates similar to kill in that if no signal is specifi ed, TERM is sent.
Also, you can designate a signal using its name or number, and use the -s option or precede
the signal with just a dash. An example of using killall to send the default TERM signal to
a group of processes is shown snipped in Listing 2.59.

 Listing 2.59: Stopping a group of processes with the killall command

 $ ps
 PID TTY TIME CMD
 1441 pts/0 00:00:00 bash
 1504 pts/0 00:00:00 stressor.sh
 1505 pts/0 00:00:00 stress-ng
 1506 pts/0 00:00:05 stress-ng-matri
 1507 pts/0 00:00:00 stressor.sh
 1508 pts/0 00:00:00 stress-ng
 1509 pts/0 00:00:02 stress-ng-matri
 1510 pts/0 00:00:00 stressor.sh
 […]
 1517 pts/0 00:00:00 ps
 $
 $ killall stress-ng
 […]
 $
 $ ps
 PID TTY TIME CMD
 1441 pts/0 00:00:00 bash
 1519 pts/0 00:00:00 ps
 $

 In Listing 2.59, we accidentally (that’s not true, we did it on purpose) started running a
script multiple times. This script, stressor.sh , runs the stress-ng command to stress-test

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Processes 125

the system. Instead of taking the time to stop all these processes individually, we employed
the killall command. By passing it the stress-ng command name, the killall utility
searched the system, found any process we owned that was running the stress-ng pro-
gram, and sent it the TERM signal, which stopped those processes.

 Keep in mind that to send signals to processes you do not own via the killall com-
mand, you’ll need super user privileges. This duplicates the kill utility’s restrictions.

 Be careful of stopping processes that may have open files. Files can be
damaged and unrepairable if the process is abruptly stopped. It’s usually a
good idea to run the lsof command first to see a list of the open files and
their processes.

 Sending Signals with the pkill Command
 The pkill command is a powerful way to send processes’ signals using selection criteria
other than their PID numbers or commands they are running. You can choose by user-
name, user ID (UID), terminal with which the process is associated, and so on. In addition,
the pkill command allows you to use wildcard characters, making it a very useful tool
when you’ve got a system that’s gone awry.

 Even better, the pkill utility works hand-in-hand with the pgrep utility. With pgrep ,
you can test out your selection criteria prior to sending signals to the selected processes
via pkill .

 In the example in Listing 2.60, the -t option is used on the pgrep utility to see all the
PIDs attached to the tty3 terminal. The ps command is also used to inspect one of the
processes a little further.

 Listing 2.60: Stopping a group of processes with the pkill command

 $ pgrep -t tty3
 1716
 1804
 1828
 1829
 1831
 1832
 1836
 1837
 1838
 1839
 1840
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

126 Chapter 2 ■ Managing Software and Processes

 $ ps 1840
 PID TTY STAT TIME COMMAND
 1840 tty3 R+ 0:39 stress-ng --class cpu -a 10 -b 5 -t 5m --matrix 0
 $
 $ sudo pkill -t tty3
 $
 $ pgrep -t tty3
 1846
 $
 $ ps 1846
 PID TTY STAT TIME COMMAND
 1846 tty3 Ss+ 0:00 /sbin/agetty -o -p -- \u --noclear tty3 linux
 $

 Notice that, besides the preceding sudo , the pkill utility’s syntax is identical to the
pgrep command’s syntax. Like the other signal-sending utilities, the pkill command by
default sends a TERM signal, which requests that the group of processes all kindly stop
running.

 In Listing 2.60, after the TERM signal has been sent to the selected process group,
the pgrep utility is used again and fi nds a process associated with the tty3 terminal.
However, upon further investigation with ps , it is determined that the /sbin/aggetty
program is running on tty3 , which it is supposed to do, providing the login prompt at
that terminal.

 The pkill and pgrep commands have a variety of searches they can per-
form to locate the appropriate processes. Review their man page to find
additional search criteria.

 Summary
 This chapter’s purpose was to improve your knowledge of Linux command-line tools
associated with software programs and their processes. Being able to install, update, and
manage your Linux system’s software applications is critical to maintaining your server. In
addition, you need to know how to troubleshoot libraries that are required by systems’ vari-
ous packages.

 When a program runs, it is called a process. Being able to execute programs in various
modes, watch them, and use command-line tools to manage them is essential in managing
processes. Troubleshooting problems may require you to use multiple windows as well as
send signals to improperly acting processes.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam Essentials 127

Exam Essentials
Explain the different package concepts. The software is bundled into packages that con-
sist of most of the files required to run a single application. Tracking and maintaining these
packages is accomplished by package management systems. A package management data-
base tracks application files, library dependencies, application versions, and so on. Each
distribution maintains its own central clearinghouse of software packages, which is called a
repository and is accessible through the Internet.

Summarize the various RPM utilities. RPM utilities provide the ability to install, modify,
and remove software packages. RPM package files have an .rpm file extension, are down-
loaded to the local system, and are managed via the rpm tool. The YUM and ZYpp utilities
also manage RPM software packages but obtain them from repositories.

Describe the various Debian package management utilities. Debian bundles application
files into a single .deb package file, which can be downloaded to the local system and man-
aged via the dpkg program. The Advanced Package Tool (APT) suite is used for working
with Debian repositories. This collection includes the apt-cache program that provides
information about the package database, and the apt-get program that does the work of
installing, updating, and removing packages. The new apt tool provides improved user
interface features and simpler commands for managing Debian packages.

Explain shared library concepts and tools. A system library is a collection of items, such
as program functions, that are self-contained code modules that perform a specific task
within an application. Shared libraries (also called dynamic libraries) are library functions
that are copied into memory and bound to the application when the program is launched.
This is called loading a library, and it can be done manually by using the modern versions
of the ld.so and ld-linux.so* executables. When loading a library, the system searches
the directories stored within the LD_LIBRARY_PATH environment variable and continues
through additional directories if not found. To speed up this search, a library cache is
employed, which is a catalog of library directories and all the various libraries contained
within them. To update the cache, the ldconfig utility is used. To view libraries required
by a particular program, use the ldd command.

Detail process management. A process is a running program. The Linux system assigns
each process a process ID (PID) and manages how the process uses memory and CPU time
based on that PID and its priority. Process information can be viewed using the ps com-
mand. Real-time process data is provided by the top utility, which also provides system load
information (that can also be obtained by uptime) and memory usage statistics (which is
also displayed by the free command). Programs can be run in background mode to avoid
tying up the terminal session by placing an ampersand symbol (&) after the command before
you start it or by pausing the program with the Ctrl+Z key combination and using the bg
utility to send it to the background. Programs running in the background can be viewed via
the jobs command and, if desired, brought back to the foreground with the fg command.
Processes can be set to run at a higher or lower priority with the nice or renice utilities.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

128 Chapter 2 ■ Managing Software and Processes

Explain process troubleshooting principles. When troubleshooting or monitoring a sys-
tem, it’s helpful to open window sessions side-by-side via a terminal multiplexer, such as
screen or tmux, to perform multiple operations and monitor their displays. Also, it may be
necessary to narrow the ps utility’s focus by viewing only a selected subset of processes via
certain command options. Signals can be sent to processes to control them or stop them if
needed. The different utilities that are able to perform this service are the kill, killall,
and pkill commands.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 129

Review Questions
You can find the answers in the appendix.

1. On Linux, systems package manager databases typically contain what types of informa-
tion? (Choose all that apply.)

A. Application files

B. Application file directory locations

C. Installation by username

D. Software version

E. Library dependencies

2. What filename extension does the CentOS Linux distribution use for packages?

A. .deb

B. .zypp

C. .dpkg

D. .yum

E. .rpm

3. Carol needs to install packages from a Red Hat–based repository. What programs can she
use? (Choose all that apply.)

A. dpkg

B. zypper

C. yum

D. apt-get

E. dnf

4. Scott wants to add a third-party repository to his Red Hat–based package management sys-
tem. Where should he place a new configuration file to add it?

A. /etc/yum.repos.d/

B. /etc/apt/sources.list

C. /usr/lib/

D. /bin/

E. /etc/

5. You need to extract files from an .rpm package file for review prior to installing them.
What utilities should you employ to accomplish this task? (Choose all that apply.)

A. cpio2rpm

B. rpm

C. rpm2cpio

D. cpio

E. yum

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

130 Chapter 2 ■ Managing Software and Processes

6. Natasha needs to install a new package on her Ubuntu Linux system. The package was dis-
tributed as a .deb file. What tool should she use?

A. rpm

B. yum

C. dnf

D. dpkg

E. zypper

7. On his Debian-based package managed system, Tony wants to list all currently installed
packages with missing dependencies. What command should he use?

A. apt-cache unmet

B. apt-cache stats

C. apt-cache showpkg

D. apt-cache search

E. apt-cache depends

8. You’ve installed and configured a .deb package but did something incorrectly in the con-
figuration process, and now the package will not run. What should you do next?

A. Purge the package, and reinstall it.

B. Uninstall the package, and then reinstall it.

C. Reconfigure the package via the dpkg-reconfigure utility.

D. Reconfigure the package via the debconf-show utility.

E. Reconfigure the package via the dpkg or apt-get utilities.

9. Steve is working on an open source software development team to create a new application.
He’s completed a new shared library the program will be using and has moved it to the cor-
rect location. What command should Steve employ to update the system’s library cache?

A. ldd

B. ldconfig

C. ldcache

D. ld.so

E. ld-linux-x86-64.so.2

10. Library file locations may be stored where? (Choose all that apply.)

A. The /usr/bin*/ directories

B. The /ld.so.conf file

C. The /etc/ld.so.conf.d/ directory

D. The LD_LIBRARY_PATH environment variable

E. The /lib* and /usr/lib*/ folders

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 131

11. What are the types of option styles available for the ps command? (Choose all that apply.)

A. BSD style

B. Linux style

C. Unix style

D. GNU style

E. Numeric style

12. By default, if you specify no command-line options, what does the ps command display?

A. All processes running on the terminal

B. All active processes

C. All sleeping processes

D. All processes run by the current shell

E. All processes run by the current user

13. Peter noticed that his Linux system is running slow and needs to find out what application
is causing the problem. What tool should he use to show the current CPU utilization of all
the processes running on his system?

A. top

B. ps

C. lsof

D. free

E. uptime

14. What top command displays cumulative CPU time instead of relative CPU time?

A. l

B. F

C. r

D. y

E. S

15. Natasha just created a new window using the GNU Screen utility and detached from it. She
now wants to reattach to it. What command or keystroke sequence will allow Natasha to
view her detached window’s ID?

A. screen

B. screen -r

C. tmux ls

D. screen -ls

E. Ctrl+A and D

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

132 Chapter 2 ■ Managing Software and Processes

16. Scott wants to run his large number crunching application in background mode in his ter-
minal session. What symbol should he add to his command that runs the program in order
to accomplish that?

A. >

B. &

C. |

D. >>

E. %

17. How can you temporarily pause a program from running in foreground in a terminal
session?

A. Press the Ctrl+Z key combination

B. Press the Ctrl+C key combination

C. Start the command with the nohup command

D. Start the command with the ampersand (&) command

E. Start the command with the fg command

18. Scott has decided to run a program in the background due to its time to process. However,
he realizes several hours later that the program is not operating correctly and may have
been consuming large amounts of CPU time unnecessarily. He decides to stop the back-
ground job. What command should he first employ?

A. Scott should issue the ps -ef command to see all his background jobs.

B. Scott should issue the jobs -l command to see all his background jobs.

C. Scott should issue the kill %1 command to stop his background job.

D. Scott should issue the kill 1 command to stop his background job.

E. Scott should issue the kill -9 1 command to stop his background job.

19. Hope has an application that crunches lots of numbers and uses a lot of system resources.
She wants to run the application with a lower priority so it doesn’t interfere with other
applications on the system. What tool should she use to start the application program?

A. renice

B. bash

C. nice

D. nohup

E. lower

20. Carol used the ps command to find the process ID of an application that she needs to stop.
What command-line tool should she use to stop the application?

A. killall

B. pkill

C. TERM

D. kill

E. pgrep

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

By

Configuring Hardware

ObjeCtives

 ✓ 101.1 Determine and configure hardware settings

 ✓ 102.1 Design hard disk layout

 ✓ 104.1 Create partitions and filesystems

 ✓ 104.2 Maintain the integrity of filesystems

 ✓ 104.3 Control mounting and unmounting of filesystems

Chapter

3

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Knowing how the Linux system interacts with the underly-
ing hardware is a crucial job for every Linux system admin-
istrator. This chapter examines how your Linux system

interacts with the hardware it’s running on and how to make changes to that setup if
necessary.

Configuring the Firmware and Core
Hardware
Before we look at the individual hardware cards available, let’s first look at how the core
hardware operates. This section discusses what happens when you hit the power button on
your Linux workstation or server.

Understanding the Role of Firmware
All IBM-compatible workstations and servers utilize some type of built-in firmware to
control how the installed operating system starts. On older workstations and servers, this
firmware was called the Basic Input/Output System (BIOS). On newer workstations and
servers, a new method, called the Unified Extensible Firmware Interface (UEFI), is respon-
sible for maintaining the system hardware status and launching an installed operating
system.

Both methods eventually launch the main operating system program, but each method
uses different ways of doing that. This section walks through the basics of both BIOS and
UEFI methods, showing how they participate in the Linux boot process.

The BIOS Startup
The BIOS firmware found in older workstations and servers was somewhat limited. It had a
simple menu interface that allowed you to change some settings to control how the system
found hardware and define what device the BIOS should use to start the operating system.

One limitation of the original BIOS firmware was that it could read only one sector’s
worth of data from a hard drive into memory to run. As you can probably guess, that’s
not enough space to load an entire operating system. To get around that limitation, most
operating systems (including Linux and Microsoft Windows) split the boot process into
two parts.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring the Firmware and Core Hardware 135

 First, the BIOS runs a boot loader program, a small program that initializes the neces-
sary hardware to fi nd and run the full operating system program. It is usually located at
another place on the same hard drive but sometimes on a separate internal or external stor-
age device.

 The boot loader program usually has a confi guration fi le so that you can tell it where to
look to fi nd the actual operating system fi le to run or even to produce a small menu allow-
ing the user to boot between multiple operating systems.

 To get things started, the BIOS must know where to fi nd the boot loader program on an
installed storage device. Most BIOS setups allow you to load the boot loader program from
several locations:

 ■ An internal hard drive

 ■ An external hard drive

 ■ A CD or DVD drive

 ■ A USB memory stick

 ■ An ISO file

 ■ A network server using either NFS, HTTP, or FTP

 When booting from a hard drive, you must designate which hard drive, and partition on
the hard drive, the BIOS should load the boot loader program from. This is done by defi n-
ing a master boot record (MBR).

 The MBR is the fi rst sector on the fi rst hard drive partition on the system. There is only
one MBR for the computer system. The BIOS looks for the MBR and reads the program
stored there into memory. Since the boot loader program must fi t in one sector, it must be
very small, so it can’t do too much. The boot loader program mainly points to the location
of the actual operating system kernel fi le, stored in a boot sector of a separate partition
installed on the system. There are no size limitations on the kernel boot fi le.

 The boot loader program isn’t required to point directly to an operating
system kernel file; it can point to any type of program, including another
boot loader program. You can create a primary boot loader program that
points to a secondary boot loader program, which provides options to load
multiple operating systems. This process is called chainloading .

 The UEFI Startup
 Although there were plenty of limitations with BIOS, computer manufacturers learned to
live with them, and BIOS became the default standard for IBM-compatible systems for
many years. However, as operating systems became more complicated, it eventually became
clear that a new boot method needed to be developed.

 Intel created the Extensible Firmware Interface (EFI) in 1998 to address some of the
limitations of BIOS. It was somewhat of a slow process, but by 2005, the idea caught on
with other vendors, and the Unifi ed EFI (UEFI) specifi cation was adopted as a standard.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

136 Chapter 3 ■ Configuring Hardware

These days just about all IBM-compatible desktop and server systems utilize the UEFI fi rm-
ware standard.

 Instead of relying on a single boot sector on a hard drive to hold the boot loader pro-
gram, UEFI specifi es a special disk partition, called the EFI System Partition (ESP), to store
boot loader programs. This allows for any size of boot loader program, plus the ability to
store multiple boot loader programs for multiple operating systems.

 The ESP setup utilizes the old Microsoft File Allocation Table (FAT) fi lesystem to store
the boot loader programs. On Linux systems, the ESP is typically mounted in the /boot/
efi directory, and the boot loader fi les are typically stored using the .efi fi lename exten-
sion, such as linux.efi .

 The UEFI fi rmware utilizes a built-in mini boot loader (sometimes referred to as a boot
manager) that allows you to confi gure which boot loader program fi le to launch.

 Not all Linux distributions support the UEFI firmware. If you’re using a UEFI
system, ensure that the Linux distribution you select supports it.

 With UEFI you need to register each individual boot loader fi le you want to appear at
boot time in the boot manager interface menu. You can then select the boot loader to run
each time you boot the system.

 After the fi rmware fi nds and runs the boot loader, its job is done. The boot loader step
in the boot process can be somewhat complicated; the next section dives into covering that.

 Device Interfaces
 Each device you connect to your Linux system uses some type of standard protocol to com-
municate with the system hardware. The Linux kernel software must know how to send
data to and receive data from the hardware device using those protocols. There are cur-
rently three popular standards used to connect devices.

 PCI Boards
 The Peripheral Component Interconnect (PCI) standard was developed in 1993 as a
method for connecting hardware boards to PC motherboards. The standard has been
updated a few times to accommodate faster interface speeds, as well as increasing data bus
sizes on motherboards. The PCI Express (PCIe) standard is currently used on most server
and desktop workstations to provide a common interface for external hardware devices.

 Lots of different client devices use PCI boards to connect to a server or desktop
workstation:

 ■ Internal hard drives: Hard drives using the Serial Advanced Technology Attachment
(SATA) and the Small Computer System Interface (SCSI) interface often use PCI
boards to connect with workstations or servers. The Linux kernel automatically recog-
nizes both SATA and SCSI hard drives connected to PCI boards.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring the Firmware and Core Hardware 137

 ■ External hard drives: Network hard drives using the Fibre Channel standard provide
a high-speed shared drive environment for server environments. To communicate on
a fiber channel network, the server usually uses PCI boards that support the host bus
adapter (HBA) standard.

 ■ Network interface cards: Hard-wired network cards allow you to connect the worksta-
tion or server to a local area network (LAN) using the common RJ-45 cable standard.
These types of connections are mostly found in high-speed network environments that
require high throughput to the network.

 ■ Wireless cards: PCI boards are available that support the IEEE 802.11 standard for
wireless connections to LANs. Although they are not commonly used in server envi-
ronments, they are very popular in workstation environments.

 ■ Bluetooth devices: The Bluetooth technology allows for short-distance wireless com-
munication with other Bluetooth devices in a peer-to-peer network setup. They are
most commonly found in workstation environments.

 ■ Video accelerators: Applications that require advanced graphics often use video accel-
erator cards, which offload the video processing requirements from the CPU to provide
faster graphics. While these are popular in gaming environments, you’ll also find video
accelerator cards used in video processing applications for editing and processing movies.

 ■ Audio cards: Similarly, applications that require high-quality sound often use specialty
audio cards to provide advanced audio processing and play, such as handling Dolby
surround sound to enhance the audio quality of movies.

 Most PCI boards utilize the Plug-and-Play (PnP) standard, which auto-
matically determines the configuration settings for the boards so no two
boards conflict with each other. If you do run into conflicts, you can use the
setpci utility to view and manually change settings for an individual PCI
board.

 The USB Interface
 The Universal Serial Bus (USB) interface has become increasingly popular due to its ease of
use and its increasing support for high-speed data communication. Since the USB interface
uses serial communications, it requires fewer connectors with the motherboard, allowing
for smaller interface plugs.

 The USB standard has evolved over the years. The original version, 1.0, supported data
transfer speeds only up to 12 Mbps. The 2.0 standard increased the data transfer speed to
480 Mbps. The current USB standard, 3.2, allows for data transfer speeds up to 20 Gbps,
making it useful for high-speed connections to external storage devices.

 There are many different devices that can connect to systems using the USB interface.
You can fi nd hard drives, printers, digital cameras and camcorders, keyboards, mice, and
network cards that have versions that connect using the USB interface.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

138 Chapter 3 ■ Configuring Hardware

 There are two steps to get Linux to interact with USB devices. First, the
Linux kernel must have the proper module installed to recognize the USB
controller that is installed on your server, workstation, or laptops. The
controller provides communication between the Linux kernel and the USB
bus on the system. When the Linux kernel can communicate with the
USB bus, any device you plug into a USB port on the system will be recog-
nized by the kernel, but may not necessarily be useful. Second, the Linux
system must then also have a kernel module installed for the individual
device type plugged into the USB bus.

 The GPIO Interface
 The General Purpose Input/Output (GPIO) interface has become popular with
small utility Linux systems, designed for controlling external devices for automation
projects. This includes popular hobbyist Linux systems such as the Raspberry Pi and
BeagleBone kits.

 The GPIO interface provides multiple digital input and output lines that you can control
individually, down to the single-bit level. The GPIO function is normally handled by a spe-
cialty integrated circuit (IC) chip, which is mapped into memory on the Linux system.

 The GPIO interface is ideal for supporting communications to external devices such as
relays, lights, sensors, and motors. Applications can read individual GPIO lines to deter-
mine the status of switches, turn relays on or off, or read digital values returned from any
type of analog-to-digital sensors such as temperature or pressure sensors.

 The GPIO interface provides a wealth of possibilities for using Linux to control objects
and environments. You can write programs that control the temperature in a room, sense
when doors or windows are opened or closed, sense motion in a room, or even control the
operation of a robot.

 The /dev Directory
 After the Linux kernel communicates with a device on an interface, it must be able to trans-
fer data to and from the device. This is done using device fi les . Device fi les are fi les that the
Linux kernel creates in the special /dev directory to interface with hardware devices.

 To retrieve data from a specifi c device, a program just needs to read the Linux device
fi le associated with that device. The Linux operating system handles all the unsightliness of
interfacing with the actual hardware. Likewise, to send data to the device, the program just
needs to write to the Linux device fi le.

 As you add hardware devices such as USB drives, network cards, or hard drives to
your system, Linux creates a fi le in the /dev directory representing that hardware device.
Application programs can then interact directly with that fi le to store and retrieve data
on the device. This is a lot easier than requiring each application to know how to directly
interact with a device.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring the Firmware and Core Hardware 139

 There are two types of device fi les in Linux, based on how Linux transfers data to the
device:

 ■ Character device files: Transfer data one character at a time. This method is often used
for serial devices such as terminals and USB devices.

 ■ Block device files: Transfer data in large blocks of data. This method is often used for
high-speed data transfer devices such as hard drives and network cards.

 The type of device fi le is denoted by the fi rst letter in the permissions list, as shown in
Listing 3.1.

 Listing 3.1: Partial output from the /dev directory

 $ ls -al sd* tty*
 brw-rw---- 1 root disk 8, 0 Feb 16 17:49 sda
 brw-rw---- 1 root disk 8, 1 Feb 16 17:49 sda1
 crw-rw-rw- 1 root tty 5, 0 Feb 16 17:49 tty
 crw--w---- 1 root tty 4, 0 Feb 16 17:49 tty0
 crw--w---- 1 gdm tty 4, 1 Feb 16 17:49 tty1

 The hard drive devices, sda and sda1 , show the letter b , indicating that they are block
device fi les. The tty terminal fi les show the letter c , indicating that they are character
device fi les.

 Besides device fi les, Linux also provides a system called the device mapper . The device
mapper function is performed by the Linux kernel. It maps physical block devices to virtual
block devices. These virtual block devices allow the system to intercept the data written
to or read from the physical device and perform some type of operation on them. Mapped
devices are used by the Logical Volume Manager (LVM) for creating logical drives and by
the Linux Unifi ed Key Setup (LUKS) for encrypting data on hard drives when those fea-
tures are installed on the Linux system.

 The device mapper creates virtual devices in the /dev/mapper directory.
These files are links to the physical block device files in the /dev directory.

 The /proc Directory
 The /proc directory is one of the most important tools you can use when troubleshoot-
ing hardware issues on a Linux system. It’s not a physical directory on the fi lesystem, but
instead a virtual directory that the kernel dynamically populates to provide access to infor-
mation about the system hardware settings and status.

 The Linux kernel changes the fi les and data in the /proc directory as it monitors the sta-
tus of hardware on the system. To view the status of the hardware devices and settings, you
just need to read the contents of the virtual fi les using standard Linux text commands.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

140 Chapter 3 ■ Configuring Hardware

Various /proc files are available for different system features, including the interrupt
requests (IRQs), input/output (I/O) ports, and direct memory access (DMA) channels in use
on the system by hardware devices. This section discusses the files used to monitor these
features and how you can access them.

Interrupt Requests
Interrupt requests (IRQs) allow hardware devices to indicate when they have data to send
to the CPU. The PnP system must assign each hardware device installed on the system a
unique IRQ address. You can view the current IRQs in use on your Linux system by look-
ing at the /proc/interrupts file using the Linux cat command, as shown in Listing 3.2.

Listing 3.2: Listing system interrupts from the /proc directory

$ cat /proc/interrupts
 CPU0
 0: 36 IO-APIC 2-edge timer
 1: 297 IO-APIC 1-edge i8042
 8: 0 IO-APIC 8-edge rtc0
 9: 0 IO-APIC 9-fasteoi acpi
 12: 396 IO-APIC 12-edge i8042
 14: 0 IO-APIC 14-edge ata_piix
 15: 914 IO-APIC 15-edge ata_piix
 18: 2 IO-APIC 18-fasteoi vboxvideo
 19: 4337 IO-APIC 19-fasteoi enp0s3
 20: 1563 IO-APIC 20-fasteoi vboxguest
 21: 29724 IO-APIC 21-fasteoi ahci[0000:00:0d.0], snd_intel8x0
 22: 27 IO-APIC 22-fasteoi ohci_hcd:usb1
NMI: 0 Non-maskable interrupts
LOC: 93356 Local timer interrupts
SPU: 0 Spurious interrupts
PMI: 0 Performance monitoring interrupts
IWI: 0 IRQ work interrupts
RTR: 0 APIC ICR read retries
RES: 0 Rescheduling interrupts
CAL: 0 Function call interrupts
TLB: 0 TLB shootdowns
TRM: 0 Thermal event interrupts
THR: 0 Threshold APIC interrupts
DFR: 0 Deferred Error APIC interrupts
MCE: 0 Machine check exceptions
MCP: 3 Machine check polls
HYP: 0 Hypervisor callback interrupts

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring the Firmware and Core Hardware 141

ERR: 0
MIS: 0
PIN: 0 Posted-interrupt notification event
NPI: 0 Nested posted-interrupt event
PIW: 0 Posted-interrupt wakeup event
$

Some IRQs are reserved by the system for specific hardware devices, such as 0 for the
system timer and 1 for the system keyboard. Other IRQs are assigned by the system as
devices are detected at boot time.

I/O Ports
The system I/O ports are locations in memory where the CPU can send data to and receive
data from the hardware device. As with IRQs, the system must assign each device a unique
I/O port. This is yet another feature handled by the PnP system.

You can monitor the I/O ports assigned to the hardware devices on your system by look-
ing at the /proc/ioports file, as shown in Listing 3.3.

Listing 3.3: Displaying the I/O ports on a system

$ sudo cat /proc/ioports
0000-0cf7 : PCI Bus 0000:00
 0000-001f : dma1
 0020-0021 : pic1
 0040-0043 : timer0
 0050-0053 : timer1
 0060-0060 : keyboard
 0064-0064 : keyboard
 0070-0071 : rtc_cmos
 0070-0071 : rtc0
 0080-008f : dma page reg
 00a0-00a1 : pic2
 00c0-00df : dma2
 00f0-00ff : fpu
 0170-0177 : 0000:00:01.1
 0170-0177 : ata_piix
 01f0-01f7 : 0000:00:01.1
 01f0-01f7 : ata_piix
 0376-0376 : 0000:00:01.1
 0376-0376 : ata_piix
 03c0-03df : vga+
 03f6-03f6 : 0000:00:01.1
 03f6-03f6 : ata_piix

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

142 Chapter 3 ■ Configuring Hardware

0cf8-0cff : PCI conf1
0d00-ffff : PCI Bus 0000:00
 4000-403f : 0000:00:07.0
 4000-4003 : ACPI PM1a_EVT_BLK
 4004-4005 : ACPI PM1a_CNT_BLK
 4008-400b : ACPI PM_TMR
 4020-4021 : ACPI GPE0_BLK
 4100-410f : 0000:00:07.0
 4100-4108 : piix4_smbus
 d000-d00f : 0000:00:01.1
 d000-d00f : ata_piix
 d010-d017 : 0000:00:03.0
 d010-d017 : e1000
 d020-d03f : 0000:00:04.0
 d100-d1ff : 0000:00:05.0
 d100-d1ff : Intel 82801AA-ICH
 d200-d23f : 0000:00:05.0
 d200-d23f : Intel 82801AA-ICH
 d240-d247 : 0000:00:0d.0
 d240-d247 : ahci
 d248-d24b : 0000:00:0d.0
 d248-d24b : ahci
 d250-d257 : 0000:00:0d.0
 d250-d257 : ahci
 d258-d25b : 0000:00:0d.0
 d258-d25b : ahci
 d260-d26f : 0000:00:0d.0
 d260-d26f : ahci
$

There are lots of different I/O ports in use on the Linux system at any time, so your out-
put will most likely differ from this example. With PnP, I/O port conflicts aren’t very com-
mon, but it is possible that two devices are assigned the same I/O port. In that case, you
can manually override the settings automatically assigned by using the setpci command.

Direct Memory Access
Using I/O ports to send data to the CPU can be somewhat slow. To speed things up, many
devices use direct memory access (DMA) channels. DMA channels do what the name
implies—they send data from a hardware device directly to memory on the system, without
having to wait for the CPU. The CPU can then read those memory locations to access the
data when it’s ready.

Listing 3.3: Displaying the I/O ports on a system (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring the Firmware and Core Hardware 143

As with I/O ports, each hardware device that uses DMA must be assigned a unique
channel number. To view the DMA channels currently in use on the system, just display
the /proc/dma file:

$ cat /proc/dma
 4: cascade
$

This output indicates that only DMA channel 4 is in use on the Linux system.

The /sys Directory
Yet another tool available for working with devices is the /sys directory. The /sys
directory is another virtual directory, similar to the /proc directory. It is created by
the kernel in the sysfs filesystem format, and it provides additional information about
hardware devices that any user on the system can access.

Many different information files are available within the /sys directory. They are bro-
ken down into subdirectories based on the device and function in the system. You can take
a look at the subdirectories and files available within the /sys directory on your system
using the ls command-line command, as shown in Listing 3.4.

Listing 3.4: The contents of the /sys directory

$ sudo ls -al /sys
total 4
dr-xr-xr-x 13 root root 0 Feb 16 18:06 .
drwxr-xr-x 25 root root 4096 Feb 4 06:54 ..
drwxr-xr-x 2 root root 0 Feb 16 17:48 block
drwxr-xr-x 41 root root 0 Feb 16 17:48 bus
drwxr-xr-x 62 root root 0 Feb 16 17:48 class
drwxr-xr-x 4 root root 0 Feb 16 17:48 dev
drwxr-xr-x 14 root root 0 Feb 16 17:48 devices
drwxr-xr-x 5 root root 0 Feb 16 17:49 firmware
drwxr-xr-x 8 root root 0 Feb 16 17:48 fs
drwxr-xr-x 2 root root 0 Feb 16 18:06 hypervisor
drwxr-xr-x 13 root root 0 Feb 16 17:48 kernel
drwxr-xr-x 143 root root 0 Feb 16 17:48 module
drwxr-xr-x 2 root root 0 Feb 16 17:48 power
$

Notice the different categories of information that are available. You can obtain infor-
mation about the system bus, devices, the kernel, and even the kernel modules installed.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

144 Chapter 3 ■ Configuring Hardware

Working with Devices
Linux provides a wealth of command-line tools to use the devices connected to your sys-
tem, as well as to monitor and troubleshoot the devices if you experience problems. This
section walks through some of the more popular tools you’ll want to know about when
working with Linux devices.

Finding Devices
One of the first tasks for a new Linux administrator is to find the different devices installed
on the Linux system. Fortunately, there are a few command-line tools to help out with that.

The lsdev command-line command displays information about the hardware devices
installed on the Linux system. It retrieves information from the /proc/interrupts, /proc/
ioports, and /proc/dma virtual files and combines them together in one output, as shown
in Listing 3.5.

Listing 3.5: Output from the lsdev command

$ sudo lsdev
Device DMA IRQ I/O Ports
...
acpi 9
ACPI 4000-4003 4004-4005 4008-400b 4020-4021
ahci d240-d247 d248-d24b d250-d257 d258-d25b
ata_piix 14 15 0170-0177 01f0-01f7 0376-0376 03f6-03f6
cascade 4
dma 0080-008f
dma1 0000-001f
dma2 00c0-00df
e1000 d010-d017
enp0s3 19
fpu 00f0-00ff
i8042 1 12
Intel d100-d1ff d200-d23f
keyboard 0060-0060 0064-0064
ohci_hcd:usb1 22
PCI 0000-0cf7 0cf8-0cff 0d00-ffff
pic1 0020-0021
pic2 00a0-00a1
piix4_smbus 4100-4108
rtc0 8 0070-0071
rtc_cmos 0070-0071
snd_intel8x0 21
timer 0
timer0 0040-0043

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring the Firmware and Core Hardware 145

timer1 0050-0053
vboxguest 20
vboxvideo 18
vga+ 03c0-03df
$

This gives you one place to view all the important information about the devices run-
ning on the system, making it easy to pick out any conflicts that can be causing problems.

The lsblk command displays information about the block devices installed on the Linux
system. By default, the lsblk command displays all block devices, as shown in Listing 3.6.

Listing 3.6: The output from the lsblk command

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 34.6M 1 loop /snap/gtk-common-themes/818
loop1 7:1 0 2.2M 1 loop /snap/gnome-calculator/222
loop2 7:2 0 34.8M 1 loop /snap/gtk-common-themes/1122
loop3 7:3 0 169.4M 1 loop /snap/gimp/113
loop4 7:4 0 2.3M 1 loop /snap/gnome-calculator/238
loop5 7:5 0 13M 1 loop /snap/gnome-characters/117
loop6 7:6 0 34.2M 1 loop /snap/gtk-common-themes/808
loop7 7:7 0 89.5M 1 loop /snap/core/6130
loop8 7:8 0 14.5M 1 loop /snap/gnome-logs/45
loop9 7:9 0 53.7M 1 loop /snap/core18/719
loop10 7:10 0 91M 1 loop /snap/core/6350
loop11 7:11 0 140.7M 1 loop /snap/gnome-3-26-1604/74
loop12 7:12 0 53.7M 1 loop /snap/core18/594
loop13 7:13 0 169.4M 1 loop /snap/gimp/105
loop14 7:14 0 14.5M 1 loop /snap/gnome-logs/43
loop15 7:15 0 13M 1 loop /snap/gnome-characters/124
loop16 7:16 0 13M 1 loop /snap/gnome-characters/139
loop17 7:17 0 14.5M 1 loop /snap/gnome-logs/40
loop18 7:18 0 140.7M 1 loop /snap/gnome-3-26-1604/78
loop19 7:19 0 3.7M 1 loop /snap/gnome-system-monitor/57
loop20 7:20 0 2.3M 1 loop /snap/gnome-calculator/260
loop21 7:21 0 3.7M 1 loop /snap/gnome-system-monitor/54
loop22 7:22 0 169.4M 1 loop /snap/gimp/110
loop23 7:23 0 53.7M 1 loop /snap/core18/677
loop24 7:24 0 91M 1 loop /snap/core/6405
loop25 7:25 0 140.9M 1 loop /snap/gnome-3-26-1604/70
loop26 7:26 0 3.7M 1 loop /snap/gnome-system-monitor/51

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

146 Chapter 3 ■ Configuring Hardware

sda 8:0 0 10G 0 disk
└─sda1 8:1 0 10G 0 part
 ├─ubuntu--vg-root 253:0 0 9G 0 lvm /
 └─ubuntu--vg-swap_1 253:1 0 976M 0 lvm [SWAP]
sr0 11:0 1 1024M 0 rom
$

Notice that at the end of Listing 3.6, the lsblk command also indicates blocks that are
related, as with the device-mapped LVM volumes and the associated physical hard drive.
You can modify the lsblk output to see additional information or just display a subset of
the information by adding command-line options. The -S option displays information only
about SCSI block devices on the system:

$ lsblk -S
NAME HCTL TYPE VENDOR MODEL REV TRAN
sda 2:0:0:0 disk ATA VBOX HARDDISK 1.0 sata
sr0 1:0:0:0 rom VBOX CD-ROM 1.0 ata
$

This is a quick way to view the different SCSI drives installed on the system.

Working with PCI Cards
The lspci command allows you to view the currently installed and recognized PCI and
PCIe cards on the Linux system. There are lots of command-line options you can include
with the lspci command to display information about the PCI and PCIe cards installed on
the system. Table 3.1 shows the most common ones.

ta b Le 3 .1 The lspci command-line options

Option Description

-A Define the method to access the PCI information

-b Display connection information from the card point-of-view

-k Display the kernel driver modules for each installed PCI card

-m Display information in machine-readable format

-n Display vendor and device information as numbers instead of text

-q Query the centralized PCI database for information about the installed PCI cards

-t Display a tree diagram that shows the connections between cards and buses

Listing 3.6: The output from the lsblk command (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring the Firmware and Core Hardware 147

Option Description

-v Display additional information (verbose) about the cards

-x Display a hexadecimal output dump of the card information

The output from the lspci command without any options shows all the devices con-
nected to the system, as shown in Listing 3.7.

Listing 3.7: Using the lspci command

$ lspci

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)

00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]

00:01.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01)

00:02.0 VGA compatible controller: InnoTek Systemberatung GmbH VirtualBox Graphics Adapter

00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 02)

00:04.0 System peripheral: InnoTek Systemberatung GmbH VirtualBox Guest Service

00:05.0 Multimedia audio controller: Intel Corporation 82801AA AC'97 Audio Controller (rev 01)

00:06.0 USB controller: Apple Inc. KeyLargo/Intrepid USB

00:07.0 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)

00:0d.0 SATA controller: Intel Corporation 82801HM/HEM (ICH8M/ICH8M-E) SATA Controller [AHCI mode] (rev 02)

$

You can use the output from the lspci command to troubleshoot PCI card issues, such
as when a card isn’t recognized by the Linux system.

Working with USB Devices
You can view the basic information about USB devices connected to your Linux system by
using the lsusb command. Table 3.2 shows the options available with that command.

ta b Le 3 . 2 The lsusb command options

Option Description

-d Display only devices from the specified vendor ID

-D Display information only from devices with the specified device file

-s Display information only from devices using the specified bus

-t Display information in a tree format, showing related devices

-v Display additional information about the devices (verbose mode)

-V Display the version of the lsusb program

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

148 Chapter 3 ■ Configuring Hardware

 The basic lsusb program output is shown in Listing 3.8.

 Listing 3.8: The lsusb output

 $ lsusb
 Bus 001 Device 003: ID abcd:1234 Unknown
 Bus 001 Device 002: ID 80ee:0021 VirtualBox USB Tablet
 Bus 001 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
 $

 Most systems incorporate a standard USB hub for connecting multiple USB devices to
the USB controller. Fortunately, there are only a handful of USB hubs on the market, so all
Linux distributions include the device drivers necessary to communicate with each of these
USB hubs. That guarantees that your Linux system will at least detect when a USB device is
connected.

 Hardware Modules
 The Linux kernel needs device drivers to communicate with the hardware devices installed
on your Linux system. However, compiling device drivers for all known hardware devices
into the kernel would make for an extremely large kernel binary fi le.

 To avoid that situation, the Linux kernel uses kernel modules , which are individual
hardware driver fi les that can be linked into the kernel at runtime. That way, the system
can link only the modules needed for the hardware present on your system.

 If the kernel is confi gured to load hardware device modules, the individual module fi les
must be available on the system as well. If you’re compiling a new Linux kernel, you’ll also
need to compile any hardware modules along with the new kernel.

 Module fi les may be distributed either as source code that needs to be compiled or as
binary object fi les on the Linux system that are ready to be dynamically linked to the main
kernel binary program. If the module fi les are distributed as course code fi les, you must
compile them to create the binary object fi le. The .ko fi le extension is used to identify the
module object fi les.

 The standard location for storing module object fi les is in the /lib/modules directory.
This is where the Linux module utilities (such as insmod and modprobe) look for module
object library fi les by default.

 Some hardware vendors release module object files only for their hard-
ware modules without releasing the source code. This helps them protect
the proprietary features of their hardware, while still allowing their hard-
ware products to be used in an open source environment. Although this
arrangement violates the core idea of open source code, it has become
a common ground between companies trying to protect their product
secrets and Linux enthusiasts who want to use the latest hardware on
their systems.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring the Firmware and Core Hardware 149

You should be familiar with a few different files when working with modules. You’ve already
seen that the modules required to support a kernel are stored in the /lib/modules directory.
Each kernel has its own directory for its own modules (such as /lib/modules/4.3.3), allowing
you to create separate modules for each kernel version on the system if needed.

The modules the kernel will load at boot time are listed in the /etc/modules file, one
per line. Most hardware modules can be loaded dynamically as the system automatically
detects hardware devices, so this file may not contain very many modules.

If needed, you can customize a kernel module to define unique parameters required, such
as hardware settings required for the device to operate. The kernel module configurations
are stored in the /etc/modules.conf configuration file.

Finally, some modules may depend on other modules being loaded first to operate properly.
These relationships are defined in the modules.dep file, stored in the /lib/modules/version/
directory, where version is the kernel version. The format for each entry is

modulefilename: dependencyfilename1 dependencyfilename2 ...

When you use the modules_install target to install the modules, it calls the depmod
utility, which determines the module dependencies and generates the modules.dep file
automatically. If you modify or add any modules after that, you must manually run the
depmod command to update the modules.dep file.

Listing Installed Modules
A host of command-line commands can help you troubleshoot and fix kernel module issues.
This section walks through the different module commands available to help with any
module issues you might run into.

The first command is lsmod, which lists all modules installed on your system. Listing 3.9
shows an example of using the lsmod command on an Ubuntu system.

Listing 3.9: The lsmod command output

$ lsmod
Module Size Used by
vboxsf 39706 1
snd_intel8x0 38153 2
snd_ac97_codec 130285 1 snd_intel8x0
ac97_bus 12730 1 snd_ac97_codec
snd_pcm 102099 2 snd_ac97_codec,snd_intel8x0
snd_page_alloc 18710 2 snd_intel8x0,snd_pcm
snd_seq_midi 13324 0
snd_seq_midi_event 14899 1 snd_seq_midi
snd_rawmidi 30144 1 snd_seq_midi
snd_seq 61560 2 snd_seq_midi_event,snd_seq_midi
snd_seq_device 14497 3 snd_seq,snd_rawmidi,snd_seq_midi
snd_timer 29482 2 snd_pcm,snd_seq

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

150 Chapter 3 ■ Configuring Hardware

rfcomm 69160 0
hid_multitouch 17407 0
joydev 17381 0
snd 69322 12
snd_ac97_codec,snd_intel8x0,snd_timer,snd_pcm,snd_seq,snd_rawmidi,snd_seq_device,
snd_seq_midi
bnep 19624 2
bluetooth 391136 10 bnep,rfcomm
serio_raw 13462 0
vboxvideo 12658 1
drm 303102 2 vboxvideo
vboxguest 276728 7 vboxsf
i2c_piix4 22155 0
soundcore 12680 1 snd
video 19476 0
mac_hid 13205 0
parport_pc 32701 0
ppdev 17671 0
lp 17759 0
parport 42348 3 lp,ppdev,parport_pc
hid_generic 12548 0
usbhid 52659 0
hid 106148 3 hid_multitouch,hid_generic,usbhid
psmouse 106692 0
ahci 34091 3
libahci 32716 1 ahci
e1000 145227 0
pata_acpi 13038 0
$

Notice that the lsmod command also shows which modules are used by other modules.
This can be crucial information when you’re trying to troubleshoot hardware issues.

Getting Module Information
If you need more information about a specific module, use the modinfo command, as
shown in Listing 3.10.

Listing 3.10: The modinfo command output

$ modinfo bluetooth
filename: /lib/modules/3.13.0-63-generic/kernel/net/bluetooth/bluetooth.ko
alias: net-pf-31

Listing 3.9: The lsmod command output (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring the Firmware and Core Hardware 151

license: GPL
version: 2.17
description: Bluetooth Core ver 2.17
author: Marcel Holtmann <marcel@holtmann.org>
srcversion: 071210642A004CFE1860F30
depends:
intree: Y
vermagic: 3.13.0-63-generic SMP mod_unload modversions
signer: Magrathea: Glacier signing key
sig_key: E2:53:28:1F:E2:65:EE:3C:EA:FC:AA:3F:29:2E:21:2B:95:F0:35:9A
sig_hashalgo: sha512
parm: disable_esco:Disable eSCO connection creation (bool)
parm: disable_ertm:Disable enhanced retransmission mode (bool)
$

The modinfo command shows you exactly which module file is used to support the mod-
ule, along with detailed information about where the module came from.

Installing New Modules
If you need to manually install a new module, there are two commands to help with that:

 ■ insmod

 ■ modprobe

The insmod command is the most basic, requiring you to specify the exact module file to
load. As you’ve seen, the kernel module files are stored in the /lib/modules directory struc-
ture, with each kernel version having its own directory. If you look in that directory on
your Linux system, you’ll see a directory tree structure for the different types of hardware.

For example, Ubuntu Linux desktop systems have the following directory for Bluetooth
hardware drivers:

/lib/modules/3.13.0-63-generic/kernel/drivers/bluetooth

This directory is for the currently installed Linux kernel on the system: 3.13.0-63.
Inside that directory are different device driver module files for various types of Bluetooth
systems:

$ ls -l
total 420
-rw-r--r-- 1 root root 23220 Aug 14 19:07 ath3k.ko
-rw-r--r-- 1 root root 14028 Aug 14 19:07 bcm203x.ko
-rw-r--r-- 1 root root 26332 Aug 14 19:07 bfusb.ko
-rw-r--r-- 1 root root 18404 Aug 14 19:07 bluecard_cs.ko
-rw-r--r-- 1 root root 19124 Aug 14 19:07 bpa10x.ko

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

152 Chapter 3 ■ Configuring Hardware

-rw-r--r-- 1 root root 16964 Aug 14 19:07 bt3c_cs.ko
-rw-r--r-- 1 root root 38148 Aug 14 19:07 btmrvl.ko
-rw-r--r-- 1 root root 34204 Aug 14 19:07 btmrvl_sdio.ko
-rw-r--r-- 1 root root 17524 Aug 14 19:07 btsdio.ko
-rw-r--r-- 1 root root 14524 Aug 14 19:07 btuart_cs.ko
-rw-r--r-- 1 root root 53964 Aug 14 19:07 btusb.ko
-rw-r--r-- 1 root root 14188 Aug 14 19:07 btwilink.ko
-rw-r--r-- 1 root root 15572 Aug 14 19:07 dtl1_cs.ko
-rw-r--r-- 1 root root 74772 Aug 14 19:07 hci_uart.ko
-rw-r--r-- 1 root root 15156 Aug 14 19:07 hci_vhci.ko
$

Each file with the .ko extension is a separate module file for each device driver that you
can install into the 3.13.0-63 kernel. To install the module, specify the filename on the
insmod command line. Some modules also require parameters, which you must specify on
the command line as well:

$ sudo insmod /lib/modules/3.13.0-49-generic/kernel/drivers/bluetooth/
btusb.ko
password:
$

The downside to using the insmod program is that you may run into modules that
depend on other modules, and the insmod program will fail if those other modules aren’t
already installed. To make the process easier, the modprobe command helps resolve module
dependencies for you.

Another nice feature of the modprobe command is that it understands module names,
and it will search the module library for the module file that provides the driver for the
module name.

Because of this versatility, there are many options available for the modprobe command.
Table 3.3 shows the command-line options that you can use.

ta b Le 3 . 3 The modprobe command options

Option Description

-a Insert all modules listed on the command line

-b Apply any blacklist commands specified in the configuration file

-C Specify a different configuration file other than the default

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring the Firmware and Core Hardware 153

Option Description

-c Display the current configuration used.

-d Specify the root directory to use for installing modules. The default is /.

-f Force the module installation even if there are version issues.

-i Ignore the install and remove commands specified in the configuration file for
the module.

-n Perform a dry run of the module install to see if it will work, without actually
installing it.

-q Quiet mode—doesn’t display any error messages if the module installation or
removal fails.

-r Remove the module listed.

-s Send any error messages to the syslog facility on the system.

-V Display the program version and exit.

-v Provide additional information (verbose) as the module is processed.

As you can see, the modprobe command is a full-featured tool all by itself. Perhaps the
handiest feature is that it allows you to handle modules based on the module name and not
have to list the full module filename:

$ sudo modprobe -iv btusb
insmod /lib/modules/3.13.0-63-generic/kernel/drivers/bluetooth/btusb.ko
$

Notice that by adding the –v option for verbose mode the output shows the insmod com-
mand automatically generated by the modprobe command. The insmod command shows the
specific module file used to install the module.

Removing Modules
Normally it does no harm to install a module in the system if the hardware device is not
present. The kernel just ignores unused modules. However, some Linux administrators pre-
fer to keep the kernel as lightweight as possible, so the Linux developers created a method
for removing unnecessary modules: the rmmod command. The rmmod command removes a
module by specifying the module name.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

154 Chapter 3 ■ Configuring Hardware

However, our friend the modprobe command can also remove modules for us, so you
don’t need to memorize another command. Instead, just use the –r option with the mod-
probe command:

$ sudo modprobe -rv btusb
rmmod btusb
$

The modprobe –r command invokes the rmmod command automatically, removing the
module by name. You can verify that the module has been removed by using the lsmod
command.

Storage Basics
The most common way to persistently store data on computer systems is using a hard disk
drive (HDD). Hard disk drives are physical devices that store data using a set of disk platters
that spin around, storing data magnetically on the platters with a movable read/write head
that writes and retrieves magnetic images on the platters.

These days another popular type of persistent storage is called a solid-state drive (SSD).
These drives use integrated circuits to store data electronically. There are no moving parts
contained in SSDs, making them faster and more resilient than HDDs. While currently
SSDs are more expensive than HDDs, technology is quickly changing that, and it may not
be long before HDDs are a thing of the past.

Linux handles both HDD and SSD storage devices the same way. It mostly depends
on the connection method used to connect the drives to the Linux system. This section
describes the different methods that Linux uses in connecting and using both HDD and
SSD devices.

Types of Drives
While HDDs and SSDs differ in the way they store data, they both interface with the Linux
system using the same methods. There are three main types of drive connections that you’ll
run into with Linux systems:

 ■ Parallel Advanced Technology Attachment (PATA) connects drives using a parallel
interface, which requires a wide cable. PATA supports two devices per adapter.

 ■ Serial Advanced Technology Attachment (SATA) connects drives using a serial inter-
face, but at a much faster speed than PATA. SATA supports up to four devices per
adapter.

 ■ Small Computer System Interface (SCSI) connects drives using a parallel interface, but
with the speed of SATA. SCSI supports up to eight devices per adapter.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Storage Basics 155

When you connect a drive to a Linux system, the Linux kernel assigns the drive device
a file in the /dev directory. That file is called a raw device, as it provides a path directly to
the drive from the Linux system. Any data written to the file is written to the drive, and
reading the file reads data directly from the drive.

For PATA devices, this file is named /dev/hdx, where x is a letter representing the indi-
vidual drive, starting with a. For SATA and SCSI devices, Linux uses /dev/sdx, where x is
a letter representing the individual drive, again, starting with a. Thus, to reference the first
SATA device on the system, you’d use /dev/sda, then for the second device /dev/sdb, and
so on.

Drive Partitions
Most operating systems, including Linux, allow you to partition a drive into multiple sec-
tions. A partition is a self-contained section within the drive that the operating system
treats as a separate storage space.

Partitioning drives can help you better organize your data, such as segmenting operating
system data from user data. If a rogue user fills up the disk space with data, the operating
system will still have room to operate on the separate partition.

Partitions must be tracked by some type of indexing system on the drive. Systems that
use the old BIOS boot loader method use the master boot record (MBR) method for man-
aging disk partitions. This method supports only up to four primary partitions on a drive.
Each primary partition itself, however, can be split into multiple extended partitions.

Systems that use the UEFI boot loader method use the more advanced GUID Partition
Table (GPT) method for managing partitions, which supports up to 128 partitions on a
drive. Linux assigns the partition numbers in the order that the partition appears on the
drive, starting with number 1.

Linux creates /dev files for each separate disk partition. It attaches the partition number
to the end of the device name and numbers the primary partitions starting at 1, so the first
primary partition on the first SATA drive would be /dev/sda1. MBR extended partitions
are numbered starting at 5, so the first extended partition is assigned the file /dev/sda5.

Automatic Drive Detection
Linux systems detect drives and partitions at boot time and assign each one a unique device
filename. However, with the invention of removable USB drives (such as memory sticks),
which can be added and removed at will while the system is running, that method needed
to be modified.

Most Linux systems now use the udev application. The udev program runs in the back-
ground at all times and automatically detects new hardware connected to the running
Linux system. As you connect new drives, USB devices, or optical drives (such as CD and
DVD devices), udev will detect them and assign each one a unique device filename in the
/dev directory.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

156 Chapter 3 ■ Configuring Hardware

Another feature of the udev application is that it also creates persistent device files
for storage devices. When you add or remove a removable storage device, the /dev name
assigned to it may change, depending on what devices are connected at any given time.
That can make it difficult for applications to find the same storage device each time.

To solve that problem, the udev application uses the /dev/disk directory to create links
to the /dev storage device files based on unique attributes of the drive. udev creates four
separate directories for storing links:

 ■ /dev/disk/by-id: Links storage devices by their manufacturer make, model, and serial
number

 ■ /dev/disk/by-label: Links storage devices by the label assigned to them

 ■ /dev/disk/by-path Links storage devices by the physical hardware port they are con-
nected to

 ■ /dev/disk/by-uuid: Links storage devices by the 128-bit universally unique identifier
(UUID) assigned to the device

With the udev device links, you can specifically reference a storage device by a perma-
nent identifier rather than where or when it was plugged into the Linux system.

Storage Alternatives
Standard partition layouts on storage devices do have their limitations. After you create
and format a partition, it’s not easy making it larger or smaller. Individual partitions are
also susceptible to disk failures, in which case all data stored in the partition will be lost.

To accommodate more dynamic storage options, as well as fault-tolerance features,
Linux has incorporated a few advanced storage management techniques. This section cov-
ers three of the more popular techniques you’ll run into.

Multipath
The Linux kernel now supports Device Mapper (DM) multipathing, which allows you
to configure multiple paths between the Linux system and network storage devices.
Multipathing aggregates the paths providing for increased throughout while all paths are
active, or fault tolerance if one of the paths becomes inactive.

The Linux DM multipathing tools include

 ■ dm-multipath: The kernel module that provides multipath support

 ■ multipath: A command-line command for viewing multipath devices

 ■ multipathd: A background process for monitoring paths and activating/deactivating
paths

 ■ kpartx: A command-line tool for creating device entries for multipath storage devices

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Storage Alternatives 157

The DM multipathing feature uses the dynamic /dev/mapper device file directory in
Linux. Linux creates a /dev/mapper device file named mpathN for each new multipath stor-
age device you add to the system, where N is the number of the multipath drive. That file
acts as a normal device file to the Linux system, allowing you to create partitions and file-
systems on the multipath device just as you would a normal drive partition.

Logical Volume Manager
The Linux Logical Volume Manager (LMV) also utilizes the /dev/mapper dynamic device
directory to allow you to create virtual drive devices. You can aggregate multiple physical
drive partitions into virtual volumes, which you then treat as a single partition on your system.

The benefit of LVM is that you can add and remove physical partitions as needed to a
logical volume, expanding and shrinking the logical volume as needed.

Using LVM is somewhat complicated. Figure 3.1 demonstrates the layout for an LVM
environment.

F i gu r e 3 .1 The Linux LVM layout

/dev/sda1

Logical Volume 1 Logical Volume 2 Logical Volume 3

/dev/sda2

/dev/sda

/dev/sda3

Physical Volume 1

/dev/sda1 /dev/sda2

/dev/sdb

/dev/sda3

Physical Volume 2

/dev/sda1 /dev/sda2

/dev/sdc

/dev/sda3

Physical Volume 3

Volume Group 1

In the example shown in Figure 3.1, three physical drives each contain three partitions.
The first logical volume consists of the first two partitions of the first drive. The second
logical volume spans drives, combining the third partition of the first drive with the first
and second partitions of the second drive to create one volume. The third logical volume
consists of the third partition of the second drive, and the first two partitions of the third
drive. The third partition of the third drive is left unassigned, and it can be added later to
any of the logical volumes when needed.

For each physical partition, you must mark the partition type as the Linux LVM filesys-
tem type in fdisk or gdisk. Then, you must use several LVM tools to create and manage
the logical volumes:

 ■ pvcreate: Creates a physical volume

 ■ vgcreate: Groups physical volumes into a volume group

 ■ lvcreate: Creates a logical volume from partitions in each physical volume

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

158 Chapter 3 ■ Configuring Hardware

The logical volumes create entries in the /dev/mapper directory, which represent the
LVM device you can format with a filesystem and use like a normal partition.

While the initial setup of an LVM is complicated, it does provide great benefits. If you run
out of space in a logical volume, just add a new disk partition to the volume.

Using RAID Technology
Redundant Array of Inexpensive Disks (RAID) technology has changed the data storage
environment for most data centers. RAID technology allows you to improve data access
performance and reliability, as well as implement data redundancy for fault tolerance by com-
bining multiple drives into one virtual drive. Several versions of RAID are commonly used:

 ■ RAID 0: Disk striping, which spreads data across multiple disks for faster access

 ■ RAID 1: Disk mirroring, which duplicates data across two drives

 ■ RAID 10: Disk mirroring and striping, which provides striping for performance and
mirroring for fault tolerance

 ■ RAID 4: Disk striping with parity, which adds a parity bit stored on a separate disk so
that data on a failed data disk can be recovered

 ■ RAID 5: Disk striping with distributed parity, which adds a parity bit to the data
stripe so that it appears on all disks so that any failed disk can be recovered

 ■ RAID 6: Disk striping with double parity, which stripes both the data and the parity
bit so that two failed drives can be recovered

The downside is that hardware RAID storage devices can be somewhat expensive
(despite what the I stands for), and they are often impractical for most home uses. Because
of that, Linux has implemented a software RAID system that can implement RAID fea-
tures on any disk system.

The mdadm utility allows you to specify multiple partitions to be used in any type of
RAID environment. The RAID device appears as a single device in the /dev/mapper direc-
tory, which you can then partition and format to a specific filesystem.

Partitioning Tools
After you connect a drive to your Linux system you’ll need to create partitions on it (even
if there’s only one partition). Linux provides several tools for working with raw storage
devices to create partitions. This section covers the most popular partitioning tools you’ll
run across in Linux.

Working with fdisk
The most common command-line partitioning tool is the fdisk utility. The fdisk program
allows you to create, view, delete, and modify partitions on any drive that uses the MBR
method of indexing partitions.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Partitioning Tools 159

To use the fdisk program, you must specify the drive device name (not the partition
name) of the device you want to work with:

$ sudo fdisk /dev/sda
[sudo] password for rich:
Welcome to fdisk (util-linux 2.23.2).

Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help):

The fdisk program uses its own command line that allows you to submit commands to
work with the drive partitions. Table 3.4 shows the common commands you have available
to work with.

ta b Le 3 . 4 Common fdisk commands

Command Description

a Toggle a bootable flag

b Edit BSD disk label

c Toggle the DOS compatibility flag

d Delete a partition

g Create a new empty GPT partition table

G Create an IRIX (SGI) partition table

l List known partition types

m Print this menu

n Add a new partition

o Create a new empty DOS partition table

p Print the partition table

q Quit without saving changes

s Create a new empty Sun disk label

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

160 Chapter 3 ■ Configuring Hardware

Command Description

t Change a partition’s system ID

u Change display/entry units

v Verify the partition table

w Write table to disk and exit

x Extra functionality (experts only)

The p command displays the current partition scheme on the drive:

Command (m for help): p

Disk /dev/sda: 10.7 GB, 10737418240 bytes, 20971520 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x000528e6

 Device Boot Start End Blocks Id System
/dev/sda1 * 2048 2099199 1048576 83 Linux
/dev/sda2 2099200 20971519 9436160 83 Linux

Command (m for help):

In this example, the /dev/sda drive is sectioned into two partitions: sda1 and sda2. The
Id and System columns refer to the type of filesystem the partition is formatted to handle.
We cover that in the “Understanding Filesystems” section later. Both partitions are for-
matted to support a Linux filesystem. The first partition is allocated about 1 GB of space,
whereas the second is allocated a little over 9 GB of space.

The fdisk command is somewhat rudimentary in that it doesn’t allow you to alter the
size of an existing partition; all you can do is delete the existing partition and rebuild it
from scratch.

To be able to boot the system from a partition, you must set the boot flag for the parti-
tion. You do that with the a command. The bootable partitions are indicated in the output
listing with an asterisk.

If you make any changes to the drive partitions, you must exit using the w command to
write the changes to the drive.

ta b Le 3 . 4 Common fdisk commands (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Partitioning Tools 161

 Working with gdisk
 If you’re working with drives that use the GPT indexing method, you’ll need to use the
gdisk program:

 $ sudo gdisk /dev/sda
 [sudo] password for rich:
 GPT fdisk (gdisk) version 1.0.3

 Partition table scan:
 MBR: protective
 BSD: not present
 APM: not present
 GPT: present

 Found valid GPT with protective MBR; using GPT.

 Command (? for help):

 The gdisk program identifi es the type of formatting used on the drive. If the drive
doesn’t currently use the GPT method, gdisk offers you the option to convert it to a GPT
drive.

 Be careful with converting the drive method specified for your drive. The
method you select must be compatible with the system firmware (BIOS or
UEFI). If not, your drive will not be able to boot.

 The gdisk program also uses its own command prompt, allowing you to enter com-
mands to manipulate the drive layout, as shown in Table 3.5 .

 ta b Le 3 .5 Common gdisk commands

Command Description

b Back up GPT data to a file

c Change a partition’s name

d Delete a partition

i Show detailed information on a partition

l List known partition types

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

162 Chapter 3 ■ Configuring Hardware

Command Description

n Add a new partition

o Create a new empty GUID partition table (GPT)

p Print the partition table

q Quit without saving changes

r Recovery and transformation options (experts only)

s Sort partitions

t Change a partition’s type code

v Verify disk

w Write table to disk and exit

x Extra functionality (experts only)

? Print this menu

You’ll notice that many of the gdisk commands are similar to those in the fdisk pro-
gram, making it easier to switch between the two programs.

The GNU parted Command
The GNU parted program provides yet another command-line interface for working with
drive partitions:

$ sudo parted
GNU Parted 3.2
Using /dev/sda
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sda: 15.6GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

ta b Le 3 .5 Common gdisk commands (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Partitioning Tools 163

Disk Flags:

Number Start End Size File system Name Flags
 1 1049kB 1000MB 999MB fat32 boot, esp
 2 1000MB 13.6GB 12.6GB ext4
 3 13.6GB 15.6GB 2000MB linux-swap(v1)

(parted)

One of the selling features of the parted program is that it allows you to modify
existing partition sizes, so you can easily shrink or grow partitions on the drive. The
command prompt interface in GNU parted can be a bit cryptic at times, making it awk-
ward for first-time users to get comfortable with. However, once you become familiar
with the command structure there are lots of things you can do, making GNU parted a
versatile tool.

Graphical Tools
Some graphical tools are also available to use if you’re working from a graphical desktop
environment. The most common of these is the GNOME Partition Editor, called gparted.
Figure 3.2 shows an example of running gparted in an Ubuntu desktop environment.

F i gu r e 3 . 2 The GParted interface

The gparted window displays each of the drives on a system one at a time, showing all
partitions contained in the drive in a graphical layout. You right-click a partition to select
options for mounting or unmounting, formatting, deleting, or resizing the partition.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

164 Chapter 3 ■ Configuring Hardware

 While it’s certainly possible to interact with a drive as a raw device, that’s not usually
how Linux applications work. A lot of work is involved in trying to read and write data to
a raw device. Instead, Linux provides a method for handling the dirty work for us, which is
covered in the next section.

 Understanding Filesystems
 Just like storing stuff in a closet, storing data in a Linux system requires some method of
organization to be effi cient. Linux utilizes fi lesystems to manage data stored on storage
devices. A fi lesystem maintains a map to locate each fi le placed in the storage device. This
section describes the Linux fi lesystem and shows how you can locate fi les and directories
contained within it.

 The Linux fi lesystem can be one of the most confusing aspects of working with Linux.
Locating fi les on drives, CDs, and USB memory sticks can be a challenge at fi rst.

 If you’re familiar with how Windows manages fi les and directories, you know that
Windows assigns drive letters to each storage device you connect to the system. For
example, Windows uses C: for the main drive on the system, or E: for a USB memory stick
plugged into the system.

 In Windows, you’re used to seeing fi le paths such as

 C:\Users\rich\Documents\test.docx

 This path indicates the fi le is located in the Documents directory for the rich user
account, which is stored on the disk partition assigned the letter C (usually the fi rst drive on
the system).

 The Windows path tells you exactly what physical device the fi le is stored on. Linux,
however, doesn’t use this method to reference fi les. It uses a virtual directory structure. The
virtual directory contains fi le paths from all the storage devices installed on the system,
consolidated into a single directory structure.

 The Virtual Directory
 The Linux virtual directory structure contains a single base directory, called the root direc-
tory . The root directory lists fi les and directories beneath it based on the directory path
used to get to them, similar to the way Windows does it.

 Be careful with the terminology here. While the main admin user account
in Linux is called root, that’s not related to the root virtual directory folder.
The two are separate, which can be confusing.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding Filesystems 165

For example, a Linux file path could look like this:

/home/rich/Documents/test.doc

First, note that the Linux path uses forward slashes instead of the backward slashes that
Windows uses. That’s an important difference that trips up many novice Linux administra-
tors. As for the path itself, also notice that there’s no drive letter. The path indicates only
that the file test.doc is stored in the Documents directory for the user rich; it doesn’t give
you any clues as to which physical device contains the file.

Linux places physical devices in the virtual directory using mount points. A mount point
is a directory placeholder within the virtual directory that points to a specific physical
device. Figure 3.3 demonstrates how this works.

F i gu r e 3 . 3 The Linux virtual directory structure divided between two drives

Hard Drive 1

Hard Drive 2
/bin

/etc

/home

/mnt
/

/barbarba

/katie

/jessica

/rich

In Figure 3.3, there are two drives used on the Linux system. One drive is associated
with the root of the virtual directory (indicated by the single forward slash). The second
drive is mounted at the location /home, which is where the user directories are located.
After the second drive is mounted to the virtual directory, files and directories stored on the
drive are available under the /home directory.

Since Linux stores everything within the virtual directory, it can get somewhat com-
plicated. Fortunately, a standard format has been defined for the Linux virtual directory
called the Linux filesystem hierarchy standard (FHS). The FHS defines core directory
names and locations that should be present on every Linux system, as well as what type of
data they should contain. Table 3.6 shows a few of the common directories defined in the
FHS.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

166 Chapter 3 ■ Configuring Hardware

 ta b Le 3 .6 Common Linux FHS directories

Directory Description

 /boot Contains boot loader files used to boot the system

 /etc Contains system and application configuration files

 /home Contains user data files

 /media Used as a mount point for removable devices

 /mnt Also used as a mount point for removable devices

 /opt Contains data for optional third-party programs

 /tmp Contains temporary files created by system users

 /usr Contains data for standard Linux programs

 /usr/bin Contains local user programs and data

 /usr/local Contains data for programs unique to the local installation

 /usr/sbin Contains data for system programs and data

 /var Contains variable data files, including system and application logs

 While the FHS helps standardize the Linux virtual filesystem, not all Linux
distributions follow it completely. It’s best to consult with your specific
Linux distribution’s documentation on how it manages files within the vir-
tual directory structure.

 Maneuvering Around the Filesystem
 Using the virtual directory makes it a breeze to move fi les from one physical device to
another. You don’t need to worry about drive letters—just the locations within the virtual
directory:

 $ cp /home/rich/Documents/myfile.txt /media/usb

 The full path to a fi le lists each directory within the virtual directory structure to walk
your way down to fi nd the fi le. This format is called an absolute path . The absolute path

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Formatting Filesystems 167

to a file always starts at the root directory (/) and includes every directory along the virtual
directory tree to the file.

Alternatively, you can use a relative path to specify a file location. The relative path to a
file denotes the location of a file relative to your current location within the virtual direc-
tory tree structure. If you were already in the Documents directory, you’d just need to type

$ cp myfile.txt /media/usb

When Linux sees that the path doesn’t start with a forward slash, it assumes the path is
relative to the current directory.

Formatting Filesystems
Before you can assign a drive partition to a mount point in the virtual directory, you must
format it using a filesystem. There are numerous filesystem types that Linux supports, each
with different features and capabilities. This section discusses those filesystems and how to
format a drive partition for them.

Common Filesystem Types
Each operating system utilizes its own filesystem type for storing data on drives. Linux
not only supports several of its own filesystem types, but also supports filesystems of other
operating systems. This section covers the most common Linux and non-Linux filesystems
that you can use in your Linux partitions.

Linux Filesystems
When you create a filesystem specifically for use on a Linux system, you can choose from
four main filesystems:

 ■ btrfs: A newer, high-performance filesystem that supports files up to 16 exbibytes
(EiB) in size, and a total filesystem size of 16 EiB. It also can perform its own form of
Redundant Array of Inexpensive Disks (RAID) as well as logical volume management
(LVM) and subvolumes. It includes additional advanced features such as built-in snap-
shots for backup, improved fault tolerance, and data compression on the fly.

 ■ ecryptfs: The Enterprise Cryptographic Filesystem (eCryptfs) applies a Portable Oper-
ating System Interface (POSIX)–compliant encryption protocol to data before storing
it on the device. This provides a layer of protection for data stored on the device. Only
the operating system that created the filesystem can read data from it.

 ■ ext3: Also called ext3fs, this is a descendant of the original Linux ext filesystem. It
supports files up to 2 tebibytes (TiB), with a total filesystem size of 16 TiB. It supports
journaling, as well as faster startup and recovery.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

168 Chapter 3 ■ Configuring Hardware

 ■ ext4: Also called ext4fs, it’s the current version of the original Linux filesystem. It sup-
ports files up to 16 TiB, with a total filesystem size of 1 EiB. It also supports journaling
and utilizes improved performance features.

 ■ reiserFS: Created before the Linux ext3fs filesystem and commonly used on older
Linux systems, it provides features now found in ext3fs and ext4fs. Linux has dropped
support for the most recent version, reiser4fs.

 ■ swap: The swap filesystem allows you to create virtual memory for your system using
space on a physical drive. The system can then swap data out of normal memory into
the swap space, providing a method of adding additional memory to your system. This
is not intended for storing persistent data.

The default filesystem used by most Linux distributions these days is ext4fs. The ext4fs
filesystem provides journaling, which is a method of tracking data not yet written to the
drive in a log file, called the journal. If the system fails before the data can be written to the
drive, the journal data can be recovered and stored upon the next system boot.

Many Linux administrators have taken a liking to the newer btrfs filesystem. The btrfs
filesystem provides many advanced features, such as the ability to create a filesystem across
multiple devices, automatic data compression, and the ability to create subvolumes.

Non-Linux Filesystems
One of the great features of Linux that makes it so versatile is its ability to read data stored
on devices formatted for other operating systems, such as macOS and Windows. This fea-
ture makes it a breeze to share data between different systems running different operating
systems.

Here’s a list of the common non-Linux filesystems that Linux can handle:

 ■ CIFS: The Common Internet Filesystem (CIFS) is a filesystem protocol created by
Microsoft for reading and writing data across a network using a network storage
device. It was released to the public for use on all operating systems.

 ■ exFAT: The Extended File Allocation Table is a filesystem built on the original Micro-
soft FAT table architecture, and it’s commonly used to format USB devices and SD
cards.

 ■ HFS: The Hierarchical Filesystem (HFS) was developed by Apple for its Mac systems.
Linux can also interact with the more advanced HFS+ filesystem.

 ■ ISO-9660: The ISO-9660 standard is used for creating filesystems on CD-ROM
devices.

 ■ NFS: The Network Filesystem (NFS) is an open source standard for reading and writ-
ing data across a network using a network storage device.

 ■ NTFS: The New Technology Filesystem (NTFS) is the filesystem used by the Microsoft
NT operating system and subsequent versions of Windows. Linux can read and write
data on an NTFS partition as of kernel 2.6.x.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Formatting Filesystems 169

 ■ SMB: The Server Message Block (SMB) filesystem was created by Microsoft as a
proprietary filesystem used for network storage and interacting with other network
devices (such as printers). Support for SMB allows Linux clients and servers to interact
with Microsoft clients and servers on a network.

 ■ UDF: The Universal Disk Format (UDF) is commonly used on DVD-ROM devices for
storing data. Linux can both read data from a DVD and write data to a DVD using
this filesystem.

 ■ VFAT: The Virtual File Allocation Table (VFAT) is an extension of the original Micro-
soft File Allocation Table (FAT) filesystem. It’s not commonly used on drives but is
often used for removable storage devices such as USB memory sticks.

 ■ XFS: The X Filesystem (XFS) was created by Silicon Graphics for their (now defunct)
advanced graphical workstations. The filesystem provided advanced high-performance
features that makes it still popular in Linux.

 ■ ZFS: The Zettabyte Filesystem (ZFS) was created by Sun Microsystems (now part of
Oracle) for its Unix workstations and servers. Another high-performance filesystem, it
has features similar to the btrfs Linux filesystem.

It’s generally not recommended to format a partition using a non-Linux filesystem if you
plan on using the drive for only Linux systems. Linux supports these filesystems mainly as
a method for sharing data with other operating systems.

Creating Filesystems
The Swiss army knife for creating filesystems in Linux is the mkfs program. The mkfs pro-
gram is actually a front end to several individual tools for creating specific filesystems, such
as the mkfs.ext4 program for creating ext4 filesystems.

The beauty of the mkfs program is that you need to remember only one program name
to create any type of filesystem on your Linux system. Just use the -t option to specify the
filesystem type:

$ sudo mkfs -t ext4 /dev/sdb1
mke2fs 1.44.1 (24-Mar-2018)
Creating filesystem with 2621440 4k blocks and 655360 inodes
Filesystem UUID: f9137b26-0caf-4a8a-afd0-392002424ee8
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632
Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done
$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

170 Chapter 3 ■ Configuring Hardware

 Just specify the partition device fi lename for the partition you want to format on the
command line. The mkfs program automatically calls the mke2fs program to create the
ext4 partition. Notice that the mkfs program also does a lot of other things behind the
scenes when formatting the fi lesystem. Each fi lesystem has its own method for indexing
fi les and directories and tracking fi le access. The mkfs program creates all of the index fi les
and tables necessary for the specifi c fi lesystem.

 Be very careful when specifying the partition device filename. When you
format a partition, any existing data on the partition is lost. If you specify
the wrong partition name, you could lose important data or make your
Linux system unable to boot.

 It’s usually a good idea to reserve some space on the hard drive for a swap
area. The swap area acts as virtual memory to help expand the usable
memory available to the CPU. You create a swap area using the mkswap
command.

 Mounting Filesystems
 After you’ve formatted a drive partition with a fi lesystem, you can add it to the virtual
directory on your Linux system. This process is called mounting the fi lesystem.

 You can either manually mount the partition within the virtual directory structure from
the command line or allow Linux to automatically mount the partition at boot time. This
section walks through both of these methods.

 Manually Mounting Devices
 To temporarily mount a fi lesystem to the Linux virtual directory, use the mount command.
The basic format for the mount command is

 mount -f fstype device mountpoint

 Use the -f command-line option to specify the fi lesystem type of the device:

 $ sudo mount -t ext4 /dev/sdb1 /media/usb1
 $

 If you specify the mount command with no parameters, it displays all devices currently
mounted on the Linux system. Be prepared for a long output, though, as most Linux

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Mounting Filesystems 171

distributions mount lots of virtual devices in the virtual directory to provide information
about system resources. Listing 3.11 shows a partial output from a mount command.

 Listing 3.11: Output from the mount command

 $ mount
 ...
 /dev/sda2 on / type ext4 (rw,relatime,errors=remount-ro,data=ordered)
 /dev/sda1 on /boot/efi type vfat
 (rw,relatime,fmask=0077,dmask=0077,codepage=437,iocharset=iso8859
 -1,shortname=mixed,errors=remount-ro)
 ...
 /dev/sdb1 on /media/usb1 type ext4 (rw,relatime,data=ordered)
 /dev/sdb2 on /media/usb2 type ext4 (rw,relatime,data=ordered)
 rich@rich-TestBox2:~$

 To save space, we trimmed down the output from the mount command to show only the
physical devices on the system. Notice that the main hard drive device (/dev/sda) contains
two partitions. You can also see that the USB memory stick device (/dev/sdb) contains two
partitions.

 The mount command uses the -o option to specify additional features of
the filesystem, such as mounting it in read-only mode, user permissions
assigned to the mount point, and how data is stored on the device. These
options are shown in the output of the mount command. Usually you can
omit the -o option to use the system defaults for the new mount point.

 The downside to the mount command is that it only temporarily mounts the device in
the virtual directory. When you reboot the system, you have to manually mount the devices
again. This is usually fi ne for removable devices, such as USB memory sticks, but for
more permanent devices it would be nice if Linux could mount them for us automatically.
Fortunately for us, Linux can do just that.

 To remove a mounted drive from the virtual directory, use the umount command
(note the missing “n”). You can remove the mounted drive by specifying either the device
fi lename or the mount point directory.

 To mount a partition created as a swap area, you don’t use the mount com-
mand but instead use the swapon command. The kernel will automatically
flag the partition to be used as part of the virtual memory structure.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

172 Chapter 3 ■ Configuring Hardware

 Automatically Mounting Devices
 For permanent storage devices, Linux maintains the /etc/fstab fi le to indicate which drive
devices should be mounted to the virtual directory at boot time. The /etc/fstab fi le is a
table that indicates the drive device fi le (either the raw fi le or one of its permanent udev fi le-
names), the mount point location, the fi lesystem type, and any additional options required
to mount the drive. Listing 3.12 shows the /etc/fstab fi le from an Ubuntu workstation.

 Listing 3.12: The /etc/fstab file

 $ cat /etc/fstab
 # /etc/fstab: static file system information.
 #
 # Use 'blkid' to print the universally unique identifier for a
 # device; this may be used with UUID= as a more robust way to name devices
 # that works even if disks are added and removed. See fstab(5).
 #
 # <file system> <mount point> <type> <options> <dump> <pass>
 # / was on /dev/sda2 during installation
 UUID=46a8473c-8437-4d5f-a6a1-6596c492c3ce / ext4
 errors=remount-ro 0 1
 # /boot/efi was on /dev/sda1 during installation
 UUID=864B-62F5 /boot/efi vfat umask=0077 0 1
 # swap was on /dev/sda3 during installation
 UUID=8673447a-0227-47d7-a67a-e6b837bd7188 none swap sw
 0 0
 $

 This /etc/fstab fi le references the devices by their Universally Unique Identifi er
(UUID) value, ensuring the correct drive partition is accessed no matter what order it
appears in the raw device table. The fi rst partition is mounted at the /boot/efi mount
point in the virtual directory. The second partition is mounted at the root (/) of the virtual
directory, and the third partition is mounted as a swap area for virtual memory.

 You can manually add devices to the /etc/fstab fi le so that they are mounted
automatically when the Linux system boots. However, if they don’t exist at boot time,
that will generate a boot error.

 If you use the eCryptfs filesystem type on any partitions, they will appear
in the /etc/crypttab file and will be mounted automatically at boot time.
While the system is running, you can also view all currently mounted
devices, whether they were mounted automatically by the system or man-
ually by users, by viewing the /etc/mtab file.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Filesystems 173

 Managing Filesystems
 After you’ve created a fi lesystem and mounted it to the virtual directory, you may have to
manage and maintain it to keep things running smoothly. This section walks through some
of the Linux utilities available for managing the fi lesystems on your Linux system.

 Retrieving Filesystem Stats
 As you use your Linux system, there’s no doubt that at some point you’ll need to monitor
disk performance and usage. A few different tools are available to help you do that:

 ■ df : Displays disk usage by partition

 ■ du : Displays disk usage by directory; good for finding users or applications that are
taking up the most disk space

 ■ iostat : Displays a real-time chart of disk statistics by partition

 ■ lsblk : Displays current partition sizes and mount points

 In addition to these tools, the /proc and /sys directories are special fi lesystems that the
kernel uses for recording system statistics. Two fi les that can be useful when working with
fi lesystems are the /proc/partitions and /proc/mounts fi les, which provide information on
system partitions and mount points, respectively. Additionally, the /sys/block directory con-
tains separate directories for each mounted drive, showing partitions and kernel-level stats.

 Some filesystems, such as ext3 and ext4, allocate a specific number of
inodes when created. An inode is an entry in the index table that tracks
files stored on the filesystem. If the filesystem runs out of inode entries in
the table, you can’t create any more files, even if space is available on the
drive. Using the -i option with the df command will show you the percent-
age of inodes used on a filesystem and can be a lifesaver.

 Filesystem Tools
 Linux uses the e2fsprogs package of tools to provide utilities for working with ext fi lesys-
tems (such as ext3 and ext4). The most popular tools in the e2fsprogs package are

 ■ blkid : Display information about block devices, such as storage drives

 ■ chattr : Change file attributes on the filesystem

 ■ debugfs : Manually view and modify the filesystem structure, such as undeleting a file
or extracting a corrupted file

 ■ dumpe2fs : Display block and superblock group information

 ■ e2label : Change the label on the filesystem

 ■ resize2fs : Expand or shrink a filesystem

 ■ tune2fs : Modify filesystem parameters

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

174 Chapter 3 ■ Configuring Hardware

These tools help you fine-tune parameters on an ext filesystem, but if corruption occurs
on the filesystem, you’ll need the fsck program.

The XFS filesystem also has a set of tools available for tuning the filesystem. You’ll most
likely use the following:

 ■ xfs_admin: Display or change filesystem parameters such as the label or UUID
assigned

 ■ xfs_db: Examine and debug an XFS filesystem

 ■ xfs_fsr: Improve the organization of mounted filesystems

 ■ xfs_info: Display information about a mounted filesystem, including the block sizes
and sector sizes, as well as label and UUID information

 ■ xfs_repair: Repair corrupted or damaged XFS filesystems

Although these ext and XFS tools are useful, they can’t help fix things if the filesystem
itself has errors. For that, the fsck program is the tool to use:

$ sudo fsck -f /dev/sdb1
fsck from util-linux 2.31.1
e2fsck 1.44.1 (24-Mar-2018)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/dev/sdb1: 11/655360 files (0.0% non-contiguous), 66753/2621440 blocks
$

The fsck program is a front end to several different programs that check the various file-
systems to match the index against the actual files stored in the filesystem, such as the e2fsck
program used in this example. If any discrepancies occur, run the fsck program in repair
mode, and it will attempt to reconcile the discrepancies and fix the filesystem. If the fsck pro-
gram is unable to repair the drive on the first run, try running it again a few times to fix any
broken files and directory links. If running the fsck program multiple times doesn’t repair
the drive, you may have to resort to reformatting the drive and losing any data on it.

Summary
These days most Linux distributions do a great job of automatically detecting and install-
ing hardware devices. However, it’s a good idea to know how to find and change hardware
device settings in case you ever need to modify things. The lsdev command displays the
hardware settings for all devices connected to the Linux system. The lspci command dis-
plays hardware settings for PCI devices, and the lsusb command displays settings for USB

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam Essentials 175

devices. The kernel also populates the virtual /proc and /sys directories with real-time
information about the system hardware status. The udev program monitors the system and
automatically installs any kernel modules required to support hardware connected to a run-
ning system.

Most storage devices, such as hard disk drives and solid-state drives, allow you to parti-
tion them into subsections. Each partition works as a separate storage area that you can
format with a Linux filesystem and mount in the Linux virtual directory at mount points.
You can also utilize the Linux LVM technology to create virtual volumes consisting of one
or more physical partitions and treat the virtual volume as a single partition. This allows
you to dynamically add more disk space to an existing virtual volume to increase the stor-
age area.

Linux provides a wealth of command-line tools for partitioning, formatting, and mount-
ing partitions. The fdisk, gdisk, and parted tools provide a menu-driven method for creat-
ing, deleting, and modifying partitions on storage devices. After you’ve created a partition,
you must format it using the mkfs tool. When you’ve formatted the partition with a Linux
filesystem, you can mount it into the virtual directory using the mount command.

Linux also provides several tools for managing and repairing filesystems. The df and du
commands are common tools for displaying available storage space on the system, and the
fsck command is vital for repairing broken filesystems.

Exam Essentials
Describe how the BIOS and UEFI work on Linux systems. The BIOS and UEFI are firm-
ware embedded into computers to start the boot process. They check basic hardware com-
ponents of the computer and launch the boot loader program to start the boot process.

Explain how to determine the hardware settings on a Linux system. Linux provides
several command-line tools for examining the hardware settings on the system, including
lsdev, which displays information on all devices; lspci, which displays information on PCI
devices; and lsusb, which displays information on USB devices. In addition to these tools,
Linux provides the /proc and /sys virtual directories. The Linux kernel populates files in
these directories in real time to display information and statistics on hardware devices.

Describe common disk types and their features. Most legacy systems used hard disk
drives (HDD) for data storage, but more modern computers use the solid-state drive (SSD)
technology. Both types connect to the motherboard using three types of standard inter-
faces. The legacy PATA interface provides the basic slow-speed connection and is typically
in legacy systems. More modern computer systems now use the SATA interface, which is
faster and more easily configured. The SCSI interface allows you to connect more disks
together in a single interface and is often faster than SATA interfaces. However, it is more
expensive and is usually only found on higher-end computers.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

176 Chapter 3 ■ Configuring Hardware

Explain the steps necessary to add a new hard drive to a Linux system. First you must
partition the hard drive to create one or more partitions. Each partition contains a single
filesystem, which Linux uses to manage the files and directories stored on the storage
device. The fdisk, gdisk, and parted utilities are available in Linux for partitioning a stor-
age device. After you partition the storage device, you must format each partition using one
type of filesystem. The most common filesystem currently used in Linux is ext4, but the
btrfs filesystem is gaining in popularity due to some advanced features it implements. To
create the filesystem, you must use the mkfs command. After creating the filesystem, you
can mount the partition into the virtual directory using the mount command. If you want
Linux to mount the partition automatically at boot time, add the partition to the /etc/
fstab file.

Explain the tools available in Linux for managing and maintaining filesystems. Linux
provides several command-line tools for displaying the status of a filesystem. The df com-
mand displays disk usage by partition, and the du command displays disk usage by direc-
tory. If an error occurs on the partition, use the fsck utility to fix the partition.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 177

Review Questions
You can find the answers in the appendix.

1. What program does the workstation firmware start at boot time?

A. A boot loader

B. The fsck program

C. The Windows OS

D. The mount command

E. The mkinitrd program

2. Where does the firmware first look for a Linux boot loader program?

A. The /boot/grub directory

B. The master boot record (MBR)

C. The /var/log directory

D. A boot partition

E. The /etc directory

3. Where does the workstation BIOS attempt to find a boot loader program? (Choose all that
apply.)

A. An internal hard drive

B. An external hard drive

C. A DVD drive

D. A USB memory stick

E. A network server

4. Where is the master boot record located? (Choose all that apply.)

A. The first sector of the first hard drive on the system

B. The boot partition of any hard drive on the system

C. The last sector of the first hard drive on the system

D. Any sector on any hard drive on the system

E. The first sector of the second hard drive on the system

5. The EFI System Partition (ESP) is stored in the directory on Linux systems.

A. /boot

B. /etc

C. /var

D. /boot/efi

E. /boot/grub

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

178 Chapter 3 ■ Configuring Hardware

6. The firmware method has replaced BIOS on most modern IBM-compatible computers.

A. FTP

B. UEFI

C. PXE

D. NFS

E. HTTPS

7. Which type of storage device uses integrated circuits to store data with no moving parts?

A. SSD

B. SATA

C. SCSI

D. HDD

E. PATA

8. What raw device file would Linux create for the second SCSI drive connected to the system?

A. /dev/hdb

B. /dev/sdb

C. /dev/sdb1

D. /dev/hdb1

E. /dev/sda

9. What tool creates a logical volume from multiple physical partitions?

A. mkfs

B. pvcreate

C. lvcreate

D. fdisk

E. vgcreate

10. Which RAID levels can easily recover from a single failed hard drive? (Choose all that
apply.)

A. RAID 0

B. RAID 4

C. RAID 10

D. RAID 5

E. RAID 1

11. Which partitioning tool provides a graphical interface?

A. gdisk

B. gparted

C. fdisk

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 179

D. parted

E. fsck

12. Which fdisk command displays the current partition table on the hard drive?

A. v

B. n

C. m

D. p

E. d

13. Linux uses to add the filesystem on a new storage device to the virtual
directory.

A. Mount points

B. Drive letters

C. /dev files

D. /proc directory

E. /sys directory

14. What filesystem is the latest version of the original Linux file system?

A. reiserFS

B. btrfs

C. ext3

D. ext4

E. nfs

15. What tool do you use to create a new filesystem on a partition?

A. fdisk

B. mkfs

C. fsck

D. gdisk

E. parted

16. Which filesystem type should you create to help extend the physical memory installed in a
Linux workstation?

A. ext3

B. btrfs

C. swap

D. ext4

E. NTFS

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

180 Chapter 3 ■ Configuring Hardware

17. What tool do you use to manually add a filesystem to the virtual directory?

A. fsck

B. mount

C. umount

D. fdisk

E. mkfs

18. Which command allows you to remove a partition from the virtual directory on a running
Linux system?

A. mount

B. umount

C. fsck

D. dmesg

E. mkinitramfs

19. The program is a handy tool for repairing corrupted filesystems.

A. fsck

B. mount

C. umount

D. fdisk

E. mkfs

20. What tool should you use to determine the disk space used by a specific user account on the
Linux system?

A. df

B. iostat

C. du

D. lsblk

E. blkid

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

By

Chapter

4
Managing Files

Objectives

 ✓ 103.3 Perform basic file management

 ✓ 104.5 Manage file permissions and ownership

 ✓ 104.6 Create and change hard and symbolic links

 ✓ 104.7 Find system files and place files in correct location

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

With Linux, the virtual filesystem is an interface provided by
the kernel. Learning to deal with files within the directory
structure is the next important step in understanding how to

properly maintain your system.
Being able to list the files located in particular directories, find files, and use wildcard

expansion rules to assist you in this maintenance task are critical skills. You also need to
understand topics such as file archiving and compression, linking files, as well as basic file
security principles employed by the Linux system. All these concepts and more are covered
in this chapter to assist you in file management tasks.

Using File Management Commands
Files on a Linux system are stored within a single directory structure, called a virtual direc-
tory. The virtual directory contains files from all the computer’s storage devices and merges
them into a single directory structure. This structure has a single base directory called the
root directory (/) that is often simply called root.

Viewing, creating, copying and moving, as well as deleting files in the virtual directory
structure are important abilities. The following sections describe how to use command-line
programs to accomplish these various tasks.

Naming and Listing Files
Before you go wandering around the virtual directory structure, it’s a good idea to under-
stand some basic concepts concerning looking at a directory’s contents and employing fea-
tures such as file globbing. In addition, you’ll want to understand how to create files and a
few tips on naming them.

Displaying Filenames with the ls Command
The most basic command for viewing a file’s name and its various metadata is the list com-
mand. Metadata is information that describes and provides additional details about data.

To issue the list command, you use ls and any needed options or arguments. The basic
syntax structure for the list command is as follows:

ls [OPTIONS]… [FILE]…

In the list command’s syntax structure, there are various [OPTIONS] (also called
switches) that you can add to display file metadata. Recall that the brackets indicate that

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 183

switches are optional. The [FILE] argument shows you can add a directory or fi lename to
the command’s end to look at metadata for either specifi c fi les or fi les within other virtual
directory structure locations.

 Syntax structure is depicted for many command-line commands within the
Linux system’s manual pages, which are also called the man pages. To find
a particular command’s syntax structure, view its man page (e.g., man ls)
and look in the Synopsis section.

 When you issue the ls command with no additional arguments or options, it displays
all the fi les’ and subdirectories’ names within the present working directory as shown in
Listing 4.1.

 Listing 4.1: Using the ls and pwd commands

 $ ls
 Desktop Downloads Pictures Public Videos
 Documents Music Project47.txt Templates
 $
 $ pwd
 /home/Christine
 $

 Your present working directory is the current location for your login process within the
virtual directory structure. You can determine this location’s directory name by issuing the
pwd command, which is also shown in Listing 4.1.

 To display more than fi le and directory name metadata, you need to add various options
to the list command. Table 4.1 shows a few of the more commonly used options.

 ta b Le 4 .1 The ls command’s commonly used options

Short Long Description

 -1 N/A List one file or subdirectory name per line

 -a --all Display all file and subdirectory names, including hidden files’
names

 -d --directory Show a directory’s own metadata instead of its contents

 -F --classify Classify each file’s type using an indicator code (* , / , = , > , @ , or |)

 -i --inode Display all file and subdirectory names along with their
associated index number

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

184 Chapter 4 ■ Managing Files

Short Long Description

 -l N/A Display file and subdirectory metadata, which includes file
type, file access permissions, hard link count, file owner, file’s
group, modification date and time, and filename

 -R N/A Show a directory’s contents, and for any subdirectory within
the original directory tree, consecutively show its contents as
well (recursively)

 Table 4.1 has the best ls command options to memorize, because you
will use them often. However, it is worthwhile to try out all the various ls
command options and option combinations. Take time to peruse the
ls command’s options in its man pages.

 When you experiment with various command options, not only will you be better pre-
pared for the LPIC-1 certifi cation exam, you’ll also fi nd combinations that work well for
your particular needs. The -lh option combination shown in Listing 4.2 makes the fi le size
more human readable.

 Listing 4.2: Exploring the ls -lh command

 $ pwd
 /home/Christine/Answers
 $
 $ ls -l
 total 32
 drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Everything
 drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Life
 -rw-r--r--. 1 Christine Christine 29900 Aug 19 17:37 Project42.txt
 drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Universe
 $
 $ ls -lh
 total 32K
 drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Everything
 drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Life
 -rw-r--r--. 1 Christine Christine 30K Aug 19 17:37 Project42.txt
 drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Universe
 $

ta b Le 4 .1 The ls command’s commonly used options (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 185

Be aware that some distributions include, by default, an alias (covered in Chapter 9) for
the ls -l command. It is ll (two lowercase L characters) and is demonstrated on a CentOS
distribution in Listing 4.3. An alias at the Linux command line is simply a short command
that represents another, typically complicated, command. You can view all the current
aliases your process has by typing alias at the command line.

Listing 4.3: Exploring the ll command

$ ls -l
total 32
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Everything
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Life
-rw-r--r--. 1 Christine Christine 29900 Aug 19 17:37 Project42.txt
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Universe
$
$ ll
total 32
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Everything
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Life
-rw-r--r--. 1 Christine Christine 29900 Aug 19 17:37 Project42.txt
drwxrwxr-x. 2 Christine Christine 6 Aug 19 17:34 Universe
$

Creating and Naming Files
The touch command will allow you to create empty files on the fly. This command’s pri-
mary purpose in life is to update a file’s timestamps—access and modification. However,
for studying purposes, touch is very useful in that you can quickly create files with which
to experiment, as shown in Listing 4.4.

Listing 4.4: Using the touch command

$ touch Project43.txt
$
$ ls
Everything Life Project42.txt Project43.txt Universe
$
$ touch Project44.txt Project45.txt Project46.txt
$
$ ls
Everything Project42.txt Project44.txt Project46.txt
Life Project43.txt Project45.txt Universe
$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

186 Chapter 4 ■ Managing Files

 Notice in Listing 4.4 that with the touch command you can create a single fi le or multiple
fi les at a time. To create multiple fi les, just list the fi les’ names after the command separated
by a space.

 Case matters for Linux file and directory names. For example, myfile.txt ,
MyFile.txt , and MYFILE.TXT are three distinct files on a Linux system.

 Linux is very fl exible when it comes to naming fi les. However, it is best to follow certain
conventions to lessen confusion and diffi culties surrounding nonconventional fi lenames. It’s
wise to avoid using the various shell metacharacters (fi rst introduced in Chapter 1) within a
fi le or directory’s name:

 * ? [] ' " \ $; & () | ^ < >

 If you do need to employ a metacharacter in the fi le’s name, you’ll most likely have to
use shell quoting techniques (covered in Chapter 1) with the name on the command line.
Spaces in fi le or directory names can be problematic as well and require shell quoting.

 A file’s extension is another place you can get tripped up by being noncon-
ventional. While you can make the file’s extension anything you want, it’s a
bad idea. For example, the tar utility (covered later in this chapter) should
have any archive files it produces end with a .tar file extension. If you
make the extension .txt instead, you introduce unnecessary confusion.

 The old saying goes, “On Linux, everything is a fi le.” Well, if you aren’t sure what type
of fi le it is, that can be tricky. To quickly determine a fi le’s type, use the file command as
demonstrated in Listing 4.5.

 Listing 4.5: Using the file command

 $ file Project42.txt
 Project42.txt: ASCII text
 $
 $ file Everything
 Everything: directory
 $

 Notice that the Project42.txt fi le is indeed an ASCII text fi le, whereas the Everything
fi le is a directory.

 Exploring Wildcard Expansion Rules
 When you use the ls command or many other command-line programs, specifying fi le
and directory names can be a little diffi cult due to fi le globbing . File globbing occurs when

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 187

you use wildcards, such as an asterisk (*) or a question mark (?), with a fi lename in a com-
mand. When wildcards are employed in this manner, fi le globbing causes the fi lename to
expand into multiple names (also called wildcard expansion). For example, passw*d could
be expanded into the fi lename password or passwrd .

 When used as a wildcard, an asterisk represents any number of alphanumeric charac-
ters. An example of using an asterisk for fi le globbing with the ls command is shown in
Listing 4.6.

 Listing 4.6: Using an asterisk wildcard with the ls command

 $ ls
 cake.txt carmelCake.sh carmelPie.txt carrotCake.txt
 $
 $ ls c*.txt
 cake.txt carmelPie.txt carrotCake.txt
 $

 The question mark only represents a single character for fi le globbing, as shown in
Listing 4.7.

 Listing 4.7: Using a question mark wildcard with the ls command

 $ ls
 bard bat beat bed bet bird bit bot bunt
 $
 $ ls b?t
 bat bet bit bot
 $
 $ ls b??d
 bard bird
 $

 Notice that you can employ two question marks if you need to include two characters
for your wildcard operation.

 Both the question mark and the asterisk wildcards are case-insensitive. If
you need case sensitivity, you’ll need to use a different wildcard type.

Bracketed wildcards are handy, because you can select a whole range of characters for a
specifi ed location in a fi le or directory name. The brackets represent a single character loca-
tion in the name, while the characters within the brackets are the ones that can be in that
spot. An example is shown in Listing 4.8.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

188 Chapter 4 ■ Managing Files

Listing 4.8: Using a bracketed wildcard with the ls command

$ ls
bard bat beat bed bet bEt bird bit bot bunt
$
$ ls b[eio]t
bet bit bot
$

Notice that the bracketed wildcard is for the second character position within the file-
name. Thus, any file that begins with a b and ends with a t is selected, but only if it has an e,
i, or o in its second character position. Bracketed wildcards also follow case sensitivity rules
when used in this manner. Thus, the file bEt was not selected for display in Listing 4.8.

Just like the question mark, you can use multiple brackets for each character position in the file-
name you need to wildcard for file globbing. An example of this method is shown in Listing 4.9.

Listing 4.9: Using multiple bracketed wildcards with the ls command

$ ls
bard bat beat bed bet bEt bird bit bot bunt
$
$ ls b[eu][an]t
beat bunt
$

To use bracketed wildcards for a range of characters, instead of typing them all out, you
can employ a dash. An example is shown in Listing 4.10.

Listing 4.10: Using a bracketed range wildcard with the ls command

$ ls b[a-z]t
bat bet bEt bit bot
$

Be careful here. Notice that using the range nullifies case sensitivity. Thus, in this case,
the file bEt was selected for display.

You can negate the character selection by placing a carat symbol (̂) in front of your brack-
eted characters. This causes the command-line program to select any file, except those that
have matching characters at the bracketed spot. An example of this is shown in Listing 4.11.

Listing 4.11: Using a negated bracketed wildcard with the ls command

$ ls
bard bat beat bed bet bEt bird bit bot bunt
$
$ ls b[^eio]t
bat bEt
$

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 189

You can employ these various wildcards with more than just the ls command. However,
use caution if the utility you are using is destructive. You’ll want to make sure your wild-
cards are correct before doing something like deleting multiple files.

Understanding the File Commands
Now that you have a firm grasp on looking at a directory’s contents and employing fea-
tures, such as file globbing, you’ll want to understand how to create directories, copy and
move files, as well as delete them. We’ll also make recommendations in this section that
will help you avoid grievous mistakes, such as removing the wrong files.

Creating Directories
You can quickly create directories via the mkdir command. The -F option on the ls com-
mand will help you in this endeavor. It displays any directories, including newly created
ones, with a / indicator code following each directory’s name. Listing 4.12 provides a few
examples.

Listing 4.12: Exploring the mkdir command

$ ls -F
Everything/ Project42.txt Project44.txt Project46.txt
Life/ Project43.txt Project45.txt Universe/
$
$ mkdir Galaxy
$
$ ls -F
Everything/ Life/ Project43.txt Project45.txt Universe/Galaxy/
Project42.txt Project44.txt Project46.txt
$
$ pwd
/home/Christine/Answers
$
$ mkdir /home/Christine/Answers/Galaxy/Saturn
$
$ ls -F Galaxy
Saturn/
$

To create a subdirectory in your present working directory, you simply enter the mkdir
command followed by the subdirectory’s name, as shown in Listing 4.12 for the Galaxy
subdirectory. If you want to build a directory in a different location than your present
working directory, you can use an absolute directory reference (covered in Chapter 1), as
was done for creating the Saturn directory in Listing 4.12.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

190 Chapter 4 ■ Managing Files

 If you are creating directories and moving into them from your present
working directory, it is easy to become lost in the directory structure.
Quickly move back to your previous present working directory using the
cd - command or back to your home directory using just the cd command
with no options.

 Be aware when building directories that problems can happen when attempting to create
a directory tree, as shown in Listing 4.13.

 Listing 4.13: Avoiding problems with the mkdir command

 $ ls -F
 Everything/ Life/ Project43.txt Project45.txt Universe/
 Galaxy/ Project42.txt Project44.txt Project46.txt
 $
 $ mkdir Projects/42/
 mkdir: cannot create directory 'Projects/42/': No such file or directory
 $
 $ mkdir -p Projects/42/
 $
 $ ls -F
 Everything/ Life/ Project43.txt Project45.txt Projects/
 Galaxy/ Project42.txt Project44.txt Project46.txt Universe/
 $
 $ ls -F Projects
 42/
 $

 Notice an error occurs when you attempt to use the mkdir command to build the directory
Projects and its 42 subdirectory. A subdirectory (42) cannot be created without its parent
directory (Projects) preexisting. The mkdir command’s -p option (or --parents) allows you
to overwrite this behavior as shown in Listing 4.13 and successfully create directory trees.

 It is tedious to enter the ls -F command after each time you issue the
 mkdir command to ensure that the directory was built. Instead, use the -v
option on the mkdir command to receive verification that the directory was
successfully constructed.

 Copying Files and Directories
 To copy a fi le or directory locally, use the cp utility. To issue this command, you use cp
along with any needed options or arguments. The basic syntax structure for the command
is as follows:

 cp [OPTION]… SOURCE DEST

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 191

The program’s options, as shown in the structure, are not required. However, the source
(SOURCE) and destination (DEST) are required, as shown in a basic cp command example
within Listing 4.14.

Listing 4.14: Using the cp command

$ pwd
/home/Christine/SpaceOpera/Emphasis
$
$ ls
melodrama.txt
$
$ cp melodrama.txt space-warfare.txt
$
$ ls
melodrama.txt space-warfare.txt
$
$ cp melodrama.txt
cp: missing destination file operand after 'melodrama.txt'
Try 'cp --help' for more information.
$

In Listing 4.14, the first time the cp command is used, both the source file and its desti-
nation are specified. Thus, no problems occur. However, the second time the cp command
is used, the destination filename is missing. This causes the source file to not be copied and
generates an error message.

There are several useful cp command options. Many will help protect you from mak-
ing a grievous mistake, such as accidentally overwriting a file or its permissions. Table 4.2
shows a few of the more commonly used options.

ta b Le 4 . 2 The cp command’s commonly used options

Short Long Description

-a --archive Perform a recursive copy and keep all the files’ original
attributes, such as permissions, ownership, and timestamps.

-f --force Overwrite any preexisting destination files with same name
as DEST.

-i --interactive Ask before overwriting any preexisting destination files with
same name as DEST.

-n --no-clobber Do not overwrite any preexisting destination files with same
name as DEST.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

192 Chapter 4 ■ Managing Files

Short Long Description

-R , -r --recursive Copy a directory’s contents, and also copy the contents
of any subdirectory within the original directory tree
(recursive).

-u --update Only overwrite preexisting destination files with the same
name as DEST , if the source file is newer.

 -v --verbose Provide detailed command action information as command
executes.

 When you’re copying files over a network to a remote host, the file transfer
process typically needs protection via encryption methods. OpenSSH can
provide the needed data privacy for this type of copy using the scp com-
mand (see Chapter 10).

 To copy a directory, you need to add the -R (or -r) option to the cp command. This
option enacts a recursive copy. A recursive copy will create a new directory (DEST) and
copy any fi les the source directory contains, source directory subdirectories, and their fi les
as well. Listing 4.15 shows an example of how to do a recursive copy as well as how not to
do one.

 Listing 4.15: Performing a recursive copy with the cp command

 $ pwd
 /home/Christine/SpaceOpera
 $
 $ ls -F
 Emphasis/
 $
 $ cp Emphasis Story-Line
 cp: omitting directory 'Emphasis'
 $
 $ ls -F
 Emphasis/
 $
 $ cp -R Emphasis Story-Line
 $
 $ ls -F
 Emphasis/ Story-Line/
 $
 $ ls -R Emphasis

ta b Le 4 . 2 The cp command’s commonly used options (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 193

Emphasis:
chivalric-romance.txt melodrama.txt
interplanatary-battles.txt space-warfare.txt
$
$ ls -R Story-Line/
Story-Line/:
chivalric-romance.txt melodrama.txt
interplanatary-battles.txt space-warfare.txt
$

Notice that the first time the cp command is used in Listing 4.15, the -R option is not
used, and thus the source directory is not copied. The error message generated, cp: omitting
directory, can be a little confusing, but essentially it is telling you that the copy will not take
place. When the cp -R command is used to copy the source directory in Listing 4.15, it is
successful. The recursive copy option is one of the few command options that can be upper-
case, -R, or lowercase, -r.

Moving/Renaming Files and Directories
To move or rename a file or directory locally, you use a single command: the mv command.
The command’s basic syntax is nearly the same as the cp command:

mv [OPTION]… SOURCE DEST

The commonly used mv command options are also similar to cp command options.
However, you’ll notice in Table 4.3 that there are fewer typical mv command options. As
always, be sure to view the mv utility’s man pages, using the man mv command, to review all
the options for certification studying purposes and explore uncommon options, which may
be useful to you.

ta b Le 4 . 3 The mv command’s commonly used options

Short Long Description

-f --force Overwrite any preexisting destination files with the same
name as DEST.

-i --interactive Ask before overwriting any preexisting destination files with
the same name as DEST.

-n --no-clobber Do not overwrite any preexisting destination files with the
same name as DEST.

-u --update Only overwrite preexisting destination files with the same
name as DEST if the source file is newer.

-v --verbose Provide detailed command action information as the
command executes.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

194 Chapter 4 ■ Managing Files

The move command is very simple to use. A few examples of renaming a file as well
as employing the -i option to avoid renaming a file to a preexisting file are shown in
Listing 4.16.

Listing 4.16: Using the mv command

$ ls
chivalric-romance.txt melodrama.txt
interplanatary-battles.txt space-warfare.txt
$
$ mv space-warfare.txt risk-taking.txt
$
$ ls
chivalric-romance.txt melodrama.txt
interplanatary-battles.txt risk-taking.txt
$
$ mv -i risk-taking.txt melodrama.txt
mv: overwrite 'melodrama.txt'? n
$

When renaming an entire directory, there are no additional required command
options. Just issue the mv command as you would for renaming a file, as shown in
Listing 4.17.

Listing 4.17: Renaming a directory using the mv command

$ pwd
/home/Christine/SpaceOpera
$
$ ls -F
Emphasis/ Story-Line/
$
$ mv -i Story-Line Story-Topics
$
$ ls -F
Emphasis/ Story-Topics/
$

You can move a file and rename it all in one simple mv command as shown in Listing 4.18.
The SOURCE uses the file’s current directory reference and current name. The DEST uses the
file’s new location as well as its new name.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 195

Listing 4.18: Moving and renaming a file using the mv command

$ pwd
/home/Christine/SpaceOpera
$
$ ls
Emphasis Story-Topics
$
$ ls Emphasis/
chivalric-romance.txt melodrama.txt
interplanatary-battles.txt risk-taking.txt
$
$ ls Story-Topics/
chivalric-romance.txt melodrama.txt
interplanatary-battles.txt space-warfare.txt
$
$ mv Emphasis/risk-taking.txt Story-Topics/risks.txt
$
$ ls Emphasis/
chivalric-romance.txt interplanatary-battles.txt melodrama.txt
$
$ ls Story-Topics/
chivalric-romance.txt melodrama.txt space-warfare.txt
interplanatary-battles.txt risks.txt
$

In Listing 4.18, the file risk-taking.txt is located in the Emphasis directory. Employing
a single mv command, it is moved to the Story-Topics directory and renamed to risks.txt
at the same time.

Deleting Files and Directories
Tidying up an entire filesystem or simply your own directory space often starts with delet-
ing unneeded files and directories. Understanding the commands and their switches is para-
mount to avoid mistakes in removing these items.

The most flexible and heavily used deletion utility is the remove tool. It is employed via
the rm command, and the basic syntax is as follows:

rm [OPTION]… FILE

There are many very useful options for the rm utility, so be sure to view its man pages to
see them all. The most commonly used options are listed in Table 4.4.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

196 Chapter 4 ■ Managing Files

ta b Le 4 . 4 The rm command’s commonly used options

Short Long Description

-d --dir Delete any empty directories.

-f --force Continue on with the deletion process, even if some files
designated by the command for removal do not exist, and do
not ask prior to deleting any existing files.

-i --interactive Ask before deleting any existing files.

-I N/A Ask before deleting more than three files or when using the
-r option.

-R, -r --recursive Delete a directory’s contents, and also delete the contents
of any subdirectory within the original directory tree
(recursive).

-v --verbose Provide detailed command action information as command
executes.

To delete a single file, you can use the rm command, designating the filename to remove
and not using any switches. However, it is always a good idea to use the -i (or --interactive)
option to ensure that you are not deleting the wrong file, as demonstrated in Listing 4.19.

Listing 4.19: Deleting a file using the rm command

$ ls Parrot-full-3.7_amd64.iso
Parrot-full-3.7_amd64.iso
$
$ rm -i Parrot-full-3.7_amd64.iso
rm: remove write-protected regular file 'Parrot-full-3.7_amd64.iso'? y
$
$ ls Parrot-full-3.7_amd64.iso
ls: cannot access Parrot-full-3.7_amd64.iso: No such file or directory
$
$ rm -i Parrot-full-3.7_amd64.iso
rm: cannot remove 'Parrot-full-3.7_amd64.iso': No such file or directory
$
$ rm -f Parrot-full-3.7_amd64.iso
$

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 197

Notice also in Listing 4.19 that when the file has been deleted, if you reissue the rm -i
command, an error message is generated, but if you issue the rm -f command, it is silent
concerning the missing file. The -f (or --force) switch is useful when you are deleting
several files and you don’t want to display any error messages.

Removing a directory tree or a directory full of files can be tricky. If you just issue the
rm -i command, you will get an error message as shown in Listing 4.20. Instead, you
need to add the -R or -r option in order for the directory and the files it is managing to
be deleted.

Listing 4.20: Deleting a directory containing files using the rm command

$ cd SpaceOpera/
$
$ ls -F
Emphasis/ Story-Topics/
$
$ rm -i Emphasis/
rm: cannot remove 'Emphasis/': Is a directory
$
$ rm -ir Emphasis
rm: descend into directory 'Emphasis'? y
rm: remove regular empty file 'Emphasis/melodrama.txt'? y
rm: remove regular empty file 'Emphasis/interplanatary-battles.txt'? y
rm: remove regular empty file 'Emphasis/chivalric-romance.txt'? y
rm: remove directory 'Emphasis'? y
$
$ ls -F
Story-Topics/
$

If you have lots of files to delete, want to ensure that you are deleting the correct files, and
don’t want to have to answer y for every file to delete, employ the -I option instead of the
-i switch. It will ask before deleting more than three files as well as when you are deleting a
directory full of files and are using one of the recursive switches, as shown in Listing 4.21.

Listing 4.21: Employing the rm command’s -I option

$ ls -F
Story-Topics/
$
$ rm -Ir Story-Topics/
rm: remove 1 argument recursively? y
$
$ ls -F
$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

198 Chapter 4 ■ Managing Files

Deleting an empty directory (a directory containing no files) is very easy. Simply use the
remove empty directories tool, using the rmdir command. You’ll find that adding the -v
(or --verbose) switch is helpful as well, as shown in Listing 4.22.

Listing 4.22: Using the rmdir command

$ mkdir -v EmptyDir
mkdir: created directory 'EmptyDir'
$
$ rmdir -v EmptyDir/
rmdir: removing directory, 'EmptyDir/'
$

If you want to remove a directory tree that is free of files but contains empty subdirecto-
ries, you can also employ the rmdir utility. The -p (or --parents) switch is required along
with providing the entire directory tree name as an argument. An example is shown in
Listing 4.23.

Listing 4.23: Using the rmdir command to delete an empty directory tree

$ mkdir -vp EmptyDir/EmptySubDir
mkdir: created directory 'EmptyDir'
mkdir: created directory 'EmptyDir/EmptySubDir'
$
$ rmdir -vp EmptyDir/EmptySubDir
rmdir: removing directory, 'EmptyDir/EmptySubDir'
rmdir: removing directory, 'EmptyDir'
$

You may have a situation where you need to remove only empty directories from a
 directory tree. In this case, you will need to use the rm command and add the -d (or --dir)
switch, as shown in Listing 4.24.

Listing 4.24: Using the rm command to delete empty directories in a tree

$ mkdir -v EmptyDir
mkdir: created directory 'EmptyDir'
$
$ mkdir -v NotEmptyDir
mkdir: created directory 'NotEmptyDir'
$
$ touch NotEmptyDir/File42.txt
$
$ rm -id EmptyDir NotEmptyDir
rm: remove directory 'EmptyDir'? y
rm: cannot remove 'NotEmptyDir': Directory not empty
$

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 199

 Understanding the commands used to create and remove directories along with the vari-
ous commands to view, create, copy, move, rename, and delete fi les is important. Also,
having a fi rm grasp on their commonly used command options is vital knowledge. This
expertise is a valuable tool in your Linux command-line tool belt.

 Compressing File Commands
 Substantial fi les, such a backup fi les, can potentially deplete large amounts of disk or offl ine
media space. You can reduce this consumption via data compression tools. The following
popular utilities are available on Linux:

 ■ gzip

 ■ bzip2

 ■ xz

 ■ zip

 The advantages and disadvantages of each of these data compression methods are
explored in this section.

gzip The gzip utility was developed in 1992 as a replacement for the old compress pro-
gram. Using the Lempel-Ziv (LZ77) algorithm to achieve text-based fi le compression rates
of 60–70 percent, gzip has long been a popular data compression utility. To compress a
fi le, type gzip followed by the fi le’s name. The original fi le is replaced by a compressed
version with a .gz fi le extension. To reverse the operation, type gunzip followed by the
compressed fi le’s name.

bzip2 Developed in 1996, the bzip2 utility offers higher compression rates than gzip but
takes slightly longer to perform the data compression. The bzip2 utility employs multiple
layers of compression techniques and algorithms. Until 2013, this data compression utility
was used to compress the Linux kernel for distribution. To compress a fi le, type bzip2 fol-
lowed by the fi le’s name. The original fi le is replaced by a compressed version with a .bz2
fi le extension. To reverse the operation, type bunzip2 followed by the compressed fi le’s
name, which decompresses (defl ates) the data.

 Originally there was a bzip utility program. However, in its layered
approach, a patented data compression algorithm was employed. Thus,
 bzip2 was created to replace it and uses the Huffman coding algorithm
instead, which is patent free.

 xz Developed in 2009, the xz data compression utility quickly became very popular
among Linux administrators. It boasts a higher default compression rate than bzip2 and
 gzip via the LZMA2 compression algorithm—though by using certain xz command
options, you can employ the legacy LZMA compression algorithm, if needed or desired.
The xz compression utility in 2013 replaced bzip2 for compressing the Linux kernel for
distribution. To compress a fi le, type xz followed by the fi le’s name. The original fi le is
replaced by a compressed version with an .xz fi le extension. To reverse the operation, type
 unxz followed by the compressed fi le’s name.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

200 Chapter 4 ■ Managing Files

zip The zip utility is different from the other data compression utilities in that it operates
on multiple files. If you have ever created a zip file on a Windows operating system, then
you’ve used this file format. Multiple files are packed together in a single file, often called
a folder or an archive file, and then compressed. Another difference from the other Linux
compression utilities is that zip does not replace the original file(s). Instead, it places a copy
of the file(s) into an archive file.

To archive and compress files with zip, type zip followed by the final archive file’s name,
which traditionally ends in a .zip extension. After the archive file, type one or more names
of files you desire to place into the compressed archive, separating them with a space. The
original files remain intact, but a copy of them is placed into the compressed zip archive
file. To reverse the operation, type unzip followed by the compressed archive file’s name.

It’s helpful to see a side-by-side comparison of the various compression utilities using
their defaults. In Listing 4.25, an example on a CentOS Linux distribution is shown.

Listing 4.25: Comparing the various Linux compression utilities

cp /var/log/wtmp wtmp
#
cp wtmp wtmp1
cp wtmp wtmp2
cp wtmp wtmp3
cp wtmp wtmp4
#
ls -lh wtmp?
-rw-r--r--. 1 root root 210K Oct 9 19:54 wtmp1
-rw-r--r--. 1 root root 210K Oct 9 19:54 wtmp2
-rw-r--r--. 1 root root 210K Oct 9 19:54 wtmp3
-rw-r--r--. 1 root root 210K Oct 9 19:54 wtmp4
#
gzip wtmp1
bzip2 wtmp2
xz wtmp3
zip wtmp4.zip wtmp4
 adding: wtmp4 (deflated 96%)
#
ls -lh wtmp?.*
-rw-r--r--. 1 root root 7.7K Oct 9 19:54 wtmp1.gz
-rw-r--r--. 1 root root 6.2K Oct 9 19:54 wtmp2.bz2
-rw-r--r--. 1 root root 5.2K Oct 9 19:54 wtmp3.xz
-rw-r--r--. 1 root root 7.9K Oct 9 19:55 wtmp4.zip
#
ls wtmp?
wtmp4
#

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 201

 In Listing 4.25, fi rst the /var/log/wtmp fi le is copied to the local directory using super
user privileges. Four copies of this fi le are then made. Using the ls -lh command, you can
see in human-readable format that the wtmp fi les are 210K in size. Next, the various com-
pression utilities are employed. Notice that when using the zip command, you must give it
the name of the archive fi le, wtmp4.zip , and follow it with any fi lenames. In this case, only
 wtmp4 is put into the zip archive.

 After the fi les are compressed with the various utilities, another ls -lh command is
issued in Listing 4.25. Notice the various fi le extension names as well as the fi les’ com-
pressed sizes. You can see that the xz program produces the highest compression of this
fi le, because its fi le is the smallest in size. The last command in the listing shows that all the
compression programs but zip removed the original fi le.

 For the previous data compression utilities, you can specify the level of
compression and control the speed via the - # option. The # is a number
from 1 to 9, where 1 is the fastest but provides the lowest compression. A
9 is the slowest but the highest compression method. The zip utility does
not yet support these levels for compression, but it does for decompres-
sion. Typically, the utilities use -6 as the default compression level. It is a
good idea to review these level specifications in each utility’s man page—
there are useful but subtle differences.

 If you need to view the contents of a compressed fi le, you can do so without switching
the fi le back to an uncompressed format. Three variants of the cat command can help in
this task: bzcat , xzcat , and zcat . These utilities temporarily decompress the fi le and show
its contents to STDOUT. An example of creating an xz compressed fi le and using xcat to
display its contents is shown in Listing 4.26.

 Listing 4.26: Using the xcat command to view an xz compressed file’s contents

 $ xz alphabet.txt
 $
 $ ls alphabet*
 alphabet.txt.xz
 $
 $ xzcat alphabet.txt.xz
 Alpha
 Tango
 Bravo
 Echo
 Foxtrot
 $
 $ ls alphabet*
 alphabet.txt.xz
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

202 Chapter 4 ■ Managing Files

 Keep in mind that you need xzcat to display an xz compressed fi le. You cannot use
it to display a bzip2 compressed fi le. To help keep things straight, as well as understand
additional commands that mimic these various compressed fi le display commands, see
Table 4.5 .

 ta b Le 4 .5 The compressed file display commands

Command Equivalent Description

 bzcat bzip2 -dc Used to display bzip2 compressed files.

 xzcat xz --decompress --stdout Displays the contents of xz compressed files.

 zcat gunzip -c Used to display gzip compressed files. Some
Unix-like systems have a gzcat command
instead.

 Notice that the zcat utility displays gzip compressed fi les and not zip fi les. That can be
confusing.

 If you have a data file that does not have the proper file extension, remem-
ber you can use the file command to uncover its type. For example, you
could type file filename to determine whether it was a text file, an
archive file, or something else. If it is a compressed data file, you’ll even
learn what compression method was used to create it. That’s useful!

 Archiving File Commands
 There are several programs you can employ for managing backups. Some of the more popu-
lar products are Amanda, Bacula, Bareos, Duplicity, and BackupPC. Yet often these GUI
and/or web-based programs have command-line utilities at their core. Our focus here is on
some of those command-line utilities:

 ■ cpio

 ■ dd

 ■ tar

 Copying with cpio
 The cpio utility’s name stands for “copy in and out.” It gathers together fi le copies and
stores them in an archive fi le. The program has several nice options. The more commonly
used ones are described in Table 4.6 .

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 203

ta b Le 4 .6 The cpio command’s commonly used options

Short Long Description

-I N/A Designates an archive file to use.

-i --extract Copies files from an archive or displays the
files within the archive, depending upon the
other options employed. Called copy-in mode.

N/A --no-absolute-filenames Designates that only relative path names are
to be used. (The default is to use absolute path
names.)

-o --create Creates an archive by copying files into it.
Called copy-out mode.

-t --list Displays a list of files within the archive. This
list is called a table of contents.

-v --verbose Displays each file’s name as each file is
processed.

To create an archive using the cpio utility, you have to generate a list of files and then
pipe them into the command. Listing 4.27 shows an example of doing this task.

Listing 4.27: Employing cpio to create an archive

$ ls Project4?.txt
Project42.txt Project43.txt Project44.txt
Project45.txt Project46.txt
$
$ ls Project4?.txt | cpio -ov > Project4x.cpio
Project42.txt
Project43.txt
Project44.txt
Project45.txt
Project46.txt
59 blocks
$
$ ls Project4?.*
Project42.txt Project44.txt Project46.txt
Project43.txt Project45.txt Project4x.cpio
$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

204 Chapter 4 ■ Managing Files

 Using the ? wildcard and the ls command, various text fi les within the present working
directory are displayed fi rst in Listing 4.27. This command is then used and its STDOUT is
piped as STDIN to the cpio utility. (See Chapter 1 if you need a refresher on STDOUT and
STDIN.) The options used with the cpio command are -ov , which create an archive con-
taining copies of the listed fi les and display the fi le’s name as they are copied. The archive
fi le used is named Project4x.cpio . Though not necessary, it is considered good form to use
the .cpio extension on cpio archive fi les.

 You can back up data based on its metadata, and not its file location, via
the cpio utility. For example, suppose you want to create a cpio archive
for any files within the virtual directory system owned by the JKirk user
account. You can use the find / -user JKirk command (covered later in
this chapter) and pipe it into the cpio utility in order to create the archive
file. This is a useful feature.

 You can view the fi les stored within a cpio archive fairly easily. Just employ the cpio
command again, and use its -itv options and the -I option to designate the archive fi le, as
shown in Listing 4.28.

 Listing 4.28: Using cpio to list an archive’s contents

 $ cpio -itvI Project4x.cpio
 -rw-r--r-- 1 Christin Christin 29900 Aug 19 17:37 Project42.txt
 -rw-rw-r-- 1 Christin Christin 0 Aug 19 18:07 Project43.txt
 -rw-rw-r-- 1 Christin Christin 0 Aug 19 18:07 Project44.txt
 -rw-rw-r-- 1 Christin Christin 0 Aug 19 18:07 Project45.txt
 -rw-rw-r-- 1 Christin Christin 0 Aug 19 18:07 Project46.txt
 59 blocks
 $

 Though not displayed in Listing 4.28, the cpio utility maintains each fi le’s absolute
directory reference. Thus, it is often used to create system image and full backups.

 To restore fi les from an archive, employ just the -ivI options. However, because cpio
maintains the fi les’ absolute paths, this can be diffi cult if you need to restore the fi les to
another directory location. To do this, you need to use the --no-absolute-filenames
option, as shown in Listing 4.29.

 Listing 4.29: Using cpio to restore files to a different directory location

 $ ls -dF Projects
 Projects/
 $
 $ mv Project4x.cpio Projects/
 $
 $ cd Projects

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 205

$ pwd
/home/Christine/Answers/Projects
$
$ ls Project4?.*
Project4x.cpio
$
$ cpio -iv --no-absolute-filenames -I Project4x.cpio
Project42.txt
Project43.txt
Project44.txt
Project45.txt
Project46.txt
59 blocks
$
$ ls Project4?.*
Project42.txt Project44.txt Project46.txt
Project43.txt Project45.txt Project4x.cpio
$

In Listing 4.29 the Project4x.cpio archive file is moved into a preexisting subdi-
rectory, Projects. By stripping the absolute path names from the archived files via the
--no-absolute-filenames option, you restore the files to a new directory location. If you
wanted to restore the files to their original location, leave that option off and just use the
other cpio switches shown in Listing 4.29.

Archiving with tar
The tar utility’s name stands for tape archiver, and it is popular for creating data backups.
As with cpio, with the tar command the selected files are copied and stored in a single file.
This file is called a tar archive file. If this archive file is compressed using a data compres-
sion utility, the compressed archive file is called a tarball.

The tar program has several useful options. The more commonly used ones for creating
data backups are described in Table 4.7.

ta b Le 4 .7 The tar command’s commonly used tarball creation options

Short Long Description

-c --create Creates a tar archive file. The backup can be a full or
incremental backup, depending on the other selected
options.

-u --update Appends files to an existing tar archive file, but
copies only those files that were modified since the
original archive file was created.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

206 Chapter 4 ■ Managing Files

Short Long Description

-g --listed-incremental Creates an incremental or full archive based on
metadata stored in the provided file.

-z --gzip Compresses tar archive file into a tarball using gzip .

-j --bzip2 Compresses tar archive file into a tarball using bzip2 .

-J --xz Compresses tar archive file into a tarball using xz .

-v --verbose Displays each file’s name as each file is processed.

 To create an archive using the tar utility, you have to add a few arguments to the
options and the command. Listing 4.30 shows an example of creating a tar archive.

 Listing 4.30: Using tar to create an archive file

 $ ls Project4?.txt
 Project42.txt Project43.txt Project44.txt
 Project45.txt Project46.txt
 $
 $ tar -cvf Project4x.tar Project4?.txt
 Project42.txt
 Project43.txt
 Project44.txt
 Project45.txt
 Project46.txt
 $

 In Listing 4.30, three options are used. The -c option creates the tar archive. The -v
option displays the fi lenames as they are placed into the archive fi le. Finally, the -f option
designates the archive fi lename, which is Project42x.tar . Though not required, it is con-
sidered good form to use the .tar extension on tar archive fi les. The command’s last argu-
ment designates the fi les to copy into this archive.

 You can also use the old-style tar command options. For this style, you
remove the single dash from the beginning of the tar option. For exam-
ple, -c becomes c . Keep in mind that additional old-style tar command
options must not have spaces between them. Thus tar cvf is valid, but
tar c v f is not.

ta b Le 4 .7 The tar command’s commonly used tarball creation options (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 207

 If you are backing up lots of fi les or large amounts of data, it is a good idea to employ a
compression utility. This is easily accomplished by adding an additional switch to your tar
command options. An example is shown in Listing 4.31, which uses gzip compression to
create a tarball.

 Listing 4.31: Using tar to create a tarball

 $ tar -zcvf Project4x.tar.gz Project4?.txt
 Project42.txt
 Project43.txt
 Project44.txt
 Project45.txt
 Project46.txt
 $
 $ ls Project4x.tar.gz
 Project4x.tar.gz
 $

 Notice in Listing 4.31 that the tarball fi lename has the .tar.gz fi le extension. It is consid-
ered good form to use the .tar extension and tack on an indicator showing the compression
method that was used. However, you can shorten it to .tgz if desired.

 There are many compression methods. However, when you use a
compression utility along with an archive and restore program for data
backups, it is vital that you use a lossless compression method. A lossless
compression is just as it sounds; no data is lost. The gzip , bzip2 , xz , and
zip utilities provide lossless compression. Obviously it is important not to
lose data when doing backups.

 There is a useful variation of this command to create both full and incremental backups.
A simple example helps to explain this concept. The process for creating a full backup is
shown in Listing 4.32.

 Listing 4.32: Using tar to create a full backup

 $ tar -g FullArchive.snar -Jcvf Project42.txz Project4?.txt
 Project42.txt
 Project43.txt
 Project44.txt
 Project45.txt
 Project46.txt
 $
 $ ls FullArchive.snar Project42.txz
 FullArchive.snar Project42.txz
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

208 Chapter 4 ■ Managing Files

 Notice the -g option in Listing 4.31. The -g option creates a fi le, called a snapshot fi le,
FullArchive.snar . The .snar fi le extension indicates that the fi le is a tarball snapshot fi le.
The snapshot fi le contains metadata used in association with tar commands for creating
full and incremental backups. The snapshot fi le contains fi le timestamps, so the tar utility
can determine whether a fi le has been modifi ed since it was last backed up. The snapshot
fi le is also used to identify any fi les that are new or to determine whether fi les have been
deleted since the last backup.

 The previous example created a full backup of the designated fi les along with the meta-
data snapshot fi le, FullArchive.snar . Now the same snapshot fi le will help determine
whether any fi les have been modifi ed, are new, or have been deleted to create an incremen-
tal backup, as shown in Listing 4.33.

 Listing 4.33: Using tar to create an incremental backup

 $ echo "Answer to everything" >> Project42.txt
 $
 $ tar -g FullArchive.snar -Jcvf Project42_Inc.txz Project4?.txt
 Project42.txt
 $
 $ ls Project42_Inc.txz
 Project42_Inc.txz
 $

 In Listing 4.33, the fi le Project42.txt is modifi ed. Again, the tar command uses
the -g option and points to the previously created FullArchive.snar snapshot fi le.
This time, the metadata within FullArchive.snar shows the tar command that the
Project42.txt fi le has been modifi ed since the previous backup. Therefore, the new
tarball only contains the Project42.txt fi le, and it is effectively an incremental backup.
You can continue to create additional incremental backups using the same snapshot fi le
as needed.

 The tar command views full and incremental backups in levels. A full
backup is one that includes all of the files indicated, and it is considered a
level 0 backup. The first tar incremental backup after a full backup is con-
sidered a level 1 backup. The second tar incremental backup is considered
a level 2 backup, and so on.

 Whenever you create data backups, it is a good practice to verify them. Table 4.8 pro-
vides some tar command options for viewing and verifying data in a tar fi le.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 209

ta b Le 4 . 8 The tar command’s commonly used archive verification options

Short Long Description

-d --compare
--diff

Compares a tar archive file’s members with external
files and lists the differences.

-t --list Displays a tar archive file’s contents.

-W --verify Verifies each file as the file is processed. This option
cannot be used with the compression options.

Verification can take several different forms. You might ensure that the desired files
(sometimes called members) are included in the file by using the -v option on the tar com-
mand in order to watch the files being listed as they are included in the archive file.

You can also verify that desired files are included in your backup after the fact. Use the
-t option to list tarball or archive file contents. An example is shown in Listing 4.34.

Listing 4.34: Using tar to list a tarball’s contents

$ tar -tf Project4x.tar.gz
Project42.txt
Project43.txt
Project44.txt
Project45.txt
Project46.txt
$

You can verify files within an archive file by comparing them against the current files.
The option to accomplish this task is the -d option. An example is shown in Listing 4.35.

Listing 4.35: Using tar to compare tarball members to external files

$ tar -df Project4x.tar.gz
Project42.txt: Mod time differs
Project42.txt: Size differs
$

Another good practice is to verify your files automatically immediately after the tar
archive is created. This is easily accomplished by tacking on the -W option, as shown in
Listing 4.36.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

210 Chapter 4 ■ Managing Files

Listing 4.36: Using tar to verify backed-up files automatically

$ tar -Wcvf ProjectVerify.tar Project4?.txt
Project42.txt
Project43.txt
Project44.txt
Project45.txt
Project46.txt
Verify Project42.txt
Verify Project43.txt
Verify Project44.txt
Verify Project45.txt
Verify Project46.txt
$

You cannot use the -W option if you employ compression to create a tarball. However,
you could create and verify the archive first and then compress it in a separate step. You
can also use the -W option when you extract files from a tar archive. This is convenient for
instantly verifying files restored from archives.

Table 4.9 lists some of the options that you can use with the tar utility to restore data
from a tar archive file or tarball. Be aware that several options used to create a tar file,
such as -g and -W, can also be used when restoring data.

ta b Le 4 . 9 The tar command’s commonly used file restore options

Short Long Description

-x --extract
--get

Extracts files from a tarball or archive file and places
them in the current working directory

-z --gunzip Decompresses files in a tarball using gunzip

-j --bunzip2 Decompresses files in a tarball using bunzip2

-J --unxz Decompresses files in a tarball using unxz

Extracting files from an archive or tarball is fairly simple using the tar utility. Listing 4.37
shows an example of extracting files from a previously created tarball.

Listing 4.37: Using tar to extract files from a tarball

$ mkdir Extract
$
$ mv Project4x.tar.gz Extract/
$

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 211

 $ cd Extract
 $
 $ tar -zxvf Project4x.tar.gz
 Project42.txt
 Project43.txt
 Project44.txt
 Project45.txt
 Project46.txt
 $
 $ ls
 Project42.txt Project44.txt Project46.txt
 Project43.txt Project45.txt Project4x.tar.gz
 $

 In Listing 4.37, a new subdirectory, Extract , is created. The tarball created back in
Listing 4.31 is moved to the new subdirectory, and then the fi les are restored from the
tarball. If you compare the tar command used in this listing to the one used in Listing 4.32,
you’ll notice that here the -x option was substituted for the -c option used in Listing 4.37.
Also notice in Listing 4.37 that the tarball is not removed after a fi le extraction, so you can
use it again and again, as needed.

 The tar command has many additional capabilities, such as using tar
backup parameters and/or the ability to create backup and restore shell
scripts. Take a look at GNU tar website, www.gnu.org/software/tar/
manual , to learn more about this popular command-line backup utility.

 Since the tar utility is the tape archiver, you can also place your tarballs or archive fi les
on tape, if desired. After mounting and properly positioning your tape, substitute your
SCSI tape device fi lename, such as /dev/st0 or /dev/nst0 , in place of the archive or tarball
fi lename within your tar command.

 Duplicating with dd
 The dd utility allows you to back up nearly everything on a disk, including the old Master
Boot Record (MBR) partitions some older Linux distributions still employ. It’s primarily
used to create low-level copies of an entire hard drive or partition. It is often used in digital
forensics for creating system images, copying damaged disks, and wiping partitions.

 The command itself is fairly straightforward. The basic syntax structure for the dd util-
ity is as follows:

 dd if= INPUT_DEVICE of= OUTPUT-DEVICE [OPERANDS]

 The OUTPUT-DEVICE is either an entire drive or a partition. The INPUT-DEVICE is the same.
Just make sure that you get the right device for out and the right one for in; otherwise, you
may unintentionally wipe data.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

212 Chapter 4 ■ Managing Files

Besides the of and if, there are a few other arguments (called operands) that can assist
in dd operations. The more commonly used ones are described in Table 4.10.

ta b Le 4 .10 The dd command’s commonly used operands

Operand Description

bs=BYTES Sets the maximum block size (number of BYTES) to read and write at
a time. The default is 512 bytes.

count=N Sets the number (N) of input blocks to copy.

status=LEVEL Sets the amount (LEVEL) of information to display to STDERR.

The status=LEVEL operand needs a little more explanation. LEVEL can be set to one of
the following:

 ■ none only displays error messages.

 ■ noxfer does not display final transfer statistics.

 ■ progress displays periodic transfer statistics.

It is usually easier to understand the dd utility through examples. A snipped example of
performing a bit-by-bit copy of one entire disk to another disk is shown in Listing 4.38.

Listing 4.38: Using dd to copy an entire disk

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
[…]
sdb 8:16 0 4M 0 disk
└─sdb1 8:17 0 4M 0 part
sdc 8:32 0 1G 0 disk
└─sdc1 8:33 0 1023M 0 part
[…]
#
dd if=/dev/sdb of=/dev/sdc status=progress
8192+0 records in
8192+0 records out
4194304 bytes (4.2 MB) copied, 0.232975 s, 18.0 MB/s
#

In Listing 4.38, the lsblk command is used first. When copying disks via the dd util-
ity, it is prudent to make sure the drives are not mounted anywhere in the virtual direc-
tory structure. The two drives involved in this operation, /dev/sdb and /dev/sdc, are not
mounted.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 213

With the dd command, the if operand indicates the disk we wish to copy, which is the
/dev/sdb drive. The of operand indicates that the /dev/sdc disk will hold the copied data.
Also the status=progress will display periodic transfer statistics. You can see in Listing 4.38
from the transfer statistics that there is not much data on /dev/sdb, so the dd operation
finished quickly.

You can also create a system image backup using a dd command similar to the one
shown in Listing 4.38, with a few needed modifications. The basic steps are as follows:

1. Shut down your Linux system.

2. Attach the necessary spare drives. You’ll need one drive the same size or larger for each
system drive.

3. Boot the system using a live CD, DVD, or USB so that you can either keep the system’s
drives unmounted or unmount them prior to the backup operation.

4. For each system drive, issue a dd command, specifying the drive to back up with the if
operand and the spare drive with the of operand.

5. Shut down the system, and remove the spare drives containing the system image.

6. Reboot your Linux system.

If you have a disk you are getting rid of, you can also use the dd command to zero out
the disk. An example is shown in Listing 4.39.

Listing 4.39: Using dd to zero an entire disk

dd if=/dev/zero of=/dev/sdc status=progress
1061724672 bytes (1.1 GB) copied, 33.196299 s, 32.0 MB/s
dd: writing to '/dev/sdc': No space left on device
2097153+0 records in
2097152+0 records out
1073741824 bytes (1.1 GB) copied, 34.6304 s, 31.0 MB/s
#

The if=/dev/zero uses the zero device file to write zeros to the disk. You need to per-
form this operation at least 10 times or more to thoroughly wipe the disk. You can also
employ the /dev/random and/or the /dev/urandom device files to put random data onto
the disk. This particular task can take a long time to run for large disks. It is still better to
shred any disks that will no longer be used by your company.

Managing Links
Understanding file and directory links is a vital part of your Linux journey. While many
quickly pick up how to link files, they do not necessarily understand the underlying link
structure. And that can be a problem. In this section, we’ll explore linking files as well as
the implications of links.

There are two types of links. One is a symbolic link, which is also called a soft link. The
other is a hard link, and we’ll take a look at it first.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

214 Chapter 4 ■ Managing Files

Establishing a Hard Link
A hard link is a file or directory that has one index (inode) number but at least two different
filenames. Having a single inode number means that it is a single data file on the filesystem.
Having two or more names means the file can be accessed in multiple ways. Figure 4.1
shows this relationship. In this diagram, a hard link has been created. The hard link has
two filenames, one inode number, and therefore one filesystem location residing on a disk
partition. Thus, the file has two names but is physically one file.

F i gu r e 4 .1 Hard link file relationship

Filename #1 Filename #2(inode #1234)

Disk

A hard link allows you to have a pseudo-copy of a file without truly copying its data.
This is often used in file backups where not enough filesystem space exists to back up the
file’s data. If someone deletes one of the file’s names, you still have another filename that
links to its data.

To create a hard link, use the ln command. For hard links, the original file must exist
prior to issuing the ln command. The linked file must not exist; it is created when the com-
mand is issued. Listing 4.40 shows this command in action.

Listing 4.40: Using the ln command to create a hard link

$ touch OriginalFile.txt
$
$ ls
OriginalFile.txt
$
$ ln OriginalFile.txt HardLinkFile.txt
$
$ ls
HardLinkFile.txt OriginalFile.txt
$
$ ls -i
2101459 HardLinkFile.txt 2101459 OriginalFile.txt
$
$ touch NewFile.txt
$

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 215

 $ ls -og
 total 0
 -rw-rw-r--. 2 0 Aug 24 18:09 HardLinkFile.txt
 -rw-rw-r--. 1 0 Aug 24 18:17 NewFile.txt
 -rw-rw-r--. 2 0 Aug 24 18:09 OriginalFile.txt
 $

 In Listing 4.40, a new blank and empty fi le, OriginalFile.txt , is created via the
touch command. It is then hard-linked to the HardLinkFile.txt via the ln command.
Notice that the OriginalFile.txt was created prior to issuing the ln command, and the
HardLinkFile.txt fi le was created by issuing the ln command. The inode numbers for
these fi les are checked using the ls -i command, and you can see the numbers are the
same for both fi les.

 Also in Listing 4.40, after the hard link is created and the inode numbers are checked, a
new empty fi le is created called NewFile.txt . This was done to compare link counts. Using
the ls -og command, the fi le’s metadata is displayed, which includes fi le type, permissions,
link counts, fi le size, creation dates, and fi lenames. This command is similar to ls -l but
omits fi le owners and groups. You can quickly fi nd the link counts in the command output.
They are right next to the fi les’ sizes, which are all 0 since the fi les are empty. Notice that
both OriginalFile.txt and HardLinkFile.txt have a link count of 2 . This is because they
are both hard-linked to one other fi le. NewFile.txt has a link count of 1 because it is not
hard-linked to another fi le.

 If you want to remove a linked file but not the original file, use the unlink
command. Just type unlink at the command line and include the linked
file name as an argument.

 When you create and use hard links, there are a few important items to remember:

 ■ The original file must exist before you issue the ln command.

 ■ The second filename listed in the ln command must not exist prior to issuing the
 command.

 ■ An original file and its hard links share the same inode number.

 ■ An original file and its hard links share the same data.

 ■ An original file and any of its hard links can exist in different directories.

 ■ An original file and its hard links must exist on the same filesystem.

 Constructing a Soft Link
 Typically, a soft link fi le provides a pointer to a fi le that may reside on another fi lesystem.
The two fi les do not share inode numbers because they do not point to the same data.
Figure 4.2 illustrates the soft link relationship.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

216 Chapter 4 ■ Managing Files

 F i gu r e 4 . 2 Soft link file relationship

Filename #2 (inode #5678) Filename #1 (inode #1234)

Disk

 To create a symbolic link, the ln command is used with the -s or --symbolic option.
An example is shown in Listing 4.41.

 Listing 4.41: Using the ln command to create a soft link

 $ touch OriginalSFile.txt
 $
 $ ls
 OriginalSFile.txt
 $
 $ ln -s OriginalSFile.txt SoftLinkFile.txt
 $
 $ ls -i
 2101456 OriginalSFile.txt 2101468 SoftLinkFile.txt
 $
 $ ls -og
 total 0
 -rw-rw-r--. 1 0 Aug 24 19:04 OriginalSFile.txt
 lrwxrwxrwx. 1 17 Aug 24 19:04 SoftLinkFile.txt -> OriginalSFile.txt
 $

 Similar to a hard link, the original fi le must exist prior to issuing the ln -s command.
The soft-linked fi le must not exist; it is created when the command is issued. In Listing 4.41,
you can see via the ls -i command that soft-linked fi les do not share the same inode num-
ber, unlike hard-linked fi les. Also, soft-linked fi les do not experience a link count increase.
The ls -og command shows this, and it also displays the soft-linked fi le’s pointer to the
original fi le.

 Sometimes you have a soft-linked file that points to another soft-linked file.
If you want to quickly find the final file, use the readlink -f command and
pass one of the soft-linked filenames as an argument to it. The readlink
utility will display the final file’s name and directory location.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using File Management Commands 217

 When creating and using soft links, keep in mind a few important items:

 ■ The original file must exist before you issue the ln -s command.

 ■ The second filename listed in the ln -s command must not exist prior to issuing the
command.

 ■ An original file and its soft links do not share the same inode number.

 ■ An original file and its soft links do not share the same data.

 ■ An original file and any of its soft links can exist in different directories.

 ■ An original file and its soft links can exist in different filesystems.

 Stale links can be a serious security problem. A stale link, sometimes
called a dead link, is when a soft link points to a file that was deleted or
moved. The soft-linked file itself is not removed or updated. If a file with
the original file’s name and location is created, the soft link now points to
that new file. If a malicious file is put in the original file’s place, your serv-
er’s security could be compromised. Use symbolic links with caution and
employ the unlink command if you need to remove a linked file.

 File and directory links are easy to create. However it is important that you understand
the underlying structure of these links in order to use them properly.

 Looking at Practical Link Uses
 When you’re fi rst introduced to hard and soft links on Linux, it’s diffi cult to see their
practical side. They actually have many uses when it comes to supporting your system.
Here are a few:

Version Links When you use a program launcher, such as python or java , it’s conve-
nient if you don’t have to know the currently installed version. Soft links help with this,
as shown here:

 $ which java
 /usr/bin/java
 $
 $ readlink -f /usr/bin/java
 /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.201.b09-2.el7_6.x86_64/jre/bin/java

 This is true with libraries as well (libraries were covered in Chapter 2). The underlying
library fi les can be updated without causing application disruption:

 $ readlink -f /usr/lib64/mysql/libmysqlclient.so.18
 /usr/lib64/mysql/libmysqlclient.so.18.0.0

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

218 Chapter 4 ■ Managing Files

Backups Hard links are useful as a pseudo-backup. This is handy when you have a work-
ing shell script (covered in Chapter 9), program, or data file in your home directory. You
can simply hard-link it to another filename in a subdirectory to protect you from yourself:

$ ln ImportantFile.txt SpaceOpera/ImportantFile.txt
$
$ ls -i ImportantFile.txt SpaceOpera/ImportantFile.txt
17671201 ImportantFile.txt 17671201 SpaceOpera/ImportantFile.txt

Now, if you accidentally delete ImportantFile.txt, you’ve got a backup copy filename that
connects to the original data on the disk. That’s convenient!

Command Substitution As time goes on, program names change. To maintain backward
compatibility to previous command names, often links are employed. In addition, a pro-
gram may be called by multiple commands; thus links save the day here, too. One example
is the make filesystem (mkfs) command for formatting ext2, 3, and 4 filesystems (covered in
Chapter 3). These commands all share the same inode number. Thus, they are hard-linked,
and though they have three names, are a single program, as shown here:

$ ls -i /sbin/mkfs.ext[234]
228513 /sbin/mkfs.ext2 228513 /sbin/mkfs.ext3 228513 /sbin/mkfs.ext4

In this case, the program determines which filesystem type to make based on the filename
called. There’s no need to waste disk space with three programs; one is enough. And for
user simplicity, three filenames are provided.

Sometimes, for command substitution, you’ll discover soft links are employed instead. This
is the case for the /sbin/mkfs.msdos and mkfs.vfat filesystem formatting commands:

$ ls -l /sbin/mkfs.* | grep ^l
lrwxrwxrwx. 1 root root 8 Mar 19 17:10 /sbin/mkfs.msdos -> mkfs.fat
lrwxrwxrwx. 1 root root 8 Mar 19 17:10 /sbin/mkfs.vfat -> mkfs.fat

This is nice, because now a system admin doesn’t have to remember that the command is
actually mkfs.fat and can use mkfs.msdos or mkfs.vfat instead.

Now that you know how to create, copy, move, and delete files, as well as archive and
link files, you can efficiently manage the files and directories in your charge. However, it is
also critical to understand how file security is managed at the most basic level.

Managing File Ownership
The core security feature of Linux is file and directory permissions. Linux accomplishes
that by assigning each file and directory an owner, and allowing that owner to set the basic
security settings to control access to the file or directory. This section walks through how
Linux handles ownership of files and directories.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing File Ownership 219

 Assessing File Ownership
 Linux uses a three-tiered approach to protecting fi les and directories:

 ■ Owner: Within the Linux system, each file and directory is assigned to a single owner.

 ■ Group: The Linux system also assigns each file and directory to a single group of users.
The administrator can assign that group specific privileges to the file or directory that
differ from the owner privileges.

 ■ Others: This category of permissions is assigned accounts that are neither the file
owner nor in the assigned user group.

 You can view the assigned owner and group for a fi le or directory by adding the -l
option to the ls command, as shown in Listing 4.41.

 Listing 4.42: Viewing file owner and group settings

 $ ls -l
 total 12
 -rw-rw-r-- 1 Rich sales 1521 Jan 19 15:38 customers.txt
 -rw-r--r-- 1 Christine sales 479 Jan 19 15:37 research.txt
 -rw-r--r-- 1 Christine sales 696 Jan 19 15:37 salesdata.txt
 $

 In Listing 4.42, the fi rst column defi nes the access permissions assigned to the owner,
group, and others. That will be discussed later in the “Controlling Access to Files” section
of this chapter. The third column shows the user account assigned as the owner of the fi le
(Rich or Christine). The fourth column shows the group assigned to the fi le (sales).

 Many Linux distributions (such as both Ubuntu and CentOS) assign each
user account to a separate group with the exact same name as the user
account. This helps prevent accidental sharing of files. However, this can
also make things a little confusing when you’re working with owner and
group permissions and you see the same name appear in both columns.
Be careful when working in this type of environment.

 When a user creates a fi le or directory, by default the Linux system automatically assigns
that user as the owner. It also uses the primary group of the user as the group designation
for the fi le or directory.

 Changing a File’s Owner
 Only the root user account or those with super user privileges can change the owner
assigned to a fi le or directory by using the chown command. The chown command format
looks like this:

 chown [OPTIONS] NEWOWNER FILENAMES

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

220 Chapter 4 ■ Managing Files

The NEWOWNER parameter is the username of the new owner to assign to the file or directory,
and FILENAMES is the name of the file or directory to change. You can specify more than one
file or directory by placing a space between each file or directory name. An example of chang-
ing the owner of one file is shown in Listing 4.43.

Listing 4.43: Changing a file’s owner with the chown command

$ sudo chown Christine customers.txt
$ ls -l
total 12
-rw-rw-r-- 1 Christine sales 1521 Jan 19 15:38 customers.txt
-rw-r--r-- 1 Christine sales 479 Jan 19 15:37 research.txt
-rw-r--r-- 1 Christine sales 696 Jan 19 15:37 salesdata.txt
$

A few command-line options are available for the chown command, but they are mostly
obscure and not used much. One that may be helpful for you is the -R option, which recur-
sively changes the owner of all files under the specified directory.

Changing a File’s Group
The file or directory owner, the root user account, or an account with super user privileges
can change the group assigned to the file or directory by using the chgrp command. The
chgrp command uses this format:

chgrp [OPTIONS] NEWGROUP FILENAMES

The NEWGROUP parameter is the name of the new user group assigned to the file or direc-
tory, and the FILENAMES parameter is the name of the file or directory to change. If you’re
the owner of the file, you can only change the file’s group to a group in which you have
membership. The root user account and those with super user privileges can change the
group to any group on the system. An example is shown in Listing 4.44.

Listing 4.44: Changing a file’s group with the chgrp command

$ sudo chgrp marketing customers.txt
$ ls -l
total 12
-rw-rw-r-- 1 Christine marketing 1521 Jan 19 15:38 customers.txt
-rw-r--r-- 1 Christine sales 479 Jan 19 15:37 research.txt
-rw-r--r-- 1 Christine sales 696 Jan 19 15:37 salesdata.txt
$

The chgrp command also uses the -R option to recursively change the group assigned to
all files and directories under the specified directory.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Controlling Access to Files 221

 If you have super user privileges, the chown command allows you to
change both the owner and group assigned to a file or directory at the
same time using the format

 chown NEWOWNER:NEWGROUP FILENAMES

 This is often preferred over using the separate chgrp command. You can
also avoid the chgrp command altogether by using

 chown :NEWGROUP FILENAMES

 Using chown this way can be done without any super user privileges, but
you do have to own the file and be a member of the specified new group.

 When you fi rst log into the system, Linux sets your current group membership to the
group listed in your user account record (covered in Chapter 7). You can check your current
group’s name by issuing the id -gn command.

 If you have membership in another group and need to make that group your current
group, type newgrp groupname at the command line. Keep in mind that after you log out,
your current group will be set back to the group listed in your user account record.

 Controlling Access to Files
 When ownership and group membership for a fi le or directory are set, Linux allows certain
accesses based on those settings. This section walks through how Linux handles the basic
permissions settings that you can assign to any fi le or directory on your system.

 Understanding Permissions
 When you use the -l option, as shown in Listing 4.44, you’ll fi nd lots of information con-
cerning a fi le, including its permission settings.

 Listing 4.44: Viewing a file’s long listing

 $ ls -l cake.txt
 -rw-rw-r--. 1 Christine Bakers 42 Apr 24 10:45 cake.txt
 $

 The data displayed in the long listing for a fi le or directory can be a little confusing.
Here is a brief description of the different items along with their value in Listing 4.44:

 ■ File type code (-)

 ■ Permission string (rw-rw-r--)

 ■ Hard link count (1)

 ■ File owner (Christine)

 ■ File group (Bakers)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

222 Chapter 4 ■ Managing Files

 ■ File size (42 bytes)

 ■ Last modification date (April 24 10:45)

 ■ Filename (cake.txt)

Before we cover permissions, you need to know a little more about the file type code.
The different codes are described in Table 4.11.

ta b Le 4 .11 File type codes

Code Description

- The file is a binary file, a readable file (such as a text file), an image file, or a
compressed file.

d The file is a directory.

l The file is a symbolic (soft) link to another file or directory.

p The file is a named pipe or regular pipe used for communication between
two or more processes.

s The file is a socket file, which operates similar to a pipe but allows more
styles of communication, such as bidirectional or over a network.

b The file is a block device, such as a disk drive.

c The file is a character device, such as a point-of-sale device.

Linux uses three types of permission controls. Note that the permissions have a slightly
different meaning depending on whether they are set for a file or on a directory, as shown
in Table 4.12.

ta b Le 4 .12 File vs. directory permissions

Permission File Directory

read Provides the ability to read/view
the data stored within the file

Allows a user to list files contained
within directory

write Allows a user to modify the
data stored in the file

Lets the user create, move (rename),
modify attributes of, and delete files
within the directory

execute Provides the ability to run the
file as a script or binary on
the system

Allows a user to change their present
working directory to this location as
long as this permission is set on all its
parent directories as well

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Controlling Access to Files 223

You can assign each tier of protection (owner, group, and other) different read, write,
and execute permissions. This creates a set of nine different permissions that are assigned
to each file and directory on the Linux system. Figure 4.3 shows the order in which the
 permissions are displayed in the ls -l output.

F i gu r e 4 . 3 File permissions as displayed by the ls -l command

R
e
a
d

Owner

- - - -r w r rwx

Group Others

W
r
i
t
e

E
x
e
c
u
t
e

R
e
a
d

W
r
i
t
e

R
e
a
d

W
r
i
t
e

E
x
e
c
u
t
e

E
x
e
c
u
t
e

The first three characters denote the owner (sometimes called user) permissions in the
order of read, write, and execute. A dash indicates the permission is not set, whereas the r,
w, or x indicate the read, write, or execute permission is set. In Figure 4.3, the file has rw-
for the owner permissions, which means the owner has permissions to read and write to the
file but cannot execute, or run, the file. This is common with plain data files.

The second set of three characters denotes the group permissions for the file. Again,
this uses the read, write, and execute order, with a dash indicating the permission is not
set. A user who is not the file’s owner but whose current group is equal to the file’s group is
granted these permissions to the file.

Finally, the third set of three characters denotes the permissions assigned to user
accounts that are not the owner or a current member of the group assigned to the file or
directory, called other (sometimes called world) permissions. The same order of read,
write, and execute is used.

Changing a File’s Mode
Either an account with super user privileges or the owner of the file/directory can change
the assigned permissions by using the chmod command.

The format of the chmod command can be somewhat confusing. It uses two different
modes for denoting the read, write, and execute permission settings for the owner, group,
and other: symbol and octal mode.

Using chmod with Symbolic Mode
In symbolic mode, you denote permissions by using a letter code for the levels shown in
Table 4.13 along with another letter code for the read (r), write (w), or execute (x) permission.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

224 Chapter 4 ■ Managing Files

ta b Le 4 .13 Symbolic mode levels

Level Description

u owner

g group

o others

a all tiers

The two codes are separated with a plus sign (+) if you want to add the permission, a
minus sign (-) to remove the permission, or an equal sign (=) to set the permission as the
only permission. Listing 4.45 shows an example of this.

Listing 4.45: Changing the file owner

$ chmod g-w customers.txt
$
$ ls -l
total 12
-rw-r--r-- 1 Christine marketing 1521 Jan 19 15:38 customers.txt
-rw-r--r-- 1 Christine sales 479 Jan 19 15:37 research.txt
-rw-r--r-- 1 Christine sales 696 Jan 19 15:37 salesdata.txt
$

In Listing 4.45, the g-w code in the chmod command indicates to remove the write per-
mission for the group from the customers.txt file.

You can combine letter codes for both to make multiple changes in a single chmod com-
mand, as shown in Listing 4.46.

Listing 4.46: Combining permission changes

$ chmod ug=rwx research.txt
$
$ ls -l
total 12
-rw-r--r-- 1 Christine marketing 1521 Jan 19 15:38 customers.txt
-rwxrwxr-- 1 Christine sales 479 Jan 19 15:37 research.txt
-rw-r--r-- 1 Christine sales 696 Jan 19 15:37 salesdata.txt
$

The ug code assigns the change to both the owner and the group, and the rwx code
assigns the read, write, and execute permissions. The equal sign indicates to set those
permissions.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Controlling Access to Files 225

 If you choose to use symbolic mode for the chmod command, be aware
that it’s easy to get the codes confused. For example, don’t use the o code
thinking that it sets file owner permissions. Instead, it sets other (world)
permissions. It would be a bad thing to provide the intended file owner’s
permissions to the world.

 Using chmod with Octal Mode
 The second mode available in chmod is called octal mode . With octal mode the nine permis-
sion bits are represented as three octal numbers, one each for the owner, group, and other
permissions. Table 4.14 shows how the octal number matches the three symbolic mode
permissions.

 ta b Le 4 .14 Octal mode permissions

Octal value Permission Meaning

0 --- no permissions

1 --x execute only

2 -w- write only

3 -wx write and execute

4 r-- read only

5 r-x read and execute

6 rw- read and write

7 rwx read, write, and execute

 You must specify the three octal values in the owner, group, and other in the correct
order, as shown in Listing 4.47.

 Listing 4.47: Using octal mode to assign permissions

 $ chmod 664 research.txt
 $
 $ ls -l
 total 12
 -rw-r--r-- 1 Christine marketing 1521 Jan 19 15:38 customers.txt
 -rw-rw-r-- 1 Christine sales 479 Jan 19 15:37 research.txt
 -rw-r--r-- 1 Christine sales 696 Jan 19 15:37 salesdata.txt
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

226 Chapter 4 ■ Managing Files

The 664 octal mode set the owner and group permissions to read and write (6), but the
others permission to read only (4). You can see the results from the ls output. This is a
handy way to set all of the permissions for a file or directory in a single command.

Setting the Default Mode
When a user creates a new file or directory, the Linux system assigns it a default owner,
group, and permissions. The default owner, as expected, is the user who created the file.
The default group is the owner’s primary group.

The user mask feature defines the default permissions Linux assigns to the file or direc-
tory. The user mask is an octal value that represents the bits to be removed from the default
octal mode 666 permissions for files, or 777 permissions for directories.

The user mask value is set with the umask command. You can view your current umask
setting by entering the command by itself on the command line as shown in Listing 4.48.

Listing 4.48: Viewing the current user mask setting via the umask command

$ umask
0022
$

The output of the umask command shows four octal values. The first octal value repre-
sents the mask for the SUID (4), SGID (2), and sticky (1) bits assigned to files and directo-
ries you create (covered later in this chapter). You’ll notice, however, that in Listing 4.48,
the value is set to 0, which means these bits are ignored. The next three octal values mask
the owner, group, and other permission settings.

The mask is a bitwise (works with individual bits) operation applied to the permission
bits on the file or directory. Any bit that’s set in the mask is removed from the permissions
for the file or directory. If a bit isn’t set, the mask doesn’t change the setting. Table 4.15
demonstrates how the umask values work in practice when creating files and directories on
your Linux system. Note that we are ignoring the first octal value (which applies to SUID,
SGID, and the sticky bit) for now and focusing on the last three.

ta b Le 4 .15 Results from common umask values for files and directories

umask Created files Created directories

000 666 (rw-rw-rw-) 777 (rwxrwxrwx)

002 664 (rw-rw-r--) 775 (rwxrwxr-x)

022 644 (rw-r--r--) 755 (rwxr-xr-x)

027 640 (rw-r-----) 750 (rwxr-x---)

077 600 (rw-------) 700 (rwx------)

277 400 (r--------) 500 (r-x------)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Controlling Access to Files 227

 You can test this by determining your current user mask value, creating a new fi le and
directory on your Linux system, and then reviewing the resulting permissions. An example
is shown in Listing 4.49.

 Listing 4.49: Viewing the effect of the current user mask setting on permissions

 $ umask
 0022
 $
 $ mkdir test1
 $ touch test2
 $ ls -l
 […]
 drwxr-xr-x 2 rich rich 4096 Jan 19 17:08 test1
 -rw-r--r-- 1 rich rich 0 Jan 19 17:08 test2
 $

 The umask value of 0022 created the default fi le permissions of rw-r--r-- , or octal 644 ,
on the test2 fi le, and rwx-r-xr-x , or octal 755 , on the test1 directory, as expected.

 It helps to think of the umask setting as the “undo” value, because it sub-
tracts permissions from the default permissions for a newly created file or
directory.

 You can change the default umask setting for your user account by using the umask com-
mand from the command line. An example of doing this is shown in Listing 4.50.

 Listing 4.50: Changing the user mask setting and viewing the change’s effect

 $ umask 027
 $
 $ touch test3
 $ ls -l test3
 -rw-r----- 1 rich rich 0 Jan 19 17:12 test3
 $

 The default permissions for the new fi le, test3 , have changed to refl ect the new umask
setting.

 The umask value is normally set in a script that the Linux system runs at
login time, such as in the /etc/profile file. If you override the setting
from the command line, that will apply only for the duration of your ses-
sion. You can override the system default umask setting by adding it to the
appropriate environment file (covered in Chapter 9) in your $HOME directory.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

228 Chapter 4 ■ Managing Files

Changing Special Access Modes
There are three special permission bits that Linux uses for controlling advanced behavior of
files and directories: SUID, SGID, and the sticky bit.

Looking at SUID
The Set User ID (SUID) bit is used with executable files. It tells the Linux kernel to run the
program with the permissions of the file owner and not the user account actually running
the file. This feature is most commonly used in server applications that must run as the root
user account to have access to all files on the system, but the Linux system starts them as a
standard user account.

The SUID bit is indicated by an s in place of the execute permission letter for the file
owner: rwsr-xr-x. The execute permission is assumed for the system to run the file. If the
SUID bit is set on a file that doesn’t have execute permission for the owner, it’s indicated by
a capital S.

A practical example of SUID on Linux is the passwd utility. The passwd utility allows you
to change your password, which is stored in the /etc/shadow file (covered in Chapter 7).
Because the shadow file only allows the root user (the file’s owner) to write to it, you must
temporarily gain the root user’s permission status. This is done via the SUID permission set
on the passwd program’s file as shown in Listing 4.51.

Listing 4.51: Viewing the passwd utility’s and /etc/shadow file’s permissions

$ ls -l /etc/shadow
-rw-r----- 1 root shadow 1425 Mar 21 17:51 /etc/shadow
$
$ which passwd
/usr/bin/passwd
$
$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 59640 Jan 25 2018 /usr/bin/passwd
$

To set the SUID bit for a file, in symbolic mode add s to the owner permissions, or in
octal mode include a 4 at the start of the octal mode setting.

chmod u+s myapp
chmod 4750 myapp

Looking at SGID
The Set Group ID (SGID) bit works differently in files and directories. For files, it tells
Linux to run the program file with the file’s group permissions. It’s indicated by an s in the
group execute position: rwxrwsr--. Like SUID, if the execute permission is not granted, the
setting is benign and shown as a capital S in the group execute position.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Locating Files 229

For directories, the SGID bit helps us create an environment where multiple users can
share files. When a directory has the SGID bit set, any files users create in the directory
are assigned the group of the directory and not that of the user. That way, all users in that
group can have the same permissions to all of the files in the shared directory.

To set the SGID bit, in symbolic mode add s to the group permissions, or in octal mode
include a 2 at the start of the octal mode setting:

chmod g+s /sales
chmod 2660 /sales

Looking at the Sticky Bit
Finally, the sticky bit is used on directories to protect one of its files from being deleted by
those who don’t own the file, even if they belong to the group that has write permissions to
the file. The sticky bit is denoted by a t in the execute bit position for others: rwxrw-r-t.

The sticky bit is often used on directories shared by groups. The group members have
read and write access to the data files contained in the directory, but only the file owners
can remove files from the shared directory. Typically the /tmp directory has the sticky bit
set as shown in Listing 4.52.

Listing 4.52: Viewing the /tmp directory’s sticky bit permission

$ ls -ld /tmp
drwxrwxrwt 12 root root 4096 Apr 25 13:50 /tmp
$

To set the sticky bit, in symbolic mode add t to the owner permissions, or in octal mode
include a 1 at the start of the octal mode setting:

chmod o+t /sales
chmod 1777 /sales

Locating Files
There are many ways to find various files on your Linux system. The methods are impor-
tant to know so that you can make good administrative decisions and/or solve problems
quickly. They will save you time as you perform your administrative tasks, as well as help
you pass the certification exam.

Getting to Know the FHS
Trying to locate files on your Linux system is sometimes tricky. Fortunately, there’s a stan-
dard file location guide for the Linux called the Linux filesystem hierarchy standard (FHS)
that can offer assistance.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

230 Chapter 4 ■ Managing Files

 Although the FHS helps standardize where files are located on Linux, not
all Linux distributions follow it completely. It’s best to consult with your
specific Linux distribution’s documentation on how it manages files within
the virtual directory structure.

 The FHS defi nes core folder names and locations that should be present on every Linux
system and what type of data they should contain. Table 4.16 shows just a few of the more
common folders defi ned in the FHS.

 ta b Le 4 .16 Common Linux FHS folders

Folder Description

/ The root filesystem

/boot Contains bootloader files used to boot the system

/dev Holds device files

/home Contains user data files

/lib Holds shared libraries and kernel modules

/media Traditionally used as a mount point for removable devices

/mnt Used as the current mount point for removable devices

/opt Contains data for optional third-party programs

/tmp Contains temporary files created by system users

/usr Contains data for standard Linux programs

/usr/bin Contains local user programs and data

/usr/lib Holds libraries for programming and software packages

/usr/local Contains data for programs unique to the local installation

/usr/sbin Contains data for system programs and data

 You can read the entire FHS standard at the Linux Foundation’s reference
specifications: refspecs.linuxfoundation.org .

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Locating Files 231

 Employing Tools to Locate Files
 Besides using the FHS as a guide, there are many ways to fi nd fi les on your Linux system.
In this section, we’ll explore several tools that assist in locating fi les.

 Using the which Command
 The which command shows you the full path name of a shell command passed as an argu-
ment. Examples of using this utility are shown in Listing 4.53.

 Listing 4.53: Using the which command

 $ which passwd
 /usr/bin/passwd
 $
 $ which shutdown
 /usr/sbin/shutdown
 $
 $ which line
 /usr/bin/which: no line in (/usr/local/bin:/usr/bin:/usr/local/sbin:
 /usr/sbin:/home/Christine/.local/bin:/home/Christine/bin)
 $
 $ echo $PATH
 /usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:
 /home/Christine/.local/bin:/home/Christine/bin
 $

 In the fi rst example in Listing 4.53, the which command is used to fi nd the program
location of the passwd command. It displays the full path name of /usr/bin/passwd . The
shutdown utility is located in an sbin directory. However, the line program is not installed
on this system, and the which utility displays all the directories it searched to fi nd the pro-
gram. It uses the PATH environment variable, whose contents are also displayed in Listing
4.53, to determine which directories to search.

 Environment variables are configuration settings that modify your pro-
cess’s environment. When you type a command (program) name, the PATH
variable sets the directories Linux will search for the program binary. It is
also used by other commands, such as the which utility. Note that direc-
tory names are separated by a colon (:) in the PATH list.

 The which command is also handy for quickly determining if a command is using an
alias. Listing 4.54 shows an example of this.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

232 Chapter 4 ■ Managing Files

Listing 4.54: Using the which command to see a command alias

$ which ls
alias ls='ls --color=auto'
 /usr/bin/ls
$
$ unalias ls
$
$ which ls
/usr/bin/ls
$

When the which utility is used on the ls command in Listing 4.54, it shows that cur-
rently the ls command has an alias. Thus, when you type ls, it is as if you have typed the
ls --color=auto command. After employing the unalias command on ls, the which util-
ity shows only the ls program’s location.

Using the whereis Command
Another command for locating files is the whereis utility. This utility allows you to locate
any command’s program binaries and locate source code files as well as any manual pages.
Examples of using the whereis utility are shown in Listing 4.55.

Listing 4.55: Employing the whereis command

$ whereis diff
diff: /usr/bin/diff /usr/share/man/man1/diff.1.gz
/usr/share/man/man1p/diff.1p.gz
$
$ whereis line
line:
$

The first command issued in Listing 4.55 searches for program binaries, source code
files, and manual pages for the diff utility. In this case, the whereis command finds a
binary file as well as two manual page files. However, when whereis is used to locate files
for the line utility, nothing is found on the system.

Using the locate Command
A very convenient and simple utility to use in finding files is the locate program. This util-
ity searches a database, mlocate.db, which is located in the /var/lib/mlocate/ directory,
to determine if a particular file exists on the local system. The basic syntax for the locate
command is as follows:

locate [OPTION]... PATTERN...

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Locating Files 233

Notice in the syntax that the locate utility uses a pattern list to find files. Thus, you can
employ partial filenames and regular expressions and, with the command options, ignore
case. Table 4.17 shows a few of the more commonly used locate command options.

ta b Le 4 .17 The locate command’s commonly used options

Short Long Description

-A --all Display filenames that match all the patterns, instead
of displaying files that match only one pattern in the
pattern list.

-b --basename Display only filenames that match the pattern and do
not include any directory names that match the pattern.

-c --count Display only the number of files whose name matches
the pattern instead of displaying filenames.

-i --ignore-case Ignore case in the pattern for matching filenames.

-q --quiet Do not display any error messages, such as permission
denied, when processing.

-r --regexp R Use the regular expression, R, instead of the pattern list
to match filenames.

-w --wholename Display filenames that match the pattern and include
any directory names that match the pattern. This is
default behavior.

To find a file with the locate command, enter locate followed by the filename. If the
file is on your system and you have permission to view it, the locate utility will display the
file’s directory path and name. An example of this is shown in Listing 4.56.

Listing 4.56: Using the locate command to find a file

$ locate Project42.txt
/home/Christine/Answers/Project42.txt
$

Using the locate command PATTERN can be a little tricky, due to default pattern file
globbing. If you don’t enter any wildcards into your pattern, the locate command, by
default, adds wildcards to the pattern. So if you enter the pattern passwd, it is automati-
cally turned into *passwd*.

If you want to search for the base name passwd, with no file globbing, you must add
quotation marks (single or double) around the pattern and precede the pattern with the
\ character. A few examples of this are shown in Listing 4.57.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

234 Chapter 4 ■ Managing Files

 Listing 4.57: Using the locate command with no file globbing

 $ locate -b passwd
 /etc/passwd
 /etc/passwd-
 /etc/pam.d/passwd
 /etc/security/opasswd
 /usr/bin/gpasswd
 […]
 /usr/share/vim/vim74/syntax/passwd.vim
 $
 $ locate -b '\passwd'
 /etc/passwd
 /etc/pam.d/passwd
 /usr/bin/passwd
 /usr/share/bash-completion/completions/passwd
 $

 The fi rst example in Listing 4.57 shows what would happen if you allow the default fi le
globbing to occur. Many more fi les are displayed than those named passwd . So many fi les
are displayed that the listing had to be snipped to fi t. However, in the second example, fi le
globbing is turned off with the use of quotation marks and the \ character. Using this pat-
tern with the locate utility provides the desired results of displaying fi les named passwd .

 If you do not have permission to view a directory’s contents, the locate
command cannot show files in that directory that match your PATTERN .
Thus, some files may be missing from your display.

 Keep in mind that the locate command’s PATTERN is really a pattern list, so you can add
additional patterns. Just be sure to separate them with a space as shown in Listing 4.58.

 Listing 4.58: Using the locate command with a pattern list

 $ locate -b '\passwd' '\group'
 /etc/group
 /etc/passwd
 /etc/iproute2/group
 /etc/pam.d/passwd
 /usr/bin/passwd
 /usr/share/X11/xkb/symbols/group
 /usr/share/bash-completion/completions/passwd
 $

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Locating Files 235

 Another problem you can run into deals with newly created or downloaded fi les. The
locate utility is really searching the mlocate.db database as opposed to searching the
virtual directory structure. This database is typically updated only one time per day via a
 cron job. Therefore, if the fi le is newly created, locate won’t fi nd it.

 The mlocate.db database is updated via the updatedb utility. You can run it manually
using super user privileges if you need to fi nd a newly created or downloaded fi le. Be aware
that it may take a while to run.

 If you need to prevent some files from being found with the locate
command, or quicken the nightly run of the mlocate.db database update,
you can prevent certain directory locations from being scanned via the
 updatedb utility. Simply modify the /etc/updatedb.conf configuration
file, and modify one of the PRUNEFS , PRUNENAMES , or PRUNEPATHS
directives in order to designate directories to skip during an updatedb
scan. Type man updatedb.conf at the command line for more details.

 Using the find Command
 The fi nd command is very fl exible. It allows you to locate fi les based on data, such as who
owns the fi le, when the fi le was last modifi ed, permissions set on the fi le, and so on. The
basic command syntax is as follows:

 find [PATH ...] [OPTION] [EXPRESSION]

 The PATH argument is a starting point directory, because you designate a starting point
in a directory tree and find will search through that directory and all its subdirectories
(recursively) for the fi le or fi les you seek. You can use a single period (.) to designate your
present working directory as the starting point directory.

 There are also options for the find command itself that handle such items
as following or not following links and debugging. In addition, you can
have a file deleted or a command executed if a particular file is located.
See the file utility’s man page for more information on these features.

 The EXPRESSION command argument and its preceding OPTION control what type of
metadata fi lters are applied to the search as well as any settings that may limit the search.
Table 4.18 shows the more commonly used OPTION and EXPRESSION combinations.

 ta b Le 4 .18 The find command’s commonly used options and expressions

Option Expression Description

 -cmin n Display names of files whose status changed n minutes ago.

 -empty N/A Display names of files that are empty and are a regular text
file or a directory.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

236 Chapter 4 ■ Managing Files

Option Expression Description

-gid n Display names of files whose group ID is equal to n.

-group name Display names of files whose group is name.

-inum n Display names of files whose inode number is equal to n.

-maxdepth n When searching for files, traverse down into the starting
point directory’s tree only n levels.

-mmin n Display names of files whose data changed n minutes ago.

-name pattern Display names of files whose name matches pattern.
Many regular expression arguments may be used in the
pattern and need to be enclosed in quotation marks to
avoid unpredictable results. Replace -name with -iname to
ignore case.

-nogroup N/A Display names of files where no group name exists for the
file’s group ID.

-nouser N/A Display names of files where no username exists for the
file’s user ID.

-perm mode Display names of files whose permissions matches mode.
Either octal or symbolic modes may be used.

-size n Display names of files whose size matches n. Suffixes can
be used to make the size more human readable, such as G
for gigabytes.

-user name Display names of files whose owner is name.

The find utility has many features. Examples help clarify the use of this command.
Listing 4.59 provides a few.

Listing 4.59: Employing the find command

$ find . -name "*.txt"
./Project47.txt
./Answers/Project42.txt
./Answers/Everything/numbers.txt
./Answers/Everything/random.txt
./Answers/Project43.txt

ta b Le 4 .18 The find command’s commonly used options and expressions (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Locating Files 237

./Answers/Project44.txt

./Answers/Project45.txt

./Answers/Project46.txt

./SpaceOpera/OriginalSFile.txt

./SpaceOpera/SoftLinkFile.txt
$
$ find . -maxdepth 2 -name "*.txt"
./Project47.txt
./Answers/Project42.txt
./Answers/Project43.txt
./Answers/Project44.txt
./Answers/Project45.txt
./Answers/Project46.txt
./SpaceOpera/OriginalSFile.txt
./SpaceOpera/SoftLinkFile.txt
$

The first example in Listing 4.59 is looking for files in the present working directory’s
tree with a .txt file extension. Notice that the -name option’s pattern uses quotation
marks to avoid unpredictable results. In the second example, a -maxdepth option is added
so that the find utility searches only two directories: the current directory and one subdi-
rectory level down.

The find command is very handy for auditing your system on a regular basis as well as
when you are concerned that your server has been hacked. The -perm option is useful for
one of these audit types, and an example is shown in Listing 4.60.

Listing 4.60: Using the find command to audit a server

$ find /usr/bin -perm /4000
/usr/bin/newgrp
/usr/bin/chsh
/usr/bin/arping
/usr/bin/gpasswd
/usr/bin/chfn
/usr/bin/traceroute6.iputils
/usr/bin/pkexec
/usr/bin/passwd
/usr/bin/sudo
$

In Listing 4.60, the /usr/bin directory is being audited for the potentially dangerous
SUID permission by using the find utility and its -perm option. The expression used is
/4000, which will ask the find utility to search for SUID settings (octal code 4) and, due

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

238 Chapter 4 ■ Managing Files

to the forward slash (/) in front of the number, ignore the other fi le permissions (octal
codes 000). The resulting fi lenames all legitimately use SUID, and thus, nothing suspi-
cious is going on here.

 On older Linux systems, to enact a search as shown in Listing 4.60, you
would enter +4000 to designate the permission. The plus sign (+) is now
deprecated for this use and has been replaced by the forward slash (/)
symbol for the find command.

 Quickly fi nding fi les as well as various types of information on your Linux server can help
you be a more effective and effi cient system administrator. It is a worthwhile investment to
try out any of the commands or their options that are new to you.

 Using the type Command
 So you found the fi le, but you don’t know what kind of fi le it is. You can employ the file
command for some fi les, but another useful utility is the type program.

 The type utility will display how a fi le is interpreted by the Bash shell if it is entered
at the command line. Three categories it returns are alias, shell built-in, and external
command (displaying its absolute directory reference). A few examples are shown in
Listing 4.61.

 Listing 4.61: Using the type command to determine a command’s interpretation

 $ type ls
 ls is aliased to 'ls --color=auto'
 $
 $ type cd
 cd is a shell builtin
 $
 $ type find
 find is /usr/bin/find
 $

 Notice that the ls command on this system is an alias. The cd program is built into the
Bash shell (covered in Chapter 1). The find command is an external command, because
the type utility provides its absolute directory location within the Linux virtual directory
structure.

 You can get less information displayed by the type utility by employing
the -t option, which just shows a brief name, such as builtin for the
command type. You can get more information from the type utility by
using the -a switch, such as the alias information and its binary’s absolute
directory location.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam Essentials 239

Summary
Being able to effectively and swiftly use the right file management utilities at the shell’s
command line is important for your daily job. It allows you to find files, generate backups,
fix file permission problems, and so on. Not only will these skills help you in your day-to-
day work life, but they will also help you successfully pass the LPIC-1 certification exam.

Exam Essentials
Explain basic commands for handling files and directories. Typical basic file and direc-
tory management activities include viewing and creating files, copying and moving files,
and deleting files. For viewing and creating files and directories, use the ls, touch, and
mkdir commands. When you need to duplicate, rename, or move files, employ one of the
mv and cp commands. You can quickly delete an empty directory using the rmdir utility,
but for directories full of files, you will need to use the rm -r command. Also, if you need
to ensure that you are removing the correct files, use the -i option on the rm utility.

Summarize compression methods. The different utilities, gzip, bzip2, xz, and zip, pro-
vide different levels of lossless data compression. Each one’s compression level is tied to
how fast it operates. Reducing the size of archive data files is needed not only for backup
storage but also for increasing transfer speeds across the network.

Compare the various archive/restore utilities. The assorted command-line utilities each
have their own strengths in creating data backups and restoring files. While cpio is one
of the oldest, it allows for various files through the system to be gathered and put into an
archive. The tar utility has long been used with tape media but provides rigorous and flex-
ible archiving and restoring features, which make it still very useful in today’s environment.
The dd utility shines when it comes to making system images of an entire disk.

Describe both structures and commands involved in linking files. Linking files is rather
easy to do with the ln command. However, it is important for you to describe the underly-
ing link structure. Hard-linked files share the same inode number, whereas soft-linked files
do not. Soft or symbolic links can be broken if the file they link to is removed. It is also
useful to understand the readlink utility to help you explore files that have multiple links.

Summarize the basic level of file and directory security available in Linux. Linux pro-
vides basic file and directory security by utilizing three categories of read, write, and
execute permissions. The file or directory owner is assigned one set of permissions, the
primary group the file is assigned another set of permissions, and everyone else on the
Linux system is assigned a third set of permissions. You can set the permissions in the
three categories separately to control the amount of access the group members and others
on the Linux system have.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

240 Chapter 4 ■ Managing Files

Explain how to modify the permissions assigned to a file or directory. Linux uses the
chmod command to assign permissions to files and directories. The chmod command uses
two separate modes to assign permissions: symbolic mode and octal mode. Symbolic mode
uses a single letter to identify the category for the owner (u), group (g), everyone else (o),
and all (a). Following that, a plus sign, minus sign, or equal sign is used to indicate to add,
remove, or set the permissions. The permissions are also indicated by a single letter for
read (r), write (w), or execute (x) permissions. In octal mode, an octal value represents the
three permissions for each category. The three octal values define the full set of permissions
assigned to the file or directory.

Describe how to find files on your Linux system. To determine two text files’ differences,
the diff utility is helpful. With this utility, you can also employ redirection and modify the
files to make them identical. When you need to quickly find files on your system and want
to use simple tools, the which, whereis, and locate commands will serve you well. Keep in
mind that the locate utility uses a database that is typically only updated one time per day,
so you may need to manually update it via the updatedb command. When simple file loca-
tion tools are not enough, there is a more complex searching utility: find. The type com-
mand is also helpful in that it provides information concerning how a program file will be
interpreted in the shell.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 241

Review Questions
You can find the answers in the appendix.

1. When choosing a filename to create on a Linux system, what characters should be avoided?
(Choose all that apply.)

A. Asterisk (*)

B. Space

C. Dash (-)

D. Ampersand (&)

E. Underscore (_)

2. You need to list all the filenames that contain the word data and have the .txt file exten-
sion in the present working directory. Which command should you use?

A. ls data*.txt

B. ls data?.txt

C. ls *data.txt

D. ls ?data?.txt

E. ls *data*.txt

3. You need to list all the filenames that start with the word File, end with a single number,
and have no file extension. Which command should you use?

A. ls File?

B. ls File*

C. ls File[0-9]

D. ls File[^0-9]

E. ls File[a-z]

4. You are looking at a directory that you have not viewed in a long time and need to deter-
mine which files are actually directories. Which command is the best one to use?

A. mkdir -v

B. ls

C. ls -F

D. ls -i

E. ll

5. You are using the ls command to look at a directory file’s metadata but keep seeing meta-
data for the files within it instead. What command option will rectify this situation?

A. -a

B. -d

C. -F

D. -l

E. -R

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

242 Chapter 4 ■ Managing Files

6. You have just created an empty directory called MyDir. Which command most likely did
you use?

A. mkdir -v MyDir

B. touch MyDir

C. cp -R TheDir MyDir

D. mv -r TheDir MyDir

E. rmdir MyDir

7. A long-time server administrator has left the company, and now you are in charge of her
system. Her old user account directory tree, /home/Zoe/, has been backed up. Which
command is the best one to use to quickly remove her files?

A. cp -R /home/Zoe/ /dev/null/

B. mv -R /home/zoe/ /dev/null/

C. rm -Rf /home/Zoe/

D. rm -ri /home/Zoe/

E. rm -rI /home/Zoe

8. An administrator needs to create a full backup using the tar utility, compress it as much
as possible, and view the files as they are being copied into the archive. What tar options
should the admin employ?

A. -xzvf

B. -xJvf

C. -czvf

D. -cJf

E. -cJvf

9. You need to create a low-level backup of all the data on the /dev/sdc drive and want to use
the /dev/sde drive to store it on. Which dd command should you use?

A. dd of=/dev/sde if=/dev/sdc

B. dd of=/dev/sdc if=/dev/sde

C. dd of=/dev/sde if=/dev/sdc count=5

D. dd if=/dev/sde of=/dev/sdc count=5

E. dd if=/dev/zero of=/dev/sdc

10. Which of the following can be used as backup utilities? (Choose all that apply.)

A. The gzip utility

B. The zip utility

C. The tar utility

D. The bzcat utility

E. The dd utility

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 243

11. You are trying to decide whether to use a hard link or a symbolic link for a data file. The
file is 5 GB, has mission-critical data, and is accessed via the command line by three other
people. What should you do?

A. Create a hard link so the file can reside on a different filesystem for data protection.

B. Create three hard links and provide the links to the three other people for data
protection.

C. Create three symbolic links and protect the links from the three other people for data
protection.

D. Create a symbolic link so that the file can reside on a different filesystem.

E. Create a symbolic link so that the links can share an inode number.

12. What command can you use to change the owner assigned to a file?

A. chmod

B. chown

C. ln

D. owner

E. chgrp

13. Which of the following commands would change a file named endgame.txt with the
current permission string of rwxrw-r-- to rw-rw-r--? (Choose all that apply.)

A. umask 0100

B. chmod o-x endgame.txt

C. chmod u-x endgame.txt

D. chmod 554 endgame.txt

E. chmod o=rw endgame.txt

14. Which umask setting would cause created directories to have a permission of rwxrwxrw-?

A. 0777

B. 0001

C. 0776

D. 7770

E. 1000

15. What special permissions bit allows standard users to run an application with root
 privileges?

A. The sticky bit

B. The SUID bit

C. The SGID bit

D. Execute

E. Write

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

244 Chapter 4 ■ Managing Files

16. What special bit should you set to prevent users from deleting shared files created by some-
one else?

A. SUID

B. SGID

C. Sticky bit

D. Read

E. Write

17. You are trying to find a file on your Linux server whose name is conf. Employing the
locate conf command for your search shows many directories that contain the letters
conf. What is the best description for why this is happening?

A. The locate utility searches for only for directory names.

B. You did not employ the -d skip switch.

C. It is most likely because the locate database is corrupted.

D. You did not employ the appropriate regular expression.

E. It is due to file globbing on the pattern name.

18. You want to search for a particular file, main.conf, using the find utility. This file most
likely is located somewhere in the /etc/ directory tree. Which of the following commands
is the best one to use in this situation?

A. find -r /etc -name main.conf

B. find / -name main.conf

C. find /etc -maxdepth -name main.conf

D. find /etc -name main.conf

E. find main.conf /etc

19. Yesterday a co-worker, Michael, was fired for nefarious behavior. His account and home
directory were immediately deleted. You need to audit the server to see if he left any files he
owns out in the virtual directory system. Which of the following commands is the best one
to use in this situation?

A. find / -name Michael

B. find / -user Michael

C. find / -mmin 1440

D. find ~ -user Michael

E. find / -nouser

20. Due to an unusual emergency, Carol needs to quickly locate the stonetracker command’s
source code files. Which of the following is the best command to use in this case?

A. which

B. whereis

C. locate

D. find

E. type

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

By

Booting, Initializing,
and Virtualizing Linux

OBjectIVes

 ✓ 101.3 Change runlevels/boot targets and shutdown or
reboot system

 ✓ 102.2 Install a boot manager

 ✓ 102.6 Linux as a virtualization guest

 ✓ 101.2 Boot the system

Chapter

5

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Like a beautiful ballet, a Linux system begins the boot pro-
cess, appearing to easily perform the steps to a login screen
and required services and applications. However, as a system

administrator, you can’t just enjoy the show. You must understand the entire underlying
process to troubleshoot problems. In addition, the members of this ballet vary depending
on your system’s age and distribution. Each member has its own distinct configuration and
operation, like dancers in a troupe.

Besides getting your system up and performing, you need to grasp the various ways to
shut down your system or move it to a different state of operation, all the while keeping
your users informed about what is going to happen. Methods here vary as well.

Finally, moving your Linux troupe to a new platform, such as a virtualized machine, is
critical for you to comprehend. Many organizations are embracing these new stages to save
money and time.

In this chapter, we’ll look at all these concepts for both older and newer systems. With
this knowledge, you can be the chief choreographer for your Linux system ensemble.

Understanding the Boot Process
When you turn on the power to your Linux system, it triggers a series of events that eventu-
ally leads to the login prompt. Normally, you don’t worry about what happens behind the
scenes of those events; you just log in and start using your applications. However, there
may be times when your Linux system doesn’t boot quite correctly. In this case, it helps to
have a basic understanding of how Linux boots the operating system.

The Boot Process
The Linux boot process can be split into these main steps:

1. The server firmware starts, performing a quick check of the hardware, called a Power-
On Self-Test (POST), and then it looks for a boot loader program to run from a
bootable device.

2. The boot loader runs and determines what Linux kernel program to load.

3. The kernel program loads into memory; prepares the system, such as mounting the
root partition; and then runs the initialization program.

4. The initialization process starts the necessary background programs required for the
system to operate (such as a graphical desktop manager for desktops, or web and data-
base applications for servers).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding the Boot Process 247

 Although these steps may seem simple on the surface, there’s a somewhat complicated
ballet of operations that happens behind the scenes to keep the boot process working. Each
step performs several actions as they prepare your system to run Linux.

 Extracting Information about the Boot Process
 You can monitor the Linux boot process by watching the system console screen as the sys-
tem boots. You’ll see lots of informative messages scroll by as the system detects hardware
and loads the software.

 Some graphical desktop Linux distributions hide the boot messages on a
separate console window when they start up. Often, you can hit either the
ESC key or the Ctrl+Alt+F1 key combination to view those messages.

 Usually the boot messages scroll by somewhat quickly and it’s hard to see just what’s hap-
pening. If you need to troubleshoot boot problems, you can review the boot-time messages
using the dmesg command. Most Linux distributions copy the boot kernel messages into a
special ring buffer in memory called the kernel ring buffer . The buffer is circular and set to a
predetermined size. As new messages are logged into the buffer, older messages are rotated out.

 The dmesg command displays the most recent boot messages that are currently stored in
the kernel ring buffer, as shown snipped in Listing 5.1.

 Listing 5.1: Using the dmesg command to display the kernel ring buffer’s contents

 $ dmesg
 [0.000000] Initializing cgroup subsys cpuset
 [0.000000] Initializing cgroup subsys cpu
 [0.000000] Initializing cgroup subsys cpuacct
 [0.000000] Linux version 3.10.0-957.10.1.el7.x86_64
 (mockbuild@kbuilder.bsys.centos.org) (gcc version 4.8.5 20150623
 (Red Hat 4.8.5-36) (GCC)) #1 SMP Mon Mar 18 15:06:45 UTC 2019
 [0.000000] Command line: BOOT_IMAGE=/vmlinuz-3.10.0-957.10.1.el7.x86_64
 root=/dev/mapper/centos-root ro crashkernel=auto rd.lvm.lv=centos/root
 rd.lvm.lv=centos/swap rhgb quiet LANG=en_US.UTF-8
 [0.000000] e820: BIOS-provided physical RAM map:
 […]
 [0.000000] NX (Execute Disable) protection: active
 [0.000000] SMBIOS 2.5 present.
 […]
 [0.000000] Hypervisor detected: KVM
 [0.000000] e820: update [mem 0x00000000-0x00000fff] usable ==> reserved
 [0.000000] e820: remove [mem 0x000a0000-0x000fffff] usable
 [0.000000] e820: last_pfn = 0x120000 max_arch_pfn = 0x400000000
 […]
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

248 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

 You can also view the kernel ring buffer using the journalctl utility (if available), as
shown snipped in Listing 5.2. Keep in mind you’ll need to use super user privileges, and the
utility employs the less pager.

 Listing 5.2: Using the journalctl utility to display the kernel ring buffer’s contents

 -- Logs begin at Tue 2019-04-30 11:21:34 EDT, end at Tue 2019-04-30 12:53:41 EDT
 Apr 30 11:21:34 localhost.localdomain kernel: Initializing cgroup subsys cpuset
 Apr 30 11:21:34 localhost.localdomain kernel: Initializing cgroup subsys cpu
 Apr 30 11:21:34 localhost.localdomain kernel: Initializing cgroup subsys cpuacct
 Apr 30 11:21:34 localhost.localdomain kernel: Linux version 3.10.0-957.10.1.el7.
 Apr 30 11:21:34 localhost.localdomain kernel: Command line: BOOT_IMAGE=/vmlinuz-
 Apr 30 11:21:34 localhost.localdomain kernel: e820: BIOS-provided physical RAM m
 […]
 Apr 30 11:21:34 localhost.localdomain kernel: NX (Execute Disable) protection: a
 Apr 30 11:21:34 localhost.localdomain kernel: SMBIOS 2.5 present.
 […]
 Apr 30 11:21:34 localhost.localdomain kernel: Hypervisor detected: KVM
 Apr 30 11:21:34 localhost.localdomain kernel: e820: update [mem 0x00000000-0x000
 Apr 30 11:21:34 localhost.localdomain kernel: e820: remove [mem 0x000a0000-0x000
 Apr 30 11:21:34 localhost.localdomain kernel: e820: last_pfn = 0x120000 max_arch
 […]

 Some Linux distributions also store the boot messages in a log fi le, usually in the
 /var/log directory. For Debian-based systems, the fi le is usually /var/log/boot , and
for Red Hat-based systems, the fi le is /var/log/boot.log . However, for those systems
employing systemd-journald (covered in Chapter 7), the boot messages are stored in a
journal fi le.

 When troubleshooting boot problems, instead of slogging through the
 dmesg utility’s output or one of the boot message log file’s output, pipe
their output into the grep command or the less utility (both covered in
Chapter 1). That way, you can search for specific devices (such as /dev/sda),
key phrases (such as disabled), and/or specific items (such as the loaded
 BOOT_IMAGE) easily.

 While it helps to be able to see the different messages generated during boot time, it is
also helpful to know just what generates those messages. These next sections discuss each
of the boot steps and go through some examples showing how they work.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at Firmware 249

Looking at Firmware
All IBM-compatible workstations and servers utilize some type of built-in firmware to con-
trol just how the installed operating system starts. On older workstations and servers, this
firmware was called the Basic Input/Output System (BIOS). On newer workstations and
servers, a new method called the Unified Extensible Firmware Interface (UEFI) maintains
the system hardware status and launches an installed operating system.

The BIOS Startup
The BIOS firmware found in older workstations and servers was somewhat limited in what
it could do. The BIOS firmware had a simple menu interface that allowed you to change
some settings to control how the system found hardware and define what device the BIOS
should use to start the operating system.

One limitation of the original BIOS firmware was that it could read only one sector’s
worth of data from a hard drive into memory in order to run. As you can probably guess,
that’s not enough space to load an entire operating system. To get around that limitation,
most operating systems (including Linux and Microsoft Windows) split the boot process
into two parts.

First, the BIOS runs a boot loader (sometimes written as bootloader) program. The boot
loader is a small program that initializes the necessary hardware to find and run the full
operating system, usually found at another location on the same hard drive but sometimes
situated on a separate internal or external storage device.

The boot loader program usually has a configuration file, so you can tell it where to look
to find the actual operating system file to run or even to produce a small menu allowing the
user to choose between multiple operating systems.

To get things started, the BIOS must know where to find the boot loader program on an
installed storage device. Most BIOS setups allow you to load the boot loader program from
several locations:

 ■ An internal hard drive

 ■ An external hard drive

 ■ A CD/DVD drive

 ■ A USB flash drive

 ■ A network server

When booting from a hard drive, you must designate which hard drive, and from which
partition on the hard drive the BIOS should load the boot loader program. This is done by
defining a master boot record (MBR).

The MBR is the first sector on the first hard drive partition on the system. There is only
one MBR for the computer system. The BIOS looks for the MBR and reads the program
stored there into memory. Since the boot loader program must fit in one sector, it must be
very small, so it can’t do too much. The boot loader program mainly points to the location

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

250 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

of the actual operating system kernel fi le, which is stored in a boot sector of a separate
partition on the system. There are no size limitations on the kernel boot fi le.

 The boot loader program isn’t required to point directly to an operating
system kernel file—it can point to any type of program, including another
boot loader program. You can create a primary boot loader program that
points to a secondary boot loader program, which provides options to load
multiple operating systems. This process is called chainloading .

 The UEFI Startup
 Although there were plenty of limitations with BIOS, computer manufacturers learned to
live with them, and BIOS became the default standard for IBM-compatible systems for
many years. However, as operating systems became more complicated, it eventually became
clear that a new boot method needed to be developed.

 Intel created the Extensible Firmware Interface (EFI) in 1998 to address some of the
limitations of BIOS. The adoption of EFI was somewhat of a slow process, but by 2005, the
idea caught on with other vendors, and the Universal EFI (UEFI) specifi cation was adopted
as a standard. These days, just about all IBM-compatible desktop and server systems utilize
the UEFI fi rmware standard.

 Instead of relying on a single boot sector on a hard drive to hold the boot loader pro-
gram, UEFI specifi es a special disk partition called the EFI System Partition (ESP) to store
boot loader programs. This allows for any size of boot loader program, plus the ability to
store multiple boot loader programs for multiple operating systems.

 The ESP setup utilizes the old Microsoft File Allocation Table (FAT) fi lesystem to
store the boot loader programs. On Linux systems, the ESP is typically mounted in the
/boot/efi/ directory, and the boot loader fi les are commonly stored using the .efi
fi lename extension.

 The UEFI fi rmware utilizes a built-in mini boot loader (sometimes referred to as a
boot manager), which allows you to confi gure the specifi c boot loader program fi le to
launch.

 Not all Linux distributions support the UEFI firmware. If you’re using a UEFI
system, make sure that the Linux distribution you select supports it.

 With UEFI, you need to register each individual boot loader fi le that you want to appear
at boot time in the boot manager interface menu. You can then select the boot loader to run
each time you boot the system.

 Once the fi rmware fi nds and runs the boot loader, its job is done. The boot loader step
in the boot process can be somewhat complicated. The next section dives into covering
this step.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at Boot Loaders 251

 If you’re not sure whether your system is using UEFI, you can easily check.
After the Linux system boots, issue the command ls /sys/firmware/efi .
If you receive a no such file or directory message, then you’re
employing BIOS. On the other hand, if you see files, then your system
booted using UEFI.

 Looking at Boot Loaders
 The boot loader program helps bridge the gap between the system fi rmware and the full
Linux operating system kernel. In Linux, there are several choices of boot loaders to use,
which are covered in this section.

 Boot Loader Principles
 The fi rst version of the GRand Unifi ed Bootloader (GRUB) boot loader (now called GRUB
Legacy) was created in 1999 to provide a robust and confi gurable boot loader. GRUB
quickly became the default boot loader for all Linux distributions, whether they were run
on BIOS or UEFI systems.

 GRUB2 was created in 2005 as a total rewrite of the GRUB Legacy system. It supports
advanced features, such as the ability to load hardware driver modules and using logic
statements to alter the boot menu options dynamically, depending on conditions detected
on the system (such as if an external hard drive is connected).

 Using GRUB Legacy as the Boot Loader
 The GRUB Legacy boot loader was designed to simplify the process of creating boot menus
and passing options to kernels. GRUB Legacy allows you to select multiple kernels and/or
operating systems using both a menu interface as well as an interactive shell. With the menu
interface, you confi gure options for each kernel or operating system you wish to boot up.
With the interactive shell, you can customize boot commands on the fl y.

 Both the menu and the interactive shell utilize a set of commands that control features of
the boot loader. This section walks you through how to confi gure the GRUB Legacy boot
loader, how to install it, and how to interact with it at boot time.

 Configuring GRUB Legacy
 When you use the GRUB Legacy interactive menu, you need to tell it what options to show.
You do that using special GRUB menu commands .

 The GRUB Legacy system stores the menu commands in a standard text confi guration
fi le called menu.lst ; it is stored in the /boot/grub/ directory. (Though not a requirement,
some Linux distributions create a separate /boot partition on the hard drive.) Red Hat–
derived Linux distributions (such as CentOS and Fedora) use grub.conf instead of menu.lst

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

252 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

for the configuration file. Also, you may find that the menu.lst file is symbolically linked to
the grub.conf file.

The GRUB Legacy configuration file consists of two sections:

 ■ Global definitions

 ■ Operating system boot definitions

The global definitions section defines commands that control the overall operation of the
GRUB Legacy boot menu. The global definitions must appear first in the configuration file.
There are only a handful of global settings that you can make. Table 5.1 shows these settings.

ta B Le 5 .1 GRUB Legacy global commands

Setting Description

color Specifies the foreground and background colors to use in the boot menu

default Defines the default menu option to select

fallback A secondary menu selection to use if the default menu option fails

hiddenmenu Don’t display the menu selection options

splashimage Points to an image file to use as the background for the boot menu

timeout Specifies the amount of time to wait for a menu selection before using
the default

For GRUB Legacy, to define a value for a command, you just list the value as a
command-line parameter:

default 0
timeout 10
color white/blue yellow/blue

The color command defines the color scheme for the menu. The first pair of colors
defines the foreground/background for normal menu entries, and the second pair defines
the foreground/background for the selected menu entry.

After the global definitions, you place definitions for the individual operating systems
that are installed on the system. Each operating system should have its own definition
section. There are a lot of boot definition settings that you can use to customize how the
boot loader finds the operating system kernel file. Fortunately, only a few commands are
required to define the operating system. The ones to remember are as follows:

 ■ Title: The first line for each boot definition section, this is what appears in the
boot menu.

 ■ Root: Defines the disk and partition where the GRUB /boot folder partition is located
on the system.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at Boot Loaders 253

 ■ Kernel : Defines the kernel image file stored in the /boot folder to load.

 ■ Initrd : Defines the initial RAM disk file or filesystem, which contains drivers necessary
for the kernel to interact with the system hardware.

 ■ Rootnoverify : Defines non-Linux boot partitions, such as Windows.

 The root command defi nes the hard drive and partition that contains the /boot folder
for GRUB Legacy. Unfortunately, GRUB Legacy uses a somewhat odd way of referencing
those values:

 (hd drive , partition)

 Also unfortunately, GRUB Legacy doesn’t refer to hard drives the way Linux does; it
uses a numbering system to reference both disks and partitions, starting at 0 instead of at 1.
For example, to reference the fi rst partition on the fi rst hard drive of the system, you’d use
(hd0,0) . To reference the second partition on the fi rst hard drive, you’d use (hd0,1) .

 The initrd command is another important feature in GRUB Legacy. It helps to solve a
problem that arises when using specialized hardware or fi lesystems as the root drive. The
initrd command defi nes a fi le that’s mounted by the kernel at boot time as a RAM disk or
fi lesystem. The kernel can then load modules from the RAM disk or fi lesystem, which then
allows it to access hardware or fi lesystems not compiled into the kernel itself.

 Before Linux kernel v2.6, the initial RAM disk was used to hold kernel
modules needed at boot time. Since that time, it has been replaced with
the initial RAM filesystem (initramfs). It can be a little confusing, because
the initrd command within the GRUB configuration file denotes either an
initial RAM disk or an initial RAM filesystem. Which one used depends on
your distribution and its age.

 Listing 5.3 shows a sample GRUB confi guration fi le that defi nes both a Windows and a
Linux partition for booting.

 Listing 5.3: Sample GRUB Legacy configuration file

 default 0
 timeout 10
 color white/blue yellow/blue

 title CentOS Linux
 root (hd1,0)
 kernel (hd1,0)/boot/vmlinuz
 initrd /boot/initrd

 title Windows
 rootnoverify (hd0,0)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

254 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

 This example shows two boot options: one for a CentOS Linux system and one for a
Windows system. The CentOS system is installed on the fi rst partition of the second hard
drive, and the Windows system is installed on the fi rst partition of the fi rst hard drive. The
Linux boot selection specifi es both the kernel fi le to load as well as the initrd image fi le to
load into memory.

 Installing GRUB Legacy
 After you build the GRUB Legacy confi guration fi le, you must install the GRUB Legacy
program in the MBR. The command to do this is grub-install .

 The grub-install command uses a single parameter that indicates the partition on
which to install GRUB. You can specify the partition using either the Linux or the GRUB
Legacy format. For example, to use the Linux format, you’d type

 # grub-install /dev/sda

 To install GRUB on the MBR of the fi rst hard drive and use the GRUB Legacy format,
you must enclose the hard drive format in quotes:

 # grub-install '(hd0)'

 If you’re using the chainloading method and prefer to install a copy of GRUB Legacy on
the boot sector of a partition instead of to the MBR of a hard drive, you must specify the
partition, again using either the Linux or the GRUB format:

 # grub-install /dev/sda1
 # grub-install 'hd(0,0)'

 After making changes to the GRUB Legacy configuration file, you don’t
need to reinstall GRUB Legacy in the MBR. GRUB Legacy reads the con-
figuration file each time it runs.

 Interacting with GRUB Legacy
 When you boot a system that uses the GRUB Legacy boot loader, you’ll see a menu that
shows the boot options that you defi ned in the confi guration fi le. If you wait for the time-
out to expire, the default boot option will process. Alternatively, you can use the arrow
keys to select one of the boot options and then press the Enter key to select it.

 You can also edit boot options on the fl y from the GRUB menu:

 1. Use the arrow key to move to the boot option you want to modify, and then press the
E key.

 2. Use the arrow key to move the cursor to the line that you need to modify, and then
press the E key to edit it.

 3. Press the B key to boot the system using the new values.

 You can also press the C key at any time to enter an interactive shell mode (also called
GRUB command line), allowing you to submit GRUB commands on the fl y. You can leave
the GRUB command line, and return to the menu, by pressing the ESC key.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at Boot Loaders 255

Using GRUB 2 as the Boot Loader
Since the GRUB2 system was intended as an improvement over GRUB Legacy, many of
the features are the same, with just a few twists. For example, the GRUB2 system changes
the configuration file name to grub.cfg. Where the file is stored depends on your system’s
firmware:

 ■ BIOS: The grub.cfg file is stored in the /boot/grub/ or /boot/grub2/ directory. (This
allows you to have both GRUB Legacy and GRUB2 installed at the same time.)

 ■ UEFI: The grub.cfg file is stored in the /boot/efi/EFI/distro-name/ directory.

An example of a grub.cfg file location on a UEFI system, which is a CentOS distribu-
tion, is shown in Listing 5.4.

Listing 5.4: GRUB2 configuration file location on a UEFI CentOS distro

ls /boot/efi/EFI/centos/
BOOT.CSV fonts grubenv mmx64.efi shimx64-centos.efi
BOOTX64.CSV grub.cfg grubx64.efi shim.efi shimx64.efi
#

Configuring GRUB2
There are also a few changes to the commands used in GRUB2. A simplified snipped example
of a GRUB2 configuration file is shown in Listing 5.5.

Listing 5.5: Simplified sample GRUB2 configuration file

[…]
menuentry "CentOS Linux" {
[…]
 set root=(hd1,1)
 linux16 /vmlinuz[…]
 initrd /initramfs[…]
}
menuentry "Windows" {
 set root=(hd0,1)
[…]

Notice that GRUB2 uses the set command to assign values to the root keyword, and it
uses an equal sign to assign the device. GRUB2 utilizes environment variables to configure
settings instead of commands.

To make things more confusing, GRUB2 changes the numbering system for partitions.
Although it still uses 0 for the first hard drive, the first partition is set to 1. So to define the
/boot directory on the first partition of the first hard drive, you now need to use

set root=(hd0,1)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

256 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

 Sometimes the format is slightly different, where msdos indicates a DOS partition’s number
or gpt indicates a GPT (covered in Chapter 3) partition’s number:

 set root ='hd0,msdos1'

 For GRUB2, the commands to remember are as follows:

 ■ Menuentry : The first line for each boot definition section; this is what appears in the
boot menu.

 ■ set root : Defines the disk and partition where the GRUB2 /boot directory partition is
located on the system.

 ■ linux , linux16 : For BIOS systems, defines the kernel image file stored in the /boot
directory to load.

 ■ Linuxefi : For UEFI systems, defines the kernel image file stored in the /boot directory
to load.

 ■ Initrd : For BIOS systems, defines the initial RAM filesystem, which contains drivers
necessary for the kernel to interact with the system hardware.

 ■ Initrdefi : For UEFI systems, defines the initial RAM filesystem, which contains driv-
ers necessary for the kernel to interact with the system hardware.

 Notice in Listing 5.5 that you must enclose each individual boot section with braces
immediately following the menuentry command. In addition, the rootnoverify command
is not used in GRUB2. Non-Linux boot options are now defi ned the same as Linux boot
options using the root environment variable.

 If you need some detailed GRUB guidance, the GNU organization has a
nice manual at www.gnu.org/software/grub/manual/grub/grub.html . Be
sure to peruse your distribution’s GRUB documentation as well.

 The confi guration process for GRUB2 is also somewhat different. Although GRUB2 uses
the /boot/grub/grub.cfg fi le as the confi guration fi le, you should never modify that fi le.
Instead, there are separate confi guration fi les stored in the /etc/grub.d folder. This allows
you (or the system) to create individual confi guration fi les for each boot option installed on
your system (for example, one confi guration fi le for booting Linux and another for booting
Windows).

 For global commands, the /etc/default/grub confi guration fi le is used. Typically, you
should not modify this fi le either, but again use the confi guration fi les in the /etc/grub.d/
directory. The format for some of the global commands has changed from the GRUB
Legacy commands, such as GRUB_TIMEOUT instead of just timeout .

 Most Linux distributions generate a new grub.cfg confi guration fi le automatically
after certain events, such as when upgrading the kernel. Usually, the distribution will
keep a boot menu option pointing to the old kernel fi le, which is handy just in case the
new one fails.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at Boot Loaders 257

 Installing GRUB2
 Unlike with GRUB Legacy, you don’t need to install GRUB2. All you need to do is to
rebuild the main installation fi le. This is done by running either the grub-mkconfi g or
grub2-mkconfi g program. They are essentially equivalent programs but may not both be
installed on your system.

 The grub2-mkconfig program reads confi guration fi les stored in the /etc/grub.d folder
and assembles the commands into the single grub.cfg confi guration fi le.

 You can update the confi guration fi le manually by using super user privileges and run-
ning the grub2-mkconfig command:

 # grub2-mkconfig > /boot/grub2/grub.cfg

 Notice that you must either redirect the output of the grub2-mkconfig program to the
grub.cfg confi guration fi le or use the –o (or --output=) option to specify the output fi le. By
default, the grub2-mkconfig program just outputs the new confi guration fi le commands to
standard output.

 To further add to your GRUB installation choices, Ubuntu has the update-
grub utility. This program issues the command grub-mkconfig -o /boot/
grub/grub.cfg for you. It’s always nice to save a few keystrokes.

 Interacting with GRUB2
 The GRUB2 boot loader produces a boot menu similar to the GRUB Legacy method.
Figure 5.1 shows an Ubuntu GRUB2 menu interface. You can use arrow keys to switch
between the various boot menu entries.

 F I gu r e 5 .1 An Ubuntu GRUB2 menu

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

258 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

 Some graphical desktops (such as Ubuntu) hide the GRUB boot menu
behind a graphical interface. Usually, if you hold down the Shift key when
the system first boots, this will display the GRUB boot menu.

 If you want to edit a particular boot menu entry, when your cursor is on the appropri-
ate boot option line, press the E key to edit the entry. Figure 5.2 illustrates the editing of an
entry in the GRUB2 boot menu on an Ubuntu system.

 F I gu r e 5 . 2 Editing an Ubuntu GRUB2 menu entry

 For understanding (and certifi cation exam studying purposes) we’ve provided you two
tables. One is for operating in the GRUB2 menu interface (Table 5.2), and the other dis-
plays the various basic GRUB2 entry editor keystrokes (Table 5.3).

 ta B Le 5 . 2 GRUB2 menu interface keystrokes

Key(s) Description

Arrow Select boot menu option

C Starts the GRUB command-line interface

E Enters editing mode for currently selected menu option

Enter Boots currently selected menu option

P Used to enter password, if required

 The GRUB2 entry editor supports basic emacs editing keystrokes (covered in Chapter 1),
which is handy. However, you should be familiar with a few additional items, listed in
Table 5.3 .

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at Boot Loaders 259

ta B Le 5 . 3 GRUB2 entry editor keystrokes

Key(s) Description

Arrow Highlight the entry line to modify

Enter Adds a new line (best to use at a line’s end)

ESC Discards any changes and return to menu interface

Ctrl+C Starts the GRUB command-line interface

Ctrl+X Boot system with edited entry

Adding Kernel Boot Parameters
Besides editing a GRUB configuration on the fly from its boot menu, you can provide
options to the Linux kernel. This approach is especially useful in troubleshooting booting
problems.

To accomplish this using the techniques outlined in the previous sections, edit the
appropriate boot menu entry, find the line starting with kernel (GRUB Legacy) or linux*
(GRUB2), go to the end of the line, add a space, and then tack on the kernel option(s). After
you’ve completed that, boot the system using the appropriate keystroke.

A few of the more useful kernel parameters are listed in Table 5.4.

ta B Le 5 . 4 Kernel parameters

Parameter Description

console= Set the console device

debug Enable kernel debugging

init= Execute the specified program, such as a Bash shell
(/bin/bash) instead of /sbin/init

initrd= Change the location of the initial RAM filesystem

mem Set the total amount of available system memory

ro Mount root filesystem as read-only

root= Change the root filesystem

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

260 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

Parameter Description

rootflags= Set root filesystem’s mount options

rw Mount root filesystem as read-write

selinux Disable SELinux at boot time

single , Single , 1 , or S Boot a SysVinit system to single-user mode

systemd.unit = Boot a systemd system to specified target

 If you’d like to look at a complete list of kernel parameters, one is available at
www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt .

 Using Alternative Boot Loaders
 Although GRUB Legacy and GRUB2 are the most popular Linux boot loader programs,
you may run into a few others, depending on which Linux distributions you are using.

 A legacy boot loader that predates GRUB Legacy is LILO. It’s inability to
handle UEFI systems as well as other difficulties brought its development
to an end in December 2015.

 The systemd-boot loader program is starting to gain popularity in Linux distributions
that use the systemd initialization method (covered later in this chapter). This boot loader
generates a menu of boot image options and can load any UEFI boot image.

 The U-Boot boot loader (also called Das U-Boot) can boot from any type of disk. It can
load any type of boot image.

 The SYSLINUX project includes fi ve separate boot loader programs that have special
uses in Linux:

 ■ SYSLINUX: A boot loader for systems that use the Microsoft FAT filesystem (popular
for booting from USB flash drives)

 ■ EXTLINUX: A mini-boot loader for booting from an ext2, ext3, ext4, or btrfs
 filesystem

 ■ ISOLINUX: A boot loader for booting from a LiveCD or LiveDVD

 ■ PXELINUX: A boot loader for booting from a network server

 ■ MEMDISK: A utility for booting older DOS operating systems from the other
 SYSLINUX project boot loaders

ta B Le 5 . 4 Kernel parameters (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The Initialization Process 261

 Since UEFI can load any size of boot loader program, it’s now possible to
load a Linux operating system kernel directly without a special boot loader
program. This feature was incorporated in the Linux kernel starting with
version 3.3.0. However, this method isn’t common, as boot loader pro-
grams can provide more versatility in booting, especially when working
with multiple operating systems.

 The Initialization Process
 After your Linux system has traversed the boot process, it enters fi nal system initialization,
where it needs to start various services. A service, or daemon, is a program that performs a
particular duty.

 The initialization daemon (init) determines which services are started and in what order.
This daemon also allows you to stop and manage the various system services. There are
two initialization daemons with which you should be familiar:

SysVinit The SysVinit (SysV) was based on the Unix System V initialization daemon.
Though it is not used by many major Linux distributions anymore, you still may fi nd it
lurking around that older Linux server at your company.

 systemd The systemd initialization method is the new kid on the block. Started around
2010, it is now the most popular system service initialization and management mechanism.
This daemon reduces initialization time by starting services in a parallel manner.

 Before we start examining these system initialization daemons, it’s a good idea to take
a look at the init program itself. Classically, service startups are handled by the init pro-
gram. This program can be located in the /etc/ , the /bin/ , or the /sbin/ directory. Also,
it typically has a process ID (PID) of 1.

 This information will assist you in determining which system initialization method your
current Linux distribution is using—systemd or SysVinit. First fi nd the init program’s
location using the which command. An example is shown in Listing 5.6.

 Listing 5.6: Finding the init program file location

 # which init
 /sbin/init
 #

 Now that you know the init program’s location, using super user privileges you can
utilize the readlink -f command to see if the program is linked to another program, as
shown in Listing 5.7.

 Listing 5.7: Checking the init program for links

 # readlink -f /sbin/init
 /usr/lib/systemd/systemd
 #

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

262 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

 You can see in Listing 5.7 that this system is actually using systemd. You can verify this
by taking a look at PID 1, as shown in Listing 5.8.

 Listing 5.8: Checking PID 1

 # ps -p 1
 PID TTY TIME CMD
 1 ? 00:00:06 systemd
 #

 In Listing 5.8, the ps utility is used. This utility allows you to view processes. A process
is a running program. The ps command shows you what program is running for a par-
ticular process in the CMD column. In this case, the systemd program is running. Thus, this
Linux system is using systemd.

 The init program or systemd is the parent process for every service on
a Linux system. If your system has the pstree program installed, you can
see a diagram depicting this relationship by typing pstree -p 1 at the
command line.

 Keep in mind that these discovery methods are not foolproof. Also, there are other
system initialization methods, such as the now-defunct Upstart that used the initctl
utility as its daemon interface. The following brief list shows a few Linux distribution
versions that used Upstart:

 ■ Fedora v9–v14

 ■ openSUSE v11.3–v12.2

 ■ RHEL v6

 ■ Ubuntu v6.10–v15.04

 If you are using the distribution versions recommended in Chapter 1, know that those
distributions are all systemd systems.

 Using the systemd Initialization
Process
 The systemd approach introduced a major paradigm shift in how Linux systems manage
services. Services can now be started when the system boots, when a particular hardware
component is attached to the system, when certain other services are started, and so on.
Some services can be started based upon a timer.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the systemd Initialization Process 263

Exploring Unit Files
The easiest way to start exploring systemd is through the systemd units. A unit defines a
service, a group of services, or an action. Each unit consists of a name, a type, and a
configuration file. There are currently 12 different systemd unit types:

 ■ automount

 ■ device

 ■ mount

 ■ path

 ■ scope

 ■ service

 ■ slice

 ■ snapshot

 ■ socket

 ■ swap

 ■ target

 ■ timer

The systemctl utility is the main gateway to managing systemd and system services. Its
basic syntax is as follows:

systemctl [OPTIONS...] COMMAND [NAME...]

You can use the systemctl utility to provide a list of the various units currently loaded
in your Linux system. A snipped example is shown in Listing 5.9.

Listing 5.9: Looking at systemd units

$ systemctl list-units
UNIT LOAD ACTIVE SUB DESCRIPTION
[…]
smartd.service loaded active running Self Monitor[…]
sshd.service loaded active running OpenSSH serv[…]
sysstat.service loaded active exited Resets Syste[…]
[…]
graphical.target loaded active active Graphical I[…]
[…]
$

In Listing 5.9 you can see various units as well as additional information. Units are iden-
tified by their name and type using the format name.type. System services (daemons) have
unit files with the .service extension. Thus, the Secure Shell (SSH) daemon, sshd, has a
unit filename of sshd.service.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

264 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

 Many displays from the systemctl utility use the less pager by default.
Thus, to exit the display, you must press the Q key. If you want to turn off
the less pager for the systemctl utility, tack on the --no-pager option to
the command.

 Groups of services are started via target unit fi les. At system startup, the default.target
unit ensures that all required and desired services are launched at system initialization. The
 systemctl get-default command displays the target fi le, as shown in Listing 5.10 on a
CentOS distribution.

 Listing 5.10: Looking at the default.target link

 $ systemctl get-default
 graphical.target
 $

 Table 5.5 shows the commonly used system boot target unit fi les.

 ta B Le 5 .5 Commonly used system boot target unit files

Name Description

 graphical.target Provides multiple users access to the system via local terminals
and/or through the network. Graphical user interface (GUI) access
is offered.

 multi-user.target Provides multiple users access to the system via local terminals
and/or through the network. No GUI access is offered.

 runlevel n .target Provides backward compatibility to SysVinit systems, where n is
set to 1–5 for the desired SysV runlevel equivalence.

 In Table 5.5 , you’ll notice that systemd provides backward compatibility to the classic
SysVinit systems. The SysV runlevels will be covered later in this chapter.

 The master systemd configuration file is /etc/systemd/system.conf . In
this file you will find all the default configuration settings commented out
via a hash mark (#). Viewing this file is a quick way to see the current sys-
temd configuration. If you need to modify the configuration, just edit the
file. However, it would be wise to peruse the file’s man page first by typing
 man systemd-system.conf at the command line.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the systemd Initialization Process 265

Focusing on Service Unit Files
Service unit files contain information such as which environment file to use, when a service
must be started, what targets want this service started, and so on. These configuration files
are located in different directories.

Keep in mind that the directory location for a unit configuration file is critical, because
if a file is found in two different directory locations, one will have precedence over the
other. The following list shows the directory locations in ascending priority order:

1. /etc/systemd/system/

2. /run/systemd/system/

3. /usr/lib/systemd/system/

To see the various service unit files available, you can again employ the systemctl
 utility. However, a slightly different command is needed than when viewing units, as
shown in Listing 5.11.

Listing 5.11: Looking at systemd unit files

$ systemctl list-unit-files
UNIT FILE STATE
[…]
dev-hugepages.mount static
dev-mqueue.mount static
proc-fs-nfsd.mount static
[…]
nfs.service disabled
nfslock.service static
ntpd.service disabled
ntpdate.service disabled
[…]
ctrl-alt-del.target disabled
default.target static
emergency.target static
[…]
$

In addition to the unit file’s base name, you can see a unit file’s state in Listing 5.11.
Their states are called enablement states, and they refer to when the service is started.
There are at least 12 different enablement states, but you’ll commonly see these 3:

 ■ enabled: Service starts at system boot.

 ■ disabled: Service does not start at system boot.

 ■ static: Service starts if another unit depends on it. Can also be manually started.

To see what directory or directories store a particular systemd unit file(s), use the
systemctl utility. An example on a CentOS distribution is shown in Listing 5.12.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

266 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

Listing 5.12: Finding and displaying a systemd unit file

$ systemctl cat ntpd.service
/usr/lib/systemd/system/ntpd.service
[Unit]
Description=Network Time Service
After=syslog.target ntpdate.service sntp.service

[Service]
Type=forking
EnvironmentFile=-/etc/sysconfig/ntpd
ExecStart=/usr/sbin/ntpd -u ntp:ntp $OPTIONS
PrivateTmp=true

[Install]
WantedBy=multi-user.target
$

Notice in Listing 5.12 that the first displayed line shows the ntpd.service base name
and directory location of the unit file. The next several lines are the file’s contents.

For service unit files, there are three primary configuration sections:

 ■ [Unit]

 ■ [Service]

 ■ [Install]

Within the [Unit] section of the service unit configuration file, there are basic directives.
A directive is a setting that modifies a configuration, such as the After setting shown in
Listing 5.12. The more commonly used [Unit] section directives are described in Table 5.6.

ta B Le 5 .6 Commonly used service unit file [Unit] section directives

Directive Description

After Sets this unit to start after the designated units.

Before Sets this unit to start before the designated units.

Description Describes the unit.

Documentation Sets a list of uniform resource identifiers (URIs) that point to
documentation sources. The URIs can be web locations, system files,
info pages, and man pages.

Conflicts Sets this unit to not start with the designated units. If any of the
designated units start, this unit is not started. (Opposite of Requires.)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the systemd Initialization Process 267

Directive Description

 Requires Sets this unit to start together with the designated units. If any of the
designated units do not start, this unit is not started. (Opposite of
 Conflicts .)

 Wants Sets this unit to start together with the designated units. If any of the
designated units do not start, this unit is still started.

 There is a great deal of useful information in the man pages for systemd
and unit configuration files. Just type man -k systemd to find several
items you can explore. For example, explore the service type unit file
 directives and more via the man systemd.service command. You can
find information on all the various directives by typing man systemd
.directives at the command line.

 The [Service] directives within a unit fi le set confi guration items that are specifi c to
that service. The commonly used [Service] section directives are described in Table 5.7 .

 ta B Le 5 .7 Commonly used service unit file [Service] section directives

Directive Description

ExecReload Indicates scripts or commands (and options) to run when unit is reloaded.

ExecStart Indicates scripts or commands (and options) to run when unit is started.

ExecStop Indicates scripts or commands (and options) to run when unit is
stopped.

Environment Sets environment variable substitutes, separated by a space.

Environment File Indicates a file that contains environment variable substitutes.

RemainAfterExit Set to either no (default) or yes . If set to yes , the service is left active
even when the process started by ExecStart terminates. If set to
no , then ExecStop is called when the process started by ExecStart
terminates.

Restart Service is restarted when the process started by ExecStart
terminates. Ignored if a systemctl restart or systemctl stop
command is issued. Set to no (default), on-success , on-failure ,
on-abnormal , on-watchdog , on-abort , or always .

Type Sets the startup type.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

268 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

 You will only find a unit file [Service] section in a service unit file. This
middle section is different for each unit type. For example, in auto-mount
unit files, you would find an [Automount] section as the middle unit file
section.

 The [Install] directives within a unit fi le determine what happens to a service if it is
enabled or disabled. An enabled service starts at system boot. A disabled service does not start
at system boot. The commonly used [Install] section directives are described in Table 5.8 .

 ta B Le 5 . 8 Commonly used service unit file [Install] section directives

Directive Description

Alias Sets additional names that can denote the service in systemctl
 commands.

 Also Sets additional units that must be enabled or disabled for this service.
Often the additional units are socket type units.

 RequiredBy Designates other units that require this service.

 WantedBy Designates which target unit manages this service.

 Focusing on Target Unit Files
 For systemd, you need to understand the service unit fi les as well as the target unit fi les.
The primary purpose of target unit fi les is to group together various services to start at
system boot time. The default target unit fi le, default.target , is symbolically linked to the
target unit fi le used at system boot. In Listing 5.13, the default target unit fi le is located and
displayed using the systemctl command.

 Listing 5.13: Finding and displaying the systemd target unit file

 $ systemctl get-default
 graphical.target
 $
 $ systemctl cat graphical.target
 # /usr/lib/systemd/system/graphical.target
 […]
 [Unit]
 Description=Graphical Interface
 Documentation=man:systemd.special(7)
 Requires=multi-user.target
 Wants=display-manager.service

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the systemd Initialization Process 269

Conflicts=rescue.service rescue.target
After=multi-user.target rescue.service rescue.target display-manager.service
AllowIsolate=yes
$

Notice in Listing 5.13 that the graphical.target unit file has many of the same direc-
tives as a service unit file. These directives were described back in Table 5.6. Of course,
these directives apply to a target type unit file instead of a service type unit file. For exam-
ple, the After directive in the graphical.target unit file sets this target unit to start after
the designated units, such as multi-user.target. Target units, similar to service units,
have various target dependency chains as well as conflicts.

In Listing 5.13, there is one directive we have not covered yet. The AllowIsolate direc-
tive, if set to yes, permits this target file to be used with the systemctl isolate command.
This command is covered later in this chapter.

Modifying systemd configuration Files

Occasionally you may need to change a unit configuration file for your Linux system’s require-
ments or add additional components. However, be careful when doing this task. You should not
modify any unit files in the /lib/systemd/system/ or /usr/lib/systemd/system/ directory.

To modify a unit configuration file, copy the file to the /etc/systemd/system/ directory
and modify it there. This modified file will take precedence over the original unit file left in
the original directory. Also, it will protect the modified unit file from software updates.

If you just have a few additional components, you can extend the configuration. Using
super user privileges, create a new subdirectory in the /etc/systemd/system/ direc-
tory named service.service-name.d, where service-name is the service’s name.
For example, for the openSSH daemon, you would create the /etc/systemd/system/
service.sshd.d directory. This newly created directory is called a drop-in file directory,
because you can drop in additional configuration files. Create any configuration files with
names like description.conf, where description describes the configuration file’s
purpose, such as local or script. Add your modified directives to this configuration file.

After you make these modifications, you must complete a few more steps. Find and compare
any unit file that overrides another unit file by issuing the systemd-delta command. It will dis-
play any unit files that are duplicated, extended, redirected, and so on. Review this list. It will
help you avoid any unintended consequences from modifying or extending a service unit file.

To have your changes take effect, issue the systemctl daemon-reload command for the
service whose unit file you modified or extended. After you accomplish that task, issue
the systemctl restart command to start or restart the service. These commands are
explained in the next section.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

270 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

Looking at systemctl
While there are various commands to manage systemd and system services, it is easier and
faster to employ the systemctl utility.

Several basic systemctl commands are available for you to manage system services. One
that is often used is the status command. It provides a wealth of information. A couple of
snipped examples on a CentOS distro are shown in Listing 5.14.

Listing 5.14: Viewing a service unit’s status via systemctl

$ systemctl status ntpd
• ntpd.service - Network Time Service
 Loaded: loaded (/usr/lib/systemd/system/ntpd.service;
 disabled; vendor preset: disabled)
 Active: inactive (dead)
$ systemctl status sshd
• sshd.service - OpenSSH server daemon
 Loaded: loaded (/usr/lib/systemd/system/sshd.service;
 enabled; vendor preset: enabled)
 Active: active (running) since Sat 2019-09-07 15:5[…]
 Docs: man:sshd(8)
 man:sshd_config(5)
 Main PID: 1130 (sshd)
 Tasks: 1
 CGroup: /system.slice/sshd.service
 └─1130 /usr/sbin/sshd -D
$

In Listing 5.14, the first systemctl command shows the status of the ntpd service.
Notice the third line in the utility’s output. It states that the service is disabled. The fourth
line states that the service is inactive. In essence, this means that the ntpd service is not
running (inactive) and is not configured to start at system boot time (disabled). Another
item to look at within the ntpd service’s status is the Loaded line. Notice that the unit file’s
complete filename and directory location is shown.

The status of the sshd service is also displayed, showing that sshd is running (active)
and configured to start at system boot time (enabled).

There are several simple commands you can use with the systemctl utility to manage
systemd services and view information regarding them. The more common commands are
listed in Table 5.9. These systemctl commands generally use the following syntax:

systemctl COMMAND UNIT-NAME…

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the systemd Initialization Process 271

ta B Le 5 . 9 Commonly used systemctl service management commands

Command Description

daemon-reload Load the unit configuration file of the running designated unit(s) to
make unit file configuration changes without stopping the service.
Note that this is different from the reload command.

disable Mark the designated unit(s) to not be started automatically at system
boot time.

enable Mark the designated unit(s) to be started automatically at system
boot time.

mask Prevent the designated unit(s) from starting. The service cannot be
started using the start command or at system boot. Use the --now
option to immediately stop any running instances as well. Use the
--running option to mask the service only until the next reboot or
unmask is used.

restart Stop and immediately restart the designated unit(s). If a designated
unit is not already started, this will simply start it.

start Start the designated unit(s).

status Display the designated unit’s current status.

stop Stop the designated unit(s).

reload Load the service configuration file of the running designated unit(s)
to make service configuration changes without stopping the service.
Note that this is different from the daemon-reload command.

unmask Undo the effects of the mask command on the designated unit(s).

Notice the difference in Table 5.9 between the daemon-reload and the reload command.
This is an important difference. Use the daemon-reload command if you need to load sys-
temd unit file configuration changes for a running service. Use the reload command to
load a service’s modified configuration file. For example, if you modified the ntpd service’s
configuration file, /etc/ntp.conf, and wanted the new configuration to take immediate
effect, you would issue the command systemctl reload ntpd at the command line.

Besides the commands in Table 5.9, there are some other handy systemctl commands
you can use for managing system services. An example on a CentOS distro is shown in
Listing 5.15.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

272 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

Listing 5.15: Determining if a service is running via systemctl

systemctl stop sshd
#
systemctl is-active sshd
inactive
#
systemctl start sshd
#
systemctl is-active sshd
active
#

In Listing 5.15, the openSSH daemon (sshd) is stopped using systemctl and its stop
command. Instead of the status command, the is-active command is used to quickly
display that the service is stopped (inactive). The openSSH service is started back up
and again the is-active command is employed showing that the service is now running,
(active). Table 5.10 shows these useful service status–checking commands.

ta B Le 5 .10 Convenient systemctl service status commands

Command Description

is-active Displays active for running services and failed for any service that
has reached a failed state.

is-enabled Displays enabled for any service that is configured to start at system
boot and disabled for any service that is not configured to start at
system boot.

is-failed Displays failed for any service that has reached a failed state and
active for running services.

Services can fail for many reasons: for hardware issues, a missing dependency set in
the unit configuration file, an incorrect permission setting, and so on. You can employ the
systemctl utility’s is-failed command to see whether a particular service has failed. An
example is shown in Listing 5.16.

Listing 5.16: Determining if a service has failed via systemctl

$ systemctl is-failed NetworkManager-wait-online.service
failed
$
$ systemctl is-active NetworkManager-wait-online.service
failed
$

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the systemd Initialization Process 273

In Listing 5.16, you can see that this particular service has failed. Actually, it was a fail-
ure forced by disconnecting the network cable prior to boot, so you could see a service’s
failed status. If the service was not in failed state, the is-failed command would show
an active status.

Examining Special systemd Commands
The systemctl utility has several commands that go beyond service management. You can
manage what targets (groups of services) are started at system boot time, jump between
various system states, and even analyze your system’s boot time performance. We’ll look at
these various commands in this section.

One special command to explore is the systemctl is-system-running command. An
example of this command is shown in Listing 5.17.

Listing 5.17: Determining a system’s operational status

$ systemctl is-system-running
running
$

You may think the status returned above is obvious, but it means all is well with your
Linux system currently. Table 5.11 shows other useful statuses.

ta B Le 5 .11 Operational statuses provided by systemctl is-system-running

Status Description

running System is fully in working order.

degraded System has one or more failed units.

maintenance System is in emergency or recovery mode.

initializing System is starting to boot.

starting System is still booting.

stopping System is starting to shut down.

The maintenance operational status will be covered shortly in this chapter. If you receive
degraded status, however, you should review your units to see which ones have failed and
take appropriate action. Use the systemctl --failed command to find the failed unit(s) as
shown snipped in Listing 5.18.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

274 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

Listing 5.18: Finding failed units

$ systemctl is-system-running
degraded
$
$ systemctl --failed
 UNIT LOAD ACTIVE SUB DESCRIPTION
• rngd.service loaded failed failed Hardware RNG Entropy Gatherer Daemon
[…]
$

Other useful systemctl utility commands deal with obtaining, setting, and jumping
between the system’s target. They are as follows:

 ■ get-default

 ■ set-default

 ■ isolate

You’ve already seen the systemctl get-default command in action within Listing 5.13.
This command displays the system’s default target. As you may have guessed, you can
set the system’s default target with super user privileges via the systemctl set-target
command.

The isolate command is handy for jumping between system targets. When this com-
mand is used along with a target name for an argument, all services and processes not
enabled in the listed target are stopped. Any services and processes enabled and not run-
ning in the listed target are started. A snipped example is shown in Listing 5.19.

Listing 5.19: Jumping to a different target unit

systemctl get-default
graphical.target
#
systemctl isolate multi-user.target
#
systemctl status graphical.target
[…]
 Active: inactive (dead) since Thu 2018-09-13 16:57:00 EDT; 4min 24s ago
 Docs: man:systemd.special(7)

Sep 13 16:54:41 localhost.localdomain systemd[1]: Reached target Graphical In...
Sep 13 16:54:41 localhost.localdomain systemd[1]: Starting Graphical Interface.
Sep 13 16:57:00 localhost.localdomain systemd[1]: Stopped target Graphical In...
Sep 13 16:57:00 localhost.localdomain systemd[1]: Stopping Graphical Interface.
[…]
#

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the systemd Initialization Process 275

 In Listing 5.19, using super user privileges, the systemctl isolate command caused
the system to jump from the default system target to the multi-user target. Unfortunately,
there is no simple command to show your system’s current target in this case. However, the
systemctl status command is useful. If you employ the command and give it the previ-
ous target’s name (graphical.target in this case), you should see that it is no longer active
and thus not the current system target. Notice that a short history of the graphical target’s
starts and stops is also shown in the status display.

 The systemctl isolate command can be used only with certain targets.
The target’s unit file must have the AllowIsolate=yes directive set.

 Two extra special targets are rescue and emergency. These targets, sometimes called
modes, are described here:

Rescue Target When you jump your system to the rescue target, the system mounts
all the local fi lesystems, only the root user is allowed to log into the system, network-
ing services are turned off, and only a few other services are started. The systemctl
is-system- running command will return the maintenance status. Running disk utilities
to fi x corrupted disks is a useful task in this particular target. This target is similar to the
SysVinit single-user mode, covered later in this chapter.

Emergency Target When your system goes into emergency mode, the system mounts only
the root fi lesystem, and it mounts it as read-only. Similar to rescue mode, it only allows
the root user to log into the system, networking services are turned off, and only a few
other services are started. The systemctl is-system-running command will return the
maintenance status. If your system goes into emergency mode by itself, there are serious
problems. This target is used for situations where even rescue mode cannot be reached.

 Be aware that if you jump into either rescue or emergency mode, you’ll only be able to
log into the root account. Therefore, you need to have the root account password. Also,
your screen may go blank for a minute, so don’t panic. An example of jumping into
emergency mode is shown in Listing 5.20.

 Listing 5.20: Jumping to the emergency target unit

 # systemctl isolate emergency
 Welcome to emergency mode! After logging in, type "journalctl -xb" to view
 system logs, "systemctl reboot" to reboot, "systemctl default" or ^D to
 try again to boot into default mode.
 Give root password for maintenance
 (or type Control-D to continue):
 #
 # systemctl is-system-running
 maintenance
 #

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

276 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

 # systemctl list-units --type=target
 UNIT LOAD ACTIVE SUB DESCRIPTION
 emergency.target loaded active active Emergency Mode
 […]
 #
 # systemctl default
 #

 In Listing 5.20, the systemctl command is employed to jump into emergency mode.
Notice that you do not have to add the .target extension on the emergency target unit’s
fi lename. This is true with all systemd targets. When you reach emergency mode, you
must enter the root password at the prompt. When you reach the command line, you
can enter commands listed in the welcome display or try out some additional systemctl
commands.

 Other targets you can jump to include reboot , poweroff , and halt .
For example, just type in systemctl isolate reboot to reboot
your system.

 Notice in Listing 5.20 that when the systemctl is-system-running command is issued,
the response is maintenance instead of running . Also, when the list-units command is
employed, it shows that the emergency.target is active. The systemctl default command
will cause the system to attempt to jump into the default target.

 Using the SysV Initialization Process
 Many server administrators have gone through the process of moving from a SysVinit
system to a systemd system. Recall that systemd is backward compatible with SysVinit, so
understanding SysVinit is important.

 First, if you want to experiment with the original SysVinit commands without interfer-
ence from systemd or the now defunct Upstart, fi nd a Linux distribution that uses the
SysVinit initialization method. One way to fi nd one is to visit the DistroWatch website
and use their search tool at distrowatch.com/search.php . Scroll down to the Search by
Distribution Criteria section, and for Init software, select SysV. Any Linux distributions
still using SysVinit will display in the search results.

 To get clean SysVinit listings for this book, we used a blast from the Linux distribution
past, Fedora 7. To grab an ISO copy of this old distribution, visit archives.fedoraproject
.org/pub/archive/fedora/linux/releases/ .

Listing 5.20: Jumping to the emergency target unit (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the SysV Initialization Process 277

 Using any older and no-longer-supported Linux distribution can open up
your system to a whole host of problems. If you do choose to take this risk,
minimize your exposure by putting the Linux distribution in a virtualized
environment; do not install any network interface cards (NICs) for the
 virtual machine, and turn off access to the host machine’s filesystem.

 The next section should provide you with enough of a SysVinit understanding to manage
a system using it or to help in a Linux server migration process to systemd.

 Understanding Runlevels
 At system boot time, instead of targets to determine what groups of services to start,
SysVinit uses runlevels. These runlevels are defi ned in Table 5.12 and Table 5.13 . Notice
that different distributions use different runlevel defi nitions.

 ta B Le 5 .12 Red Hat–based distribution SysVinit runlevels

Runlevel Description

0 Shut down the system.

1, s, or S Single-user mode used for system maintenance. (Similar to systemd
rescue target.)

2 Multi-user mode without networking services enabled.

3 Multi-user mode with networking services enabled.

4 Custom.

5 Multi-user mode with GUI available.

6 Reboot the system.

 Note that runlevels 0 and 6 are not true runlevels by defi nition. For example, a system in
a powered-off state, which is runlevel 0, is not running.

 ta B Le 5 .13 Debian-based distribution SysVinit runlevels

Runlevel Description

0 Shut down the system.

1 Single-user mode used for system maintenance. (Similar to systemd
rescue target.)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

278 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

Runlevel Description

2 Multi-user mode with GUI available.

6 Reboot the system.

 To determine your system’s current and former runlevel, you employ the runlevel com-
mand. The fi rst number or letter displayed indicates the previous runlevel (N indicates that
the system is newly booted), and the second number indicates the current runlevel. An
example is shown in Listing 5.21 of a newly booted Red Hat–based SysVinit system, which
is running at runlevel 5.

 Listing 5.21: Employing the runlevel command

 # runlevel
 N 5
 #

 Instead of using a default target like systemd, SysVinit systems employ a confi guration
fi le, /etc/inittab . In the past, this fi le started many different services, but in later years it
started only terminal services and defi ned the default runlevel for a system. The fi le line
defi ning the default runlevel is shown in Listing 5.22.

 Listing 5.22: The /etc/inittab file line that sets the default runlevel

 # grep :initdefault: /etc/inittab
 id:5:initdefault:
 #

 Within Listing 5.22, notice the number 5 between the id: and the :initdefault: in
the /etc/inittab fi le record. This indicates that the system’s default runlevel is 5. The
 initdefault is what specifi es the runlevel to enter after the system boots.

 Look back at Table 5.5 in this chapter. You’ll see that systemd provides
backward compatibility to SysVinit via runlevel targets, which can be
used as the default target and/or in switching targets via the systemctl
isolate command.

 Setting the default runlevel is the fi rst step in confi guring certain services to start at sys-
tem initialization. Next, each service must have an initialization script located typically in
the /etc/init.d/ directory. Listing 5.23 shows a snipped example of the various scripts in
this directory. Note that the -1F options are used on the ls command to display the scripts

ta B Le 5 .13 Debian-based distribution SysVinit runlevels (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the SysV Initialization Process 279

in a single column and to tack on a file indicator code. The * file indicator code denotes
that these files are executable programs (Bash shell scripts in this case).

Listing 5.23: Listing script files in the /etc/init.d/ directory

ls -1F /etc/init.d/
anacron*
atd*
[…]
crond*
cups*
[…]
ntpd*
[…]
ypbind*
yum-updatesd*
#

These initialization scripts are responsible for starting, stopping, restarting, reloading,
and displaying the status of various system services. The program that calls these initializa-
tion scripts is the rc script, and it can reside in either the /etc/init.d/ or the /etc/rc.d/
directory. The rc script runs the scripts in a particular directory. The directory picked
depends on the desired runlevel. Each runlevel has its own subdirectory in the /etc/rc.d/
directory, as shown in Listing 5.24.

Listing 5.24: Runlevel subdirectories in the /etc/rc.d/ directory

ls /etc/rc.d/
init.d rc0.d rc2.d rc4.d rc6.d rc.sysinit
rc rc1.d rc3.d rc5.d rc.local
#

Notice in Listing 5.24 that there are seven subdirectories named rcn.d, where n is a
number from 0 to 6. The rc script runs the scripts in the rcn.d subdirectory for the desired
runlevel. For example, if the desired runlevel is 3, all the scripts in the /etc/rc.d/rc3.d/
directory are run. Listing 5.25 shows a snippet of the scripts in this directory.

Listing 5.25: Files in the /etc/rc.d/rc3.d directory

ls -1F /etc/rc.d/rc3.d/
K01smolt@
K02avahi-dnsconfd@
K02NetworkManager@
[…]
K99readahead_later@

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

280 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

 S00microcode_ctl@
 S04readahead_early@
 […]
 S55cups@
 S99local@
 S99smartd@
 #

 Notice in Listing 5.25 that the script names start with either a K or an S , are followed
by a number, and then their service name. The K stands for kill (stop), and the S stands for
start. The number indicates the order in which this service should be stopped or started for
that runlevel. This is somewhat similar to the After and Before directives in the systemd
service type unit fi les.

 The fi les in the /etc/rc.d/rc n .d/ directories are all symbolic links to the scripts in the
/etc/init.d/ directory. Listing 5.26 shows an example of this.

 Listing 5.26: Displaying the /etc/rc.d/rc3.d/S55cups link

 # readlink -f /etc/rc.d/rc3.d/S55cups
 /etc/rc.d/init.d/cups
 #

 The rc script goes through and runs all the K scripts fi rst, passing a stop argument to
each script. It then runs all the S scripts, passing a start argument to each script. This not
only ensures that the proper services are started for a particular runlevel but also allows
jumping between runlevels after system initialization and thus stopping and starting certain
services for that new runlevel.

 If you need to enact certain commands or run any scripts as soon as sys-
tem initialization is completed, there is a file for that purpose. The /etc/
rc.local script allows you to add additional scripts and or commands.
Just keep in mind that this script is not run until all the other SysVinit
scripts have been executed.

 Scripts are central to the SysVinit process. To understand SysVinit scripts, be sure to read
through Chapter 9 fi rst. That chapter will help you understand Bash shell script basics,
which in turn will help you to understand the SysVinit script contents.

 Investigating SysVinit Commands
 The various SysVinit commands help in starting and stopping services, managing what ser-
vices are deployed at various runlevels, and jumping between runlevels on an already run-
ning Linux system. We cover the various SysVinit commands in this section.

 Jumping between runlevels is a little different than jumping between systemd targets.
It uses the init or telinit utility to do so. These two utilities are essentially twins and can

Listing 5.25: Files in the /etc/rc.d/rc3.d directory (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the SysV Initialization Process 281

be interchanged for each other. To jump between runlevels on a SysVinit system, the basic
syntax is as follows:

 init Destination-Runlevel
 telinit Destination-Runlevel

 Listing 5.27 shows an example of jumping on a SysVinit system from the current run-
level 5 to the destination runlevel 3. Note that the runlevel command is employed to show
the previous and current runlevels.

 Listing 5.27: Jumping from runlevel 5 to runlevel 3

 # runlevel
 N 5
 #
 # init 3
 #
 # runlevel
 5 3

 #

 Keep in mind you can shut down a SysVinit system by entering init 0 or
telinit 0 at the command line as long as you have the proper privileges.
You can also reboot a SysVinit system by typing init 6 or telinit 6 at
the command line.

 To view a SysVinit managed service’s status and control whether it is currently running,
use the service utility. This utility has the following basic syntax:

 service SCRIPT COMMAND [OPTIONS]

 The SCRIPT in the service utility refers to a particular service script within the
/etc/init.d/ directory. The service utility executes the script, passing it the designated
COMMAND . Service scripts typically have the same name as the service. Also, you only have
to provide a script’s base name and not the directory location. As an example, for the NTP
service script, /etc/init.d/ntpd , you only need to use the ntpd base name.

 Table 5.14 describes commonly used items you can employ for the COMMAND portion of
the service utility. Keep in mind that if the COMMAND is not handled by the script or handled
differently than it’s commonly handled, you’ll get an unexpected result.

 ta B Le 5 .14 Commonly used service utility commands

Command Description

 restart Stop and immediately restart the designated service. Note that if a des-
ignated service is not already started, a FAILED status will be generated
on the stop attempt, and then the service will be started.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

282 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

Command Description

start Start the designated service.

status Display the designated service’s current status.

stop Stop the designated service. Note if a designated service is already
stopped, a FAILED status will be generated on the stop attempt.

reload Load the service configuration file of the running designated service.
This allows you to make service configuration changes without stopping
the service. Note that if you attempt the reload command on a stopped
service, a FAILED status will be generated.

It helps to see examples of the service utility in action. Listing 5.28 provides a few for
your review.

Listing 5.28: Employing the service utility

service httpd status
httpd is stopped
#
service httpd start
Starting httpd: [OK]
#
service httpd status
httpd (pid 14124 14123 […]) is running...
#
service httpd stop
Stopping httpd: [OK]
#
service httpd status
httpd is stopped
#
service --status-all
anacron is stopped
atd (pid 2024) is running...
[…]
ypbind is stopped
yum-updatesd (pid 2057) is running...
#

ta B Le 5 .14 Commonly used service utility commands (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Stopping the System 283

 The last service utility example in Listing 5.28 is worth pointing out. This com-
mand allows you to view all the services on your system along with their current
status. Keep in mind that this list will scroll by quickly, so it’s a good idea to redi-
rect its STDOUT to the less pager utility so that you can view the display more
comfortably.

 Although some SysVinit commands have been modified to work with
systemd utilities, others, such as service --status-all , might produce
unpredictable or confusing results. As tempting as it is to hang on to past
commands, those habits may cause you problems in the future. It is best to
learn native systemd commands and employ them instead.

 As you can see, managing the SysVinit scripts and their associated runlevels can be
tricky. However, if you have to take care of one of these systems, you now understand the
tools that can help you.

 Stopping the System
 Besides the various SysVinit and systemd commands you can use to shut down or reboot a
system, there are a few additional utilities you can employ to enact these tasks no matter
what system initialization your system uses:

 ■ halt : Stops all processes and shuts down the CPU.

 ■ poweroff : Stops all processes, shuts down the CPU, and sends signals to the hardware
to power down.

 ■ reboot : Stops all processes, shuts down the CPU, and then restarts the system.

 ■ shutdown : Stops all processes, shuts down the CPU, and sends signals to the hardware
to power down.

 On most modern systemd initialization systems, the halt , poweroff , and
reboot commands are symbolically linked to the systemctl utility.

 The interesting thing about the halt , poweroff , and reboot commands is that they can
each do the other’s job. They all have the following options available to accomplish this:

 ■ --halt : Makes the command behave like halt .

 ■ -p , --poweroff : Makes the command behave like poweroff .

 ■ --reboot : Makes the command behave like reboot .

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

284 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

 When powering off a system, after the processes are stopped and the
CPU is shut down, signals are sent to the hardware telling the various
components to power down. For operating systems using Advanced
Configuration and Power Interface (ACPI)–compliant chipsets, these are
ACPI signals. These special communications are handled by the ACPI
daemon, acpid . This daemon manages signals sent to various hardware
devices via predefined settings for particular events, such as pressing
the system’s power button or closing a laptop system’s lid.

 The utility with the most fl exibility in rebooting or powering off your system is the
shutdown command. Its basic syntax is as follows:

 shutdown [OPTIONS ...] TIME [WALL-MESSAGE]

 The [OPTIONS] include switches to halt the system (-H), power off the system (-P), and
reboot the system (-r), as well as several other useful selections. After you’ve started a shut-
down process, you can typically cancel it using the shutdown -c command. See the man
pages for additional shutdown options you may desire to use.

 If no [OPTIONS] are used, the shutdown command performs differently
depending on the distribution you are using.

 The TIME parameter allows you to specify a time to enact the shutdown options. It
takes many formats, such as a military time layout specifi ed as hh : mm . You can indicate
the number of minutes from the current system time using a + n or n format. The shutdown
command allows the now time parameter to indicate 0 minutes from now (immediately). On
some distributions, if TIME is not specifi ed, a +1 is assumed. See the man pages for all the
TIME specifi cations available on your distribution.

 The [WALL-MESSAGE] parameter lets you modify the shutdown command message sent to
any logged-in users. Wall messaging is covered in the next section.

 For any utility used to shut down the system, the processes are sent a
SIGTERM signal (covered in Chapter 2). This allows the various running pro-
grams to close their files properly and gracefully terminate. However, in
unusual cases, you may have a situation where a process refuses to shut
down. You can use the lsof -p PID command to see if the running program
has any files open. If not, then you can attempt to use the kill -9 PID com-
mand. However, always tread cautiously in these cases.

 Notifying the Users
 When you perform any function that changes the system’s state for logged-in users, it’s a
good idea to let them know ahead of time so that they can wrap up any work before being
kicked out. Besides the old standbys of email, automated text messaging, and company

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Notifying the Users 285

intranet web pages, a Linux system offers the following additional utilities and fi les to help
with communication:

 ■ /etc/issue : Contains text to be displayed on the tty terminal login screens (prior to
logging into the system).

 ■ /etc/issue.net : Contains logon screen messages for remote logins.

 ■ /etc/motd : Called the Message of the Day file, contains text that is displayed after a
user has logged into a tty terminal.

 ■ /bin/notify-send (or /usr/bin/notify-send): Sends messages to a user employing
the GUI but who is not logged into a tty terminal or does not have a GUI terminal
emulator open.

 ■ /bin/wall (or /usr/bin/wall): Sends messages (called wall messages) to users logged
into a tty terminal or who have a GUI terminal emulator open and have their message
status set to “yes.”

 The method(s) you choose depend on which one(s) best meet your company’s communi-
cation policies and needs.

 By default, the systemctl utility (covered earlier in this chapter) will send a
 wall message when any of its following commands are issued: emergency ,
halt , power-off , reboot , or rescue . To prevent a wall message from
being sent while using systemctl , include the --no-wall option in its
command line.

 The wall command sends simple messages to certain system users—those who are cur-
rently logged into a terminal (tty #) or a terminal-emulator (pts/ #) and have their message
status set to “yes.” To check your own message status, you can employ the mesg command
as shown in Listing 5.29.

 Listing 5.29: Viewing your message status with the mesg command

 $ mesg
 is y
 $

 Notice from the previous example, the mesg command shows the current message status.
You can issue the mesg y command to turn on messaging and mesg n to turn it off.

 To see who is currently logged into the system and whether or not they
have their message status set to “yes,” use the who -T command. All
users who can receive wall messages will have a plus (+) following their
username.

 Figure 5.3 and Figure 5.4 show the wall command in action. Notice in Figure 5.3 that
the message is written after the wall command is issued. You enter the message and then
press the Ctrl+d key combination to send the communication.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

286 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

 F I gu r e 5 . 3 Issuing the wall command

 The wall message is disruptive, as shown in Figure 5.4 . However, the user receiving the
message can simply press the Enter key to receive their prompt back.

 F I gu r e 5 . 4 Receiving wall command output

 The shutdown command’s [wall message] parameter operates similar to
the wall command with one major difference: it ignores the mesg setting
on a terminal. Therefore, the message can be written on any terminal
whether a user’s message status is set to “yes” or not. Some distributions
offer the --no-wall option. It allows a shutdown to proceed with no wall
messages sent to users, except for the super user issuing the shutdown
command.

 Booting and initializing a Linux system is quite the complicated dance. Shutting it
down, changing the system’s current state, and keeping users informed while doing so adds
demanding steps to this system administration ballet. In the next section, we’ll take the
dance to a new level by looking at virtualizing the systems.

 Virtualizing Linux
 When something is virtual, it does not physically exist but instead is simulated. In the
information technology world, this simulation can apply to computer systems, which is
accomplished through special software. In this section, we’ll take a look at the various
types of simulations available, the terminology associated with them, as well as some of the
various tools involved.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Virtualizing Linux 287

 Looking at Virtual Machines
Virtual machines (VMs) are simulated computer systems that appear and act as physical
machines to their users. The process of creating these virtual machines is called virtualization .

 Managing VMs
 The primary software tool used to create and manage VMs is a hypervisor , which has been
historically called either a virtual machine monitor or a virtual machine manager (VMM).
Hypervisors come in two basic fl avors: Type 1 and Type 2. (However, you’ll fi nd that some
hypervisor software doesn’t neatly fi t into either category.)

 The easier to understand is the Type 2 hypervisor, so we’ll start there. A Type 2 hypervisor
is a software application that operates between its created virtual machine (guest) and the
physical system (host) on which the hypervisor is running. A diagrammed example of a
Type 2 hypervisors is shown in Figure 5.5 .

 F I gu r e 5 .5 A Type 2 hypervisor example

Type 2 Hypervisor Software

Host Operating System

Physical Host Machine

App(s)

Guest OS

Virtual Machine

App(s)

Guest OS

Virtual Machine

 A Type 2 hypervisor acts as a typical software application in that it interacts with the
host’s operating system. However, its distinction lies in the fact that it provides one or more
virtualized environments or virtual machines. These VMs each have their own operating
system (guest OS) and can have various applications running on them. The host OS on the
physical system can be completely different than the VM’s guest OS.

 There are several Type 2 hypervisors from which to choose. A few options that run on
Linux include Oracle VirtualBox and VMware Workstation Player.

 When creating VMs with a Type 2 hypervisor, it is important to determine if
you have enough resources, such as RAM, on your physical host machine.
Keep in mind that you will need to accommodate the host OS, Type 2
hypervisor software, as well as the guest OS and applications on each VM.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

288 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

 A Type 1 hypervisor eliminates the need for the physical host’s OS. This software runs
directly on the physical system and due to this is sometimes called a bare-metal hypervisor.
A diagrammed example of a Type 1 hypervisor is shown in Figure 5.6 .

 F I gu r e 5 .6 A Type 1 hypervisor example

Type 1 Hypervisor Software

Physical Host Machine

App(s)

Guest OS

Virtual Machine

App(s)

Guest OS

Virtual Machine

 There are also several Type 1 hypervisors from which to choose. A few options include
KVM, Xen, and Hyper-V. An interesting feature with KVM and Hyper-V is that they can
both be started while the host OS is running. These hypervisors then take over for the host
OS and run as a Type 1 hypervisor. This is a case where the VMMs don’t neatly fi t into the
Type 1 category.

 For Linux, KVM is built in. KVM’s kernel component has been included in
the Linux kernel since v2.6.20.

 Creating a Virtual Machine
 There are many ways to create a virtual machine. When fi rst starting out, most people
will create a Linux virtual machine from the ground up; they set up the VM specifi cations
within the hypervisor software of their choice and use an ISO fi le (live or otherwise) to
install the guest operating system.

 A virtual machine is made up of either one file or a series of files that
reside on the host machine. Whether it is a single file or multiple files
depends on the hypervisor used. The file (or files) contains configuration
information, such as how much RAM is needed, as well as the VM’s data,
such as the guest OS and any installed application binaries.

 Lots of choices exist for creating VMs. Which methods you use depend on your orga-
nization’s needs as well as the number of VMs you must deploy. The following describes
some common options:

Clone A clone is essentially a copy of another guest VM. Just like in science fi ction, a VM
clone is identical to its original. The fi les that make up the original VM are copied to a new
fi lesystem location, and the VM is given a new name.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Virtualizing Linux 289

 Hypervisors typically have easy methods for creating clones. However, before you start up
a cloned VM, it is important to check the VM’s settings. For example, some hypervisors
do not issue a new NIC MAC address (covered in Chapter 8) when creating a VM clone.
This could cause network issues should you have two running VMs that have identical NIC
MAC addresses. The following is a brief list of items that may need to be modifi ed for a
Linux clone:

 ■ Host name

 ■ NIC MAC address

 ■ NIC IP address, if using a static IP

 ■ Machine ID

 ■ Any items employing a universally unique identifier (UUID)

 ■ Configuration settings on the clone that employ any item in this list

 Your system’s machine ID is a unique hexadecimal 32-character identifier.
The ID is stored in the /etc/machine-id file. D-Bus (covered in Chapter 3)
will use this ID, if its own machine ID file, /var/lib/dbus/machine-id ,
does not exist. Typically on modern distributions, the D-Bus machine ID
file will not exist or will be symbolically linked to the /etc/machine-id
file. Problems can ensue if you clone a machine and boot it so that the
two machines share the same ID. These problems may include not being
able to get an IP address if your network manager is configured to use the
machine’s ID instead of a NIC’s MAC address for DHCP services. To prevent
this problem, after you clone a VM, you’ll need to address the duplicate
machine ID. Typically, you can do this on the clone by performing the
following steps:

 1. Delete the machine ID fi le: rm /etc/machine-id

 2. Delete the D-Bus ID fi le: rm /var/lib/dbus/machine-id

 3. Regenerate the ID: dbus-uuidgen --ensure

 Keep in mind that your distribution may require additional steps, such as
linking the /var/lib/dbus/machine-id file to /etc/machine-id (soft links
were covered in Chapter 4). Be sure to peruse your distro’s documentation
prior to changing a machine’s identity.

Open Virtualization Format Another handy method employs the Open Virtualization
Format (OVF). The OVF is a standard administered by the Distributed Management
Task Force (DMTF) organization. This standard allows the hypervisor to export a VM’s
fi les into the OVF fi le format for use in other hypervisors. After you export the fi les, you
can import them into any other hypervisor that honors the standard. It’s like cloning a
machine between two different VMM software applications. Be sure to change the appro-
priate settings on the new VMs, such as host name, if the VMs will be running on the
same local network.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

290 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

 While the OVF fi le standard creates multiple fi les, some hypervisors recognize a single
compressed archive fi le of OVF fi les, called an Open Virtualization Archive (OVA). This is
useful if you need to transfer a VM’s fi les across a network to a different host system.

Template Outside of computing, a template is a pattern or mold that is used to guide the
process of creating an item. In word processing, a template is often employed to provide
formatting models, such as when creating a business letter.

 In virtualization, a VM template is a master copy. It is similar to a VM clone, except you
cannot boot it. Virtual machines are created using these templates as their base.

 To create a template, you need a system image (sometimes called a VM image). This image
contains the guest OS, any installed applications, as well as confi guration and data fi les. The
system image is created from a VM you have confi gured as your base system. You direct
the hypervisor software to generate a template, which is often a fi le or set of fi les. Now, you
can employ this system image to create several virtual machines based on that template.

 Keep in mind that for a template-created VM you may need to modify items prior to
booting it. The same list covered in the “Clone” section applies here.

 There are additional choices for creating virtual machines besides the ones listed here.
For example, some companies offer software that will scan your current system and create
a VM of it. The term used for these software offerings is physical-to-virtual (P2V).

 If you have hypervisor software installed, most likely you can employ the
virsh shell utility (not typically installed by default) to manage your VMs
using shell scripts, which is convenient. You’ll need the libvirt library
installed as well to support this utility.

 Integrating via Linux Extensions
 Before you jump into creating virtual machines, it’s important to check that your Linux
host system will support virtualization and the hypervisor product you have chosen. This
support is accomplished via various extensions and modules.

 A hardware extension is based within the system’s CPU. It grants the hypervisor the
ability to access the CPU directly, instead of going through the host OS, which improves
performance.

 While your server may have everything it needs to run VMs, if the virtu-
alization is disabled in the BIOS, it won’t work. Check your system’s BIOS
documentation and ensure that virtualization is enabled. Also be aware
that many hypervisors require a 64-bit CPU to operate, which you check
via the lscpu utility.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Virtualizing Linux 291

 First, you should determine if your system’s CPU has these hardware extensions
available. You can research this via the /proc/cpuinfo fi le’s fl ag information. Type
grep ^flags /proc/cpuinfo to view the various enabled features of your server’s CPU.
If enabled, you should see one of the following:

 ■ For Intel CPUs: vmx

 ■ For AMD CPUs: svm

 If you see the hypervisor flag (instead of vmx or svm), this means your
Linux OS is not running on a physical machine, but a virtual one. You can
check to see which hypervisor is being employed via the virt-what utility,
which may or may not be installed on your Linux distro by default.

 To use these CPU extensions and support the chosen hypervisor software, the appropriate
Linux modules (covered in Chapter 3) must be loaded. You’ll need to review your hypervisor’s
documentation to determine what modules are needed.

 To check if a needed module is already loaded, use the lsmod command. An example is
shown here, checking for support of the KVM hypervisor:

 lsmod | grep -i kvm

 If you fi nd that the needed hypervisor modules are not loaded, employ the modprobe
command to insert them. An example of loading up a needed KVM hypervisor module is
shown here:

 sudo modprobe kvm-amd

 When your Linux VM is up and running, you may want to install guest
utilities and drivers provided by the hypervisor (if available). These
tools are typically installed inside the VM from the guest OS and pro-
vide nice features such as folders shared between the guest and the
host machine. Some hypervisors offer diagnostic data utilities for man-
aging your guest’s apps. For VM guests with GUIs, hypervisor-provided
drivers can improve graphics and deliver additional mouse handling
features.

 Understanding Containers
Containers are virtual entities, but they are different from virtual machines and serve
distinct purposes. Whereas a VM provides an entire guest operating system, a container’s
focus is typically on a single app, application stack, or environment. Instead of a hypervi-
sor, a container is managed by a container engine. A diagrammed example of a container is
shown in Figure 5.7 .

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

292 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

F I gu r e 5 .7 A container example

Container Engine

Operating System

Physical Host Machine

App

Binaries/Libraries

Container

App

Binaries/Libraries

Container

Notice in Figure 5.7 that the physical machine’s operating system is shared among the
containers. However, each container has its own set of binaries and needed libraries to sup-
port its app, application stack, or environment.

A container’s focus depends on its purpose in life. Two container focal points are

Application Containers These containers focus on a single application, or an application
stack, such as a web server. Application containers are heavily used in development and
operations (DevOps). Software developers can modify their company’s app in a newly
created container. This same container, with the modified app, is then tested and eventually
moved into production on the host machine. The old production container is destroyed.
Using containers in this way eliminates production and development environment differ-
ences and provides little to no downtime for app users. Thus, containers are very popular in
continuous software deployment environments. The example back in Figure 5.7 shows two
application containers.

Operating System Containers While containers are useful for developers, system admins
can love them too. You can use a container that provides a fully functioning Linux OS
space and is isolated from your host machine. Some in TechOps use containers to test their
applications and needed libraries on various Linux distributions. Other system admins,
prior to upgrading their host system distro, try out their environment on an upgraded
Linux distribution. You can also employ VMs for these different evaluations, but contain-
ers provide a faster-to-deploy and more lightweight test area.

Docker is a very popular container engine for applications. In this particular software
as well as other container engine programs (such as LXC, which is useful for testing
workloads), you can employ system images to deploy several containers based on that
image.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Virtualizing Linux 293

 Virtualizing an application typically does not make it perform faster and
should not be the primary motivation for moving it to a virtualized environ-
ment. Although containers allow you to quickly deploy applications, they
will not cause an app to run more swiftly. Some hypervisors are termed
efficient hypervisors , but that is only when there is a small performance
difference between the physical environment and its virtualized self.

 Looking at Infrastructure as a Service
 With the high expenses of maintaining hardware and providing the electricity to run servers
as well as cool them, many companies are looking to cloud-based data centers. For virtuali-
zation, companies turn to Infrastructure as a Service (IaaS) providers.

 With IaaS, the provider furnishes not only the hypervisor but the data center(s) as well—
servers, disks, and networking infrastructure. Your virtualized environment is reached over
the Internet.

 Many of these IaaS providers also offer various data center locations around the world,
allowing you to pick the one closest to your customers. Often you can select additional data
centers to run your VMs or containers if needed for performance or to act as backup loca-
tions should your chosen primary data center experience a disaster.

 A few of the more popular IaaS providers are Amazon Web Services (AWS), Google
Cloud Platform’s Google Compute Engine, Digital Ocean, Rackspace, and Microsoft’s
Azure. Each not only grants IaaS but also offers additional utilities allowing you to moni-
tor, manage, and protect your virtualized environment.

 Often IaaS providers furnish more than just virtualization infrastructure
services; they may also offer Platform as a Service (PaaS) and/or Software
as a Service (SaaS). The name for providers that offer one or more of these
services is typically cloud service provider (CSP).

 When using a cloud-based virtualized environment, you should know a few additional
terms that will assist in selecting a CSP. They are as follows:

Computing Instance A computing instance , sometimes called a cloud instance , is a single
virtual machine or container running on a cloud platform. When an instance is started, this
is called provisioning an instance.

 Cloud Type A CSP will offer public, private, and hybrid clouds. Public clouds are just
as they sound—open to the public via the Internet or application programming interfaces
(APIs). Access to their instances is controlled via virtual fi rewalls, gateways, and network
routers. These clouds reside solely on the CSP’s infrastructure.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

294 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

Private cloud instances are only accessible to those who own and manage the cloud
instances. Access to these private cloud instances is often controlled via the same methods
as public clouds. They too reside solely on the CSP’s infrastructure.

Hybrid clouds are interesting in that they are typically a combination of instances on the
CSP’s infrastructure as well as instances or physical computers at a company’s local data
center. Hybrid clouds are popular with organizations who do not need all the features (or
the price) of a CSP’s cloud infrastructure.

Elasticity Elasticity allows an instance to automatically scale up or scale down, depend-
ing on current demand. This may mean that additional instances are created to meet bursts
of traffic (called horizontal scaling), and when traffic wanes, then the instances are depro-
visioned. It can also mean that additional resources are provided (or removed from) an
instance to meet demand (called vertical scaling).

Load Balancing Load balancing occurs when a virtualized environment has multiple
instances. The current demand is spread across the multiple instances to provide bal-
anced loads to each instance, instead of hitting one instance with a majority of the
traffic.

Management Console or Portal To set up your instances and choose the various CSP
features, many providers offer a web browser–based graphical utility called a management
console or portal. Through these consoles, you can modify access to private and public
clouds, choose storage types, start or stop instances, and perform monitoring of your run-
ning VMs or containers.

Block and Object Storage Block storage is familiar to most system admins. Typically
the underlying hardware is configured as disk drives in RAID configurations. Fixed-
size storage volumes can be permanently or temporarily attached as physical devices to
instances. From there, they can be mounted and used as needed. However, if block storage
is not mounted, it cannot be accessed.

Object storage is different in that it can be accessed through the management console or
through the web. Typically, the CSP provides data protection services for object storage,
and you can store any kinds of data you desire.

Remote Instance Access While the console or portal gives you the high-level view of your
various cloud instances, there are times you need to log directly into an instance. A preferred
method employs using OpenSSH to access your instance’s IP address. But instead of using a
username and password, many CSPs provide an SSH host key (covered in Chapter 10). This
method furnishes a secured encrypted connection and access method to log directly into
your remote cloud instances.

Keep in mind that not all CSPs offer all these features. It’s up to you to review various
CSPs and determine what your organization needs and can afford to purchase.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam Essentials 295

 Cloud-init is a Canonical product (the same people who produce the
Ubuntu distributions). On their website, cloud-init.io , Canonical
describes cloud-init best: “Cloud images are operating system templates
and every instance starts out as an identical clone of every other
instance. It is the user data that gives every cloud instance its personality
and cloud-init is the tool that applies user data to your instances
automatically.”

 The cloud-init service is available for CSPs, such as Amazon Web
Services (AWS), Microsoft Azure, and Digital Ocean. And your virtual
machines don’t have to be in a cloud to use cloud-init . It can also
bootstrap local virtual machines using hypervisor software like VMware
and KVM. In addition, it is supported by most major Linux distributions. (It
is called an industry standard for a reason.) If you would like to take a look
at the cloud-init utility, you can install it via the cloud-init package.

 Summary
 From the POST to being able to log in and access needed applications, your Linux system
performs a seemingly easy process. However, the techniques are more complicated under-
neath the surface. Starting with the fi rmware or fi rmware interface and proceeding to the
boot loader and onward through the system initialization mechanism, a Linux system
fi nally becomes available and ready for use.

 You can employ various techniques for shutting down a system. The method you use
depends on the initialization method and business requirements of your Linux machine.
However, before moving your system into a different state, such as shutdown or single-user
mode, it’s a good idea to inform your users.

 Moving your system from running directly on a physical system to a virtualized envi-
ronment, such as a virtual machine or a container, is becoming very popular among
businesses. You will need to understand the basic concepts of providing a virtualized
environment within your company’s data center, and/or using IaaS is critical for modern
TechOps.

 In this chapter, we looked at all these concepts for both older and newer systems. This
will not only help you pass the certifi cation exam, but also assist in migration projects for
Linux systems in order to get their environment current.

 Exam Essentials
Summarize the boot process and key components. After the fi rmware starts, it performs
a POST and then looks for a boot loader program to load. This fi rmware can be the older
BIOS that looks for the boot loader in the MBR or the newer UEFI that looks for boot

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

296 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

loaders files, typically with an .efi file extension name in the ESP mounted at the /boot/
efi/ directory. The boot loader finds the Linux kernel and puts it into RAM. The kernel
performs various tasks that include launching the system’s initialization process, which in
turn starts up the appropriate applications and services. Boot kernel messages are stored in
the kernel ring buffer, and if needed, you can view these messages shortly after boot time
via the dmesg or, if available, the journalctl utility. Depending on your Linux system’s
distribution, you can typically view the boot messages at any time in a log file, such as
/var/log/boot or /var/log/boot.log.

Describe the different boot loaders and their use. The certification focuses on two boot
loaders: the GRand Unified Bootloader (GRUB) boot loader (now called GRUB Legacy)
and its rewrite, GRUB2. The GRUB Legacy configuration file is /boot/grub/menu.lst
and/or /boot/grub/grub.conf. The GRUB2 configuration file is stored in either the /
boot/grub/ or /boot/grub2/ directory, and it is named grub.cfg for BIOS systems. For
UEFI systems, the GRUB2 configuration file is /boot/efi/EFI/distro-name/grub.cfg.
You do not modify the GRUB2 configuration file but instead add configuration files with
global directives in the /etc/grub.d/ directory and individual configuration files with
boot options, also in the /boot/grub.d/ folder. For GRUB Legacy, you initially install the
program in the MBR using the grub-install command with no further action needed for
configuration file updates. For GRUB2, to rebuild the configuration file after you make
changes, run the grub-mkconfig, grub2-mkconfig, or update-grub utility. Each boot loader
has various menu commands you can use to edit the options during boot and doing things
such as passing various kernel parameters.

Compare the various system initialization methods. The older SysVinit and the new sys-
temd initialization methods can enable or disable various services to start at system boot
time as well as additional service management items. systemd employs unit files to manage
services and target files to manage groups of services. The systemctl utility is the primary
interface for controlling systemd-managed services. It can enable or disable services at
system boot, start or stop services during normal operation, and set or show the current
system target.

The SysVinit initialization method uses the service utility to start and stop various ser-
vices via scripts stored in the /etc/init.d/ directory. These scripts are also used at system
initialization, and the runlevel set in the /etc/inittab file determines which ones are used.
The rc script runs the scripts in the appropriate /etc/rc.d/rcn.d/directory, when n is
equal to the runlevel. These scripts are symbolic links to the scripts in the /etc/init.d/
directory, and start or stop the services as directed. The init and telinit commands also
accept a runlevel number allowing you to jump between runlevels on the fly.

Outline the various methods for stopping the system. Besides using the systemctl
and init (or telinit) commands to shut down a system, you can also use the halt,
poweroff, reboot, and/or shutdown utilities. Whether you use systemctl or init (or
telinit) depends on which system initialization method your server employs. The other
commands are available on all systems and can do each other’s jobs via various switches.
The shutdown command is the most flexible and provides additional options.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam Essentials 297

Summarize various ways to notify users of events. Users can be notified of various events
through information placed in the /etc/issue, /etc/issue.net, and/or /etc/motd files.
In addition, messages can be sent on the fly via the notify-send or wall utility. The wall
command will send messages only to those users who are currently logged into a terminal
(tty#) or a terminal-emulator (pts/#) and have their message status set to “yes.” You can
view the message status for all those users with the who -T command, and an individual
user can view/set their status via the mesg utility. The shutdown command and some of the
systemctl utility’s options also send wall messages, but the mesg setting on a terminal is
ignored.

Describe guest virtualization concepts. A virtual machine is a simulated computer system
that appears and acts like a physical machine to its user. VMs are managed via hypervi-
sors, which come in two flavors: type 1, which runs as the physical system’s (host) OS (also
called bare-metal hypervisor), and type 2, which runs on top of the host’s OS. VMs can be
built by cloning, using templates, or employing OVF files or an OVA file. When using these
methods, it is important to ensure the VM’s host name, NIC MAC address, NIC IP address
(if static), machine ID, UUIDs, and configuration files employing these items are reviewed
and modified, if needed.

Containers are different from VMs in that they do not necessarily have a full-blown guest
OS, but instead just employ the binaries and libraries they need to support the application
or application stack. They are managed by a container engine instead of a hypervisor and
come in two flavors: application container or operating system container.

Many companies are now moving their virtualized infrastructure to a cloud service
provider (CSP) who offers IaaS. A single virtual machine (called a computing or cloud
instance) is managed via a management console (or portal). Multiple VMs can be provi-
sioned through products like cloud-init and services such as elasticity. If needed, system
admins can log into an instance using an SSH host key.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

298 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

Review Questions
You can find the answers in the appendix.

1. What memory area does Linux use to store boot messages?

A. BIOS

B. GRUB boot loader

C. MBR

D. Initrd RAM disk

E. Kernel ring buffer

2. Which of the following commands may allow you to examine the most recent boot mes-
sages? (Choose all that apply.)

A. less /var/log/kernel.log

B. less /var/log/boot

C. less /var/log/boot.log

D. dmesg

E. journalctl

3. What program does a system’s firmware start at boot time?

A. A boot loader

B. The BIOS program

C. The UEFI program

D. The POST command

E. The init program

4. Where does the BIOS firmware first look for a Linux boot loader program?

A. The /boot/grub/ directory

B. Master boot record (MBR)

C. The /var/log/ directory

D. A boot partition

E. The /etc/ directory

5. The EFI System Partition (ESP) is stored in which directory on a Linux system?

A. /boot/

B. /boot/grub/

C. /boot/grub2/

D. /boot/efi/

E. /boot/esp/

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 299

6. What file extension does UEFI bootloader files use?

A. .cfg

B. .uefi

C. .lst

D. .conf

E. .efi

7. A system admin needs to view her GRUB Legacy configuration files. Where should she
look?

A. /boot/grub

B. /boot/grub2

C. /boot/efi

D. /etc/grub

E. /etc/grub2

8. An administrator wants to change one of his GRUB Legacy boot menu options displayed
from Windows 10 to That Other OS. What word should start the line he should change in
his GRUB Legacy configuration file ?

A. hiddenmenu

B. kernel

C. title

D. menuentry

E. rootnoverify

9. What command must you run to install GRUB Legacy to the MBR?

A. grub-mkconfig

B. grub2-mkconfig

C. update-grub

D. grub-install

E. No need to install

10. You need to specify the root partition in your GRUB2 configuration file. The /boot direc-
tory is on /dev/sdb2. What line would you include?

A. root(hd1,2)

B. set root=(hd1,2)

C. set root= \

D. root(hd1,1)

E. set root=(hd1,1)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

300 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

11. Rey is troubleshooting a startup problem on her Linux system that employs GRUB2. She
would like to enable kernel debugging. What should she do when she reaches the GRUB2
boot menu?

A. Edit the appropriate boot menu entry, find the line starting with linux*, go to the end
of the line, add a space, and then type debug and press Ctrl+C.

B. Select the appropriate GRUB 2 menu option, and then use the Force while GRUB2 is
loading the correct Linux kernel.

C. Edit the appropriate boot menu entry, find the line starting with linux*, go to the end
of the line, add a space, and then type debug and press Ctrl+X.

D. Edit the appropriate boot menu entry, find the line starting with kernel, go to the end
of the line, add a space, and then type debug and press Ctrl+C.

E. Edit the appropriate boot menu entry, find the line starting with kernel, go to the end
of the line, add a space, and then type debug and press Ctrl+X.

12. Which of the following is true concerning systemd service units? (Choose all that apply.)

A. Services can be started at system boot time.

B. Services can be started in parallel.

C. Backward compatibility to SysVinit runlevels is offered.

D. A service can be started after all other services are started.

E. A service can be prevented from starting at system boot time.

13. Which of the following is not a systemd target unit?

A. runlevel7.target

B. emergency.target

C. graphical.target

D. multi-user.target

E. rescue.target

14. You need to modify a systemd service unit configuration. Where should the modified file be
located?

A. /etc/system/systemd/

B. /usr/lib/system/systemd/

C. /etc/systemd/system/

D. /usr/lib/systemd/system/

E. /run/system/systemd/

15. You have modified an openSSH service’s configuration file, /etc/ssh/ssh_config. The
service is already running. What is the best command to use with systemctl to make this
modified file take immediate effect?

A. reload

B. daemon-reload

C. restart

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 301

D. mask

E. unmask

16. You need to change the system’s default target. What systemctl command should you use
to accomplish this task?

A. get-default

B. set-default

C. isolate

D. is-enabled

E. is-active

17. Your older Debian-based Linux distribution system uses SysVinit. It soon is going to be
upgraded to a Debian-based distro that uses systemd. To start some analysis, you enter
the runlevel command. Which of the following are results you may see? (Choose all that
apply.)

A. N 5

B. 3 5

C. N 2

D. 2 3

E. 1 2

18. You’ve recently become the system administrator for an older Linux server, which still uses
SysVinit. You determine that its default runlevel is 3. What file did you find that informa-
tion in?

A. /etc/inittab

B. /etc/rc.d

C. /etc/init.d/rc

D. /etc/rc.d/rc

E. /etc/rc.local

19. System administrator Luke is training an intern, Rey. Luke manages a systemd system
whose users are primarily software developers and project leaders. He has planned a system
reboot and informed the various system users via many methods several days in advance.
However, before the system reboot, Luke wants to demonstrate to Rey how the wall com-
mand will notify some users, but not others. What command should he employ to show her
which users will receive the wall messages?

A. systemctl reboot

B. shutdown -r now "System rebooting…"

C. reboot

D. who -T

E. mesg

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

302 Chapter 5 ■ Booting, Initializing, and Virtualizing Linux

20. Kilo has just cloned 10 VMs from a clone system image. He needs to ensure that the clones
can all run together on the same local network segment. What items should he check and
modify if needed? (Choose all that apply.)

A. NIC MAC address

B. VM template

C. Host name

D. CPU extensions

E. Machine ID

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam 102-500 Part

II

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

By

Configuring the GUI,
Localization, and
Printing

ObjECtIvEs

 ✓ 106.1 Install and configure X11

 ✓ 106.2 Graphical Desktops

 ✓ 106.3 Accessibility

 ✓ 107.3 Localization and internationalization

 ✓ 108.4 Manage printers and printing

Chapter

6

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

A graphical user interface (GUI) is a set of programs that
allow a user to interact with the computer system via icons,
windows, and various other visual elements. While some

believe that you should administer a system via the text-based command line only, it is still
important to understand the Linux GUI (pronounced “gooey”). You may need to use cer-
tain GUI utilities to administer the system and its security.

Many end users prefer a graphical-based user interface (UI). Therefore, making sure
your Linux systems meet their wants and needs is important. Different Linux distributions
come with various default desktop environments, which you may need to install and man-
age for those users. Administering the underlying software that supports these interfaces is
necessary too. In addition, because nowadays users rarely connect directly to the physical
server, you need to understand remote desktops and their client/server model. Remote desk-
top interactions that travel over the network are prone to privacy problems, so it is crucial
to secure these GUI transmissions. The various desktop environments, their supporting
frameworks, and how to securely provide a remote desktop GUI are all topics covered in
this chapter.

Another important feature in Linux is how it customizes things based on your loca-
tion in the world. Linux must display dates and times, monetary values, and language
characters, based on where in the world you are located. This chapter also covers how
to set and customize your Linux system to handle and display values based on your
location.

Finally, another method of retrieving data from your Linux system is printing. This
chapter covers how to set up printing in your Linux system to interact with whatever print-
ers are available in your environment.

Understanding the GUI
Many players are involved in providing a Linux system user interface. The desktop envi-
ronment that you see on your monitor display is only a piece of this puzzle. Figure 6.1 is a
rudimentary depiction of serving a GUI to a user.

As seen in Figure 6.1, the windows manager is an intermediary in this scenario. A
windows manager is a program that communicates with the display server (sometimes
called a windows server) on behalf of the UI. Each particular desktop environment has its
own default window manager, such as Mutter, Kwin, Muffin, Marco, and Metacity.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding the X11 Architecture 307

 F I GU r E 6 .1 Serving the GUI components

Desktop
Environment

Windows
Manager

Display
Server

 In this section, we will focus on the display server . The display server is a program that
uses a communication protocol to transmit the desires of the UI to the operating system,
and vice versa. The communication protocol, called the display server protocol, can operate
over a network.

 Another member in the display server team is the compositor . A compositor program
arranges various display elements within a window to create a screen image to be passed
back to the client.

 To understand a compositor program, it helps to look at history. In a time
before computers were printing documents, compositors were people.
Physical frames (called chases) were used to hold wooden blocks. These
blocks had letters or images carved on them. A compositor would arrange
the wooden blocks into the frames to make words and/or images. The com-
positor would hand the frames to the printer, who was also a person. The
printer would put ink on the blocks and then press the frames onto paper.
Thus, a printed document would result. A compositor program operates in
a similar manner, except it is using multiple elements that are composed
into a single screen image and handed off to the client.

 Understanding the X11 Architecture
 The X Window System (X for short) is the display server used for Linux systems. It was
developed in the 1980s, so it has been around for a long time. This display server has
endured the test of time.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

308 Chapter 6 ■ Configuring the GUI, Localization, and Printing

Originally in Linux there was only one software package that supported X, called
XFree86. However, in 2004 the XFree86 project changed their licensing requirements,
which caused many Linux distributions to switch to the X.Org foundation’s implementa-
tion of X, simply called X.Org.

The X.Org’s display server fully implements the X Window System version 11 stan-
dards, including using the same configuration file format as the original XFree86 pack-
age. However, many distributions created their own customizations of the X.Org server;
thus, you will see a wide variety of names concerning the Linux X display server, such as
X.org-X11, X, X11, and X.Org Server. We’ll use either X or X11 in this chapter.

Within the past few years, a new X display server package called Wayland has made
headway in the Linux world. The Wayland package provides more advanced features
that support newer display hardware and security, and supports additional types of input
devices. Wayland is quickly gaining followers in the Linux world and may soon become the
default display server used in most Linux distributions.

This section walks through the basics of both the X.Org and Wayland display servers.

Examining X.Org
The X.Org package keeps track of display card, monitor, and input device information in
a configuration file, using the original XFree86 format. The primary configuration file is
/etc/X11/xorg.conf, though the file is sometimes stored in the /etc/ directory. Typically,
however, this file is no longer used. Instead, individual applications or devices store their
own X11 settings in separate files stored in the /etc/X11/xorg.conf.d directory. When the
X11 server boots, it reads the configuration settings stored in those files to customize how
it interacts with different display cards, monitors, keyboards, mice, and other input or
output devices.

Don’t be surprised, though, if you go looking on your Linux system for either the xorg.conf
file or the xorg.conf.d directory and don’t find either of them. The X.Org software can
create the session configuration on the fly using runtime auto-detection of the hardware
involved with each GUI’s session. These days, the X.Org software can detect most common
hardware devices, so no manual configuration is required.

However, in some cases, auto-detection might not work properly, and you need to make
X11 configuration changes. In this case, you can manually create the configuration file.
To do this, shut down the X Server by going to a command prompt, using the command
sudo telinit 3 (this usually works on both SysVinit and systemd systems), and using
super user privileges to generate the file via the Xorg -configure command. The file,
named xorg.conf.new, will be in your local directory. Make any necessary tweaks, rename
the file, move the file to its proper location, and restart the X server.

The xorg.conf file has several sections. Each section contains important configuration
information:

 ■ Input Device: Configures the session’s keyboard and mouse

 ■ Monitor: Sets the session’s monitor configuration

 ■ Modes: Defines video modes

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding the X11 Architecture 309

 ■ Device : Configures the session’s video card(s)

 ■ Screen : Sets the session’s screen resolution and color depth

 ■ Module : Denotes any modules that need to be loaded

 ■ Files : Sets file path names, if needed, for fonts, modules, and keyboard layout files

 ■ Server Flags : Configures global X server options

 ■ Server Layout : Links together all the session’s input and output devices

 Keep in mind that many desktop environments also provide dialog boxes in their UI,
which allow you to confi gure your GUI X sessions. Most likely you will have no need to
create or tweak the X11 confi guration fi le. However, if you really want to dig into the X11
confi guration fi le’s details, view its man page via the man 5 xorg.conf command.

 If you need to troubleshoot X problems, the X.Org package provides some help. If some-
thing goes wrong with the display process, the X.Org server generates the .xsession-errors
fi le in your Home directory (often referred to as ~/.xsession-errors). This is a standard
text log fi le that indicates what went wrong with the X.Org server.

 In addition, two utilities are available that can help: xdpyinfo and xwininfo . The
 xdpyinfo command provides information about the X.Org server, including the differ-
ent screen types available, the default communicate parameter values, protocol extension
information, and so on.

 The xwininfo utility provides window information. If no options are given, an interactive
utility asks you to click on the window for which you desire statistics. The displayed stats
include location information, the window’s dimensions (width and height), color map ID,
and so on.

 Be aware that the xwininfo command will hang if you are running a
Wayland session instead of an X.Org session. Press Ctrl+C to exit out of
the hung command.

 If your X.Org session hangs for any reason, you can reset it by pressing
the Ctrl+Alt+Backspace key combination. This restarts the X server,
which will attempt to auto-detect the hardware again and generate the
configuration file.

 Figuring Out Wayland
 Wayland is a replacement for the X.Org display server. It is designed to be simpler, more
secure, and easier to develop and maintain than the X.Org software. Wayland specifi -
cally defi nes the communication protocol between a display server and its various clients.
However, Wayland is also an umbrella term that covers the compositor, the window server,
and the display server.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

310 Chapter 6 ■ Configuring the GUI, Localization, and Printing

 The Wayland protocol was initially released back in 2009, and it is now used by many
current Linux desktop environments such as GNOME Shell and KDE Plasma. If you really
want to dig down into Wayland, visit its website at https://wayland.freedesktop.org/ .

 Checking Your Display server

 If you are not sure what display server your desktop environment is currently using, X11
or Wayland, you can quickly determine the answer. The following steps will guide your
discovery.

 1. Log in to your system’s GUI. This will start a GUI session for you.

 2. Open a terminal emulator application.

 3. Type echo $WAYLAND_DISPLAY at the command line and press the Enter key. If
you get no response and just a command-line prompt back, most likely your system
is using X11. If you receive a response, then your desktop environment is probably
using Wayland. An additional test will help you ensure what is in use.

 4. You need to get the GUI session number, so type loginctl and press Enter. Note
the session number.

 5. Type the command loginctl show-session session-number -p Type at the
command line, where session-number is the number you obtained in the previous
step. If you receive Type=Wayland , then your desktop environment is using Wayland.
If instead you receive Type=X11 , then your system is using the X11 display server.

 The Wayland compositor is Weston. However, Weston provides a rather basic desktop
experience. It was created as a Wayland compositor reference implementation. For those
of you who are unfamiliar with the term reference implementation , it means that Weston
was created to be a compositor requirements example for those developers who want
to create their own Wayland compositor. Thus, Weston’s core focus is correctness and
reliability.

 Wayland’s compositor is swappable. In other words, you can use a different composi-
tor if you need a more full-featured desktop experience. Several compositors are available
for use with Wayland, including Arcan, Sway, Lipstick, and Clayland, to name a few.
However, you may not need to go out and get a Wayland compositor. Many desktop envi-
ronments create their own Wayland compositors, which is typically embedded within
their windows manager. For example, Kwin and Mutter both fully handle
Wayland compositor tasks.

 If you have any legacy X11 applications that will not support Wayland,
do not despair. There is the XWayland software, which is available in the
Weston package. XWayland allows X-dependent applications to run on
the X server and display via a Wayland session.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing the GUI 311

 If your UI is using Wayland but you are having GUI issues, you can try a few trouble-
shooting techniques. The following steps through some basic approaches.

Try the GUI without Wayland. If your Linux distribution has multiple fl avors of the desk-
top environment (with Wayland or with X11), log out of your GUI session and pick the
desktop environment without Wayland. If your UI problems are resolved, then you know it
has most likely something to do with Wayland.

 If you do not have multiple fl avors of the desktop environment and you are using the
GNOME shell user interface, turn off Wayland by following these steps:

 1. Using super user privileges, edit the /etc/gdm3/custom.conf file.

 2. Remove the # from the # WaylandEnable=false line and save the file.

 3. Reboot the system and log in to a GUI session and see if the problems are gone.

 Check your system’s graphics card. If your system seems to be running fi ne under X11
but gets problematic when running under Wayland, check your graphics card. The easi-
est method is to go to the graphic card vendor’s website and see if their drivers support
Wayland. Many do, but there are a few famous holdouts that shall go unnamed here.

 Use a different compositor. If you are using a desktop environment’s built-in compositor
or one of the other compositors, try installing and using the Weston compositor package
instead. Remember that Weston was built for reliability. If Weston is not in your distribu-
tion’s software repository, you can get it from https://github.com/wayland-project/
Weston . This site also contains helpful documentation. If using Weston solves your GUI
problem, then you have narrowed down the culprit.

 Be aware that some desktop environment commands won’t work when
you have a Wayland session. For example, if you are using GNOME Shell,
the gnome-shell --replace command will do nothing but generate the
message Window manager warning: Unsupported session type .

 Managing the GUI
 With some operating systems, your GUI is fairly rigid. You may be able to move or add a
few icons, change a background picture, or tweak a few settings. However, with Linux, the
GUI choices are almost overwhelming and the fl exibility is immense.

 This fl exibility comes from lots of different components working together, with each one
customizable in its own way. This section walks through the different components in the
standard GUI environment.

 Standard GUI Features
 On Linux a GUI is a series of components that work together to provide the graphi-
cal setting for the UI. One of these components is the desktop environment . A desktop

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

312 Chapter 6 ■ Configuring the GUI, Localization, and Printing

environment provides a pre-determined look and feel to the GUI. It is typically broken up
into the following graphical sections and functions:

Desktop Settings Desktop settings consist of programs that allow you to make configura-
tion changes to the desktop environment. For example, you may want desktop windows to
activate when the mouse hovers over them instead of when clicking on them.

Display Manager The desktop environment’s login screen is where you choose a username
and enter a password to gain system access. If multiple desktop environments are installed
on the system, the display manager allows you to choose between them prior to logging in.
These login screens are often modified by corporations to contain a legal statement con-
cerning appropriate use of the system and/or a company logo.

File Manager This program allows you to perform file maintenance activities graphically.
Often a folder icon is shown for directories within the manager program. You can perform
such tasks as moving a file, viewing directory contents, copying files, and so on.

Icons An icon is a picture representation of a file or program. It is activated via mouse
clicks, finger touches (if the screen is a touchscreen), voice commands, and so on.

Favorites Bar This window area contains popular icons, which are typically used more
frequently. These icons can be removed or added as desired. Some desktop environments
update the bar automatically as you use the system to reflect your regularly used icons.

Launch This program allows you to search for applications and files. It can also allow
certain actions, such as start or open, to be performed on the search results.

Menus These window areas are typically accessed via an icon. They contain lists of files
and/or programs, as well as sublists of additional file and/or program selections.

Panels Panels are slim and typically rectangular areas located at the very top or bottom of
a desktop environment’s main window. They can also be at the desktop’s far left or right.
They often contain notifications, system date and/or time, program icons, and so on.

System Tray A system tray is a special menu, commonly attached to a panel. It provides
access to programs that allow users to log out, lock their screen, manage audio settings,
view notifications, shut down or reboot the system, and so on.

Widgets Widgets are divided into applets, screenlets, desklets, and so on. They are pro-
grams that provide the user information or functionality on the desktop. For example, cur-
rent sports news may be displayed continually to a screenlet. Another example is a sticky
note applet that allows users to put graphical windows on their desktop that look like
sticky notes and add content to them.

Windows Manager These client programs determine how the windows (also called
frames) are presented on the desktop. These programs control items such as the size and
appearance of the windows. They also manage how additional windows can be placed,
such as either next to each other or overlapping.

Many Linux users are very passionate about the desktop environment they use—and
for good reason. There are several excellent ones from which you can choose. We’ll

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing the GUI 313

cover a few of these desktop environments in this chapter and look at universal acces-
sibility to them as well.

The X GUI Login System
By default, when a Linux system boots, it presents a text login console. This works just fine
for server environments but is somewhat lacking in today’s desktop world. Most desktop
users prefer some type of graphical login screen to appear, allowing them to select a graphi-
cal desktop environment (if more than one is available on the system), and log in using their
user ID and password.

The display manager component is responsible for controlling the graphical login fea-
ture. Just about every desktop Linux distribution installs a display manager package that
starts at boot time to present a graphical login environment. Every Linux display manager
package uses the X Display Manager Control Protocol (XDMCP) to handle the graphical
login process. Figure 6.2 shows the display manager used in Ubuntu.

F I GU r E 6 . 2 The Ubuntu display manager login screen

The X Display Manager (XDM) package is the basic display manager software avail-
able for Linux. It presents a generic user ID and password login screen, passing the login
attempt off to the Linux system for verification. If the system authenticates the login

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

314 Chapter 6 ■ Configuring the GUI, Localization, and Printing

attempt, XDM starts up the appropriate X server environment and Windows desktop
environment.

Although the XDM display manager is somewhat generic, there are some configura-
tion features you can modify to change things a bit. The main configuration file is
/etc/X11/xdm/xdm-config. In most situations, you’ll never need to modify any of these
settings.

Most window managers create their own display manager and expand the capabili-
ties of the XDM display manager. Here are a few of the more popular display managers
you’ll see:

 ■ KDM: The default display manager used by the KDE desktop environment

 ■ GDM: The default display manager used by the GNOME desktop environment

 ■ LightDM: A bare-bones display manager used in lightweight desktop environments
such as Xfce

Common Linux Desktop Environments
Unlike other operating systems, Linux provides a wealth of different desktop environments
for you to choose from. While most Linux distributions focus on a single desktop environ-
ment, you’re still free to install a different desktop environment yourself.

This section covers the most common desktop environments you’ll encounter in the vari-
ous Linux distributions.

Getting to Know GNOME
The GNOME desktop environment was created around the late 1990s. It is very popular
and is found by default on Linux distributions such as CentOS and Ubuntu. Currently it
is maintained by a large group of volunteers who belong to the GNOME Foundation. You
can find out more about the GNOME project at www.gnome.org.

The year 2011 was a pivotal time in GNOME’s history. GNOME 2 was a more tra-
ditional desktop user interface, and when GNOME 3 (now formally called GNOME
Shell) was released in 2011, with its nontraditional interface, many users reacted
strongly. This spurred a few GNOME project forks. However, over time and with a few
changes, GNOME Shell gained ground. For those who still prefer the traditional desktop
user interface that GNOME 2 provided, the GNOME Classic desktop environment is
available.

Figure 6.3 shows a GNOME Shell desktop environment on an Ubuntu distribution.
Notice in Figure 6.3 that a panel is located at the GNOME Shell frame’s top. The panel

contains a clock as well as a system tray on the far right. The Activities button on the
panel’s far left allows you to switch between windows and provides the Search bar. The
Favorites Bar on the UI frame’s left side shows various application icons as well as an multi-
dot icon, which is the Apps button. The Apps button displays various application icons that
allow you to quickly access a desired program.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing the GUI 315

 F I GU r E 6 . 3 The GNOME Shell desktop environment

 Keep in mind that a default desktop environment may be modified slightly
for each Linux distribution. For example, GNOME Shell on CentOS does
not have a Favorites Bar displaying unless you click Activities in the panel,
whereas GNOME Shell on Ubuntu automatically displays the Favorites Bar.

 To better understand a particular graphical interface, try out a desktop environment for
yourself. However, to help you with memorizing the assorted components making up these
different desktops, we are providing tables where you can compare and contrast the dis-
tinct graphical environments. Some of the GNOME Shell’s various components are briefl y
described in Table 6.1 .

 ta b LE 6 .1 GNOME Shell desktop environment default components

Name Program name and/or description

Display Manager GNOME Display Manager (GDM).

File Manager GNOME Files (sometimes just called Files). Formerly called
Nautilus.

Favorites Bar GNOME Shell Dash (sometimes called the Dock).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

316 Chapter 6 ■ Configuring the GUI, Localization, and Printing

Name Program name and/or description

Panels A single panel located at GNOME Shell frame’s top.

System Tray Located on the right-hand side of the single panel.

Windows Manager Mutter.

An interesting feature of the GNOME Shell is that the panel, which contains the system
tray, is available on the Display Manager as well as within the GNOME Shell.

Probing KDE Plasma
The Kool Desktop Environment (KDE) got its start in 1996, with its first version released in
1998. Through time, the name KDE was no longer just referring to a desktop environment,
but instead it specified the project’s organization and the strong community that supported
it. KDE had many additional software projects besides its famous desktop environment.
Thus, in 2009 KDE’s desktop environment was rebranded as KDE Plasma. You can find
out about the KDE group as well as its various products at www.kde.org.

Figure 6.4 shows a KDE Plasma desktop environment on an openSUSE Leap distribution.

F I GU r E 6 . 4 The KDE Plasma desktop environment

ta b LE 6 .1 GNOME Shell desktop environment default components (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing the GUI 317

 In Figure 6.4 , notice that the panel is located at the primary UI frame’s bottom. This is a
more traditional panel location used on older systems and one of the reasons KDE Plasma
is known for being a good desktop environment for those who are new to Linux. On this
panel, the system tray, which contains notifi cations, the time, and various other plasmoids
(widgets), is located on the panel’s right side. The Application menu, a launcher for various
programs as well as containing the Favorites Bar, is on the panel’s far-left side. Table 6.2
briefl y describes some of the KDE Plasma components.

 ta b LE 6 . 2 KDE Plasma desktop environment default components

Name Program name and/or description

Display Manager SDDM (Simple Desktop Display Manager)

File Manager Dolphin

Favorites Bar Displayed inside Application menu

Panels A single panel located at the Plasma frame’s bottom

System Tray Located on the right side of the single panel

Widgets Called Plasmoids

Windows Manager Kwin

 To help those users who are familiar with accessing their fi les via folder icons, KDE
Plasma offers a folder view. You can see folders depicted in the default UI on the openSUSE
Leap distribution in Figure 6.4 . These icons on the primary desktop window allow you to
launch the Dolphin fi le manager and jump straight to the directory named on the folder icon.

 Many desktop environments have multiple UIs available for each user
called workspaces . Workspaces are individual desktops. For example, you
can have two GUI apps open on one workspace and just a terminal emula-
tor open on the other workspace. Switching between the workspaces can
be done via mouse clicks or keystroke combinations, such as Ctrl+Alt+Up
arrow or Down arrow on Fedora 28’s Wayland desktop environment. Using
multiple workspaces can be very handy, especially if you need to quickly
look productive at work when your boss walks by.

 Considering Cinnamon
 The Cinnamon desktop environment got its start in 2011, when many users reacted
strongly to the release of GNOME 3 (now GNOME Shell). Developers of the Mint Linux
distribution began creating Cinnamon as a fork of GNOME 3. It was offi cially “GNOME-
free” as of late 2013. Cinnamon is still managed by the Mint development team, and you
can fi nd out more at their website: www.linuxmint.com .

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

318 Chapter 6 ■ Configuring the GUI, Localization, and Printing

 Cinnamon, like KDE Plasma, is known for being a good UI for those who are new to Linux.
Figure 6.5 shows a Cinnamon desktop environment on a Fedora Workstation distribution.

 F I GU r E 6 .5 The Cinnamon desktop environment

 Notice in Figure 6.5 the bottom panel of the primary UI frame. On this panel, the sys-
tem tray, which contains audio controls, the time, and various other widgets, is located on
the panel’s right side. The Menu, a launcher for various programs as well as containing the
Favorites Bar, is on the panel’s far-left side. Note that the Cinnamon panel also contains
icons for quick launching.

 If you want to install a Cinnamon desktop environment on one of the distri-
butions you installed, we recommend you try it on Fedora 28 Workstation.
Just follow these steps:

 1. Use an account that has super user privileges. This is typically the
account you set up during the system installation.

 2. Access a terminal and enter the command sudo dnf groupinstall
-y "Cinnamon Desktop" at the command line. Be sure to include
the command’s quotation marks.

 3. When the installation is complete, reboot your system.

 4. Access the Cinnamon desktop environment via a menu provided by
the system’s display manager’s gear icon.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing the GUI 319

 The Cinnamon desktop environment layout should be somewhat familiar, because it is
very similar to the KDE Plasma default layout. They both have folder icons on the main UI
windows. Table 6.3 briefl y describes some of the Cinnamon components.

 ta b LE 6 . 3 Cinnamon desktop environment default components

Name Program name and/or description

Display Manager LightDM

File Manager Nemo (a fork of Nautilus)

Favorites Bar Displayed inside Application menu

Panels A single panel (called the Cinnamon panel) located at the
Cinnamon frame’s bottom

System Tray Located on the right side of the single panel

Widgets Cinnamon Spices

Windows Manager Muffin (a fork of GNOME Shell’s Mutter)

 The Cinnamon Spices go beyond just applets and desklets for modifying your desktop
environment. They also include themes and extensions that you can download and install
to make your Cinnamon UI experience truly unique. The offi cial Cinnamon Spices reposi-
tory is at https://cinnamon-spices.linuxmint.com/ .

 Making Acquaintance with MATE
 The MATE desktop environment also got its start in 2011, when GNOME 3 (now
GNOME Shell) was released. It was started by an Arch Linux distribution user who resides
in Argentina. Pronounced Ma-Tay, this desktop environment was offi cially released only
two months after it was announced and was derived from GNOME 2. The desktop envi-
ronment is available on a wide variety of Linux distributions, such as Arch Linux, Debian,
Fedora, Ubuntu, Linux Mint, and so on.

 MATE is named after a tea made from a plant’s dried leaves. The plant (Ilex
paraguariensis) is native to South America. Mate tea is the national drink of
Argentina. It is purported to have the health benefits of tea as well as pro-
vide mental alertness similar to drinking coffee.

 If you’ve ever used the old GNOME 2 desktop environment, MATE will feel very famil-
iar. Figure 6.6 shows a MATE desktop environment on an Ubuntu Desktop distribution.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

320 Chapter 6 ■ Configuring the GUI, Localization, and Printing

 F I GU r E 6 .6 The MATE desktop environment

 In Figure 6.6 there are two panels in the MATE desktop environment. One is at the
primary UI frame’s top, and the other is at its bottom. The system tray, which contains
audio controls, the time, and various other widgets, is located on the top panel’s right side.
Applications, a menu-driven launcher for various programs, is on the top panel’s far-left
side. Note that this top panel also contains icons for quick launching.

 If you want to install a MATE desktop environment on one of the distribu-
tions you installed in Chapter 1, we recommend you try it on Ubuntu Desk-
top 18-04. Use an account that has super user privileges. This is typically
the account you set up during the system installation. Access a terminal
and enter the command sudo apt-get update at the command line to
update your system’s repositories. When you get a prompt back, install the
tasksel program. The tasksel program is a graphical utility that installs
multiple related packages as a harmonized process. In other words, it
makes installing certain packages with lots of dependencies easy. To install
it, follow these steps:

 1. Type sudo apt-get install tasksel at the command line.

 2. Enter sudo tasksel install ubuntu-mate-desktop to install
the MATE desktop environment.

 3. When the installation is complete, reboot your system.

 4. You can access the MATE desktop environment via a menu provided
by the system’s display manager’s gear icon.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing the GUI 321

On the MATE desktop environment’s bottom panel, in the lower-left corner you’ll see
the Show Desktop Button icon. This is handy if you have several windows open in the main
UI frame. Just click the Show Desktop Button icon and all the windows currently open will
be hidden to the lower panel. You can restore all the windows on the lower panel simply
by clicking the Show Desktop Button icon again. Table 6.4 briefly describes some of the
MATE components.

ta b LE 6 . 4 MATE desktop environment default components

Name Program name and/or description

Display Manager LightDM.

File Manager Caja (a fork of Nautilus).

Favorites Bar A Favorites Menu is used instead and is accessed via the
Applications menu–driven launcher.

Panels One panel at the bottom of the MATE frame and the other
panel at the top of the MATE UI.

System Tray Located on the right side of the top panel.

Windows Manager Marco (a fork of Metacity).

You can add additional widgets to your MATE UI’s top panel. Just right-click the panel,
and from the drop-down menu, select Add To Panel. This will open a window of applets
you can install.

Going Bare-Bones with Xfce
One drawback to the fancier Linux graphical desktops is that they require a fair amount
of CPU and memory resources to operate. In the past, Linux was known to give new life to
old hardware, often running on systems that Windows or macOS couldn’t. However, with
the fancier graphical desktops in Linux, that is no longer the case.

However, as with all things Linux, you have more choices. There are several low-end
graphical desktops that run perfectly fine with minimal resources. Of these, the most popu-
lar is the Xfce graphical desktop.

The Xfce desktop was developed in 1996 as an extension of the UNIX Common
Desktop Environment (CDE) using the XForms graphical toolkit (that’s where the “Xf”
part of the name comes from). Over the years, Xfce has been rewritten and no longer uses
code from XForms or CDE, but it has remained a solid lightweight graphical desktop for
the Linux world. Figure 6.7 shows the standard Xfce desktop as used in the XUbuntu
Linux distribution.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

322 Chapter 6 ■ Configuring the GUI, Localization, and Printing

F I GU r E 6 .7 The Xfce desktop used in the XUbuntu Linux distribution

For the XUbuntu distribution, the Xfce desktop has been designed to mimic the basic
features of the standard Ubuntu GNOME desktop but with some limited functionality.
Table 6.5 lists the features available in the XUbuntu Xfce desktop.

ta b LE 6 .5 Xfce desktop environment default components

Name Program name and/or description

Display Manager LightDM

File Manager Thunar

Favorites Bar A single icon at the left side of the panel; displays favorites, recent
applications, and the application menu

Panels A single panel located at the top of the window

System Tray A set of icons on the right side of the panel

Windows Manager The specialized Xfwm, which utilizes its own compositor manager

Although you won’t find a lot of fancy features in Xfce, if you need to run a Linux dis-
tribution on older hardware, the Xfce desktop environment will most likely work just fine
and give new life to your old hardware.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Providing Accessibility 323

 Providing Accessibility
 In a GUI environment, accessibility deals with a user’s ability to use the desktop environ-
ment. While the default desktop environment provided by a Linux distribution works for
many people, accessibility settings allow the accommodation of all potential users. This
includes individuals who may have vision impairment, who have concerns with using the
mouse, who deal with fi nger movement issues, and so on. It’s important to know the desk-
top environment confi gurations for these accommodations so that you can help to provide
access for all.

 Each desktop environment will provide slightly different methods for confi guring acces-
sibility. But most settings can be accomplished through desktop environment control pan-
els, such as the Universal Access panel in GNOME Shell settings.

 Even though most desktop environments provide differently named
accessibility control panels, you can usually quickly find the panels using
the environment’s search facilities. Good search terms include universal
access , accessibility , and assistive technologies .

 Figure 6.8 shows the Universal Access menu opened from the UI top panel. You can fi nd
more accessibility settings in the access control panel by searching for universal access
in the GNOME Shell’s search feature.

 F I GU r E 6 . 8 Universal access top panel menu in GNOME Shell

 For users who are seriously visually impaired or who just have poor eyesight, several
accessibility settings are available that may help. Table 6.6 describes common visual
impairment settings.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

324 Chapter 6 ■ Configuring the GUI, Localization, and Printing

 ta b LE 6 .6 Common visual impairment accessibility settings

Name Description

Cursor Blinking Modifies the cursor blink rate to make it easier to locate the cursor
on the screen.

Cursor Size Modifies the cursor size.

High Contrast Increases the windows’ and buttons’ brightness and darkens
window edges as well as text and the cursor.

Large Text Modifies the font size, often called a screen magnifier.

Screen Reader Uses a screen reader to read the UI aloud. Popular choices include
Orca screen reader and Emacspeak.

Sound Keys Beeps when Caps Lock or Num Lock is turned on (off). Also called
toggle keys.

Zoom Amplifies the screen or a screen portion to different magnification
levels.

 If a blind user has access to a braille display, you can install the brltty package, which
is available in most Linux distributions’ repositories. The brltty package operates as a
Linux daemon and provides console (text mode) access via a braille display. You can fi nd
out more about this software at its offi cial headquarters, http://mielke.cc/brltty/ . Be
aware that you can also use the Orca screen reader with a refreshable braille display.

 If you are not able to hear sound alerts on your Linux system, you can
enable visual alerts. Then, if something occurs that normally produces a
sound, a visual flash is performed instead. You can set the visual alert to
flash a single window or flash the entire display.

 For those users who have hand and/or fi nger impairments, there are several accessibility
settings to allow full functional use of the system. Common settings are listed in Table 6.7 .

 ta b LE 6 .7 Common hand and finger impairment accessibility settings

Name Description

Bounce Keys Keyboard option that helps to compensate for single keys acciden-
tally pressed multiple times.

Double-Click Delay Mouse option that modifies the amount of time allowed between
double mouse clicks.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using X11 for Remote Access 325

Name Description

Gestures Mouse option that activates programs and/or options by combin-
ing both mouse clicks and keyboard presses.

Hover Click Mouse option that triggers a mouse click when the pointer is hov-
ered over an item.

Mouse Keys Mouse option that allows you to use keyboard keys to emulate the
mouse functions.

Repeat Keys Keyboard option that modifies how long a key must be pressed
down as well as a delay to acknowledge the key repeat. Also called
keyboard repeat rate.

Screen Keyboard Keyboard option that displays a visual keyboard on the UI that can
be manipulated by a mouse or other pointing device to emulate
keystrokes.

Simulated Secondary
Click

Mouse option that sets a primary key to be pressed along with a
mouse click to emulate secondary mouse clicks.

Slow Keys Keyboard option that modifies how long a key must be pressed
down to acknowledge the key.

Sticky Keys Keyboard option that sets keyboard modifier keys, such as Ctrl and
Shift, to maintain their pressed status until a subsequent key is
pressed.

AccessX was a program that provided many of the options in Table 8.6. Thus, you
will often see it referred to in the accessibility control panels, such as in the Typing Assist
(AccessX) option. One interesting AccessX setting is Enable By Keyboard, which allows
you to turn on or off accessibility settings via keystrokes on the keyboard.

Using X11 for Remote Access
The X11 system utilizes a classic client/server model for serving up graphical desktops. In
most situations, the client and server both run on the same physical device, but that doesn’t
need to be the case. You can have a remote X11 client connect to the X11 server to display
the graphical desktop on a remote system.

There are several different techniques for implementing remote connections of X11 desk-
top environments. This section walks through the most popular ones.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

326 Chapter 6 ■ Configuring the GUI, Localization, and Printing

 Remote X11 Connections
 The simplest way to run an X11 desktop remotely is to just forward the standard X11 desk-
top protocol stream across the network to the remote client. For example, assume the host
workstation1 is located in a remote area but you need to run a graphical program from it
using your local host, called workstation2 . Follow these steps to accomplish that:

 1. Log in to the workstation2 host using the standard graphical desktop environment.

 2. Open a terminal session to obtain a command prompt.

 3. Type xhost + workstation1 , where workstation1 is either the hostname of the
remote workstation1 host or its IP address. The xhost command allows the client
workstation to receive data from the sending remote workstation.

 4. Log in to the remote host workstation2 using a secure shell (SSH) connection. This will
provide a standard text command prompt interface.

 5. At the command prompt, type export DISPLAY= workstation2 :0.0 , where
 workstation2 is the hostname or IP address of your local workstation. This com-
mand redirects any graphical output generated on the remote workstation1 to the
local workstation2 X server.

 6. Launch a graphical application from the command prompt on workstation1 . The
graphical desktop will appear as a new window in your local workstation2 desktop.

 7. When you’re done, close the launched program and type xhost -workstation1
on your local workstation2 host to remove the permissions to receive data from the
remote host.

 Besides the xhost command, you may need to allow connections through
any firewall software running on your Linux system. The X11 desktop uses
TCP ports in the range of 6000 to 6063. Also, the xhost command allows
X connections from remote hosts to your local workstation only for the
current session. If you regularly send graphical windows from a specific
remote host to your local workstation, you can add the entry to the X11
server configuration files. The xauth command allows you to add, remove,
and list remote hosts in the X11 configuration file.

 Tunneling Your X11 Connection
 Another method that provides remote GUI interactions within a secure tunnel is X11
 forwarding . X11 forwarding allows you to interact with various X11-based graphical
utilities on a remote system through an encrypted network connection. This method is
enacted using the openSSH service.

 First you need to check to see if X11 forwarding is permitted. This setting is in the
openSSH confi guration fi le, /etc/ssh/sshd_config . The directive X11Forwarding should
be set to yes in the remote system’s confi guration fi le. If the directive is set to no , then you

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using X11 for Remote Access 327

must modify it to employ X11 forwarding. In Listing 6.1 a check is performed on the con-
figuration file for this directive on a CentOS distribution.

Listing 6.1: Checking the AllowTCPForwarding directive

grep "X11Forwarding yes" /etc/ssh/sshd_config
X11Forwarding yes
#

After you have made any necessary configuration file modifications, the command to
use is ssh -X user@remote-host. Similar to earlier ssh command uses, the user is the user
account that resides on the remote-host system. The remote-host has the GUI utilities you
wish to employ and can be designated via an IP address or a hostname. Figure 6.9 shows
connecting from a remote Fedora client to a CentOS server and using a graphical utility on
that server.

F I GU r E 6 . 9 Forwarding X11

It’s always a good idea to check your IP address to ensure you have successfully reached
the remote system. In Figure 6.9, the ip addr show command is employed for this pur-
pose. After you have completed your work, just type exit to log out of the X11 forwarding
session.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

328 Chapter 6 ■ Configuring the GUI, Localization, and Printing

 You may read about using X11 forwarding via the ssh -Y command, which
is called trusted X11. This does not mean the connection is more secure. In
fact, it is quite the opposite. When employing this command, you are treat-
ing the remote server as a trusted system. This approach can cause many
security issues and should be avoided.

 Using Remote Desktop Software
 While using the built-in client/server feature of X11 is nice, it can be a bit cumbersome.
Fortunately, there’s a whole crop of remote desktop applications available in Linux that do
the hard work for us.

 Remote desktop software uses a client/server model to provide a server application on a
remote host and a client application on a local host. All you need to do is point the client
application to the remote application and you’re in business. No messing with complicated
forwarding or tunneling schemes.

 In this section we will take a look at some of common remote desktop implementations
for Linux. They include VNC, Xrdp, NX, and SPICE.

 Viewing VNC
 Virtual network computing (VNC) was developed by the Olivetti & Oracle Research Lab,
which has since closed down. Many of the original developers now continue work on the
VNC software from a company called RealVNC. The VNC software is multiplatform and
employs the Remote Frame Buffer (RFB) protocol. This protocol allows a user on the client
side to send GUI commands, such as mouse clicks, to the server. The server sends desktop
frames back to the client’s monitor. RealVNC Ltd., which consists of the original VNC
original project team developers, now trademark VNC.

 The VNC server offers a GUI service at TCP port 5900 + n , where n equals the display
number, usually 1 (port 5901). On the command line you point the VNC client (called a
viewer) to the VNC server’s hostname and TCP port. Alternatively, you can use the display
number instead of the whole TCP port number. The client user is required to enter a pre-
determined password, which is for the VNC server and not Linux system authentication.
After the client user has authenticated with VNC, the user is served up the desktop envi-
ronment’s display manager output so that system authentication can take place.

 The VNC server is fl exible in that you can also use a Java-enabled web browser to access
it. It provides that service at TCP port 5800 + n . HTML5 client web browsers are sup-
ported as well.

 Two types of desktop UIs are available for VNC clients: persistent and
static. Persistent desktops are UIs that do not change when presented.
This is similar to a local desktop experience: the user has certain windows
open, the user locks the screen and engages in an activity away from the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Remote Desktop Software 329

local system, the user comes back and unlocks the screen, and the user
finds the GUI in the exact same state it was left in. Persistent desktops are
available only via web browser access. Static desktops do not provide a
saved-state GUI. When you come back to the desktop, you won’t see any of
your open windows but instead the default desktop environment.

 The following are positive benefi ts when using VNC:

 ■ It has lots of flexibility in providing remote desktops.

 ■ Desktops are available for multiple users.

 ■ Both persistent and static desktops are available.

 ■ It can provide desktops on an on-demand basis.

 ■ An SSH tunnel can be employed via ssh or a client viewer command-line option to
encrypt traffic.

 The following are potential diffi culties or concerns with VNC:

 ■ The VNC server handles only mouse movements and keystrokes. It does not deal with
file and audio transfer or printing services for the client.

 ■ VNC, by default, does not provide traffic encryption, so you must employ another
means of protection, such as tunneling through openSSH.

 ■ The VNC server password is stored as plaintext in a server file.

 Besides VNC, there are alternatives that implement the VNC technology. A popular
implementation of VNC for Linux is TigerVNC. The TigerVNC website is at https://
tigervnc.org/ . It also works on Windows, so you can connect to either a remote Linux
or Windows system. For installing the server on a Linux system, use the tigervnc-server
package name. You’ll need to perform some setup to prepare for clients and confi gure the
server to provide the proper client requirements. You can fi nd several excellent tutorials on
the web. If you want to install the VNC client, just use the tigervnc package name.

 When accessing a remote desktop via commands at the command line, be
sure to use a terminal emulator in the GUI environment. If you attempt to
use a text-mode terminal outside the GUI to issue these commands, you
will not be successful.

 When you have the TigerVNC server installed, you control it with the vncserver and
vncconfig commands. After making the appropriate server fi rewall modifi cations, the cli-
ent can use the vncviewer command to connect to the server system and get a remote desk-
top. For example, a server (example.com) has been confi gured properly to serve a remote
desktop to you at display number 1. You would access the desktop from another system via
the vncviewer example.com:1 command. Figure 6.10 shows a TigerVNC connection from
a Fedora system into a CentOS server, which is providing the user a GNOME Shell desktop
environment.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

330 Chapter 6 ■ Configuring the GUI, Localization, and Printing

F I GU r E 6 .10 Using TigerVNC

When configuring your VNC server, be sure to employ openSSH port forwarding for the
VNC server ports (covered later in this chapter). Also configure your firewalls to allow traf-
fic through port 22 (or whatever port number you are using for SSH traffic).

Grasping Xrdp
Xrdp is an alternative to VNC. It supports the Remote Desktop Protocol (RDP) and uses
X11rdp or Xvnc to manage the GUI session.

Xrdp provides only the server side of an RDP connection. It allows access from several
RDP client implementations, such as rdesktop, FreeFDP, and Microsoft Remote Desktop
Connection.

Xrdp comes systemd-ready, so you can simply install, enable, and start the server using
the systemctl commands. The package name on Linux is xrdp. Note that it may not be in
your Linux distribution’s standard repositories.

After installing and starting the Xrdp server, adjust the firewall so that traffic can access
the standard RDP port (TCP 3389). Now direct your RDP client choice to the server via its
hostname or IP address, and if necessary, provide the client the RDP port number.

Depending on your RDP client, you may be presented with a screen that denotes that
the server is not trusted. If this is the server you just set up, you are fine to continue. You
will need to enter the Linux system’s user authentication information, but the login screen
depends on the Xrdp client software you are using. An example of Xrdp in action is shown
in Figure 6.11.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Remote Desktop Software 331

F I GU r E 6 .11 Using Xrdp

Figure 6.11 shows a connection from a Windows 10 system to a CentOS 7 Linux server,
which is running the Xrdp server. Notice the output from the commands run in the termi-
nal emulator. You can see that an X11 session is being deployed.

The following are positive benefits of using Xrdp:

 ■ Xrdp uses RDP, which encrypts its traffic using Transport Layer Security (TLS).

 ■ A wide variety of open source RDP client software is available.

 ■ You can connect to an already existing connection to provide a persistent desktop.

 ■ The Xrdp server handles mouse movements and keystrokes as well as with audio
transfers and mounting of local client drives on the remote system.

You can determine the various Xrdp configuration settings in the /etc/xrdp/xrdp.ini
file. An important setting in this file is the security_layer directive. If set to negotiate,
the default, the Xrdp server will negotiate with the client for the security method to use.
Three methods are available:

 ■ tls: Provides SSL (TLS 1.0) encryption for server authentication and data transfer.
Be aware that this falls short of the encryption level needed for compliance with the
Payment Card Industry (PCI) standards.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

332 Chapter 6 ■ Configuring the GUI, Localization, and Printing

 ■ negotiate : Sets the security method to be the highest the client can use. This is
problematic if the connection is over a public network and the client must use the
standard RDP security method.

 ■ Rdp : Sets the security method to standard RDP security. This method is not safe from
man-in-the-middle attacks.

 Xrdp is fairly simple to use. Also, because so many Windows-oriented users are already
familiar with Remote Desktop Connection, it typically does not take long to employ it in
the offi ce environment.

 Exploring NX
 The NX protocol, sometimes called NX technology, was created by NoMachine
(www.nomachine.com) around 2001. NX is another remote desktop sharing protocol. Its
v3.5’s core technology was open source and available under the GNU GPL2 license. Yet,
when version 4 was released, NX became proprietary and closed source.

 However, there are several open source variations available based on the NX3 technology.
They include FreeNX and X2Go. Both are available on various Linux distributions but not
necessarily in their default software repositories.

 The following are positive benefi ts of using NX products:

 ■ They provide excellent response times even over low-bandwidth connections that have
high-latency issues.

 ■ They are faster than VNC-based products.

 ■ They use openSSH tunneling by default, so traffic is encrypted.

 ■ They support multiple simultaneous users through a single network port.

 NX technology compresses the X11 data so that there is less data to send over the net-
work, which improves response times. It also heavily employs caching data to provide an
improved remote desktop experience.

 Studying SPICE
 Another interesting remote connection protocol is Simple Protocol for Independent
Computing Environments (SPICE). Originally it was a closed source product developed by
Qumranet in 2007. However, Red Hat purchased Qumranet in 2008 and made SPICE open
source. Its website is here: www.spice-space.org .

 SPICE (sometimes written as Spice, as we will from this point on) was developed to
provide a good remote desktop product that would allow connections to your various vir-
tual machines. Now, typically Spice is used for providing connections with KVM virtual
machines, moving into VNC’s territory.

 Both VNC and Spice provide remote desktop connections to KVM virtual
machines, commonly used in cloud environments.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding Localization 333

Spice is platform independent and has some very nice additional features as well. They
include:

 ■ Spice’s client side uses multiple data socket connections, and you can have multiple
clients.

 ■ Spice delivers desktop experience speeds similar to a local connection.

 ■ Spice consumes low amounts of CPU, so you can use it with various servers that have
multiple virtual machines and not adversely affect their performance.

 ■ Spice allows high-quality video streaming.

 ■ Spice provides live migration features, which means there are no connection
interruptions if the virtual machine is being migrated to a new host.

While Spice has a single server implementation, it has several client implementations.
These include remote-viewer and GNOME Boxes.

Another benefit of employing Spice is its strong security features. Transmitted data can
be sent plaintext or traffic can be encrypted using TLS. Authentication between the Spice
client and remote Spice server is implemented using Simple Authentication and Security
Layer (SASL). This framework allows various authentication methods, as long as they are
supported by SASL. Kerberos is a supported method.

If you are still dealing with X11, you can use X.Org-created Xspice to act as a stand-
alone Spice server as well as an X server.

Understanding Localization
The world is full of different languages. Not only does each country have its own language
(or sometimes, sets of languages), but each country also has its own way in which people
write numerical values, monetary values, and the time and date. For a Linux system to be
useful in any specific location, it must adapt to the local way of doing all those things.

Localization is the ability to adapt a Linux system to a specific locale. To accomplish
this, the Linux system must have a way to identify how to handle the characters contained
in the local language. This section discusses just how Linux does that.

Character Sets
At their core, computers work with ones and zeros, and Linux is no different. However, for
a computer to interact with humans, it needs to know how to speak our language. This is
where character sets come in.

A character set defines a standard code used to interpret and display characters in a
language. Quite a few different character sets are used in the world for representing char-
acters. The most common ones you’ll run into (and the ones you’ll see on the LPIC-1 exam)
are as follows:

 ■ ASCII: The American Standard Code for Information Interchange (ASCII) uses 7 bits
to store characters found in the English language.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

334 Chapter 6 ■ Configuring the GUI, Localization, and Printing

 ■ ISO-8859: The International Organization for Standardization (ISO) worked with the
International Electrotechnical Commission (IEC) to produce a series of standard codes
for handling international characters. There are 15 separate standards (ISO-8859-1
through ISO-8859-15) for defining different character sets.

 ■ Unicode: The Unicode Consortium, composed of many computing industry companies,
created an international standard that uses a 3-byte code and can represent every
character known to be in use in all countries of the world.

 ■ UTF: The Unicode Transformation Format (UTF) transforms the long Unicode values
into either 1-byte (UTF-8) or 2-byte (UTF-16) simplified codes. For work in English-
speaking countries, the UTF-8 character set is replacing ASCII as the standard.

When you’ve decided on a character set for your Linux system, you’ll need to know how
to configure your Linux system to use it, which is shown in the following section.

Environment Variables
Linux stores locale information in a special set of environment variables (see Chapter 9).
Programs that need to determine the locale of the Linux system just need to retrieve the
appropriate environment variable to see what character set to use.

Linux provides the locale command to help you easily display these environment vari-
ables. Listing 6.2 shows the locale environment variables as set on a CentOS system
installed in the United States.

Listing 6.2: The Linux locale environment variables

$ locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8"
LC_IDENTIFICATION="en_US.UTF-8"
LC_ALL=
$

The output of the locale command defines the localization information in the format

language_country.character set

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Setting Your Locale 335

In the example shown in Listing 6.2, the Linux system is configured for United States
English, using the UTF-8 character set to store characters.

The LC_ environment variables themselves each represent a category of more environ-
ment variables that relate to the locale settings. You can explore the environment variables
contained within a category by using the -ck option, along with the category name, as
shown in Listing 6.3.

Listing 6.3: The detailed settings for the LC_MONETARY localization category

$ locale -ck LC_MONETARY
LC_MONETARY
int_curr_symbol="USD "
currency_symbol="$"
mon_decimal_point="."
mon_thousands_sep=","
mon_grouping=3;3
positive_sign=""
negative_sign="-"
...
monetary-decimal-point-wc=46
monetary-thousands-sep-wc=44
monetary-codeset="UTF-8"
$

The environment variables shown in Listing 6.3 control what characters and formats
are used for representing monetary values. Programmers can fine-tune each of the indi-
vidual environment variables to customize exactly how their programs behave within
the locale.

Setting Your Locale
There are three components to how Linux handles localization. A locale defines the
language, the country, and the character set the system uses. Linux provides a few dif-
ferent ways for you to change each of these localization settings. This section shows
how to do that.

Installation Locale Decisions
When you first install the Linux operating system, one of the prompts available during the
install process is for the default system language. Figure 6.12 shows the prompt from a
CentOS 7 installation.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

336 Chapter 6 ■ Configuring the GUI, Localization, and Printing

F I GU r E 6 .12 The language option in a CentOS installation

When you select a language from the menu, the Linux installation script automatically
sets the localization environment variables appropriately for that country and language to
include the character set required to represent the required characters. Often that’s all you
need to do to set up your Linux system to operate correctly in your locale.

Changing Your Locale
After you’ve already installed the Linux operating system, you can still change the localiza-
tion values that the system uses. Two methods are available that let you do that. You can
manually set the LC_ environment variables, or you can use the localectl command.

Manually Changing the Environment Variables
For the manual method, change the individual LC_ localization environment variables just
as you would any other environment variable by using the export command:

$ export LC_MONETARY=en_GB.UTF-8

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Setting Your Locale 337

 That works well for changing individual settings, but doing so would be tedious if you
wanted to change the entire localization for the system.

 Instead of having to change all of the LC_ environment variables individually, the LANG
environment variable controls all of them at one place:

 $ export LANG=en_GB.UTF-8
 $ locale
 LANG=en_GB.UTF-8
 LC_CTYPE="en_GB.UTF-8"
 LC_NUMERIC="en_GB.UTF-8"
 LC_TIME="en_GB.UTF-8"
 LC_COLLATE="en_GB.UTF-8"
 LC_MONETARY="en_GB.UTF-8"
 LC_MESSAGES="en_GB.UTF-8"
 LC_PAPER="en_GB.UTF-8"
 LC_NAME="en_GB.UTF-8"
 LC_ADDRESS="en_GB.UTF-8"
 LC_TELEPHONE="en_GB.UTF-8"
 LC_MEASUREMENT="en_GB.UTF-8"
 LC_IDENTIFICATION="en_GB.UTF-8"
 LC_ALL=
 $

 Some Linux systems require that you also set the LC_ALL environment variable, so it’s
usually a good idea to set that along with the LANG environment variable.

 This method changes the localization for your current login session. If you
need to permanently change the localization, you’ll need to add the export
command to the .bashrc file in your $HOME folder so that it runs each time
you log in.

 The localectl Command
 If you’re using a Linux distribution that utilizes the systemd set of utilities, you have the
localectl command available. By default, the localectl command just displays the current
localization settings:

 $ localectl
 System Locale: LANG=en_US.UTF-8
 VC Keymap: us
 X11 Layout: us
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

338 Chapter 6 ■ Configuring the GUI, Localization, and Printing

 Not only does it show the LANG environment variable setting, but it also shows the key-
board layout mapping, as well as the X11 graphical environment layout.

 The localectl command supports many options, but the most common are to list all of
the locales installed on your system with the list-locales option and to change the local-
ization by using the set-locale option:

 $ localectl set-locale LANG=en_GB.utf8

 That makes for an easy way to change the localization settings for your entire Linux system.

 If you just need to convert a file stored using one character set to another
character set, use the handy iconv command-line tool.

 Looking at Time
 The date and time associated with a Linux system are crucial to the proper operation of the
system. Linux uses the date and time to keep track of running processes, to know when to
start or stop jobs, and to log important events that occur. Having your Linux system coor-
dinated with the correct time and date for your location is a must.

 Linux handles the time as two parts: the time zone associated with the location of the
system and the actual time and date within that time zone. This section walks through how
to change both values.

 Working with Time Zones
 One of the most important aspects of time is the time zone . Each country selects one or
more time zones, or offsets from the standard Coordinated Universal Time (UTC) time,
to determine time within the country. If your Linux environment includes having servers
located in different time zones, knowing how to set the proper time zone is critical.

 Most Debian-based Linux systems defi ne the local time zone in the /etc/timezone fi le,
whereas most Red Hat–based Linux systems use /etc/localtime . These fi les are not in a
text format, so you can’t simply edit the /etc/timezone or /etc/localtime fi le to view
or change your time zone. Instead, you must copy a template fi le stored in the /usr/share/
zoneinfo folder.

 To determine the current time zone setting for your Linux system, use the date com-
mand, with no options:

 $ date
 Fri Aug 2 05:52:29 EDT 2019
 $

 The time zone appears as the standard three-letter code at the end of the date and time
display, before the year.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at Time 339

 To change the time zone for a Linux system, copy or link the appropriate time zone
template fi le from the /usr/share/zoneinfo folder to the /etc/timezone or /etc/
localtime location. The /usr/share/zoneinfo folder is divided into subfolders based on
location. Each location folder may also be subdivided into more detailed location folders.
Eventually, you’ll see a time zone template fi le associated with your specifi c time zone,
such as /usr/share/zoneinfo/US/Eastern .

 If you don’t know the formal name of your time zone, run the tzselect
command from the command prompt. It determines your timezone value
based on answers to several location questions.

 Before you can copy the new time zone fi le, you’ll need to remove the original timezone
or localtime fi le:

 $ sudo mv /etc/localtime /etc/localtime.bak
 $ sudo ln -s /usr/share/zoneinfo/US/Pacific /etc/localtime

 $ date
 Fri Aug 2 02:55:28 PDT 2019
 $

 The new time zone appears in the output from the date command.

 If you just need to change the time zone for a single session or program,
instead of changing the system time zone you can set the time zone using
the TZ environment variable. That overrides the system time zone for the
current session.

 Setting the Time and Date
 After you have the correct time zone for your Linux system, you can work on setting the
correct time and date values. A few different commands are available to do that.

 Legacy Commands
 There are two legacy commands that you should be able to fi nd in all Linux distributions
for working with time and date values:

 ■ hwclock : Displays or sets the time as kept on the internal BIOS or UEFI clock on the
workstation or server

 ■ date : Displays or sets the date as kept by the Linux system

 The hwclock command provides access to the hardware clock built into the physical
workstation or server that the Linux system runs on. You can use the hwclock command
to set the system time and date to the hardware clock on the physical workstation or

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

340 Chapter 6 ■ Configuring the GUI, Localization, and Printing

server. It also allows you to change the hardware clock to match the time and date on the
Linux system.

The date command is the Swiss army knife of time and date commands. It allows you
to display the time and date in a multitude of formats, and it lets you set the time and/or
date. The + option allows you to specify the format used to display the time or date value
by defining command sequences:

$ date +"%A, %B %d %Y"
Friday, August 02 2019
$

Table 6.8 shows the various command sequences available in the date command.

ta b LE 6 . 8 The date format command sequences

Sequence Description

%a The abbreviated weekday name

%A The full weekday name

%b The abbreviated month name

%B The full month name

%c The date and time

%C The century (e.g., 20)

%d The numeric day of month

%D The full numeric date

%e The day of month, space padded

%F The full date in SQL format (YYYY-MM-dd)

%g The last two digits of year of the ISO week number

%G The year of the ISO week number

%h An alias for %b

%H The hour in 24-hour format

%I The hour in 12-hour format

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at Time 341

Sequence Description

%j The numeric day of year

%k The hour in 24-hour format, space padded

%l The hour in 12-hour format, space padded

%m The numeric month

%M The minute

%n A newline character

%N The nanoseconds

%p AM or PM

%P Lowercase am or pm

%r The full 12-hour clock time

%R The full 24-hour hour and minute

%s The seconds since 1970-01-01 00:00:00 UTC

%S The second

%t A tab character

%T The full time in hour:minute:second format

%u The numeric day of week; 1 is Monday

%U The numeric week number of year, starting on Sunday

%V The ISO week number

%w The numeric day of week; 0 is Sunday

%W The week number of year, starting on Monday

%x The locale’s date representation as month/day/year or day/month/year

%X The locale’s full time representation

%y The last two digits of the year

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

342 Chapter 6 ■ Configuring the GUI, Localization, and Printing

Sequence Description

%Y The full year

%z The time zone in +hhmm format

%:z The time zone in +hh:mm format

%::z The time zone in +hh:mm:ss fotmat

%:::z The numeric time zone with: to necessary precision

%Z The alphabetic time zone abbreviation

As you can see in Table 6.8, the date command provides numerous ways for you to dis-
play the time and date in your programs and shell scripts.

You can also set the time and date using the date command by specifying the value in
the format

date MMDDhhmm[[CC]YY][.ss]

The month, date, hour, and minute values are required, with the year and seconds
assumed, or you can include the year and seconds as well if you prefer.

The timedatectl Command
If your Linux distribution uses the systemd set of utilities (see Chapter 6), you can use the
timedatectl command to manage the time and date settings on your system:

$ timedatectl
 Local time: Fri 2019-08-02 06:00:20 EDT
 Universal time: Fri 2019-08-02 10:00:20 UTC
 RTC time: Fri 2019-08-02 10:00:19
 Time zone: US/Eastern (EDT, -0400)
 System clock synchronized: no
systemd-timesyncd.service active: yes
 RTC in local TZ: no
$

The timedatectl command provides one-stop shopping for all of the time informa-
tion, including the hardware clock, called RTC; the date information; and the time zone
information.

ta b LE 6 . 8 The date format command sequences (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring Printing 343

 You can also use the timedatectl command to modify any of those settings as well by
using the set-time option:

$ sudo timedatectl set-time "2019-08-02 06:15:00"

 You can also use the timedatectl command to synchronize the workstation or server
hardware clock and the Linux system time.

 Most Linux systems connected to the Internet use the Network Time Pro-
tocol (NTP) to keep the time and date synchronized with a centralized time
server. If your Linux system does this, you won’t be able to alter the time or
date by using either the date or timedatectl command.

 Configuring Printing
 Just like the video environment in Linux, printing in Linux can be somewhat complex.
With a myriad of different types of printers available, trying to install the correct printer
drivers as well as using the correct printer protocol to communicate with them can be a
nightmare.

 Fortunately, the Common Unix Printing System (CUPS) solves many of those problems
for us. CUPS provides a common interface for working with any type of printer on your
Linux system. It accepts print jobs using the PostScript document format and sends them to
printers using a print queue system.

 The print queue is a holding area for fi les sent to be printed. The print queue is normally
confi gured to support not only a specifi c printer but also a specifi c printing format, such as
landscape or portrait mode, single-sided or double-sided printing, or even color or black-
and-white printing. There can be multiple print queues assigned to a single printer, or mul-
tiple printers that can accept jobs assigned to a single print queue.

 The CUPS software uses the Ghostscript program to convert the PostScript document
into a format understood by the different printers. The Ghostscript program requires
different drivers for the different printer types to know how to convert the document to
make it printable on that type of printer. This is done using confi guration fi les and drivers.
Fortunately, CUPS installs many different drivers for common printers on the market and
automatically sets the confi guration requirements to use them. The confi guration fi les are
stored in the /etc/cups directory.

 To defi ne a new printer on your Linux system, you can use the CUPS web interface.
Open your browser and navigate to http://localhost:631/ . Figure 6.13 shows the web
interface used by CUPS.

 The CUPS web interface allows you to defi ne new printers, modify existing printers,
and check on the status of print jobs sent to each printer. Not only does CUPS recognize
directly connected printers, but you can also confi gure network printers using several
standard network printing protocols, such as the Internet Printing Protocol (IPP) or the
Microsoft Server Message Block (SMB) protocol.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

344 Chapter 6 ■ Configuring the GUI, Localization, and Printing

F I GU r E 6 .13 The CUPS main web page

Aside from the CUPS web interface, a few command-line tools are available that you can
use for interacting with the printers and print queues:

 ■ cancel: Cancels a print request

 ■ cupsaccept: Enables queuing of print requests

 ■ cupsdisable: Disables the specified printer

 ■ cupsenable: Enables the specified printer

 ■ cupsreject: Rejects queuing of print requests

Besides the standard CUPS command-line commands, CUPS also accepts commands
from the legacy BSD command-line printing utility:

 ■ lpc: Start, stop, or pause the print queue

 ■ lpq: Display the print queue status, along with any print jobs waiting in the queue

 ■ lpr: Submit a new print job to a print queue

 ■ lprm: Remove a specific print job from the print queue

If you’re working from the command line, you can check the status of any print queue,
as well as submit print jobs, as shown in Listing 6.4.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Summary 345

Listing 6.4: Printing from the command line in Linux

$ lpq -P EPSON_ET_3750_Series
EPSON_ET_3750_Series is ready
no entries
$ lpr -P EPSON_ET_3750_Series test.txt
$ lpq -P EPSON_ET_3750_Series
EPSON_ET_3750_Series is ready and printing
Rank Owner Job File(s) Total Size
active rich 1 test.txt 1024 bytes
$

The first line in Listing 6.4 uses the lpq command to check the status of the print queue,
which shows the printer is ready to accept new jobs and doesn’t currently have any jobs in
the print queue. The lpr command submits a new print job to print a file. After submitting
the new print job, the lpq command shows the printer is currently printing and shows the
print job that’s being printed.

Summary
Creating, managing, and troubleshooting a GUI environment for yourself and the system’s
users involves an important skill set. You need to understand the distinct desktop environ-
ments, their supporting frameworks, and how to transmit them safely and securely across
the network.

The various desktop environments, such as GNOME Shell, KDE Plasma, MATE,
Cinnamon, and Xfce, provide many environments to meet different needs and tastes. The
currently evolving world of display servers, which includes primarily Wayland and the older
X.Org, supports these GUI desktops.

Linux provides GUI desktop environments with many accessibility features, which allow
most UI needs to be met. The various keyboard and mouse settings help those with hand
or finger difficulties. There are also many utilities for the vision impaired, including screen
readers and zoom features.

Accessing a GUI across the network is accomplished through the use of remote desktop
software. VNC, Xrdp, and NX are a few examples. Spice is unique in that its primary
focus is providing remote desktop access to virtual machines.

Linux systems support many different languages by incorporating different character
sets. A character set defines how the Linux system displays and uses the characters con-
tained in the language. While Linux supports many different character sets, the most com-
mon ones are ASCII, ISO-8859, Unicode, UTF-8, and UTF-16. The ASCII character set is
useful only for English language characters, whereas the UTF-8 and UTF-16 character sets
are commonly used to support other languages.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

346 Chapter 6 ■ Configuring the GUI, Localization, and Printing

The Linux system maintains the character set configuration as a group of environ-
ment variables that begin with LC_. The locale command displays all of the localization
environment variables. Each individual LC_ environment variable represents a category
of other environment variables that fine-tune the localization settings even further. You
can display those environment variable settings by including the -ck option to the locale
command.

You must define a time zone for your Linux system. Debian-based Linux distributions
use the /etc/timezone file to determine the system time zone, whereas Red Hat–based
Linux distributions use the /etc/localtime file. Both files utilize a binary format, so you
can’t edit them directly. Linux maintains a library of time zone files in the /usr/share/
zoneinfo folder. Just copy or link the appropriate time zone file from the /usr/share/
zoneinfo folder to the time zone file for your Linux system.

The CUPS software provides a standard method for applications to send documents to
both local and network printers. CUPS provides a web-based interface for easily adding,
removing, and modifying printers, including both local and network printers. It also pro-
vides a few command-line utilities and supports some legacy command-line utilities for
working with printers.

Exam Essentials
Outline the various GUI sections and functions. A desktop environment provides a prede-
termined look and feel to the GUI. It has graphical sections such as a favorites bar, launch
areas, menus, panels, and a system tray. The GUI also has typical functions like desktop
settings, a display manager, a file manager, icons to access programs, widgets, and a
windows manager.

Describe the various GUI desktop environments. The primary desktop environments used
for current Linux distributions include GNOME Shell, KDE Plasma, MATE, and Xfce.

Summarize available universal access utilities. The distinct accessibility tools are located
in menus or panels. These panels have various locations around the desktop environments
and have names like Universal Access, Accessibility, and Assistive Technologies. It is best
to use a desktop environment’s search feature to locate them. The various access tools for
vision-impaired users include cursor blinking, cursor size, contrast modifications, text size
enlargement, sound keys, zoom functions, and screen readers. For those individuals who
need access to braille technologies, the brltty software is available. Displayed windows
can be set to flash instead of providing a sound alert for those who are hearing impaired.
When someone has trouble using the keyboard, there are many settings available such as
bounce keys, repeat keys, screen keyboard, slow keys, and sticky keys. For mouse use diffi-
culties, the tools to explore are double-click delays, gestures, hover clicks, mouse keys, and
simulated secondary clicks.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam Essentials 347

Explain the display server’s role. A display server is a program or program group that
uses a communication protocol to convey information between the GUI and the operating
system. The communication protocol is called the display server protocol and can oper-
ate over a network. One critical program used with the display server is the compositor.
The compositor arranges display elements within a window to create a screen image. Two
important display servers are Wayland and X.Org. X.Org is an older display server that has
been around for a while. Wayland is a newer display server that adds many needed security
features and is easier to maintain.

Describe the available remote desktop software. Remote desktop software provides a
fully functional desktop environment over the network from a remote server. It uses a cli-
ent/server model, and there are several packages from which to choose. They include VNC,
Xrdp, NX, and Spice.

Describe how Linux works with different languages. Linux stores and displays language
characters by using character sets. ASCII, Unicode, and UTF-8 are the most commonly
used character sets for Linux.

Explain how to change the current character set on a Linux system. You can use the
export command to change the LANG or LC_ALL environment variables to define a new
characters set. If your Linux distribution uses the systemd utilities, you can also use the
localectl command to display or change the system character set.

Describe how the time zone is set on a Linux system. Time zones are defined in Linux by
individual files in the /usr/share/zoneinfo folder. Debian-based Linux distributions copy
the appropriate time zone file to the /etc/timezone file, whereas Red Hat–based Linux dis-
tributions use the /etc/localtime file. To change the time zone for an individual script or
program, use the TZ environment variable.

Summarize the tools you have available to work with the time and date on a Linux system.
The hwclock command allows you to sync the Linux system time with the hardware clock
on the system, or vice versa. The date command allows you to display the time and date
in a multitude of formats or set the current time and date. The timedatectl command is
from the systemd utilities, and it allows you to display lots of different information about
the system and hardware time and date, and lets you set them.

Explain how Linux handles printers and how you can configure your Linux system to
access network printers. Linux uses the CUPS package for handling all printing tasks.
CUPS provides a web-based interface allowing administrators to add, remove, and modify
both local and network printers on the Linux system. CUPS also provides several utilities
for working with printers from the command line if needed.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

348 Chapter 6 ■ Configuring the GUI, Localization, and Printing

Review Questions
You can find the answers in the appendix.

1. Which of the following best describes a desktop environment?

A. A set of programs that allow a user to interact with the system via icons, windows, and
various other visual elements

B. A screen where you choose a username and enter a password to gain system access

C. A series of components that work together to provide the graphical setting for the user
interface

D. A program that allows you to perform file maintenance activities graphically

E. A set of programs that determine how the windows are presented on the desktop

2. Which of the following are GUI components? (Choose all that apply.)

A. Favorites bar

B. File manager

C. Icons

D. Command line

E. System tray

3. Which of the following is not used by default within GNOME Shell?

A. KDM

B. Files

C. Mutter

D. GDM

E. Doc

4. Which of the following is the KDE Plasma files manager?

A. Nautilus

B. Plasmoid

C. Dolphin

D. Kwin

E. Nemo

5. Which of the following describes the sound keys accessibility setting?

A. Sounds are made when Caps Lock or Num Lock key is turned on or off.

B. A program that reads the GUI aloud, such as Orca.

C. A cursor blink rate modification to make it easier to locate the cursor on the screen.

D. Output to a refreshable braille display that is provided by the Orca screen reader.

E. The screen or a screen portion is amplified to different magnification levels.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 349

6. A blind co-worker who is programming on the Linux server is suddenly having odd
problems with his braille display device. You determine that you need to restart the braille
service. Assuming the appropriate systemd unit file is available, which command would
you use?

A. systemctl restart braille

B. systemctl reload braille

C. systemctl restart brailled

D. systemctl restart brltty

E. systemctl reload brltty

7. Which of the following best describes the slow keys accessibility setting?

A. A keyboard option that modifies how long a key must be pressed down to acknowledge
the key

B. A keyboard option that sets keyboard modifier keys, such as Ctrl and Shift, to
maintain their pressed status until a subsequent key is pressed

C. A keyboard option that modifies how long a key must be pressed down as well as a
delay to acknowledge the key repeat

D. A keyboard option that sets a primary key to be pressed along with a mouse click to
emulate secondary mouse clicks

E. A keyboard option that displays a visual keyboard on the UI that can be manipulated
by a mouse or other pointing device to emulate keystrokes

8. Which of the following communicates with the Linux operating system to transmit the UI
wants and needs?

A. Window manager

B. Display manager

C. Desktop environment

D. Windows server

E. Display server

9. Which of the following is true concerning Wayland? (Choose all that apply.)

A. Currently, X11 is more secure than Wayland.

B. Wayland uses the $WAYLAND_DISPLAY environment variable.

C. Wayland’s only compositor is Weston.

D. X11Wayland supports legacy X11 programs.

E. Set WaylandDisable to true to disable Wayland in GNOME Shell.

10. Which of the following commands will help you determine whether your display server is
Wayland or X11?

A. $WAYLAND_DISPLAY

B. echo $AccessX

C. loginctl

D. echo $X11

E. runlevel

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

350 Chapter 6 ■ Configuring the GUI, Localization, and Printing

11. Which of the following is true concerning X11? (Choose all that apply.)

A. XFree86 is the dominant X server.

B. The X.Org Foundation develops an X server.

C. The X server is being replaced by Wayland.

D. X11 means a user can have 11 sessions.

E. X is short for X Window System.

12. Your system is running an X display server and a user’s graphical user interface is not act-
ing properly. Which of the following commands can you use first to diagnose potential
problems? (Choose all that apply.)

A. xwininfo

B. Xorg -configure

C. xcpyinfo

D. xdpyinfo

E. loginctl

13. Which of the following are remote desktops? (Choose all that apply.)

A. Spice

B. NX

C. Xrdp

D. VNC

E. Caja

14. Which of the following are remote desktops that are typically used with virtual machines?
(Choose all that apply.)

A. Spice

B. NX

C. Xrdp

D. VNC

E. All of the above

15. Which of the following protocols does Xrdp employ?

A. Remote frame buffer protocol

B. Wayland protocol

C. NX technology protocol

D. Simple Protocol for ICEs

E. Remote desktop protocol

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 351

16. You (username Samantha) are logged in to a laptop (IP address 192.168.0.42) running a
Linux GNOME Classic desktop environment at your company desk in Building A. A prob-
lem has occurred on a rack-mounted Linux system (IP address 192.168.0.7), in Building C.
You need to securely access a GUI application on the remote system that uses X11. What
command should you use?

A. ssh -Y Samantha@192.168.0.7

B. ssh -X Samantha@192.168.0.7

C. ssh -Y Samantha@192.168.0.42

D. ssh -X Samantha@192.168.0.42

E. ssh -L Samantha@192.168.0.42

17. Which character set uses a 3-byte code and can represent characters from most languages
used in the world?

A. ASCII

B. LC_ALL

C. UTF-8

D. UTF-16

E. Unicode

18. What Linux command displays all of the localization environment variables and
their values?

A. date

B. time

C. hwclock

D. LANG

E. locale

19. What two environment variables control all of the localization settings?

A. LC_MONETARY

B. LC_NUMERIC

C. LANG

D. LC_CTYPE

E. LC_ALL

20. What CUPS command-line command allows you to halt sending print jobs to a queue?

A. cancel

B. cupsaccept

C. cupsenable

D. cupsreject

E. lpq

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

By

Administering the
System

ObjectiveS

 ✓ 107.1 Manage user and group accounts and related
 system files

 ✓ 108.1 Maintain system time

 ✓ 108.2 System logging

 ✓ 108.3 Mail Transfer Agent (MTA) basics

Chapter

7

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

One of the goals in systems administration is to ensure that
all the servers in your care are running efficiently. Managing
user accounts, email, log files, and system time are all tasks

involved in this process.
In this chapter we’ll dig down into the nitty-gritty of creating, modifying, and deleting

user accounts and groups. We’ll also explore email utilities and concepts that are helpful
in troubleshooting as well as using system email. Log files that are critical for trouble-
shooting problems and keeping a watchful eye on security are covered as well. Finally,
we’ll take a look at properly maintaining a system’s time and the various services you can
employ to do so.

Managing Users and Groups
If you want to buy a famous and expensive piece of art, you should make sure it isn’t
a fake. In other words, you want to make sure it is authentic. The same is true for
allowing users access to a computer system. You want to make sure they are authentic
users who have received prior authorization to access the system. This process is called
authentication and is formerly defined as determining if a person or program is who
they claim to be.

Besides user authentication, you need to know how to check a user’s access to files, man-
age group memberships, and change passwords. These functions are intertwined. This sec-
tion covers administering the access controls Linux uses to check a user’s credentials and
permit or deny access to the system as well as to its files.

Understanding Users and Groups
User accounts and their underlying framework are at the center of credential management
and access controls. These accounts are a part of Linux’s discretionary access control
(DAC). DAC is the traditional Linux security control, where access to a file, or any object,
is based on the user’s identity and current group membership.

Groups are an organizational structure that are also part of DAC. When a user account
is created, it is given membership to a particular group, called the account’s default group.
Though a user account can have lots of group memberships, its process can have only one
designated current group at a time. The default group is an account’s current group, when
the user first logs into the system.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Users and Groups 355

Configuring User Accounts
Adding and modifying user account credentials, which includes usernames, account infor-
mation, and passwords, is an important (but tedious) part of system administration. In
addition, you need to know how to delete these credentials, when warranted.

To add a new user account on the system, the useradd utility is typically used. However,
the process involves players besides the useradd command. A depiction of the process is
illustrated in Figure 7.1.

F i gu r e 7.1 The process of adding a user account

/etc/default/useradd

/etc/login.defs

Your input

/etc/passwd

/etc/shadow

/etc/group

User account
creation process

/etc/skel directory

/home/userid

You can see in Figure 7.1 that several team players are involved in the account creation
process. Notice that the /etc/skel directory is bolded. This is because, depending on
the other configuration files, it may not be used in the process. The same goes for the
/home/userid directory. It may not be created or it may have an alternative name,
depending on the system’s account creation configuration. You’ll learn more about these
directories shortly.

Before we jump into the useradd utility details, let’s look at the two files and the directory
involved in the creation side of the process.

The /etc/login.defs File
The /etc/login.defs configuration file is typically installed by default on most Linux dis-
tributions. It contains directives for use in various shadow password suite commands.
Shadow password suite is an umbrella term for commands dealing with account creden-
tials, such as the useradd, userdel, and passwd commands.

The directives in this configuration file control password length, how long until the
user is required to change the account’s password, whether or not a home directory is cre-
ated by default, and so on. The file is typically filled with comments and commented-out
directives (which make the directives inactive). Listing 7.1 shows only the active directives
within the /etc/login.defs file, after stripping out blank and comment lines on a CentOS
distribution.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

356 Chapter 7 ■ Administering the System

Listing 7.1: Active directives in the /etc/login.defs configuration file

$ grep -v ^$ /etc/login.defs | grep -v ^\#
MAIL_DIR /var/spool/mail
PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_MIN_LEN 5
PASS_WARN_AGE 7
UID_MIN 1000
UID_MAX 60000
SYS_UID_MIN 201
SYS_UID_MAX 999
GID_MIN 1000
GID_MAX 60000
SYS_GID_MIN 201
SYS_GID_MAX 999
CREATE_HOME yes
UMASK 077
USERGROUPS_ENAB yes
ENCRYPT_METHOD SHA512
$

Notice the UID_MIN directive within Listing 7.1. A user ID (UID) is the number used by
Linux to identify user accounts. A user account, sometimes called a normal account, is any
account an authorized human with the appropriate credentials has been given to access the
system and perform daily tasks. While humans use account names, Linux uses UIDs. The
UID_MIN indicates the lowest UID allowed for user accounts. On the system in Listing 7.1,
UID_MIN is set to 1000. This is typical, though some systems set it at 500.

System accounts are accounts that provide services (daemons) or perform special tasks,
such as the root user account. A system account’s minimum UID is set by the SYS_UID_MIN,
and its maximum is set by the SYS_UID_MAX directive. The settings in this file are typical,
but keep in mind that these settings are for accounts created after the initial Linux distribu-
tion installation.

Some additional directives critical to common user account creation are covered in
Table 7.1.

tA b Le 7.1 A few vital /etc/login.defs directives

Name Description

PASS_MAX_DAYS Number of days until a password change is required. This is
the password’s expiration date.

PASS_MIN_DAYS Number of days after a password is changed until the
password may be changed again.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Users and Groups 357

Name Description

PASS_MIN_LENGTH Minimum number of characters required in password.

PASS_WARN_AGE Number of days a warning is issued to the user prior to a
password’s expiration.

CREATE_HOME Default is no. If set to yes, a user account home directory is
created.

ENCRYPT_METHOD The method used to hash account passwords.

The /etc/login.defs file is only one of the configuration files used for the user account
process’s creation side. The other file is covered next.

The /etc/default/useradd File
The /etc/default/useradd file is another configuration file that directs the process of creat-
ing accounts. It typically is a much shorter file than the /etc/login.defs file. An example
from a CentOS distribution is shown in Listing 7.2.

Listing 7.2: The /etc/default/useradd configuration file

$ cat /etc/default/useradd
useradd defaults file
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes
$
$ sudo useradd -D
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes
$

Notice in Listing 7.2 that there are two different ways to display the active directives in
this file. You can use the cat command or invoke the useradd -D command with super user

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

358 Chapter 7 ■ Administering the System

privileges. Both are equally simple to use. One cool fact about the useradd -D command is
that you can use it to modify the directives within the /etc/default/useradd fi le.

 In Listing 7.2, notice the HOME directive. It is currently set to /home , which means
that any newly created user accounts will have their account directories located within
the /home directory. Keep in mind that if CREATE_HOME is not set or is set to no within the
/etc/login.defs fi le, a home directory is not created by default.

 Some additional directives critical to common user account creation are covered in
Table 7.2 .

 tA b Le 7. 2 A few vital /etc/default/useradd directives

Name Description

 HOME Base directory for user account directories.

 INACTIVE Number of days after a password has expired and has not been changed
until the account will be deactivated. See PASS_MAX_DAYS in Table 7.1 .

 SKEL The skeleton directory.

 SHELL User account default shell program.

 The SHELL directive needs a little more explanation. Typically it is set to /bin/bash ,
which means when you access the command line, your user process is running the /bin/
bash shell program. This program provides you with the prompt at the command line and
handles any commands you enter there.

 Be aware that some distributions, such as Ubuntu, set the SHELL directive
by default to /bin/sh , which is a symbolic link to another shell. On Ubuntu
this links to the Dash shell instead of the Bash shell.

 The /etc/skel/ Directory
 The /etc/skel directory, or the skeleton directory (see Table 7.2) as it is commonly called,
holds fi les. If a home directory is created for a user, these fi les are to be copied to the user
account’s home directory, when the account is created. Listing 7.3 shows the fi les within the
 /etc/skel directory on a CentOS distribution.

 Listing 7.3: Files in the /etc/skel directory

 $ ls -a /etc/skel
 bash_logout .bash_profile .bashrc .mozilla
 $

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Users and Groups 359

 In Listing 7.3, the ls command was employed with the -a option so that hidden fi les
(fi les starting with a dot) are displayed. Recall that hidden fi les do not normally display
without the -a option on the ls command. These fi les are account environment fi les as
well as a confi guration fi le directory for the Mozilla Firefox web browser. We’ll cover
environment fi les later in Chapter 9. You can modify any of these fi les or add new fi les
and directories, if needed.

 The /etc/skel files are copied to user account home directories only
when the account is created. Therefore, if you make changes to the files
later, you’ll have to migrate those changed files to current user accounts
either by hand or by shell scripts.

 Now that we’ve covered the fi les on the creation side of the user account creation process,
let’s look at the fi les and directories that are built or modifi ed as part of the process. Go
back and look at Figure 7.1 , if necessary, to refresh your memory of the various fi le and
directory names.

 The /etc/passwd File
 Account information is stored in the /etc/passwd fi le. Each account’s data occupies a single
line in the fi le. When an account is created, a new record for that account is added to the
 /etc/passwd fi le. A snipped example is shown in Listing 7.4.

 Listing 7.4: Account records in the /etc/passwd file

 $ cat /etc/passwd
 root:x:0:0:root:/root:/bin/bash
 bin:x:1:1:bin:/bin:/sbin/nologin
 daemon:x:2:2:daemon:/sbin:/sbin/nologin
 […]
 tcpdump:x:72:72::/:/sbin/nologin
 user1:x:1000:1000:User One:/home/user1:/bin/bash
 Christine:x:1001:1001:Christine B:/home/Christine:/bin/bash
 […]
 $

 The /etc/passwd fi le records contain several fi elds. Each fi eld in a record is delimited by
a colon (:). There are seven fi elds in total, described in Table 7.3 .

 tA b Le 7. 3 The /etc/passwd file’s record fields

Field No. Description

1 User account’s username.

2 Password field. Typically this file is no longer used to store passwords.
An x in this field indicates passwords are stored in the /etc/shadow file.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

360 Chapter 7 ■ Administering the System

Field No. Description

3 User account’s user identification number (UID).

4 User account’s group identification number (GID).

5 Comment field. This field is optional. Traditionally it contains the user’s
full name.

6 User account’s home directory.

7 User account’s default shell. If set to /sbin/nologin or /bin/false ,
then the user cannot interactively log into the system.

 You would think that the password fi le would hold passwords, but due to its fi le permis-
sions, the password fi le can be compromised. Therefore, passwords are stored in the more
locked-down /etc/shadow fi le.

 You may find yourself working for an organization that has passwords
stored in the /etc/passwd file. If so, politely suggest that the passwords
be migrated to the /etc/shadow file via the pwconv command. If the
organization refuses, walk, or even better run, to the door and go find a job
at a different company.

 You may have noticed that in an /etc/password record, fi eld #7 may contain either the
 /sbin/nologin or the /bin/false default shell. This is to prevent an account from inter-
actively logging into the system. /sbin/nologin is typically set for system service account
records. System services (daemons) do need to have system accounts, but they do not inter-
actively log in. Instead, they run in the background under their own account name. If a
malicious person attempted to interactively log in using the account (and they made it past
other blockades, which you’ll learn about shortly), they are politely kicked off the system.
Basically, /sbin/nologin displays a brief message and logs you off before you reach a com-
mand prompt. If desired, you can modify the message shown by creating the fi le /etc/
nologin.txt and adding the desired text.

 The /bin/false shell is a little more brutal. If this is set as a user account’s default shell,
no messages are shown, and the user is just logged out of the system.

 The /etc/shadow File
 Another fi le that is updated when an account is created is the /etc/shadow fi le. It contains
information regarding the account’s password, even if you have not yet provided a pass-
word for the account. Like the /etc/passwd fi le, each account’s data occupies a single fi le
line. A snipped example is shown in Listing 7.5.

tA b Le 7. 3 The /etc/passwd file’s record fields (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Users and Groups 361

Listing 7.5: Account records in the /etc/shadow file

$ sudo cat /etc/shadow
root:!::0:99999:7:::
bin:*:17589:0:99999:7:::
daemon:*:17589:0:99999:7:::
[…]
user1: 6bvqdqU[…]:17738:0:99999:7:::
Christine: Wb8I8Iw$6[…]:17751:0:99999:7:::
[…]
$

The /etc/shadow records contain several fields. Each field in a record is delimited by a
colon (:). There are nine fields in total, described in Table 7.4.

tA b Le 7. 4 The /etc/shadow file’s record fields

Field No. Description

1 User account’s username.

2 Password field. The password is a salted and hashed password.
A !! or ! indicates a password has not been set for the account.
A ! or an * indicates the account cannot use a password to log in.
A ! in front of a password indicates the account has been locked.

3 Date of last password change in Unix Epoch time (days) format.

4 Number of days after a password is changed until the password
may be changed again.

5 Number of days until a password change is required. This is the
password’s expiration date.

6 Number of days a warning is issued to the user prior to a
password’s expiration (see field #5).

7 Number of days after a password has expired (see field #5) and
has not been changed until the account will be deactivated.

8 Date of account’s expiration in Unix Epoch time (days) format.

9 Called the special flag. It is a field for a special future use, is
currently not used, and is blank.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

362 Chapter 7 ■ Administering the System

 Notice that fi eld #1 is the account’s username. This is the only fi eld shared with the
/etc/passwd fi le.

 Unix Epoch time, which is also called POSIX time, is the number of sec-
onds since January 1, 1970, although the /etc/shadow file expresses it in
days. It has a long history with Unix and Linux systems and will potentially
cause problems in the year 2038. You don’t have to drag out your calcula-
tor to determine what a field’s date is using the Epoch. Instead, the chage
utility, covered later in this chapter, does that for you.

 It’s vital to understand the different possible expirations. When password expiration has
occurred, there is a grace period. The user will have a certain number of days (designated
in fi eld #7) to log into the account using the old password but must change the password
immediately. However, if password expiration has occurred and the user does not log into
the system in time, the user is effectively locked out of the system.

 With account expiration, there is no grace period. After the account expires, the user
cannot log into the account with its password.

 If you have temporary workers, such as interns or external contractors,
who use your Linux system, be sure to set up their accounts to expire. That
way, if you forget to remove the account after they are no longer working
at your company, they cannot access the account after the expiration date.

 You may have noticed that we have not yet covered the /etc/group fi le. It does get
modifi ed as part of the account creation process. However, that discussion is saved for the
section “Confi guring Groups” later in this chapter.

 The Account Creation Process
 Distributions tend to vary greatly in their confi guration when it comes to user accounts.
Therefore, before you launch into creating accounts with the useradd utility, it’s wise to
review some directives within each distro’s user account confi guration fi les (see Tables 7.1
and 7.2). In Listing 7.6, the CREATE_HOME and SHELL directives are checked on a CentOS
distribution.

 Listing 7.6: Checking user account directives on CentOS

 $ grep CREATE_HOME /etc/login.defs
 CREATE_HOME yes
 $
 $ sudo useradd -D | grep SHELL
 SHELL=/bin/bash
 $

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Users and Groups 363

You can see on this distribution that the home directory will be created by default,
because CREATE_HOME is set to yes. The SHELL directive is pointing to the Bash shell,
/bin/bash, which is the typical shell for most interactive user accounts.

The useradd command, as mentioned earlier, is the primary tool for creating user
accounts on most distributions. Creating an account on CentOS distribution with the
useradd utility is shown in Listing 7.7.

Listing 7.7: Creating a user account on CentOS

$ sudo useradd DAdams
[sudo] password for Christine:
$
$ grep ^DAdams /etc/passwd
DAdams:x:1002:1002::/home/DAdams:/bin/bash
$
$ sudo grep ^DAdams /etc/shadow
DAdams:!!:17806:0:99999:7:::
$
$ sudo ls -a /home/DAdams/
. .. .bash_logout .bash_profile .bashrc .mozilla
$

Because the CentOS distribution we are using in Listing 7.7 has the CREATE_HOME direc-
tive set to yes and SHELL set to /bin/bash, there is no need to employ any useradd com-
mand options. The only argument needed is the user account name, which is DAdams. After
the utility is used to create the account in Listing 7.7, notice that records now exist for the
new user account in both the /etc/passwd and /etc/shadow files. Also, a new directory
was created, /home/DAdams, which contains files from the /etc/skel/ directory. Keep in
mind that at this point no password has been added to the DAdams account yet, and thus its
record in the /etc/shadow file shows !! in the password field.

Now let’s take a look at creating an account on a different Linux distribution. The
Ubuntu Desktop distro does things a little differently. In Listing 7.8, you can see that
CREATE_HOME is not set, so it will default to no.

Listing 7.8: Checking user account directives on Ubuntu Desktop

$ grep CREATE_HOME /etc/login.defs
$
$ useradd -D | grep SHELL
SHELL=/bin/sh
$

Also in Listing 7.8, notice that the SHELL directive is set to /bin/sh instead of the Bash
shell. This means that when you create an interactive user account, you will need to specify
the Bash shell, if desired.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

364 Chapter 7 ■ Administering the System

Therefore, when creating a user account on this Ubuntu distribution, if you want the
account to have a home directory and use the Bash shell, you will need to employ addi-
tional useradd command switches. The useradd utility has many useful options for various
needs; the most typical ones are listed in Table 7.5.

tA b Le 7.5 The useradd command’s commonly used options

Short Long Description

-c --comment Comment field contents. Traditionally it contains the
user’s full name. Optional.

-d --home or --home-dir User’s home directory specification. Default action is
set by the HOME and CREATE_HOME directives.

-D --defaults Display /etc/default/useradd directives.

-e --expiredate Date of account’s expiration in YYYY-MM-DD format.
Default action is set by the EXPIRE directive.

-f --inactive Number of days after a password has expired and has
not been changed until the account will be deactivated.
A -1 indicates account will never be deactivated.
Default action is set by the INACTIVE directive.

-g --gid Account’s group membership, which is active when
user logs into system (default group).

-G --groups Account’s additional group memberships.

-m --create-home If it does not exist, create the user account’s home
directory. Default action is set by the CREATE_HOME
directive.

-M N/A or --no-create-
home

Do not create the user account’s home directory.
Default action is set by the CREATE_HOME directive.

-s --shell Account’s shell. Default action is set by the SHELL
directive.

-u --uid Account’s user identification (UID) number.

-r --system Create a system account instead of a user account.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Users and Groups 365

 We need to employ a few of the switches in Table 7.5 to create a user account on the
Ubuntu Desktop distribution. An example is shown in Listing 7.9.

 Listing 7.9: Creating a user account on Ubuntu Desktop

 $ sudo useradd -md /home/JKirk -s /bin/bash JKirk
 [sudo] password for Christine:
 $
 $ grep ^JKirk /etc/passwd
 JKirk:x:1002:1002::/home/JKirk:/bin/bash
 $
 $ sudo grep ^JKirk /etc/shadow
 JKirk:!:17806:0:99999:7:::
 $
 $ sudo ls -a /home/JKirk/
 bash_logout .bashrc examples.desktop .profile
 $
 $ sudo ls -a /etc/skel
 bash_logout .bashrc examples.desktop .profile
 $

 Notice in Listing 7.9 that three options are used along with the useradd command.
Because this system does not have the CREATE_HOME directive set, the -m option is needed to
force useradd to make a home directory for the account. The -d switch designates that the
directory name should be /home/JKirk . Because the SHELL directive is set to /bin/sh on
this system, the -s option is needed to set the account’s default shell to /bin/bash .

 After the utility is used to create the account in Listing 7.9, notice that records now exist
for the new user account in the /etc/passwd and /etc/shadow fi les. Also, a new directory
was created, /home/JKirk , which contains fi les from this distro’s /etc/skel/ directory.
Keep in mind at this point that no password has been added to the JKirk account yet, and
thus its record in the /etc/shadow fi le shows ! in the password fi eld.

 The Ubuntu and Debian distributions promote the use of the adduser pro-
gram instead of the useradd utility. Their man pages refer to the useradd
command as a “low-level utility.” Some other distros include a symbolic
link to useradd named adduser , which may help (or not). The adduser con-
figuration information is typically stored in the /etc/adduser.conf file.

 Another way to view account records in the /etc/passwd and /etc/shadow fi les is via
the getent utility. For this program you pass only the fi lename followed by the account
name whose record you wish to view. The command is employed in Listing 7.10 to view the
account that was created in Listing 7.9.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

366 Chapter 7 ■ Administering the System

 Listing 7.10: Using getent to view a user account on Ubuntu Desktop

 $ getent passwd JKirk
 JKirk:x:1002:1002::/home/JKirk:/bin/bash
 $
 $ getent shadow JKirk
 $
 $ sudo getent shadow JKirk
 JKirk:!:17806:0:99999:7:::
 $

 Notice in Listing 7.10 that when super user privileges are not used with getent for the
shadow fi le, nothing is returned. This is because getent honors the security settings on the
 /etc/shadow fi le.

 If you need to modify the /etc/default/useradd file’s directive settings,
instead of using a text editor you can employ the useradd -D command.
Just tack on the needed arguments. For example, to modify the SHELL
directive to point to the Bash shell, use super user privileges and issue the
useradd -D -s /bin/bash command.

 When creating an account, you can create a password via the crypt utility and then add
it when the account is created via the -p option on the useradd utility. However, not only
is that cumbersome, but it’s also considered a bad practice. In the next section, we’ll cover
creating and managing account passwords properly.

 Maintaining Passwords
 When you fi rst create an interactive account, you should immediately afterward create a
password for that account using the passwd utility. In Listing 7.11, a password is created
for the new DAdams account on a CentOS system.

 Listing 7.11: Using passwd for a new account on CentOS

 $ sudo passwd DAdams
 Changing password for user DAdams.
 New password:
 Retype new password:
 passwd: all authentication tokens updated successfully.
 $

 You can also update a password for a particular user using the passwd utility and pass
the user’s account name as an argument, similar to what is shown in Listing 7.11. If you
need to update your own account’s password, just enter passwd with no additional
command arguments.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Users and Groups 367

You can do more than set and modify passwords with the passwd utility. You can also
lock or unlock accounts, set an account’s password to expired, delete an account’s pass-
word, and so on. Table 7.6 shows commonly used passwd switches; all of these options
require super user privileges.

tA b Le 7.6 The passwd command’s commonly used options

Short Long Description

-d --delete Removes the account’s password.

-e --expire Sets an account’s password as expired. User is required to
change account password at next login.

-i --inactive Sets the number of days after a password has expired and
has not been changed until the account will be deactivated.

-l --lock Places an exclamation point (!) in front of the account’s
password within the /etc/shadow file, effectively
preventing the user from logging into the system using the
account’s password.

-n --minimum Sets the number of days after a password is changed until
the password may be changed again.

-S --status Displays the account’s password status.

-u --unlock Removes a placed exclamation point (!) from the account’s
password within the /etc/shadow file.

-w –warning
or --warndays

Sets the number of days a warning is issued to the user
prior to a password’s expiration.

-x --maximum
or –maxdays

Sets the number of days until a password change is
required. This is the password’s expiration date.

One option in Table 7.6 needs a little more explanation, and that is the -S option. An
example is shown in Listing 7.12.

Listing 7.12: Using passwd -S to view an account’s password status

$ sudo passwd -S DAdams
DAdams PS 2018-10-01 0 99999 7 -1 (Password set, SHA512 crypt.)
$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

368 Chapter 7 ■ Administering the System

In Listing 7.12, the DAdams account’s password status is displayed. The status contains
the account password’s state, which is either a usable password (P), no password (NP), or a
locked password (L). After the password state, the last password change date is shown, fol-
lowed by the password’s minimum, maximum, warning, and inactive settings. Additional
status is shown within the parentheses, which includes whether or not the password is set
as well as the hash algorithm used to protect it.

You can also use the chage utility to display similar password information but in a more
human-readable format, as shown in Listing 7.13.

Listing 7.13: Using chage -l to view an account’s password status

$ sudo chage -l DAdams
Last password change : Oct 02, 2018
Password expires : never
Password inactive : never
Account expires : never
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
$

The chage program can modify password settings as well. You can either employ vari-
ous command options (see its man pages for details) or use the chage utility interactively, as
shown in Listing 7.14.

Listing 7.14: Using chage to change an account password’s settings

$ sudo chage DAdams
Changing the aging information for DAdams
Enter the new value, or press ENTER for the default

 Minimum Password Age [0]: 5
 Maximum Password Age [99999]: 30
 Last Password Change (YYYY-MM-DD) [2018-10-02]:
 Password Expiration Warning [7]: 15
 Password Inactive [-1]: 3
 Account Expiration Date (YYYY-MM-DD) [-1]:
$

Notice in Listing 7.14 that the password expiration warning is set to 15 days. This is a
good setting if your company allows two-week vacations.

Modifying Accounts
The utility employed to modify accounts is the usermod program. Similar to the passwd
command, you can lock and unlock accounts, as shown in Listing 7.15.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Users and Groups 369

Listing 7.15: Using usermod to lock an account

$ sudo usermod -L DAdams
$
$ sudo passwd -S DAdams
DAdams LK 2018-10-01 5 30 15 3 (Password locked.)
$
$ sudo getent shadow DAdams
DAdams:!6B/zCaNx[…]:17806:5:30:15:3::
$
$ sudo usermod -U DAdams
$
$ sudo passwd -S DAdams
DAdams PS 2018-10-01 5 30 15 3 (Password set, SHA512 crypt.)
$

Notice in Listing 7.15 that the usermod -L command is used to lock the DAdams
account. The passwd -S command shows the password status is LK, indicating it is locked.
In Listing 7.15, the snipped getent utility output shows that an exclamation point (!) was
placed in front of the DAdams account’s password, which is what is causing the account to be
locked. The lock is then removed via the usermod -U command and the status is rechecked.

You can make many modifications to user accounts via the usermod utility’s switches.
The commonly used switches are shown in Table 7.7.

tA b Le 7.7 The usermod command’s commonly used options

Short Long Description

-c --comment Modify the comment field contents.

-d --home Set a new user home directory specification. Use with the
-m option to move the current directory’s files to the new
location.

-e --expiredate Modify the account’s expiration date. Use YYYY-MM-DD format.

-f --inactive Modify the number of days after a password has expired and
has not been changed that the account will be deactivated. A
-1 indicates account will never be deactivated.

-g --gid Change the account’s default group membership.

-G --groups Update the account’s additional group memberships. If only
specifying new group membership, use the -a option to avoid
removing the other group memberships.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

370 Chapter 7 ■ Administering the System

Short Long Description

-l --login Modify the account’s username to the specified one. Does not
modify the home directory.

-L --lock Lock the account by placing an exclamation point in front of
the password within the account’s /etc/shadow file record.

-s --shell Change the account’s shell.

-u --uid Modify the account’s user identification (UID) number.

-U --unlock Unlock the account by removing the exclamation point from
the front of the password within the account’s /etc/shadow
file record.

Notice that you can change an account’s default group and provide memberships to
additional groups. Account groups are covered in detail later in this chapter.

Where usermod comes in handy is in a situation where you’ve created an account but
forgot to check the distribution’s account creation configuration settings. Listing 7.16
shows an example of this on an Ubuntu Desktop distribution.

Listing 7.16: Using usermod to modify an account

$ sudo useradd -md /home/DBowman DBowman
$
$ sudo getent passwd DBowman
DBowman:x:1003:1003::/home/DBowman:/bin/sh
$
$ sudo usermod -s /bin/bash DBowman
$
$ sudo getent passwd DBowman
DBowman:x:1003:1003::/home/DBowman:/bin/bash
$

In Listing 7.16, the user account DBowman is created, but when the account record is
checked using the getent utility, it shows that the /bin/sh shell is being used instead of the
Bash shell. To fix this problem, the usermod command is employed with the -s option, and
the account’s shell is modified to the /bin/bash shell instead.

Deleting Accounts
Deleting an account on Linux is fairly simple. The userdel utility is the key tool in this task.
The most common option to use is the -r switch. This option will delete the account’s home
directory tree and any files within it. Listing 7.17 shows an example of deleting an account.

tA b Le 7.7 The usermod command’s commonly used options (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Users and Groups 371

Listing 7.17: Using userdel to delete an account

$ sudo ls -a /home/DBowman
. .. .bash_logout .bashrc examples.desktop .profile
$
$ sudo getent passwd DBowman
DBowman:x:1003:1003::/home/DBowman:/bin/bash
$
$ sudo userdel -r DBowman
userdel: DBowman mail spool (/var/mail/DBowman) not found
$
$ sudo ls -a /home/DBowman
ls: cannot access '/home/DBowman': No such file or directory
$
$ sudo getent passwd DBowman
$

The first two commands in Listing 7.17 show that the /home/DBowman directory exists
and has files within it and that the account does have a record within the /etc/passwd file.
The third command includes the userdel -r command to delete the account as well as
the home directory. Notice that an error message is generated stating that the /var/mail/
DBowman file could not be found. This is not a problem. It just means that this file was not
created when the account was created. Finally, the last two commands show that both the
/home/DBowman directory and its files were removed and that the /etc/passwd file no longer
contains a record for the DBowman account.

Account Deletion Policies

Prior to deleting any accounts on a system, check with your employer’s human resources
staff and/or legal department or counsel. There may be policies in place concerning file
retention for terminated or retired employees as well as those individuals who have left
the company to change jobs. You may be required to back up files prior to deleting them
from the system and/or perform some other types of documentation. If your employer
has no such policy, it is a good idea to suggest that one be developed.

Configuring Groups
Groups are identified by their name as well as their group ID (GID). This is similar to how
users are identified by UIDs in that the GID is used by Linux to identify a particular group,
whereas humans use group names.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

372 Chapter 7 ■ Administering the System

If a default group is not designated when a user account is created, then a new group is
created. This new group has the same name as the user account’s name and it is assigned
a new GID. To see an account’s default group, you can use the getent command to view
the /etc/passwd record for that account. Recall that the fourth field in the record is the
account’s GID, which is the default group. Review Table 7.3 earlier in the chapter if you
need a refresher on the various /etc/passwd record fields. Listing 7.18 shows an example of
viewing an account’s default group information for the DAdams account, which was created
on a CentOS distribution.

Listing 7.18: Viewing an account’s group memberships

$ getent passwd DAdams
DAdams:x:1002:1002::/home/DAdams:/bin/bash
$
$ sudo groups DAdams
DAdams : DAdams
$
$ getent group DAdams
DAdams:x:1002:
$
$ grep 1002 /etc/group
DAdams:x:1002:
$

The first command in Listing 7.18 shows that the DAdams account’s default group has
a GID of 1002, but it does not provide a group name. The groups command does show
the group name, which is the same as the user account name, DAdams. This is typical when
no default group was designated at account creation time. The third command, another
getent command, shows that the group DAdams does indeed map to the 1002 GID. The
fourth command confirms this information.

To add a user to a new group or change the account’s default group, the group must pre-
exist. This task is accomplished via the groupadd utility. The group’s GID will be automati-
cally set by the system, but you can override this default behavior with the -g command
option. An example of creating a new group is shown in Listing 7.19.

Listing 7.19: Using the groupadd utility to create a new group

$ sudo groupadd -g 1042 Project42
$
$ getent group Project42
Project42:x:1042:
$
$ grep Project42 /etc/group
Project42:x:1042:
$

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Users and Groups 373

 Notice in Listing 7.19 that super user privileges are required to create a new group.
The getent utility, as well as the grep command, is used to show the new group record in
the /etc/group fi le. The fi elds in the /etc/group fi le are delimited by a colon (:) and are as
follows:

 ■ Group name

 ■ Group password: An x indicates that, if a group password exists, it is stored in the
/etc/gshadow file.

 ■ GID

 ■ Group members: User accounts that belong to the group, separated by a comma.

 The Ubuntu and Debian distributions promote the use of the addgroup
program instead of the groupadd program. They consider the groupadd
command to be a low-level utility.

 The new group created did not have a group password created for it. However, the x in
the Project42 group record within the /etc/group fi le does not prove this. To make sure
there is no group password, the /etc/gshadow fi le, where group passwords are stored, is
checked in Listing 7.20.

 Listing 7.20: Checking for a group password

 $ sudo getent gshadow Project42
 Project42:!::
 $

 The command in Listing 7.20 shows the Project42 group’s record within the /etc/
gshadow fi le. The second fi eld contains an explanation point (!), which indicates that no
password has been set for this group.

 Group passwords, if set, allow user accounts access to groups to whom
they do not belong. If a group password is used, this password is typically
shared among the various users who need access to the group. This is a
bad security practice. Passwords should never be shared. Each account
needs to have its own password, and access to groups should be allowed
only via group membership, not group passwords.

 After a new group is created, you can set group membership by simply adding user
accounts to the group. Listing 7.21 shows an example of doing this with the usermod
command.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

374 Chapter 7 ■ Administering the System

Listing 7.21: Employing usermod to add an account to a group

$ sudo groups DAdams
DAdams : DAdams
$
$ sudo usermod -aG Project42 DAdams
$
$ sudo groups DAdams
DAdams : DAdams Project42
$
$ getent group Project42
Project42:x:1042:DAdams
$

Notice that the usermod command in Listing 7.21 uses two options, -aG. The -G adds
the DAdams account as a member of the Project42 group, but the -a switch is important
because it preservers any previous DAdams account group memberships. After the DAdams
account is added as a Project42 group member, you can see in the last two command
results that the /etc/group file record for Project42 was updated.

If you need to modify a particular group, the groupmod command is helpful. A group’s
GID is modified with the -g option, whereas a group’s name is modified with the -n switch.
In Listing 7.22, the Project42 group’s GID is modified.

Listing 7.22: Using groupmod to modify a group

$ getent group Project42
Project42:x:1042:DAdams
$
$ sudo groupmod -g 1138 Project42
$
$ getent group Project42
Project42:x:1138:DAdams
$

Notice in Listing 7.22 that the Project42 group’s GID is modified to 1138. The getent
command confirms the /etc/group file was updated. If the 1138 GID was already in use
by another group, the groupmod command would have displayed an error message and not
changed the group’s GID.

To remove a group, the groupdel utility is employed. An example is shown in
Listing 7.23.

Listing 7.23: Using groupdel to delete a group

$ sudo groupdel Project42
$

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Email 375

$ getent group Project42
$
$ sudo groups DAdams
DAdams : DAdams
$
$ sudo find / -gid 1138 2>/dev/null
$

Notice in Listing 7.23 that once the Project42 group is deleted, the getent command
shows that the Project42 group record has been removed from the /etc/group file. What
is really nice is that any member of that deleted group has also had their group information
updated, as shown in the third command.

When you have removed a group, it is important to search through the directory system
for any files that may have access settings for that group. You can do this audit by using the
find command and the deleted group’s GID. An example of this task is shown as the fourth
command. If you need help remembering how to use the find utility, go back to Chapter 4,
where the command was originally covered.

Adding, modifying, and deleting user accounts and groups are basic but important
skills. Keeping these tasks running smoothly makes the Linux system experience better for
your users and makes your system more secure.

Managing Email
Email is one of the most-used features of the Internet. Whether it’s creating a small, intraof-
fice email system or creating a Linux email server to support thousands of users, under-
standing email services on a Linux system has become a necessity.

Understanding Email
Before we take a look at email servers in Linux, let’s first examine how Linux handles
email in general. Linux follows the Unix method of handling email. One of the main
innovations of the Unix operating system was to make email processing software
modular.

Instead of having one monolithic program that handles all of the pieces required
for sending and receiving mail, Linux uses multiple small programs that work
together to process messages. Email functions are broken into separate pieces
and then assigned to separate programs running on the system. Figure 7.2 shows
you how most open source email software modularizes email functions in a Linux
environment.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

376 Chapter 7 ■ Administering the System

F i gu r e 7. 2 The Linux modular email environment

Linux server

Workstation

Remote
MTAs

Email database

Mail user agent (MUA) Mail transfer agent (MTA)

Mail delivery agent (MDA)

As you can see, the Linux email server is normally divided into three separate functions:

 ■ The mail transfer agent (MTA) sends incoming emails (and outgoing emails being
delivered locally) to a mail delivery agent (MDA) or local user’s inbox. For outbound
messages being transferred to a remote system, the agent establishes a communication
link with another MTA program on the remote host to transfer the email.

 ■ The mail delivery agent (MDA) is a program that delivers messages to a local user’s
inbox.

 ■ The mail user agent (MUA) is an interface for users to read messages stored in their
mailboxes. MUAs do not receive messages; they only display messages that are already
in the user’s mailbox.

The lines between these three functions are often fuzzy. Some Linux email packages
combine functionality for the MTA and MDA functions, whereas others combine the MDA
and MUA functions.

Choosing Email Software
Three popular MTA packages are in wide use in the Linux world:

Sendmail The Sendmail MTA program was originally one of the most popular Linux
MTA programs mainly due to its extreme versatility. Several standard features in
Sendmail have become synonymous with email systems—message forwarding, user
aliases, and mail lists.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Email 377

 Unfortunately, with versatility comes complexity. The Sendmail program’s large confi gu-
ration fi le often becomes overwhelming for novice mail administrators to handle. Around
2005, several security vulnerabilities plagued Sendmail, which also contributed to its drop
in popularity.

Postfix Wietse Venema, a security expert and programmer at IBM, wrote the Postfi x
program to be a complete MTA package replacement. Postfi x is written as a modular pro-
gram; it uses several different programs to implement the MTA functionality.

 One of Postfi x’s best features is its simplicity. In addition, it enhances security over MTA
products like Sendmail. Though not as fl exible as Exim, Postfi x is still highly popular. You
can fi nd out more at www.postfix.org .

Exim Philip Hazel developed the Exim MTA program for the University of Cambridge
in 1995. Although essentially it is a drop-in replacement for Sendmail, the confi guration is
quite different.

 One of Exim’s best features is its fl exibility. It is available in most Linux distribution
repositories and comes with a reasonable default confi guration. Details on Exim are at
www.exim.org .

 Working with Email
 Besides knowing the names of a few popular MTA programs, it is important to know how
to use an MDA app. Additional email administration tasks, such as viewing an email queue
and forwarding email messages, are also necessary for those managing Linux systems.

 Sending and Receiving Email
 Historically, the binmail program has been the most popular MDA program used on
Linux systems. You might not recognize it by its offi cial name, but you may have used it
by its system name: mail . The name binmail comes from its typical location on the system,
 /bin/mail (or /usr/bin/mail).

 The binmail program became popular because of its simplicity. By default, it can read
email messages stored in the /var/spool/mail/ directory, or you can provide command-
line options to point to the user’s $HOME/mail fi le. No confi guration is required for binmail
to do its job.

 Unfortunately, its simplicity means that binmail is limited in its functions. Because of
that, some mail administrators have sought alternative MDA programs, and it is no longer
installed by default on all Linux distributions.

 If you’d like to follow along with using the binmail program, you may need
to install it on your Linux distribution. For Ubuntu, the package name is
bsd-mailx , and for CentOS, though it is typically installed by default,
the package name is mailx . Software package installation is covered in
Chapter 2.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

378 Chapter 7 ■ Administering the System

 For sending email messages, the binmail program has the following basic syntax:

 mail [OPTIONS] recipient…

 The recipient can be either a username on the same system or a fully qualifi ed email
address, such as jdoe@example.com . You also can designate multiple addresses as the
recipient . A few of the more commonly used OPTIONS include:

 -s subject : Adds a subject line to the email. If your subject contains spaces, you will
need to encase it in quotation marks.

 -cc recipient : Designates an email address or addresses to receive a copy of the
message. All email recipient s can see this address or addresses.

 -bc recipient : Designates an email address or addresses to receive a copy of the
message. Only the sender can see this address or addresses.

 -v : Displays delivery details for the email message

 An example of sending an email to a local user on the same Linux system is shown in
Listing 7.24.

 Listing 7.24: Using mail to send an email message

 $ mail -s "LPIC-1 Book Progress" rich
Hi Rich,
I'm working on Chapter 7 right now.
How's Chapter 8 coming along?
Best regards,
Christine
 EOT
 $

 Notice in Listing 7.24 that the subject matter is enclosed in quotation marks. This is
important if your email subject line has spaces within it. Because the email is being sent to
a user, rich , on the same system, only the username is needed.

 When you press the Enter key after typing the mail command syntax, the program waits
for you to enter your message without any prompts. When you have fi nished typing your
message, you’ll need to signal the mail utility to send the message. To do this, press the
Enter key and then the Ctrl+D key combination. You’ll see an EOT , which stands for “end of
transmission,” and be returned to the shell command-line prompt.

 If your system is using Postfix as its MTA and you have usernames that
are not lowercase, be aware that email may not be delivered. You’ll have to
either make the usernames all lowercase or dig into the various fixes
for allowing multiple-case usernames with Postfix. You can check the
/var/log/maillog or /var/log/mail.log file to find messages concern-
ing undeliverable emails.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Email 379

 To read your emails, simply type the mail command and press Enter. You’ll see a list
of email messages (if you have any) and their associated index number, and you’ll receive
a & prompt. At the prompt, type the number of the email you wish to read. An example is
shown snipped in Listing 7.25.

 Listing 7.25: Using mail to read an email message

 $ whoami
 rich
 $
 $ mail
 Heirloom Mail version 12.5 7/5/10. Type ? for help.
 "/var/spool/mail/rich": 1 message 1 new
 >N 1 christine@localhost. Wed May 22 13:04 23/721 " LPIC-1 Book Progress "
 & 1
 Message 1:
 […]
 From: christine@localhost.localdomain
 Status: R

 Hi Rich,
 I'm working on Chapter 7 right now.
 How's Chapter 8 coming along?
 Best regards,
 Christine

 & q
 Held 1 message in /var/spool/mail/rich
 You have mail in /var/spool/mail/rich
 $

 If you wish to delete email messages, type d # , where # is the number of the email mes-
sage you wish to delete. When you are done reading and/or deleting your email messages,
type q at the mail prompt to quit the utility.

 If you don’t have any email messages and you use the mail program to
attempt to read a message, you’ll receive the No email for username
response.

 If you have your email fi le stored in a nondefault location, you can tell the mail utility
where to fi nd it. Just tack on the -f DirectoryName / FileName option to the mail command.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

380 Chapter 7 ■ Administering the System

 If you have the correct permissions and need to read another user’s email messages,
you can also use the -f option along with the appropriate argument to designate the user’s
email fi le location. If the other user has their email fi le in a default location, you can use the
 -u username option and argument instead.

 Checking the Email Queue
 Occasionally problems occur and your outbound mail cannot be sent. You can quickly see
this problem arising by viewing the local mail queue. There are two commands to accom-
plish this task: mailq and sendmail -bp .

 To see these commands in action, we created an email that cannot be sent out due to a
phony recipient email address. This bad email address causes the message to get stuck in
the local mail queue long enough for us to view it. The event is shown in Listing 7.26.

 Listing 7.26: Using mailq and sendmail -bp to view the local email queue

 $ mail -s "Test of Mail Queue" bogususer@example.com
 Testing mail queue
 EOT
 $
 $ mailq
 -Queue ID- --Size-- ----Arrival Time---- -Sender/Recipient-------
 62D301CE55* 474 Wed May 22 14:03:20 christine@localhost.localdomain

bogususer@example.com

 -- 0 Kbytes in 1 Request.
 $
 $ sendmail -bp
 -Queue ID- --Size-- ----Arrival Time---- -Sender/Recipient-------
 62D301CE55* 474 Wed May 22 14:03:20 christine@localhost.localdomain

bogususer@example.com

 -- 0 Kbytes in 1 Request.
 $

 If there is nothing in the mail queue, when you enter the mailq or sendmail -bp command,
you will receive the following response:

 Mail queue is empty

 The mail queue location(s) varies depending on which MTA you employ.
It is typically located somewhere in the /var/spool/ directory tree. A
quick way to locate the queue directory(ies) with the stuck mail files is to
use super user privileges and the find command. Enter find /var/

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Email 381

spool -name QueueID at the command line, where QueueID is the
 identification number listed under the Queue ID column in the mailq or
sendmail -bp command output. After you have the directory location(s),
you can employ the rm utility to delete it.

 Redirecting Email
 An email alias allows you to redirect email messages to a different recipient. For example,
on a corporate web server, instead of listing your email address (and at the same time let-
ting every hacker in the world know your username) you can employ an alias, such as
hostmaster . Via aliases, you confi gure email messages sent to hostmaster to go to your
account instead.

 Aliases are useful not only for security purposes but for common misspellings as well. If
you have a diffi cult username, such as bresnahan , you can set up aliases for the prevalent
incorrect spellings, such as breshan or brenanan . That way, you’ll never miss an email.

 While you do need to use super user privileges, there are only two steps to setting up an
email alias:

 1. Add the alias to the /etc/aliases file.

 2. Run the newaliases command to update the aliases database, /etc/aliases.db .

 The /etc/aliases.db is a binary file. Thus, you want to edit the text-based
 /etc/aliases file with your new aliases and run the newaliases command
to update the binary file.

 The format of the alias records in the /etc/aliases fi le is

 ALIAS-NAME : RECIPIENT1 [, RECIPIENT2 [,…]]

 An example of setting up an alias for the hostmaster is shown snipped in Listing 7.27.
Prior to the modifi cation, email for hostmaster was sent to the root account. After the
 /etc/aliases fi le modifi cation and the newaliases command is run, email for hostmaster
is now sent to two different accounts, christine and rich .

 Listing 7.27: Using /etc/aliases and -newaliases to set up email aliases

 # grep ^hostmaster /etc/aliases
 hostmaster: root
 #
 # nano /etc/aliases
 #
 # grep ^hostmaster /etc/aliases
 hostmaster: christine,rich
 #
 # newaliases
 #

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

382 Chapter 7 ■ Administering the System

mail -s "Test of Aliases" hostmaster
Testing the new hostmaster alias
EOT
#
exit
[…]
$ whoami
christine
$
$ mail
[…]
>N 1 root Wed May 22 15:10 18/656 "Test of Aliases"
& 1
Message 1:
[…]
To: hostmaster@localhost.localdomain
Subject: Test of Aliases
[…]
From: root@localhost.localdomain (root)
Status: R

Testing the new hostmaster alias

&

As shown in Listing 7.27, it’s always a good idea to test out an alias modification. This is
because many administrators forget to run the newaliases command after their modifica-
tion to the /etc/aliases file.

Although aliases are useful for security and common misspellings, when a fellow team
member is going to be gone on vacation for a few weeks, forwarding email is handy.

Setting up a forwarding email is done at the user level. It also involves only two steps:

1. The user creates the .forward file in their $HOME directory and puts in the username
who should be receiving the forwarded emails.

2. The chmod command is used on the .forward file to set the permissions to 644 (octal).
File permissions were covered in Chapter 4.

It’s helpful to see an example of setting up a .forward file in order to forward email.
One is provided in Listing 7.28.

Listing 7.27: Using /etc/aliases and -newaliases to set up email aliases (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Managing Email 383

Listing 7.28: Using .forward to forward email messages

$ whoami
christine
$
$ pwd
/home/christine
$
$ echo rich > .forward
$
$ chmod 644 .forward
$
$ mail -s "Testing of Forward" christine
Testing my .forward file
EOT
$
$ mail
[…]
> 1 root Wed May 22 15:10 19/667 "Test of Aliases"
& q
Held 1 message in /var/spool/mail/christine
$
$ su - rich
Password:
[…]
$ mail
Heirloom Mail version 12.5 7/5/10. Type ? for help.
"/var/spool/mail/rich": 3 messages 1 new 2 unread
 1 christine@localhost. Wed May 22 13:04 24/732 "LPIC-1 Book Progress"
 U 2 root Wed May 22 15:10 19/666 "Test of Aliases"
>N 3 christine@localhost. Wed May 22 15:39 21/799 "Testing of Forward"
& 3
Message 3:
[…]
Subject: Testing of Forward
[…]
Status: R

Testing my .forward file

& q
Held 3 messages in /var/spool/mail/rich
$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

384 Chapter 7 ■ Administering the System

 Notice that after the .forward fi le was created and the proper permissions set on it,
when an email was sent to christine , it was forwarded to rich instead. To stop the for-
warding, all christine needs to do is delete the .forward fi le in her $HOME directory:

 $ pwd
 /home/christine
 $ rm -i .forward
 rm: remove regular file '.forward'? y
 $

 When referring to files in a user’s home directory, such as the .forward
file, it can be written multiple ways. You may see $HOME/.forward , ~/.
forward , or /home/ username /.forward .

 Emulating Commands
 Because Sendmail was a popular MTA for so long, the Postfi x MTA program wanted to
maintain compatibility with it. To accomplish this, Postfi x implemented a sendmail emu-
lation layer . This allows certain Sendmail commands to work with the Postfi x program.
These commands include

 ■ mailq

 ■ sendmail -bp

 ■ newaliases

 ■ sendmail -I

 We’ve covered all the commands in the preceding list except for sendmail -I . It operates
just like the newaliases command.

 You can fi nd out more about the Sendmail emulation layer at www.postfix.org/
sendmail.1.html .

 Although we’ve only just touched on managing email, the concepts we’ve covered here
are a good step in the right direction. You can use these various tools to assist in trouble-
shooting Linux email problems.

 Using Log and Journal Files
 Lots of things happen on a Linux system while it’s running. Part of your job as a Linux
administrator is to know everything that is happening and to watch for when things go
wrong. The primary tool for accomplishing that task is the logging service.

 All Linux distributions implement some method of logging . Logging directs short mes-
sages that indicate what events happen, and when they happen, to users, fi les, or even

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Log and Journal Files 385

remote hosts for storage. If something goes wrong, the Linux administrator can review the
log entries to help determine the cause of the problem.

Examining the syslog Protocol
In the early days of Unix, a range of different logging methods tracked system and appli-
cation events. Applications used different logging methods, making it difficult for system
administrators to troubleshoot issues.

In the mid-1980s Eric Allman defined a protocol for logging events from his Sendmail
mail application called syslog. The syslog protocol quickly became a de facto standard
for logging both system and application events in Unix, and it made its way to the
Linux world.

What made the syslog protocol so popular is that it defines a standard message format
that specifies the time stamp, type, severity, and details of an event. That standard can be
used by the operating system, applications, and even devices that generate errors.

The type of event is defined as a facility value. The facility defines what is generating the
event message, such as a system resource or an application. Table 7.8 lists the facility values
defined in the syslog protocol.

tA b Le 7. 8 The syslog protocol facility values

Code Keyword Description

0 kern Messages generated by the system kernel

1 user Messages generated by user events

2 mail Messages from a mail application

3 daemon Messages from system applications running in background

4 auth Security or authentication messages

5 syslog Messages generated by the logging application itself

6 lpr Printer messages

7 news Messages from the news application

8 uucp Messages from the Unix-to-Unix copy program

9 cron Messages generated from the cron job scheduler

10 authpriv Security or authentication messages

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

386 Chapter 7 ■ Administering the System

Code Keyword Description

11 ftp File Transfer Protocol application messages

12 ntp Network Time Protocol application messages

13 security Log audit messages

14 console Log alert messages

15 solaris-cron Another scheduling daemon message type

16-23 local0-local7 Locally defined messages

As you can tell from Table 7.8, the syslog protocol covers many different types of events
that can appear on a Linux system.

Each event is also marked with a severity. The severity value defines how important the
message is to the health of the system. Table 7.9 shows the severity values as defined in the
syslog protocol.

tA b Le 7. 9 The syslog protocol severity values

Code Keyword Description

0 emerg The event causes the system to be unusable

1 alert An event that requires immediate attention

2 crit An event that is critical but doesn’t require immediate
attention

3 err An error condition that allows the system or application
to continue

4 warning A non-normal warning condition in the system or
application

5 notice A normal but significant condition message

6 info An informational message from the system

7 debug Debugging messages for developers

tA b Le 7. 8 The syslog protocol facility values (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Log and Journal Files 387

Combining the facility and severity codes with a short informational message provides
enough logging information to troubleshoot most problems in Linux.

Viewing the History of Linux Logging
Over the years there have been many open source logging projects for Linux systems. The
ones that have been the most prominent are as follows:

 ■ sysklogd: The original syslog application, it includes two programs: the syslogd pro-
gram to monitor the system and applications for events, and the klogd program to
monitor the Linux kernel for events.

 ■ syslogd-ng: Added advanced features, such as message filtering and the ability to send
messages to remote hosts.

 ■ rsyslog: The project claims the “r” stands for “rocket fast.” Speed is the focus of the
rsyslog project, and the rsyslogd application has quickly become the standard logging
package for many Linux distributions.

 ■ systemd-journald: Part of the systemd application for system startup and initialization
(see Chapter 5), many Linux distributions are now using this for logging. It does not
follow the syslog protocol but instead uses a completely different way of reporting and
storing system and application events.

The following sections dive into the details of the two most popular logging applica-
tions: rsyslogd and systemd-journald.

Logging Basics Using rsyslogd
The rsyslogd application utilizes all of the features of the original syslog protocol, including
the configuration format and logging actions. This section walks through how to configure
the rsyslogd logging application and where to find the common log files it generates.

Configuring rsyslogd
The rsyslogd program uses the /etc/rsyslogd.conf configuration file and, on some dis-
tributions, *.conf files in the /etc/rsyslog.d/ directory to define what events to listen for
and how to handle them. The configuration file(s) contains rules that define how the pro-
gram handles syslog events received from the system, kernel, or applications. The format of
an rsyslogd rule is

facility.priority action

The facility entry uses one of the standard syslog protocol facility keywords. The
priority entry uses the severity keyword as defined in the syslog protocol, but with a twist.
When you define a severity, syslogd will log all events with that severity or higher (lower
severity code). Thus, the entry

kern.crit

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

388 Chapter 7 ■ Administering the System

logs all kernel event messages with a severity of critical, alert, or emergency. To log only
messages with a specific severity, use an equal sign before the priority keyword:

kern.=crit

You can also use wildcard characters for either the facility or priority. The following
entry logs all events with an emergency severity level:

*.emerg

The action entry defines what rsyslogd should do with the received syslog message. Six
action options are available:

 ■ Forward to a regular file

 ■ Pipe the message to an application

 ■ Display the message on a terminal or the system console

 ■ Send the message to a remote host

 ■ Send the message to a list of users

 ■ Send the message to all logged-in users

Listing 7.29 shows the entries in the configuration file for an Ubuntu 18.04 system.

Listing 7.29: The rsyslogd.conf configuration entries for Ubuntu 18.04

auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
kern.* -/var/log/kern.log
mail.* -/var/log/mail.log
mail.err /var/log/mail.err
.emerg :omusrmsg:

The first entry shown in Listing 7.29 defines a rule to handle all auth and authpriv
facility type messages. This shows that you can specify multiple facility types by separating
them with commas. The rule also uses a wildcard character for the priority, so all severity
levels will be logged. This rule indicates that all security event messages will be logged to
the /var/log/auth.log file.

The second entry defines a rule to handle all events (*.*), except security events (the
.none priority). The event messages are sent to the /var/log/syslog file. The minus sign in
front of the filename tells rsyslogd to not sync the file after each write, increasing the per-
formance. The downside to this is if the system crashes before the next normal system sync,
you may lose the event message.

The last entry defines a rule to handle all emergency events. The omusrmsg command
indicates that you want to send the event message to a user account on the system. When
you specify the wildcard character, this rule sends all emergency event messages to all users
on the system.

For comparison, Listing 7.30 shows the entries in the rsyslogd configuration file for a
CentOS 7 system.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Log and Journal Files 389

Listing 7.30: The rsyslog.conf configuration file for CentOS 7

*.info;mail.none;authpriv.none;cron.none /var/log/messages
authpriv.* /var/log/secure
mail.* -/var/log/maillog
cron.* /var/log/cron
.emerg :omusrmsg:
uucp,news.crit /var/log/spooler
local7.* /var/log/boot.log

Notice that Red Hat–based systems use the /var/log/messages file for informational
messages and the /var/log/secure file for security messages.

Sending Log Messages to a Log Server
A common server these days in many data centers is a central logging host that receives and
stores logs for all its various log client systems. Configuring your system to act as a logging
client is fairly easy using the rsyslog application’s configuration file(s).

To send all your log messages to a central logging host server, edit the /etc/rsyslogd
.conf configuration file and go to the file’s bottom. You’ll need to add a line to the file
with syntax that follows the standard facility.priority action of the syslog protocol.
Typically, most administrators send everything to the remote logging server, so the *.* is
used to designate the facility.priority. However, the action for sending log messages to
a remote server has the following special syntax:

TCP|UDP[(z#)]HOST:[PORT#]

This action syntax is rather confusing, so let’s step through it:

 ■ TCP|UDP: You can select either the TCP or UDP protocols (covered in Chapter 8) to
transport your log messages to the central log server. UDP can lose data, so you should
select TCP if your log messages are important. Use a single at sign (@) to select UDP
and double at signs (@@) to choose TCP.

 ■ [(z#)]: The brackets indicate this syntax is optional. The z selects zlib to compress
the data prior to traversing the network, and the # picks the compression level, which
can be any number between 1 (lowest compression) and 9 (highest compression). Note
that you must enclose the z and the number between parentheses, such as (z5).

 ■ HOST: This syntax designates the central logging server either by a fully qualified
domain name (FQDN), such as example.com, or an IP address. If you use an IPv6
address, it must be encased in brackets.

 ■ [PORT#]: The brackets indicate that this syntax is optional. This designates the port on
the remote central logging host where the log service is listening for incoming traffic.

An example is helpful here. Let’s say you want to send all your log messages to a remote
logging host that is located at loghost.ivytech.edu and listen for incoming log message
TCP traffic on port 6514. To minimize network use, you’d like to compress log messages

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

390 Chapter 7 ■ Administering the System

with the highest compression. On each client system, you’ll need to add the following line
to the bottom of the /etc/rsyslog.conf file:

. @@(z9)loghost.ivytech.edu:6514

After you make this modification, you’ll need to reload the configuration file or restart
the rsyslogd service to begin transmitting log messages to the active central logging server.

Rotating Log Files
As you can guess, for busy Linux systems it doesn’t take long to generate large log files. To
help combat that, many Linux distributions install the logrotate utility. It automatically
splits rsyslogd log files into archive files based on a time or the size of the file. You can
usually identify archived log files by a numerical extension added to the log filename. An
example is shown in Listing 7.31 of the /var/log/btmp file (this file contains bad attempts
to log into the system and is displayed using the lastb command).

Listing 7.31: The /var/log/btmp file and a rotated version of itself

$ ls /var/log/btmp*
/var/log/btmp /var/log/btmp-20190501
$

The logrotate utility does more than rotate log files. It can also compress, delete, and if
desired, mail a log file to a designated account.

To ensure the files are handled in a timely manner, the logrotate utility is typically run
every day as a cron job (cron is covered in Chapter 9). It employs the /etc/logrotate.conf
configuration file to determine how each log file is managed. A logrotate configuration file
on a CentOS system is shown in Listing 7.32.

Listing 7.32: Viewing the /etc/logrotate.conf file on a CentOS distribution

$ cat /etc/logrotate.conf
see "man logrotate" for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

use date as a suffix of the rotated file
dateext

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Log and Journal Files 391

uncomment this if you want your log files compressed
#compress

RPM packages drop log rotation information into this directory
include /etc/logrotate.d

no packages own wtmp and btmp -- we'll rotate them here
/var/log/wtmp {
 monthly
 create 0664 root utmp
 minsize 1M
 rotate 1
}

/var/log/btmp {
 missingok
 monthly
 create 0600 root utmp
 rotate 1
}

system-specific logs may be also be configured here.
$

One nice feature about the /etc/logrotate.conf file is that it is well commented (nearly
every item following a # is a comment) and fairly easy to understand. The first half of
this file contains global directives (settings). For example, notice the dateext option. This
option directs logrotate to use the current date in an archived (rotated) log file’s name, as
was shown in Listing 7.31. If the dateext option is not employed, the rotated log files will
have a number as their file extension, with the biggest number indicating the oldest log file:

mail.log
mail.log.1
mail.log.2

In the second half of the /etc/logrotate.conf file in Listing 7.32 are specific rotation
settings for the /var/log/wtmp and /var/log/btmp log files. These options apply to only
these particular log files and override any global settings.

Notice in Listing 7.32 that right before the nonglobal settings is the line

include /etc/logrotate.d

This line tells logrotate to use any configuration files stored in the /etc/logrotate.d/
directory for additional specific log file rotation options. The configuration files here are
given the same name as the log files they managed, as shown in Listing 7.33.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

392 Chapter 7 ■ Administering the System

Listing 7.33: Looking at the /etc/logrotate.d/ files on a CentOS distribution

$ ls /etc/logrotate.d/
bootlog glusterfs libvirtd.qemu psacct syslog
chrony iscsiuiolog numad samba wpa_supplicant
cups libvirtd ppp sssd yum
$
$ cat /etc/logrotate.d/bootlog
/var/log/boot.log
{
 missingok
 daily
 copytruncate
 rotate 7
 notifempty
}
$

Notice that the /etc/logrotate.d/boot.log contents are similar to the settings for the
/var/log/wtmp and /var/log/btmp log files within the /etc/logrotate.conf file. A few
of the more common specific logrotate directives for the various log files are shown in
Table 7.10.

tA b Le 7.10 The more common logrotate directives for specific log files

Directive Description

hourly Log file is rotated hourly. If this setting is employed, the schedule for
the logrotate cron job typically needs modification.

daily Log file is rotated daily.

weekly n Log file is rotated weekly on the n day of the week, where 0 is equal
to Sunday, 1 is equal to Monday, 2 is equal to Tuesday, and so on to 6
for Saturday. 7 is a special number that indicates the log file is rotated
every 7 days, regardless of the current day of the week.

monthly Log file is rotated the first time logrotate is run within the current
month.

size n Rotates log file based on size and not time, where n indicates the
file’s size that triggers a rotation (n followed by nothing or k assumes
kilobytes, M indicates megabytes, and G denotes gigabytes).

rotate n Log files rotated more than n times are either deleted or mailed,
depending on other directives. If n equals 0, rotated files are deleted,
instead of rotated.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Log and Journal Files 393

Directive Description

dateformat
 format-string

Modify the dateext setting’s date string using the format-string
specification.

missingok If log file is missing, do not issue an error message and continue on to
the next log file.

notifempty If the log file is empty, do not rotate this log file, and continue on to the
next log file.

 There are many more directives you can set to fi ne-tune your log fi les’ rotation. To view
all the various settings, type man logrotate at the command line.

 Many distributions maintain a logrotate status file located in the
/var/lib/logrotate/ directory, which is helpful for troubleshooting
or viewing the latest log rotation. On CentOS, the filename is logrotate
.status , and on Ubuntu, it is the status file.

 Making Log Entries
 If you create and run scripts on your Linux system (see Chapter 9), you may want to log
your own application events. You can do that with the logger command-line tool:

 logger [-isd] [-f file] [-p priority] [-t tag] [-u socket] [message]

 The -i option specifi es the process ID (PID) of the program that created the log entry
as part of the event message. The -p option allows you to specify the event priority. The
-t option lets you specify a tag to add to the event message to help make fi nding the mes-
sage in the log fi le easier. You can either specify the message as text in the command line
or specify it as a fi le using the -f option. The -d and -u switches are advanced options for
sending the event message to the network. The -s option sends the event message to the
standard error output.

 An example of using logger in a script would look like this:

 $ logger This is a test message from rich

 On an Ubuntu system, you can look at the end of the /var/log/syslog fi le to see the
log entry:

 $ tail /var/log/syslog
 ...
 Feb 8 20:21:02 myhost rich: This is a test message from rich

 Notice that rsyslogd added the time stamp, host, and user account for the message.
This is a great troubleshooting tool!

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

394 Chapter 7 ■ Administering the System

Finding Event Messages
Generally, most Linux distributions create log files in the /var/log directory. Depending on the
security of the Linux system, many log files are readable by everyone, but some may not be.

As seen earlier in Listing 7.29 and Listing 7.30, most Linux distributions create separate log
files for different event message types, although they don’t always agree on the log filenames.

It’s also common for individual applications to have a separate directory under the
/var/log directory for their own application event messages, such as /var/log/apache2
for the Apache web server.

Since rsyslogd log files are text files, you can use any of the standard text tools available
in Linux, such as cat, head, tail, as well as filtering tools, such as grep, to view the files
and search them.

One common trick for administrators is to watch a log file by using the -f option with
the tail command. That displays the last few lines in the log file but then monitors the file
for any new entries and displays those too.

Journaling with systemd-journald
The systemd system services package includes the systemd-journald journal utility for log-
ging. Notice that we called it a journal utility instead of a logging utility. The systemd-
journald program uses a completely different method of storing event messages from the
syslog protocol. However, it does store syslog messages as well as notes from the kernel,
boot events, service messages, and so on.

This section discusses how to use the systemd-journald program to track event mes-
sages on your Linux system.

Configuring systemd-journald
The systemd-journald service reads its configuration from the /etc/systemd/journald.
conf configuration file. When you examine this file, you’ll notice settings that control how
the application works and controls items, such as the journal file’s size. Table 7.11 describes
commonly modified directives.

tA b Le 7.11 The journald.conf file commonly modified directives

Directive Description

Storage= Set to auto, persistent, volatile, or none. Determines how
systemd-journald stores event messages. (Default is auto.)

Compress= Set to yes or no. If yes, journal files are compressed. (Default is
yes.)

ForwardToSyslog= Set to yes or no. If yes, any received messages are forwarded to a
separate syslog program, such as rsyslogd, running on the system.
(Default is yes.)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Log and Journal Files 395

Directive Description

ForwardToWall= Set to yes or no. If yes, any received messages are forwarded
as wall messages to all users currently logged into the system.
(Default is yes.)

MaxFileSec= Set to a number followed by a time unit (such as month, week, or
day) that sets the amount of time before a journal file is rotated
(archived). Typically this is not needed if a size limitation is
employed. To turn this feature off, set the number to 0 with no time
unit. (Default is 1month.)

RuntimeKeepFree= Set to a number followed by a unit (such as K, M, or G) that sets the
amount of disk space systemd-journald must keep free for other
disk usages when employing volatile storage. (Default is 15% of
current space.)

RuntimeMaxFileSize= Set to a number followed by a unit (such as K, M, or G) that sets the
amount of disk space systemd-journald journal files can consume
if it is volatile.

RuntimeMaxUse= Set to a number followed by a unit (such as K, M, or G) that sets
the amount of disk space systemd-journald can consume when
employing volatile storage. (Default is 10% of current space.)

SystemKeepFree= Set to a number followed by a unit (such as K, M, or G) that sets the
amount of disk space systemd-journald must keep free for other
disk usages when employing persistent storage. (Default is 15% of
current space.

SystemMaxFileSize= Set to a number followed by a unit (such as K, M, or G) that sets the
amount of disk space systemd-journald journal files can consume
if it is persistent.

SystemMaxUse= Set to a number followed by a unit (such as K, M, or G) that sets
the amount of disk space systemd-journald can consume when
employing persistent storage. (Default is 10% of current space.)

Changing a journal file from being volatile to persistent is covered later in this chapter.
Thus, the Storage directive settings in Table 7.11 need a little more explanation, because
they are involved in this activity:

 ■ auto: Causes systemd-journald to look for the /var/log/journal directory and store
event messages there. If that directory doesn’t exist, it stores the event messages in the
temporary /run/log/journal directory, which is deleted when the system shuts down.

 ■ persistent: Causes systemd-journald to automatically create the/var/log/journal
directory if it doesn’t currently exist and store event messages there.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

396 Chapter 7 ■ Administering the System

 ■ volatile : Forces systemd-journald to store only event messages in the temporary
 /run/log/journal directory.

 ■ none : Event messages are discarded.

 Quite a few settings allow you to customize exactly how systemd-journald
works in your system. For a full list and explanation of all the settings, type
 man journald.conf at the command prompt.

 Looking at Journal Files
 You may have one or more active journal fi les on your system, depending on how
systemd-journald is confi gured. For example, if you have Storage set to persistent , you
can employ the SplitMode directive to divide up the journal fi le into multiple active fi les—
one per user as well as a system journal fi le.

 The fi le(s) directory location is contingent on whether or not the journal is persistent. In
either case, the system’s active journal fi le is named system.journal , with user active jour-
nal fi les (if used) named user- UID . journal .

 These journal fi les are rotated automatically when a certain size or time is reached,
depending on the directives set in the journal.conf fi le. After the fi les are rotated, they are
renamed and considered archived. The archived journal fi lenames start with either system
or user- UID , contain an @ followed by several letters and numbers, and end in a .journal
fi le extension.

 Listing 7.34 is snipped and shows active and archived journal fi les on an Ubuntu
distribution.

 Listing 7.34: Viewing the active and archived journal files on an Ubuntu distro

 $ ls /var/log/journal/e9af6ca5a8fb4a70b2ddec4b1894014d/
 system@220262350f2a468c87bb85484e9ad813-0000000000000001-0005897bfdead50c.journal
 system@220262350f2a468c87bb85484e9ad813-00000000000197b0-000589f47e451cdc.journal
 system@80103f1d22df49c7beee5c818e58f96f-0000000000000001-000587c56d17a0fd.journal
 […]
 system.journal
 user-1000@be988ab4869e43239d9cfdebd38c7e72-0000000000000451-000571ee64814f08.journal
 user-1000@be988ab4869e43239d9cfdebd38c7e72-0000000000004e25-000584a03f80097a.journal
 […]
 user-1000.journal
 user-1001@e19748f488ce450b94e17fed79ee9669-00000000000028c7-000572dfa721935c.journal
 […]
 user-1001.journal
 […]
 $

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Log and Journal Files 397

 Notice that this system employs both system and user journal fi les and that several
of the fi les have been archived. The systemd-journald confi guration dictates when
the archived journal fi les are removed from the system based on size directives, such as
 SystemMaxFileSize , or time directives, such as MaxFileSec .

 On some systems, you can manually rotate (archive) active journal
files. If this feature is available on your system, you can do this via the
journalctl --rotate command.

 Layering Your Logging
 If desired (or required), you can have both systemd-journald and a syslog protocol appli-
cation, such as rsyslog , running and working together. There are two primary ways to
accomplish this:

 Journal Client Method This method allows a syslog protocol program to act as a journal
client , reading entries stored in the journal fi le(s). It is typically the preferred way, because it
avoids losing any important messages that may occur during the system boot, before the sys-
log service starts. Also for rsyslog , this is commonly already confi gured, which is handy.

 For rsyslog , if this method is not already confi gured or you’d like to check your system,
look in the /etc/rsyslog.conf fi le. It needs to have the imuxsock and/or imjournal mod-
ule being loaded via Modload without a preceding pound sign (#), as shown here:

 $ grep ModLoad /etc/rsyslog.conf | grep -E "imjournal | imuxsock"
 $ModLoad imuxsock # provides support for local system logging […]
 $ModLoad imjournal # provides access to the systemd journal
 $

 Forward to Syslog Method This method employs the fi le /run/systemd/journal/syslog .
Messages are forwarded to the fi le (called a socket) where a syslog protocol program can
read them.

 To use this method, you need to modify the journal confi guration fi le, /etc/systemd/
journald.conf , and set the ForwardToSyslog directive to yes . Keep in mind that you’ll need
to load the modifi ed journald.conf fi le into systemd-journald in order for it to take effect.
Unfortunately, you cannot employ the systemctl reload option to load the new confi guration
for systemd-journald . Instead, using super user privileges, you must restart the service:

 systemctl restart systemd-journald

 Making the Journal Persistent
 On some distributions, the journal entries are stored in the /run/log/journal directory,
which is volatile , meaning it is removed, and the journal entries are lost whenever the sys-
tem is shut down. Therefore, typically system admins set the Storage directive within the
 journald.conf fi le, changing it to persistent .

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

398 Chapter 7 ■ Administering the System

When this configuration is loaded (via a systemctl restart, which was covered earlier),
systemd-journald automatically creates the /var/log/journal directory, moves the journal
file to its new location, and starts storing journal entries in it. Also, since this file is persistent,
the file survives system shut downs and reboots, and its entries are not removed.

While you can set the Storage directory to auto and create the /var/log/journal direc-
tory yourself, it’s a little tricky getting the directory permissions set correctly. Thus, it’s best
to let systemd-journald do the work for you.

Viewing Journal Entries
The systemd-journald program doesn’t store journal entries in text files. Instead it uses
its own binary file format that works similar to a database. Although this makes it a little
harder to view journal entries, it does provide for quick searching for specific event entries.

The journalctl program is our interface to the journal files. The basic format for the
journalctl command is

journalctl [OPTIONS…] [MATCHES…]

The OPTIONS control how data returned by the MATCHES is displayed and/or addition-
ally filtered. Table 7.12 lists commonly used switches. To view all of the various available
options, type man journalctl at the command line.

tA b Le 7.12 The journalctl utility’s commonly used options

Short option Long option Description

-a --all Display all data fields, including unprintable characters.

-e --pager-end Jump to the end of the journal and display the entries.

-k --dmesg Display only kernel entries.

-n number --lines=number Show the most recent number journal entries.

-r --reverse Reverse the order of the journal entries in the output.

-S date --since=date Show journal entries starting at date, where date
is formatted as YYYY-MM-DD:HH:MM:SS. If time
specification is left off of date, then 00:00:00 is
assumed. Keywords such as yesterday, today,
tomorrow, and now can all replace date.

-U date --until=date Show journal entries until date is reached in the entries.
date formatting is the same as it is for the -S option.

-u unit or
pattern

--unit=unit or
pattern

Show only journal entries for the systemd unit or
systemd units that match pattern.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Log and Journal Files 399

 By default the journalctl utility employs the less pager to display its
entries. If you desire this to be turned off, use the --no-pager option.

 A simple example of using journalctl without MATCHES and showing the last 10
messages on an Ubuntu system is shown snipped in Listing 7.35.

 Listing 7.35: Viewing output from the journalctl command using only options

 $ sudo journalctl -n 10 --no-pager
 -- Logs begin at Wed 2018-07-25 12:02:39 EDT, end at Wed 2019-[…]
 May 29 16:22:59 Ubuntu1804 systemd[2114]: Listening on GnuPG c[…]
 May 29 16:22:59 Ubuntu1804 systemd[2114]: Reached target Paths[…]
 May 29 16:22:59 Ubuntu1804 systemd[2114]: Listening on D-Bus U[…]
 May 29 16:22:59 Ubuntu1804 systemd[2114]: Reached target Socke[…]
 May 29 16:22:59 Ubuntu1804 systemd[2114]: Reached target Basic[…]
 May 29 16:22:59 Ubuntu1804 systemd[1]: Started User Manager fo[…]
 May 29 16:22:59 Ubuntu1804 systemd[2114]: Reached target Defau[…]
 May 29 16:22:59 Ubuntu1804 systemd[2114]: Startup finished in […]
 May 29 16:24:01 Ubuntu1804 sudo[2225]: Christine : TTY=pts/0 ;[…]
 May 29 16:24:01 Ubuntu1804 sudo[2225]: pam_unix(sudo:session):[…]
 $

 The MATCHES for the journalctl utility fi lter what type of journal entries to display.
Table 7.13 lists the various commonly used fi lters that are available.

 tA b Le 7.13 The common journalctl MATCHES parameter used for filtering

Match Description

 field Match the specific field in the journal. Can enter multiple
occurrences of field on same line but must be separated
with a space. You can separate multiple field specifications
with a plus sign (+) to use a logical or between them.

 OBJECT_PID=pid Match only entries made by the specified application pid .

 PRIORITY=value Match only entries with the specified priority value .
The value can be set to one of the following numbers or
keywords: emerg (0), alert (1), crit (2), err (3), warning (4),
 notice (5), info (6), debug (7).

 _HOSTNAME=host Match only entries from the specified host .

 _SYSTEMD_UNIT=unit.type Match only entries made by the specified systemd unit . type .

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

400 Chapter 7 ■ Administering the System

Match Description

_TRANSPORT=transport Match only entries received by the specified transport
method.

 _UDEV_SYSNAME=dev Match only entries received from the specified device.

 _UID=userid Match only entries made by the specified user ID.

 Keep in mind that Table 7.13 lists only a few of the commonly used MATCHES . To view all
the various available MATCHES , type man systemd-journal-fields at the command line.

 To use journalctl to view all the various journal entries, you’ll need to be
logged in as the root user, use super user privileges, or typically belong to
the systemd-journal group. Recognize that your distribution may use a
different group for this task.

 When you are looking for specifi c event entries in the journal, use the desired fi lters
and options to target specifi c items. In snipped Listing 7.36, only today’s entries for the
 ssh.service systemd service unit are displayed.

 Listing 7.36: Using filters with the journalctl command

 $ sudo journalctl --since=today _SYSTEMD_UNIT=ssh.service
 -- Logs begin at Wed 2018-07-25 12:02:39 EDT, end at Wed 2019-05-29 […]
 May 29 14:10:50 Ubuntu1804 sshd[772]: Server listening on 0.0.0.0 port 22.
 May 29 14:10:50 Ubuntu1804 sshd[772]: Server listening on :: port 22.
 May 29 14:10:55 Ubuntu1804 sshd[772]: Received SIGHUP; restarting.
 […]
 May 29 16:09:38 Ubuntu1804 sshd[2047]: Connection closed by 127.0.0.1 […]
 May 29 16:22:58 Ubuntu1804 sshd[2112]: Accepted password for Christine […]
 May 29 16:22:58 Ubuntu1804 sshd[2112]: pam_unix(sshd:session): session […]
 $

 Employing various journalctl fi lters makes digging through journal fi les much easier.

 The journalctl utility has a feature similar to using tail -f on a log file.
Just employ the journalctl -f or --follow switch, and you will see the
last few entries and additional entries as they are added to the journal.
When you are done watching, press the Ctrl+C key combination to quit.

tA b Le 7.13 The common journalctl MATCHES parameter used for filtering (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Log and Journal Files 401

Maintaining the Journal
Besides configuring a persistent journal and keeping the journal disk usage in check, you have
a few manual management activities you can employ for maintaining your journal file(s).

You can check the current disk usage of the journal file(s) by employing the journalctl
--disk-usage command. An example on an Ubuntu distro is shown in Listing 7.37.

Listing 7.37: Checking journal file disk usage

$ journalctl --disk-usage
Archived and active journals take up 344.0M in the file system.
$

The output from the command in Listing 7.37 shows how much current disk space all
the journal files, active and archived, are taking up on the partition.

While systemd-journald can automatically clean up disk space via settings in the
journald.conf file, you can do so manually as well. In this case, you employ a vacuum…
well, actually it’s vacuum options available on the journalctl command:

--vacuum-size
--vacuum-time

As you would expect, --vacuum-size removes journal files until the disk space con-
sumed by journal files reaches the designated size. You follow the option with a number
and tack on a unit (K, M, G, or T) to set the size. Be aware that this removes only archived
journal files and has no effect on any active journal files.

For the --vacuum-time option, you designate the oldest journal entries allowed, and the
rest are deleted. The time is denoted with a number as well as a time unit (s, min, h, days,
months, weeks, or years), such as 10months. Like the size option, the time option affects
only archived journal files. The active files are left untouched.

While you can combine the two different switches if needed, the snipped example in
Listing 7.38 uses only the size option to pare down on disk usage.

Listing 7.38: Cleaning up journal file disk usage

$ journalctl --disk-usage
Archived and active journals take up 344.0M in the file system.
$
$ sudo journalctl --vacuum-size=300M
Deleted archived journal
[…]
Vacuuming done, freed 24.0M of archived journals from /var/log/journal/
e9af6ca5a8fb4a70b2ddec4b1894014d.
$
$ journalctl --disk-usage
Archived and active journals take up 320.0M in the file system.
$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

402 Chapter 7 ■ Administering the System

 Notice that after the vacuuming was completed, another journalctl --disk-usage
command was issued, but it shows 320.0M instead of the 300M size set on the vacuum option.
This is because though the disk-usage switch shows both active and archived journal fi les,
the vacuum options work only on archived journal fi les.

 If you’d like to back up your active journal file(s), you should be fine
simply copying them first. However, right before you make a copy, run the
 journalctl --sync command to ensure all the entries are moved from
their queue into the file.

 Viewing Different Journal Files
 If you need to retrieve a journal fi le from a rescued system but view it fi rst or look at the
entries in an archived or copied journal fi le, a few journalctl switches are available that
can help.

 Because journalctl looks for the active journal fi les in either the /run/log/journal or
the /var/log/journal directory, you can point it to a different directory location where
a copied or another system’s journal fi le is located by using the -D directory-name or
 --directory= directory-name option.

 If the fi le you are trying to view has a different name than system.journal or
 user- UID .journal , use the --file= pattern option on the journalctl command. Set the
 pattern to be the exact name of the fi le you wish to view. However, if there are several
fi les, you can employ fi le globbing within the pattern (fi le globbing was covered in Chapter
4) to match several fi les.

 If you have recently rescued your system and now have two or more journal fi les with
entries to view, you can merge them. To do this, use the -m or --merge switches on the
 journalctl utility. Keep in mind this does not physically merge the journal fi les but instead
merges their entries in the output for your perusal.

 The systemd-journald journal utility allows you to send your system’s
journals to a centralized journal host system via systemd-journal-remote .
To view all the various journal files’ entries on the central host, you’ll need
to employ the -m or --merge option when using the journalctl command.

 Making Journal Entries
 Similar to using logger for syslog protocol programs, you can add journal entries from the
command line or scripts using the systemd-cat tool. In order to do so, you must pipe your
command’s STDOUT into the utility:

 command | systemd-cat

 An example of employing the systemd-cat command is shown in Listing 7.39. Notice
that the test message was successfully added to the active journal fi le.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Maintaining the System Time 403

Listing 7.39: Adding a journal entry with the systemd-cat utility

$ echo "Test of systemd-cat" | systemd-cat
$
$ journalctl --no-pager | grep systemd-cat
May 30 17:43:46 Ubuntu1804 cat[2599]: Test of systemd-cat
$

If your system allows an installed syslog protocol program to act as a journal client
by loading the imuxsock module, you can use the logger utility as well to make journal
entries. An example of this is shown snipped in Listing 7.40.

Listing 7.40: Adding a journal entry with the logger utility

$ logger "Test of logger"
$
$ journalctl -r
-- Logs begin at Thu 2018-07-26 18:19:45 EDT, end at Thu 2019-05-30 […]
[…]
May 30 17:45:29 Ubuntu1804 Christine[2606]: Test of logger
[…]
May 30 17:43:46 Ubuntu1804 cat[2599]: Test of systemd-cat
 […]
$

By employing the -r option (reverse) on the journalctl command, you can see recent
entries, which in this case includes both the systemd-cat and the logger utilities’ entries.
Notice that logger adds the username to the entry.

Properly controlling your logs and journals is helpful in troubleshooting problems as
well as tracking down potential security issues. Next, we’ll look at a concept that goes
hand in hand with managing logs and journals.

Maintaining the System Time
Keeping the correct times on all servers is crucial. Many elements depend on accurate time,
such as programs designed to run at particular moments, remote services that expect accu-
rate client times (and will reject the client if their times are inaccurate), and maintaining
accurate log message time stamps in order to properly investigate client/server issues.

Understanding Linux Time Concepts
Local time is also called wall clock time. Historically, people glanced at a clock on the
wall (or their analog watches) to determine when to go to scheduled meetings, take lunch
breaks, and leave work to go home. The official standard name for this is localtime.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

404 Chapter 7 ■ Administering the System

If you are dealing with people around the world, it’s often easier to use a different stan-
dard called Coordinated Universal Time (UTC), and yes, that abbreviation is correct. UTC
is a time that does not change according to an individual’s time zone (time zones were cov-
ered in Chapter 6). Thus, the UTC time in Indianapolis, Indiana, is equal to the UTC time
in Helsinki, Finland. You can say, “I’ll contact you at 9:44 UTC tomorrow from Algiers,
New Orleans” to your business partner in New York City, and they will know the exact
time without using any special calculations. (You can see the current UTC time on several
websites, including time.is/UTC.)

Linux systems commonly maintain two types of time clocks. One is software based, and
the other is hardware based. The hardware clock, in this case, is also called the real-time
clock. This clock attempts to maintain the correct time, even when the system is powered
down by using power from the system battery (traditionally called the CMOS battery).

When the system boots, the Linux OS gets the time from the hardware clock and
updates its software clock. This clock runs only while the system is up and is used by many
utilities on Linux, which is why it is sometimes called system time. Unfortunately the Linux
software clock has a tendency to become inaccurate, especially if it is a busy system.

Viewing and Setting Time
You can view (and change) the time on both the hardware and software clocks as well as
switch them between using UTC and localtime. The various utilities to do so have their
own special syntax and benefits.

Using the hwclock Utility
The command that is primarily used for the hardware clocks is hwclock, and its syntax is
as follows:

hwclock [OPTIONS…]

The commonly used OPTIONS for the hwclock utility are described in Table 7.14.

tA b Le 7.14 Common hwclock utility options

Short option Long option Description

N/A --localtime Sets the hardware clock to use the localtime standard

-r --show Displays the current hardware clock time

-s --hctosys Reads the current hardware clock time, and sets the soft-
ware clock to that time

-u --utc Sets the hardware clock to use the UTC standard

-w --systohc Reads the current software clock time, and sets the hard-
ware clock to that time

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Maintaining the System Time 405

 An example of reading the hardware clock and displaying its time is shown in Listing 7.41.

 Listing 7.41: Reading the hardware clock time using the hwclock -r command

 $ hwclock -r
 hwclock: Cannot access the Hardware Clock via any known method.
 hwclock: Use the --debug option to see the details of our search
 for an access method.
 $
 $ sudo hwclock -r
 2019-05-31 14:01:17.622439-0400
 $

 Notice that the hwclock utility requires super user privileges, even to read the time. Also
note that the date is shown, and the time is displayed in military format. On some distribu-
tions, you see time displayed using an a.m./p.m. format instead.

 It’s best to keep your hardware clock using the UTC standard. If you
switch it to the localtime standard, problems may ensue. They can include
problems with daylight saving changes and time zone shifts.

 Using the date Utility
 The software clock primarily uses the date command and/or the timedatectl utility
(covered in the next section) to view/set the system time. The date command’s syntax is

 date [-u|--utc|--universal] [MMDDhhmm [[CC] YY][. ss]]

 To view the current system time, you enter date at the command line. No special privi-
leges or options are needed:

 $ date
 Fri May 31 14:11:23 EDT 2019

 Setting the system time with the date utility takes a little more work. If you are specify-
ing localtime, then no switches are needed, but if you are setting UTC, then use one of the
following options: -u , --utc , or --universal .

 You may not be able to set the time on the software clock with the date
command if your system is already using Network Time Protocol (NTP)
or Simple Network Time Protocol (SNTP), covered later in this chapter.
You can check for these active services by issuing systemctl status
ntpd , systemctl status chronyd , and systemctl status
systemd-timesyncd . If any of those commands show an active service,
you may be unable to set the system time with the date command.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

406 Chapter 7 ■ Administering the System

 An example of modifying the system time on a CentOS distribution using super user
privileges is shown in Listing 7.42.

 Listing 7.42: Changing the software clock time using the date command

 # date
 Fri May 31 14:26:48 EDT 2019
 #
 # date 05301430
 Thu May 30 14:30:00 EDT 2019
 #
 # date
 Thu May 30 14:30:02 EDT 2019
 #

 To set the system time using date , you must fi rst specify the current month, in this
case May (05), the current date, the 31st (31), and then the time using military format.
We change the time from 14:26 to 14:30 (1430). If desired, you can also optionally spec-
ify the century (CC), the year (YY), and the desired seconds (. ss), as shown earlier in the
date command’s syntax.

 If you need to modify your server’s time zone, the concepts for this task are
covered in Chapter 6.

 Using the timedatectl Utility
 The timedatectl utility is the preferred method for manually managing the Linux software
clock. The command alone without any options provides a great deal of information. (You
can get the same information by tacking on the status option, but there is no need to do
so.) An example of this on a CentOS distribution is shown in Listing 7.43.

 Listing 7.43: Using the timedatectl command on a CentOS distribution

 $ timedatectl
 Local time: Fri 2019-05-31 15:41:27 EDT
 Universal time: Fri 2019-05-31 19:41:27 UTC
 RTC time: Fri 2019-05-31 19:21:20
 Time zone: America/New_York (EDT, -0400)
 NTP enabled: yes
 NTP synchronized: yes
 RTC in local TZ: no
 DST active: yes
 Last DST change: DST began at
 Sun 2019-03-10 01:59:59 EST
 Sun 2019-03-10 03:00:00 EDT

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Maintaining the System Time 407

 Next DST change: DST ends (the clock jumps one hour backwards) at
 Sun 2019-11-03 01:59:59 EDT
 Sun 2019-11-03 01:00:00 EST
$

The command’s output may be different depending on your distribution. Listing 7.44
provides an example of using the timedatectl utility to show the current time information
on an Ubuntu distro.

Listing 7.44: Using the timedatectl command on an Ubuntu distribution

$ timedatectl
 Local time: Fri 2019-05-31 15:25:13 EDT
 Universal time: Fri 2019-05-31 19:25:13 UTC
 RTC time: Fri 2019-05-31 19:25:14
 Time zone: America/Indiana/Indianapolis (EDT, -0400)
 System clock synchronized: yes
systemd-timesyncd.service active: yes
 RTC in local TZ: no
$

Notice from the two previous listings that the system clock manages a lot of informa-
tion, including the system time in localtime and UTC standards, the time zone, as well as
daylight saving time.

To change the system time, you need to employ the timedatectl command and use
super user privileges. In addition, add the set-time option and date/time with the follow-
ing syntax:

timedatectl set-time "YYYY-MM-DD HH:MM:SS"

An example of doing this is shown on a CentOS distribution in Listing 7.45.

Listing 7.45: Using the timedatectl command to set the system time

date
Fri May 31 15:59:13 EDT 2019
#
timedatectl set-time "2019-05-31 16:15:00"
Failed to set time: Automatic time synchronization is enabled
#
timedatectl set-ntp 0
#
timedatectl set-time "2019-05-31 16:15:00"
#
date
Fri May 31 16:15:04 EDT 2019
#

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

408 Chapter 7 ■ Administering the System

 Notice in Listing 7.45 that the fi rst attempt to change the system time failed,
because automatic time synchronization is enabled. To turn this off, use the timedatectl
set-ntp 0 command. You can reenable it later by issuing the same command, but change
the 0 to a 1 .

 If you are following along with the commands in the book and cause
yourself problems by changing the software clock on your system, you
can typically make things right again by rebooting. Just type reboot , and
press Enter at the command line.

 You can also manage a few items on the hardware clock with the timedatectl utility.
For example, you can fl ip-fl op the clock between using the localtime and UTC standard.
The syntax to accomplish this is

 timedatectl set-local-rtc Boolean-value

 To force the hardware clock to use the localtime standard, set Boolean-value to 1 . To
change it to the UTC standard, switch Boolean-value to 0 .

 Understanding the Network Time Protocol
 The Network Time Protocol (NTP) is a network protocol used to synchronize clocks over
a network in order to provide accurate time. The clocks can be on personal computer sys-
tems, network routers, servers, and so on. Programs implementing NTP can typically oper-
ate as both a client and a server, and they can perform peer-to-peer as well.

 To provide accurate time, NTP uses what is called a clock stratum scheme, which pro-
vides a layered approach to accessing correct time sources. The stratums are numbered
from 0 to 15. The devices at stratum 0 are highly accurate time-keeping hardware devices,
such as atomic clocks. The next level down is stratum 1, which consists of computers that
are directly connected to the stratum 0 devices. Continuing down the stratum confi gura-
tion, the stratum 2 servers use network time protocol client software that allows them to
request time data served up by the stratum 1 computers.

 Every stratum has potentially thousands of NTP clients, each receiving time updates
from NTP servers in the higher stratum or each other (called NTP peers). Figure 7.3
provides a sample illustration of this concept.

 Stratum 0 devices have the most accurate time, with the directly connected Stratum
1 computers being the next most precise. After those two stratum levels, requested time
updates travel as data in packets across the network. Because network travel time for the
packets may take milliseconds (or more), the time becomes less accurate for the servers
lower in the stratum confi guration.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Maintaining the System Time 409

 F i gu r e 7. 3 The NTP protocol clock stratum

Lower Stratums

NTP Server NTP Server

Stratum 0

Stratum 1

NTP Server NTP Server NTP Server NTP Server

Stratum 2

 However, the NTP protocol attempts to minimize travel time using special rules that
allow packets carrying time data to traverse more quickly between the NTP server and
client. Programs that implement the NTP client/server protocol also typically have a
mechanism for appropriately adjusting the time in order to offset NTP packet travel time.

 The Simple Network Time Protocol (SNTP) mentioned earlier in the
chapter is a simplified version of NTP. Although NTP can achieve high lev-
els of time accuracy, SNTP is more for applications or systems not depen-
dent on accurate clocks.

 If you have never selected an NTP time source, looking at the clock stratum can make it
seem rather diffi cult. But don’t fret, it’s not. You do have several good choices that are free
and open to the public.

pool.ntp.org One of the most popular NTP servers is actually a cluster of servers that
work together in what is called a pool . Each time server that participates in the pool is a
volunteer. To use the NTP server pool, when you confi gure your NTP client application,
enter pool.ntp.org as your NTP server (note that the syntax is a little different than shown
here for the confi guration and will be covered later in this chapter). Each time a clock

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

410 Chapter 7 ■ Administering the System

update request goes to pool.ntp.org , a different pool member provides a response. The
offi cial website is ntppool.org , and this site provides some nice explanations on how to use
these pool servers on Linux systems.

 A lovely feature of the NTP server pool is that you can dig down into the pool to fi nd clusters
of servers that meet special requirements. For example, most distributions come with their
own subgrouping in the pool, such as centos.pool.ntp.org and Ubuntu.pool.ntp.org .
These distro groupings allow you to set up an NTP client application and test it prior to
picking another time server.

 Other subgroupings in the pool let you use physically closer NTP servers, which may
assist in providing more accurate time. For example, if your NTP client application resides
in Canada, you can use pooled servers from either north-america.pool.ntp.org or
 ca.pool.ntp.org . Keep in mind that if you use pool.ntp.org the NTP pool software
does its best to provide time from a server that is close to your system.

 If you have a need for more accurate time and lower network resource
usage, do not use pool.ntp.org or one of its subgroupings. For example,
if your Internet service provider (ISP) provides a time server, use it instead.

 Google Time Servers and Smear An interesting time problem revolves around leap sec-
onds. Because the earth’s rotation has been slowing down, our actual day is about 0.001
seconds less than 24 hours. To compensate for this on our computers, leap seconds were
introduced. About every 19 months or so, NTP passes a leap second announcement. This
is typically handled without any problems and the clocks are set backward by one second.
However, some applications have problems, especially those on other systems that are not
handling leap seconds.

 To combat this problem, Google introduced free public time servers that use NTP and
smear the leap second over the course of time so that there is no need to issue a leap second
announcement. This is called leap-smearing . The Google leap-smearing NTP servers are
 time n .google.com , where n is set to 1 through 4 . If you choose to use a leap-smearing time
server on your system, you should not mix in time servers on your NTP client program that
do not employ this technique.

 Server Lists If leap-smearing and pools of NTP servers don’t meet your system’s needs,
you have other choices. For example, there is a list of time servers you can peruse at
 support.ntp.org/bin/view/Servers/WebHome . Be sure to read the site’s Rules of
Engagement prior to selecting and using the NTP servers on this list.

 If your applications need highly accurate time, do not use an NTP-client
program with an Internet-based time source. Instead, investigate
clock hardware that can be integrated with your server or act as a
local time server.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Maintaining the System Time 411

 If you need to implement an NTP client program, you have choices. You can either
employ the NTP daemon (ntpd) or use the newer chrony daemon (chronyd).

 Using the NTP Daemon
 For years the NTP program was synonymous with the network time protocol, and on
Linux they were often spoken of interchangeably. But it does have some limitations, such as
keeping time accurate when the network has high traffi c volumes, which is why alternatives
such as chrony were developed.

 The NTP program is installed by default on some distributions and not on others. The
package name is ntp , so you can check to see if it is installed (or if you need to do so) by
using the appropriate package management tool (covered in Chapter 2).

 Configuring the NTP daemon
 The NTP daemon is ntpd and its primary confi guration fi le is /etc/ntp.conf . It contains,
among other directives, the NTP time servers you wish to use. The directive name for set-
ting these is server . The server lines from an /etc/ntp.conf fi le on a CentOS distribution
are shown in Listing 7.46.

 Listing 7.46: Looking at the tserver directives in the /etc/ntp.conf file

 $ grep ^server /etc/ntp.conf
 server 0.centos.pool.ntp.org iburst
 server 1.centos.pool.ntp.org iburst
 server 2.centos.pool.ntp.org iburst
 server 3.centos.pool.ntp.org iburst
 $

 Notice that by default the NTP servers chosen are from the CentOS pool. When desig-
nating servers from the pool.ntp.org or a subgroup, to make the syntax correct you need
to place a 0 before the fi rst one, 0.centos.pool.ntp.org , a 1 before the second one, and so
on. Notice also the iburst at the end of each line. This directive helps to speed up the ini-
tial time synchronization.

 When ntpd starts, it sends packets to every time server confi gured within the
 /etc/ntp.conf fi le. From the servers’ replies, it chooses the fastest responder as the one
to use as its NTP server.

 Port 123 is used by ntpd , so prior to starting up the NTP daemon make sure
that port is accessible through the firewall.

 On older Linux systems, you had to deal with something called insane time , which
occurred when your system’s time was more than 17 minutes different than real time, and
the NTP servers would not talk to your system because of it. Therefore, it was a common
practice to manually update your software clock before starting ntpd .

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

412 Chapter 7 ■ Administering the System

While on modern distributions insane time is no longer a problem, it’s still handy to
know how to manually update your system time via NTP utilities. The command to use
is ntpdate. You’ll need super user privileges and one of your time servers listed in the
/etc/ntpd.conf file to pass to it as an argument:

ntpdate 0.pool.ntp.org

When you are ready to start up ntpd, use super user privileges and the systemctl
command:

systemctl start ntpd

(If your system does not use systemd, see Chapter 2 for alternative methods to start ser-
vices.) Be sure to enable it as well so that the ntpd service will start at system boot via the
systemctl enable ntpd command.

Immediately after starting, ntpd will begin the processes of synchronizing your software
clock. Be sure to wait at least 10 to 15 minutes before checking its status. You can do this
via the ntpstat command, as shown in Listing 7.47.

Listing 7.47: Viewing the software time synchronization via the ntpstat command

$ ntpstat
synchronised to NTP server (74.6.168.73) at stratum 3
 time correct to within 70 ms
 polling server every 128 s
$

Notice that not only does the ntpstat command show you how accurate your software
clock is currently and how often polling for the correct time is taking place, but you also
get to see the IP address of the NTP server and what stratum level it operates on.

Managing the NTP Service
Besides employing the ntpstat command to periodically check on the accuracy of your
software clock, you can view a table showing what time servers your ntpd is polling and
when the last synchronization took place. The command that provides this information is
ntpq –p. An example is shown in Listing 7.48.

Listing 7.48: Viewing time server and polling information via the ntpq command

$ ntpq -p
 remote refid st t when poll reach delay offset jitter
==
+vps5.ctyme.com 216.218.254.202 2 u 260 128 376 70.606 17.175 14.527
*t2.time.gq1.yah 208.71.46.33 2 u 40 128 377 74.892 17.062 7.880
 dfw1.ntp5.mattn .STEP. 16 u - 1024 0 0.000 0.000 0.000
+helium.constant 128.59.0.245 2 u 10 128 377 42.163 18.043 9.173
$

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Maintaining the System Time 413

If desired, once your software clock is fairly accurate via NTP, you can manually set
the hardware clock to its time. Just use the hwclock -systohc command covered earlier in
this chapter.

Using the chrony Daemon
The chrony daemon (chronyd) has many improvements over ntpd. It can keep accurate
time even on systems that have busy networks or that are down for periods of time, and
even on virtualized systems. In addition, it synchronizes the system clock faster than does
ntpd, and it can easily be configured to act as a local time server itself. With few excep-
tions, most distributions recommend that you employ the chrony service for software clock
synchronization.

You’ll find on CentOS and other Red Hat–based distros that the chrony program is
installed by default, but not enabled on boot (by default). The package name is chrony, and
it is available in most distribution repositories. So if you need to install it, you can do so by
using the appropriate package management tool (covered in Chapter 2).

You’ll find that on Ubuntu, when chrony is installed it is automatically started and
enabled on boot. To start it on CentOS, user super user privileges and type systemctl
start chronyd at the command line. Use the same command again, but replace start
with enable to have chrony start at system boot time.

Configuring the chrony Daemon
The primary configuration file for chrony is the chrony.conf file, and it may be stored in
the /etc/ or the /etc/chrony/ directory. Typically, there is no need to modify anything in
this configuration file, but you might want to look at a few items.

The configuration file contains, among other directives, the NTP time servers to use.
The directive name for setting these is either server or pool. For chrony, the server direc-
tive is typically used for a single time server designation, whereas pool indicates a server
pool. The /etc/chrony/chrony.conf file pool lines from an Ubuntu distribution are shown
in Listing 7.49.

Listing 7.49: Looking at the pool directives in the /etc/chrony/chrony.conf file

$ grep ^pool /etc/chrony/chrony.conf
pool ntp.ubuntu.com iburst maxsources 4
pool 0.ubuntu.pool.ntp.org iburst maxsources 1
pool 1.ubuntu.pool.ntp.org iburst maxsources 1
pool 2.ubuntu.pool.ntp.org iburst maxsources 2
$

Notice that the pool settings are similar to the ntpd server settings in the /etc/ntp.conf
file. The maxsources parameter is one exception to this similarity. It designates the maximum
number of time servers from the designated source. If one of those servers goes down, chrony
finds another one to take its place.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

414 Chapter 7 ■ Administering the System

 Port 123 is used by chronyd , so before starting up the chrony daemon,
make sure that port is accessible through the firewall.

 Another directive you should check in the chrony.conf fi le is the rtcsync directive. This
handy setting directs chrony to periodically update the hardware time (real-time clock). If
you fi nd it on its own confi guration fi le line with nothing else, then it is set for chrony:

 rtcsync

 With this directive set and chrony running, you’ll no longer have to employ that hard-to-
remember hwclock command (hwclock --systohc) to update the real-time clock with the
software clock’s time. Now that’s an improvement.

 If you modify the confi guration and chronyd is not already started, to start it use super
user privileges and the systemctl command:

 systemctl start chronyd

 If chronyd is already started and you have to modify the confi guration fi le, you’ll need to
restart it instead:

 systemctl restart chronyd

 (If your system does not use systemd, see Chapter 2 for alternative methods to start
services.) If necessary, be sure to enable it as well so that the chronyd service will start at
system boot via the systemctl enable chronyd command.

 Managing the chrony Service
 The chrony service provides the chronyc command-line utility for managing it. Several
commands are available that are similar to or that surpass the ntpd commands.

 If you are familiar with employing ntpq -p for viewing your system’s time sources, you
can use chronyc sources -v instead. An example of this command is shown in Listing 7.50
on an Ubuntu distribution using chrony.

 Listing 7.50: Looking at source time servers via the chronyc sources -v command

 $ chronyc sources -v
 210 Number of sources = 8

 .-- Source mode '^' = server, '=' = peer, '#' = local clock.
 / .- Source state '*' = current synced, '+' = combined , '-' = not combined,
| / '?' = unreachable, 'x' = time may be in error, '~' = time too variable.
|| .- xxxx [yyyy] +/- zzzz
|| Reachability register (octal) -. | xxxx = adjusted offset,
|| Log2(Polling interval) --. | | yyyy = measured offset,
|| \ | | zzzz = estimated error.
|| | | \

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Maintaining the System Time 415

MS Name/IP address Stratum Poll Reach LastRx Last sample
===
^+ alphyn.canonical.com 2 10 377 413 -461us[-418us] +/- 101ms
^+ golem.canonical.com 2 10 337 142 +30us[+30us] +/- 95ms
^+ chilipepper.canonical.com 2 10 377 918 -797us[-760us] +/- 81ms
^+ pugot.canonical.com 2 10 377 21 -2184us[-2184us] +/- 87ms
^* 4.53.160.75 2 10 377 229 -327us[-281us] +/- 50ms
^+ vps3.cobryce.com 2 10 377 416 +4806us[+4850us] +/- 70ms
^+ B1-66ER.matrix.gs 2 10 377 21m -315us[-363us] +/- 60ms
^+ 2.time.dbsinet.com 2 9 175 601 -3138us[-3097us] +/- 93ms
$

There is a lot of useful information in that display. Notice that at the top it tells you the
current number of time server sources (8) that chronyd is employed.

Along the same lines but providing more statistical information on the time server
sources is chronyc sourcestats. An example is shown in Listing 7.51.

Listing 7.51: Viewing time server stats via the chronyc sourcestats command

$ chronyc sourcestats
210 Number of sources = 8
Name/IP Address NP NR Span Frequency Freq Skew Offset Std Dev
==
alphyn.canonical.com 31 15 87m +0.322 0.287 -180us 677us
golem.canonical.com 31 18 91m -0.006 0.137 -470us 275us
chilipepper.canonical.com 31 14 96m -0.044 0.163 -661us 383us
pugot.canonical.com 28 16 87m -0.029 0.350 -637us 575us
4.53.160.75 31 20 90m +0.003 0.166 -553us 370us
vps3.cobryce.com 30 14 87m -0.195 0.531 +4453us 936us
B1-66ER.matrix.gs 30 13 72m -0.095 0.351 +523us 635us
2.time.dbsinet.com 27 16 71m +0.073 0.327 -2801us 431us
$

If you want something that lets you see whether your software clock is being synchro-
nized like the netstat command shows, along with a lot more information concerning the
software clock’s performance, try out the chronyc tracking command. An example is
shown in Listing 7.52.

Listing 7.52: Viewing software clock information via the chronyc tracking command

$ chronyc tracking
Reference ID : 0435A04B (4.53.160.75)
Stratum : 3
Ref time (UTC) : Sat Jun 01 19:22:01 2019

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

416 Chapter 7 ■ Administering the System

System time : 0.000197749 seconds slow of NTP time
Last offset : -0.000001978 seconds
RMS offset : 0.001266906 seconds
Frequency : 31.578 ppm fast
Residual freq : +0.000 ppm
Skew : 0.077 ppm
Root delay : 0.034032539 seconds
Root dispersion : 0.022529230 seconds
Update interval : 1027.0 seconds
Leap status : Normal
$

There are several other useful chronyc commands you can use to manage and monitor
chrony. To peruse them all, enter man chronyc at the command line.

Summary
In this chapter, we took a close look at creating, modifying, and deleting user accounts and
groups. We explored email utilities and concepts that are helpful in troubleshooting as well
as using system email. In addition, we studied log files that are critical for troubleshooting
problems and keeping a watchful eye on security. Finally, we looked at how to properly
maintain a system’s time.

These skills will assist you in ensuring that all the servers in your care are running effi-
ciently. In addition, your systems will have fewer problems, the troubles you encounter can
be solved sooner, and with these skills, you can spend more time away from work.

Exam Essentials
Describe the players in managing user accounts. The /etc/login.defs and /etc/default/
useradd files configure various settings for the useradd command’s default behavior.
Because the directive settings within these files vary from distribution to distribution, it is
wise to peruse them prior to employing the useradd utility to create accounts. When an
account is created, the /etc/passwd, /etc/shadow, and /etc/group files are all modified.
Depending on the user account creation configuration, a user home directory may be cre-
ated and files copied to it from the /etc/skel/ directory. To modify user accounts, you
employ the usermod command and to delete them the userdel utility. Account information
can be viewed using the getent utility. Employ the chage command to view an account’s
/etc/shadow record information as well as modify it.

Listing 7.52: Viewing software clock information via the chronyc tracking
command (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam Essentials 417

Summarize managing groups. The commands involved in creating, modifying, and delet-
ing groups are the groupadd, groupmod, and groupdel commands. These commands cause
modifications to the /etc/group file. If you need to add a user to a group, you need to
employ the usermod utility. A user can easily switch from the account’s default group to
another group in which the account is a member by using the newgrp program. Account
group membership can be audited via the groups and getent commands as well as by view-
ing the /etc/group file.

Explain how to use various email utilities. Managing and troubleshooting the three
MTAs (Sendmail, Postfix, Exim) can be accomplished using various available email utili-
ties. To view an account’s mail on the system, use the binmail utility, mail. For messages
that may be stuck on the system, look at the mail queue using either the mailq or sendmail
-bp command. You can set up email aliases by editing the /etc/aliases file and then run-
ning the newaliases command, which will update the aliases database, /etc/aliases.db.
To temporarily forward emails, a user can create the .forward file in their home directory,
put in the username to whom the emails should be sent, and then set the proper permis-
sions on the file. Because the Sendmail MTA was so popular, Postfix provides a Sendmail
emulation layer, which allows Sendmail commands to be used on their system.

Clarify how rsyslogd logging operates. The rsyslogd service implements the syslog pro-
tocol. It uses the /etc/rsyslogd.conf configuration file, and on some distributions includes
the /etc/rsyslog.d/*.conf files. Within the configuration files, rules determine what to log
and where to log it via the facility.priority action format. Log messages can be sent to a
remote logging server (with or without compression) using the TCP|UDP[(z#)]HOST:[PORT#]
format. Log files are rotated with the logrotate cron job, which is configured in the /etc/
logrotate.conf file. Log messages can be generated manually using the logger command.

Summarize how to review and manage journal entries. The systemd-journald service
is responsible for journal message data. The daemon is controlled via the /etc/systemd/
journal.conf configuration file. By default the journal files are stored in the /run/system/
journal/ directory tree, which makes them volatile. To make the files persistent and store
them in the /var/log/journal/ directory tree, the Storage directive within the configura-
tion file is changed to persistent and the systemd-journald service restarted. The rsys-
log utility can act as a journal client as long as certain criteria are met. For example, the
imuxsock and/or imjournal modules are loaded in the /etc/rsyslog.conf file.

Journal entries can only be viewed using the journalctl utility. To view system journal
data, you must either use super user privileges or be a member of the systemd-journal
group. To view the entire current journal data file, simply use the journalctl command
with no parameters. To screen journal data, use the various filters available with the jour-
nalctl utility. Journal files are automatically rotated based on size or time settings in the
journal.conf file. Active journal files are moved to archived journal files, their names are
modified, and in some cases older archived journal files are deleted. Administrators can
also manually clean up archived journal files by employing the journalctl command along
with the vacuum options. Manual journal entries are created using the systemd-cat utility,
and if the configuration for rsyslog meets certain criteria, the logger command as well.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

418 Chapter 7 ■ Administering the System

Describe the various NTP daemons. The older ntpd provides NTP client/server services
and uses the /etc/ntp.conf as its configuration file. The server lines within the file des-
ignate time servers or time server clusters, such as 0.pool.ntp.org, from which to poll
for the correct time. You can manually set the system time (software clock) using a server
designation in the configuration file via the ntpdate command. You can view time syn-
chronization status using the ntpstat utility, and you can view polling activity and statistic
through the ntpq -p command.

The newer chronyd provides NTP client server services and uses the /etc/chrony.conf
or /etc/chrony/chrony.conf configuration file. The server lines within the file typically
designate a single time server, whereas pool lines designate time server clusters, such as
0.ubuntu.pool.ntp.org, from which to poll for the correct time. The rtcsync directive
tells chrony to periodically update the hardware time (real-time clock). Utilities that assist
in viewing the chrony time sources include the chronyc sources and chronyc sourcestats
commands. Additional information can be gleaned from the chronyc tracking utility.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 419

Review Questions
You can find the answers in the appendix.

1. Which of the following are fields within a /etc/passwd file record? (Choose all that apply.)

A. User account’s username

B. Password

C. Password change date

D. Special flag

E. UID

2. Which of the following are fields within an /etc/shadow file record? (Choose all that
apply.)

A. Maximum password age

B. Account expiration date

C. Password

D. Comment

E. Default shell

3. Which of the following commands will allow you to view the NUhura account’s record data
in the /etc/passwd file? (Choose all that apply.)

A. getent NUhura passwd

B. cat /etc/passwd

C. passwd NUhura

D. grep NUhura /etc/passwd

E. getent passwd NUhura

4. You create an account using the useradd utility, except for some reason the account’s
home directory was not created. Which of the following most likely caused this to occur?

A. The HOME directive is set to no.

B. You did not employ super user privileges.

C. The CREATE_HOME directive is not set.

D. The INACTIVE directive is set to -1.

E. The EXPIRE date is set and it is before today.

5. Which of the following commands will allow you to switch temporarily from your
account’s default group to another group with whom you have membership?

A. The usermod command

B. The newgrp command

C. The groups command

D. The groupadd command

E. The groupmod command

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

420 Chapter 7 ■ Administering the System

6. Which of the following commands is the best one to add JKirk as a member to a new
group called the NCC-1701 group and not remove any of the account’s previous group mem-
berships?

A. usermod -g NCC-1701 JKirk

B. usermod -G NCC-1701 JKirk

C. usermod -aG NCC-1701 JKirk

D. groupadd NCC-1701

E. groupmod NCC-1701 JKirk

7. Which of the following could be used to view the members of the NCC-1701 group? (Choose
all that apply.)

A. groups NCC-1701

B. getent group NCC-1701

C. getent groups NCC-1701

D. grep NCC-1701 /etc/group

E. grep NCC-1701 /etc/groups

8. What command can you use to check if there is a long list of messages in the email queue?
(Choose all that apply.)

A. systemctl sendmail status

B. sendmail -bp

C. sendmail -bq

D. mailq

E. ls /var/spool

9. Your email server receives a message addressed to support. The support address has
an alias of wesley on this computer. Assuming the system is properly configured, what
account will receive the email message?

A. support

B. None

C. Account in ~/.forward

D. root

E. wesley

10. Which syslog facility keyword represents event messages received from the system job
scheduler?

A. cron

B. user

C. kern

D. console

E. auth

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 421

11. What syslog severity level has the highest priority ranking in rsyslogd?

A. crit

B. alert

C. emerg

D. notice

E. err

12. What configuration file does rsyslogd use by default?

A. rsyslog.conf

B. journald.conf

C. syslogd.conf

D. rsyslog.d

E. syslog.d

13. What journalctl option displays the most recent journal entry first?

A. -a

B. -l

C. -r

D. -e

E. -n

14. You want to manually add an entry to the system’s active journal. What command can you
use to do this?

A. journalctl

B. journalctl-cat

C. systemd-cat

D. systemdd-journal

E. journalctl -logger

15. Which of the following are clocks or time that can be typically viewed or modified on a
Linux system? (Choose all that apply.)

A. Hardware clock

B. System time

C. Software clock

D. Atomic clock

E. Real-time clock

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

422 Chapter 7 ■ Administering the System

16. Which of the following utilities will allow you to change the time on a Linux system’s hard-
ware clock?

A. hwclock

B. date

C. timedatectl

D. ntpdate

E. rtcsync

17. What command will allow you to see the system time in both its current time zone as well
as in UTC?

A. hwclock -r

B. date

C. timedatectl

D. ntpq -p

E. chronyc sources

18. Which of the following is a correct configuration lines in the /etc/ntp.conf file for the
ntpd service, assuming you will be using the pool.ntp.org time servers? (Choose all that
apply.)

A. server pool.ntp.org iburst

B. pool pool.ntp.org iburst maxsources 2

C. service pool.ntp.org iburst

D. server 0.pool.ntp.org iburst

E. service 0.pool.ntp.org iburst

19. A system administrator, Geordi, has recently configured and started the ntpd service to
obtain accurate time for his system’s software clock. He’d like to update the hardware
clock, but wants to quickly check if the software clock is now synchronized. What is the
best command he should use?

A. ntpdate

B. ntpstat

C. ntpq -p

D. date

E. hwclock -w

20. Miles wants to configure his newly installed chrony. Which of the following might be a
configuration file he needs to view/modify? (Choose all that apply.)

A. /etc/ntp.conf

B. /etc/ntp/chrony.conf

C. /etc/chrony.d/chrony.conf

D. /etc/chrony.conf

E. /etc/chrony/chrony.conf

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

By

Configuring Basic
Networking

OBjeCtives

 ✓ 109.1 Fundamentals of internet protocols

 ✓ 109.2 Persistent network configuration

 ✓ 109.3 Basic network troubleshooting

 ✓ 109.4 Configure client side DNS

Chapter

8

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

These days it’s almost a necessity to have your Linux system
connected to some type of network. Whether it’s the need to
share files and printers on a local network, or the need to con-

nect to the Internet to download updates and security patches, most Linux systems have
some type of network connection.

This chapter looks at how to configure your Linux system to connect to a network, as
well as how to troubleshoot network connections if things go wrong. Unfortunately, there
are a few different methods for configuring network settings in Linux, and you’ll need to
know them all for the LPIC-1 exam. First, we’ll cover the common locations for the config-
uration files in Linux distributions. Next, we’ll examine the different tools you have at your
disposal that help make configuring the network settings easier. After that, you’ll learn
some simple network troubleshooting techniques.

Networking Basics
Before we take a look at how Linux handles network connectivity, let’s go through the
basics of computer networking. Computer networking is how we get data from one com-
puter system to another. To help simplify things, computer networks are often described as
layered systems. Different layers play different roles in the process of getting the data from
one network device to another.

There’s lots of debate, though, on just how best to split up the networking layers. While
the standard Open Systems Interconnection (OSI) network model uses seven layers, we’ll
use a simplified four-layer approach to describing the network functions:

 ■ The physical layer

 ■ The network layer

 ■ The transport layer

 ■ The application layer

The following sections detail the parts contained in each of these four layers.

The Physical Layer
The physical layer consists of the hardware required to connect your Linux system to the
network. If you’ve ever connected a computer to either a home or office network, we’re sure
you’re already familiar with the two main methods used to connect network devices: wired
and wireless network connections.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Networking Basics 425

Wired network connections use a series of network switches to connect network devices
using special Ethernet cables. The network switch accepts data packets from the network
device and then sends the data packets to the correct destination device on the network.
For large office network installations, switches are usually connected in a cascade design to
help reduce traffic load on the network. Switches can be interconnected with one another
to help segment the network traffic into smaller areas. Figure 8.1 demonstrates a common
layout for a wired network.

F i gu r e 8 .1 A wired office network infrastructure

Workstation

Office Switch

Server Server Server Server

Workstation Workstation

Office Switch

Workstation

Backbone Switch

While the term “wired” may make you think of copper cables, it can also apply to
network connections that use fiber-optic cables. Fiber-optic cables use light to transmit
data down a thin glass strand, achieving faster speeds and covering longer distances than
conventional copper connections. Although wired networking can be cumbersome, it does
provide the fastest network speeds (currently up to 100 gigabits per second). For that rea-
son, wired networking is still popular in Linux server environments where high through-
put is a must.

Nowadays, though, most small office and home networks utilize wireless networking.
Instead of using physical wires or fiber cables to connect devices, wireless networking uses
radio signals to transmit the data between the network device and a network access point.
The access point works in a similar way to the switch in that it controls how data is sent to
each network device communicating with it.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

426 Chapter 8 ■ Configuring Basic Networking

 Each access point uses a unique service set identifi er (SSID) to identify it from other
access points, which can be a text name or a number. You just tell your Linux system which
access point to connect to by specifying the correct SSID value. Figure 8.2 demonstrates a
common wireless network layout.

 F i gu r e 8 . 2 A wireless network infrastructure

Workstation Workstation
SSID: MyNetwork

SSID: MyNetworkWireless
Access Point

Physical Network

 The downside to wireless networking is that you can’t control where the radio signals
travel. It’s possible that someone outside of your home will see your access point signals
and try to connect to them. Because of that, it’s important to implement some type of
encryption security on your access point. Only devices using the correct encryption key can
connect to the wireless access point. Common wireless encryption techniques are Wired
Equivalent Privacy (WEP), Wi-Fi Protected Access (WPA), and Wi-Fi Protected Access ver-
sion 2 (WPA2).

 The Network Layer
 The network layer controls how data is sent between connected network devices, both in
your local network and across the Internet. For data to get to the correct destination device,
some type of network addressing scheme must be used to uniquely identify each network
device. The most common method for doing that is the Internet Protocol (IP).

 While the IP network protocol is by far the most popular in use, it’s not the
only network protocol available. Apple uses a proprietary protocol called
AppleTalk to allow Apple computers to communicate with one another on
a local network, and Novell used the IPX/SPX protocol for communication
between Novell network servers and clients. These network protocols,
however, have faded from standard use and aren’t covered on the LPIC-1
exam.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Networking Basics 427

To connect your Linux system to an IP network you’ll need four pieces of information:

 ■ An IP address

 ■ A hostname

 ■ A default router

 ■ A netmask value

The following sections walk through what each of these values represent.

The IP Address
In an IP network, each network device is assigned a unique 32-bit address. Networking
layer software embeds the source and destination IP addresses into the data packet so that
networking devices know how to handle the data packet and the Linux system knows
which packets to read and which to ignore.

To make it easier for humans to recognize the address, IP addresses are split into four
8-bit values, represented by decimal numbers, with a period between each value. This
format is called dotted-decimal notation. For example, a standard IP address in dotted-
decimal notation looks like 192.168.1.10.

IP addresses are split into two sections. One part of the IP address represents the
network address. All devices on the same physical network have the same network address
portion of their IP addresses. For example, if your home network is assigned the network
address 192.168.1.0, all of the network devices must start with the IP address 192.168.1.

The second part represents the host address. Each device on the same network must have
a unique host address. Figure 8.3 demonstrates assigning unique IP addresses to devices on
a local network.

F i gu r e 8 . 3 Network addressing on a local network

Network 192.168.5.0

Workstation 1

Network Host

192.168.5.16

Workstation 2

Network Host

192.168.5.24

To complicate things even further, an updated IP network protocol has been introduced
called IP Version 6 (IPv6). The IPv6 networking scheme uses 128-bit addresses instead of
the 32-bit addresses used by IP, which allows for lots more network devices to be uniquely
identified on the Internet.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

428 Chapter 8 ■ Configuring Basic Networking

 The IPv6 method uses hexadecimal numbers to identify addresses. The 128-bit address
is split into eight groups of four hexadecimal digits separated by colons, such as

 fed1:0000:0000:08d3:1319:8a2e:0370:7334

 If one or more groups of four digits is 0000, that group or those groups may be omitted,
leaving two colons:

 fed1::08d3:1319:8a2e:0370:7334

 However, only one group of zeroes can be compressed this way.
 The IPv6 protocol also provides for two different types of host addresses:

 ■ Link local addresses

 ■ Global addresses

 The IPv6 software on a host device automatically assigns the link local address . The link
local address uses a default network address of fe80:: and then derives the host part of
the address from the media access control (MAC) address built into the network card. This
ensures that any IPv6 device can automatically communicate with any other IPv6 device on
a local network without any confi guration.

 The IPv6 global address works similarly to the original IP version: each network is assigned
a unique network address, and each host on the network must have a unique host address.

 Netmask Address
 The netmask address distinguishes between the network and host address portions in the
IP address by using 1 bit to show which bits of the 32-bit IP address are used by the net-
work and 0 bits to show which bits represent the host address. Since most people don’t like
working with binary numbers, the netmask address is usually shown in dotted-decimal
format. For example, the netmask address 255.255.255.0 indicates the fi rst three decimal
numbers in the IP address represent the network address, and the last decimal number rep-
resents the host address.

 There is another way to represent netmask addresses called Classless
Inter-Domain Routing (CIDR) notation. CIDR notation represents the
netmask as just the number of masked bits in the IP address. CIDR
notation is usually shown with a slash between the network address and
the CIDR value. Thus, the network 192.168.1.0 and netmask 255.255.255.0
would have the CIDR notation of 192.168.1.0/24. Although CIDR notation is
becoming popular in the networking world, Linux configuration files still
use the netmask value to define the network.

 When working on the Internet, it’s crucial that no two physical Internet connections
have the same IP address. To accomplish that, the Internet Assigned Numbers Authority
(IANA) maintains strict control over the assignment of IP network addresses. However, not
all networks need to be connected to the Internet, so to differentiate those networks, IANA
has made the distinction between public and private IP networks.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Networking Basics 429

 Specifi c subnetwork ranges are reserved for private IP networks:

 ■ 10.0.0.0 to 10.255.255.255

 ■ 172.16.0.0 to 172.31.255.255

 ■ 192.168.0.0 to 192.168.255.255

 These private IP addresses can’t be used for Internet traffi c; they work only on local
networks.

 As you can imagine, with the popularity of the Internet, it didn’t take long
for IANA to run out of available public IP address networks. However, in a
brilliant move, the idea of network address translation (NAT) saved the day.
A NAT server can take an entire private IP network and assign it a single
public IP address on the Internet. This is how you can connect your entire
home network to a single ISP Internet connection and everything works.

 Default Router
 With IP and IPv6, devices can communicate directly only with other devices on the same
physical network. To connect different physical networks together, you use a router . A
router passes data from one network to another. Devices that need to send packets to hosts
on remote networks must use the router as a go-between. Usually a network will contain a
single router to forward packets to an upper-level network. This is called a default router
(or sometimes, a default gateway). Network devices must know the local default gateway
for the network to be able to forward packets to remote hosts.

 Thus, for a device to communicate in an IP network, it must know three separate pieces
of information:

 ■ Its own host address on the network

 ■ The netmask address for the local physical network

 ■ The address of a local router used to send packets to remote networks

 Here’s an example of what you would need:

 ■ Host address: 192.168.20.5

 ■ Netmask address: 255.255.255.0

 ■ Default gateway: 192.168.20.1

 With these three values in hand you’re almost ready to confi gure your Linux system
for working on the Internet. There’s just one more piece of the puzzle you’ll need to worry
about, and we’ll look at that in the next section.

 Host Names
 With all of these IP addresses, it can be impossible trying to remember just what servers
have what addresses. Fortunately for us, yet another network standard is available that can
help out. The Domain Name System (DNS) assigns a name to hosts on the network.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

430 Chapter 8 ■ Configuring Basic Networking

 With DNS, each network address is assigned a domain name (such as linux.org)
that uniquely identifi es the network, and each host in that network is assigned a unique
host name , which is added to the domain name to uniquely identify the host on the
network.

 Thus, to fi nd the host shadrach on the domain example.org , you’d use the DNS name
shadrach.example.org . The DNS system uses servers to map host and domain names to
the specifi c network addresses required to communicate with that server. Servers respon-
sible for defi ning the network and host names for a local network interoperate with upper-
level DNS servers to resolve remote host names.

 To use DNS in your network applications, all you need to confi gure is the address of the
DNS server that services your local network. From there, your local DNS server can fi nd
the address of any host name anywhere on the Internet.

 Dynamic Host Configuration Protocol
 There’s one more network layer feature that we need to discuss before we move on to con-
fi guring the Linux system. Trying to keep track of host addresses for all of the devices on a
large network can become cumbersome. Keeping individual IP address assignments straight
can be a challenge, and often you’ll run into the situation where two or more devices acci-
dentally are assigned the same IP address.

 The Dynamic Host Confi guration Protocol (DHCP) was created to make it easier to
confi gure client workstations, which don’t necessarily need to use the same IP address all
the time. With DHCP, the client communicates with a DHCP server on the network using
a temporary address. The DHCP server then tells the client exactly which IP address, net-
mask address, default gateway, and even DNS server to use. Each time the client reboots,
it may receive a different IP address, but that doesn’t matter as long as it’s unique on the
network.

 These days, most home network routers include a DHCP server function, so all you need
to do is set your Linux client to use DHCP and you’re done. You don’t need to know any of
the “behind the scenes” details of the network addresses.

 Although DHCP is great for clients, it’s not a good idea to use for servers.
Servers need to have a fixed IP address so that clients can always find
them. While it’s possible to configure static IP addresses in DHCP, usually
it’s safest to manually configure the network information for servers. This
is called a static host address.

 The Transport Layer
 The transport layer can often be the most confusing part of the network. Whereas the net-
work layer helps get data to a specifi c host on the network, the transport layer helps get the
data to the correct application contained on the host. It does that by using ports .

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Networking Basics 431

 Ports are sort of like apartment numbers. Each application that’s running on a network
server is assigned its own port number, just like different apartments in the same apart-
ment building are assigned separate apartment numbers. To send data to a specifi c applica-
tion on a server, the client software needs to know both the server IP address (just like the
apartment building address) and the transport layer port number (just like the apartment
number).

 Two common transport protocols are used in the IP networking world:

 ■ Transmission Control Protocol (TCP)

 ■ User Datagram Protocol (UDP)

 The Transmission Control Protocol (TCP) transport protocol sends data using a guar-
anteed delivery method. It ensures that the server receives each portion of data that the
client computer sends, and vice versa. The downside is that a lot of overhead is required to
track and verify all of the data sent, which can slow down the data transfer speed.

 For data that’s sensitive to transfer speed (such as real-time data like voice and video),
that can cause unwanted delays. The alternative to this is the User Datagram Protocol
(UDP) transport protocol. UDP doesn’t bother to ensure delivery of each portion of the
data—it just sends the data out on the network and hopes it gets to the server!

 Though losing data may sound like a bad thing, for some applications (such as voice and
video) it’s perfectly acceptable. Missing audio or video packets just show up as blips and breaks
in the fi nal audio or video result. As long as most of the data packets arrive, the audio and video
is understandable.

 Though not used for sending application data, there is one more transport
layer protocol that you’ll need to know about. There’s a need for network
devices to communicate “behind the scenes” with each other, passing
network management information around the network. The Internet
Control Message Protocol (ICMP) provides a simple way for network
devices to pass information such as error messages and network routing
information to make it easy for each client to find the required resource on
the network.

 The Application Layer
 The application layer is where all the action happens. This is where the network programs
process the data sent across the network and then return a result. Most network applica-
tions behave using the client/server paradigm . With the client/server paradigm, one net-
work device acts as the server, offering some type of service to multiple network clients
(such as a web server offering content via web pages). The server listens for incoming con-
nections on a specifi c transport layer port assigned to the application. The clients must
know what transport layer port to use to send requests to the server application.

 To simplify that process, both TCP and UDP use well-known ports to represent com-
mon applications. These port numbers are reserved so that network clients know to use

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

432 Chapter 8 ■ Configuring Basic Networking

them when looking for specific application hosts on the network. Table 8.1 shows some of
the more common well-known application ports.

ta B le 8 .1 TCP and UDP well-known ports

Port Protocol Application

20 TCP File Transfer Protocol (FTP) data

21 TCP File Transfer Protocol (FTP) control messages

22 TCP Secure Shell (SSH)

23 TCP Telnet interactive protocol

25 TCP Simple Mail Transfer Protocol (SMTP)

53 TCP&UDP Domain Name System (DNS)

80 TCP Hypertext Transfer Protocol (HTTP)

110 TCP Post Office Protocol version 3 (POP3)

123 UDP Network Time Protocol (NTP)

139 TCP NetBIOS Session Service

143 TCP Internet Message Access Protocol (IMAP)

161 UDP Simple Network Management Protocol (SNMP)

162 UDP Simple Network Management Protocol trap

389 TCP Lightweight Directory Access Protocol (LDAP)

443 TCP Hypertext Transfer Protocol (HTTPS) over TLS/SSL

465 TCP Authenticated SMTP (SMTPS)

514 TCP&UDP Remote Shell (TCP) or Syslog (UDP)

636 TCP Lightweight Directory Access Protocol over TLS/SSL (LDAPS)

993 TCP Internet Message Access Protocol over TLS/SSL (LDAPS)

995 TCP Post Office Protocol 3 over TLS/SSL (POP3S)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring Network Features 433

If you think trying to remember all of those port numbers is a hassle, you’re not alone.
In an attempt to simplify ports, there’s somewhat of an ad hoc standard for assigning
names each of the well-known port numbers. Each Linux system maintains a list of its net-
work port names in the /etc/services file. Network applications can read this file when
working with network ports and use the name instead of the port number. This approach
of displaying port names instead of numbers is commonly used in network troubleshooting
tools.

Now that you’ve seen the basics of how Linux uses networking to transfer data between
systems, our next section dives into the details of how to configure these features in your
Linux system.

Configuring Network Features
There are five main pieces of information you need to configure in your Linux system to
interact on a network:

 ■ The host address

 ■ The network subnet address

 ■ The default router (sometimes called the gateway)

 ■ The system host name

 ■ A DNS server address for resolving host names

We have three ways to configure this information in Linux systems:

 ■ Manually editing network configuration files

 ■ Using a graphical tool included with your Linux distribution

 ■ Using command-line tools

The following sections walk through each of these methods.

Network Configuration Files
Linux systems that utilize the systemd initialization method normally use the systemd-
networkd daemon to detect network interfaces and automatically create entries for them
in the network configuration files. You can modify those files manually to tweak or change
network settings if necessary.

Unfortunately, though, no single standard configuration file exists that all distributions
use. Instead, different distributions use different configuration files to define the network
settings. Table 8.2 shows the most common network configuration files that you’ll run into.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

434 Chapter 8 ■ Configuring Basic Networking

ta B le 8 . 2 Linux network configuration files

Distribution Network configuration location

Debian-based /etc/network/interfaces file

Red Hat–based /etc/sysconfig/network-scripts directory

OpenSUSE /etc/sysconfig/network file

Although each of the Linux distributions uses a different method of defining the net-
work settings, they all have similar features. Most configuration files define each of the
required network settings as separate values in the configuration file. Listing 8.1 shows an
example from a Debian-based Linux system.

listing 8.1: Sample Debian network static configuration settings

auto eth0
iface eth0 inet static
 address 192.168.1.77
 netmask 255.255.255.0
 gateway 192.168.1.254
iface eth0 inet6 static
 address 2003:aef0::23d1::0a10:00a1
 netmask 64
 gateway 2003:aef0::23d1::0a10:0001

The example shown in Listing 8.1 assigns both an IP and an IPv6 address to the wired
network interface designated as eth0.

Listing 8.2 shows how to define the IP network settings automatically using a DHCP
server on the network.

listing 8.2: Sample Debian network DHCP configuration settings

auto eth0
iface eth0 inet dhcp
iface eth0 inet6 dhcp

If you just want to assign an IPv6 link local address, which uniquely identifies the device
on the local network, but not retrieve an IPv6 address from a DHCP server, replace the
inet6 line with this:

iface eth0 inet6 auto

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring Network Features 435

 The auto attribute tells Linux to assign the link local address, which allows the Linux
system to communicate with any other IPv6 device on the local network but not a global
address.

 Since version 17.04, the Ubuntu distribution has deviated from the
standard Debian method and utilizes the Netplan tool to manage network
settings. Netplan uses simple YAML text files in the /etc/netplan folder
to define the network settings for each network interface installed on
the system. By default, Netplan passes the network settings off to the
Network Manager tool, so you don’t need to worry about how the Netplan
configuration files are set.

 For Red Hat–based systems, you’ll need to defi ne the network settings in two separate
fi les. The fi rst fi le defi nes the network and netmask addresses in a fi le named after the net-
work interface name (such as ifcfg-enp0s3). Listing 8.3 shows an example from a CentOS
Linux system.

listing 8.3: Sample CentOS network interface configuration settings

 TYPE=Ethernet
 PROXY_METHOD=none
 BROWSER_ONLY=no
 BOOTPROTO=dhcp
 DEFROUTE=yes
 IPV4_FAILURE_FATAL=no
 IPV6INIT=yes
 IPV6_AUTOCONF=yes
 IPV6_DEFROUTE=yes
 IPV6_FAILURE_FATAL=no
 IPV6_ADDR_GEN_MODE=stable-privacy
 NAME=enp0s3
 UUID=c8752366-3e1e-47e3-8162-c0435ec6d451
 DEVICE=enp0s3
 ONBOOT=yes
 IPV6_PRIVACY=no

 The second fi le required on Red Hat–based systems is the network fi le, which defi nes the
host name and default gateway, as shown in Listing 8.4.

listing 8.4: Sample CentOS network file configuration settings

 NETWORKING=yes
 HOSTNAME=mysystem
 GATEWAY=192.168.1.254

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

436 Chapter 8 ■ Configuring Basic Networking

 IPV6FORWARDING=yes
 IPV6_AUTOCONF=no
 IPV6_AUTOTUNNEL=no
 IPV6_DEFAULTGW=2003:aef0::23d1::0a10:0001
 IPV6_DEFAULTDEV=eth0

 Notice that the Red Hat network confi guration fi le also defi nes the host name assigned
to the Linux system. For other types of Linux systems, storing the host name in the
/etc/hostname fi le has become somewhat of a de facto standard. However, some Linux
distributions use /etc/HOSTNAME instead.

 If you’re working with a Linux system that uses the systemd initialization
method, use the hostnamectl program to set the host name value. The
hostnamectl program also allows you to set what’s called a “pretty”
name for the system, which is used by some utilities on the local system
to provide a more detailed description of the device, such as “Rich’s
laptop.”

 You will also need to defi ne a DNS server so that the system can use DNS host names.
For systemd systems, the DNS server is generated by the systemd-resolved program. For
legacy SysVinit systems, that’s handled in the /etc/resolv.conf confi guration fi le:

 domain mydomain.com
 search mytest.com
 nameserver 192.168.1.1

 The domain entry defi nes the domain name assigned to the network. By default, the sys-
tem will append this domain name to any host names you specify. The search entry defi nes
any additional domains used to search for host names. The nameserver entry is where you
specify the DNS server assigned to your network. Some networks can have more than one
DNS server; just add multiple nameserver entries in the fi le.

 To help speed up connections to commonly used hosts, you can manually
enter their host names and IP addresses into the /etc/hosts file on your
Linux system. The /etc/nsswitch.conf file defines whether the Linux
system checks this file before or after using DNS to look up the host name.

 Graphical Tools
 The Network Manager tool is a popular program used by many Linux distributions to
provide a graphical interface for defi ning network connections. The Network Manager
tool starts automatically at boot time and appears in the system tray area of the desktop
as an icon.

listing 8.4: Sample CentOS network file configuration settings (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring Network Features 437

If your system detects a wired network connection, the icon appears as a mini-
network with blocks connected together. If your system detects a wireless network
connection, the icon appears as an empty radio signal. When you click the icon, you’ll
see a list of the available wireless networks detected by the network card (as shown
in Figure 8.4).

F i gu r e 8 . 4 Network Manager showing a wireless network connection

Click your access point to select it from the list. If your access point is encrypted, you’ll
be prompted to enter the password to gain access to the network.

When your system is connected to a wireless access point, the icon appears as a radio
signal. Click the icon, and then select Edit Connections to edit the network connection set-
tings for the system, shown in Figure 8.5.

F i gu r e 8 .5 The Network Manager edit configurations window

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

438 Chapter 8 ■ Configuring Basic Networking

You can select the network connection to configure (either wireless or wired), and then
click the Edit button to change the current configuration.

The Network Manager tool allows you to specify all four of the network configuration
values by using the manual configuration option or to set the configuration to use DHCP to
determine the settings. Network Manager automatically updates the appropriate network
configuration files with the updated settings.

Command-Line Tools
If you’re not working with a graphical desktop client environment, you’ll need to use the
Linux command-line tools to set the network configuration information. You have quite a
few different command-line tools at your disposal. This section covers the ones you’re most
likely to run into (and the ones you’ll most likely see on the LPIC-1 exam).

Network Manager Command-Line Tools
The Network Manager tool also provides two different types of command-line tools:

 ■ nmtui: Provides a simple text-based menu tool

 ■ nmcli: Provides a text-only command-line tool

Both of these tools help guide you through the process of setting the required network
information for your Linux system. The nmtui tool displays a stripped-down version of the
graphical tool, where you can select a network interface and assign network properties to
it, as shown in Figure 8.6.

F i gu r e 8 .6 The Network Manager nmtui command-line tool

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring Network Features 439

The nmcli tool doesn’t attempt to use any type of graphics capabilities—it just provides a
command-line interface where you can view and change the network settings. By default, the
command displays the current network devices and their settings, as shown in Listing 8.5.

listing 8.5: The default output of the nmcli command

$ nmcli
enp0s3: connected to Wired connection 1
 "Intel 82540EM Gigabit Ethernet Controller (PRO/1000 MT Desktop Adapter)
 ethernet (e1000), 08:00:27:2C:35:D2, hw, mtu 1500
 ip4 default, ip6 default
 inet4 192.168.1.77/24
 route4 0.0.0.0/0
 inet6 2600:1702:1ce0:eeb0::6d0/128
 inet6 fe80::16d2:b8f:7f78:f3ed/64
 route6 2600:1702:1ce0:eeb0::/60
 route6 2600:1702:1ce0:eeb0::/64
 route6 ::/0
 route6 ff00::/8
 route6 fe80::/64
 route6 fe80::/64
 ...

The nmcli command uses command-line options to allow you to set the network
settings:

nmcli con add type ethernet con-name eth1 ifname enp0s3 ip4
10.0.2.10/24 gw4 192.168.1.254

Legacy Tools
If your Linux distribution doesn’t support one of the Network Manager tools, there are
usually legacy tools, including utilities from the net-tools package, available in most Linux
distributions. Here are a few of the basic command-line tools that you can use:

 ■ ethtool: Displays Ethernet settings for a network interface

 ■ ifconfig: Displays or sets the IP address and netmask values for a network interface

 ■ iwconfig: Sets the SSID and encryption key for a wireless interface

 ■ route: Sets the default router address

The ethtool command allows you to peek inside the network interface card Ethernet set-
tings and change any properties that you may need to communicate with a network device,
such as a switch.

By default, the ethtool command displays the current configuration settings for the
network interface, as shown in Listing 8.6.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

440 Chapter 8 ■ Configuring Basic Networking

listing 8.6: Output from the ethtool command

$ ethtool enp0s3
Settings for enp0s3:
 Supported ports: [TP]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Supported pause frame use: No
 Supports auto-negotiation: Yes
 Supported FEC modes: Not reported
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Advertised pause frame use: No
 Advertised auto-negotiation: Yes
 Advertised FEC modes: Not reported
 Speed: 1000Mb/s
 Duplex: Full
 Port: Twisted Pair
 PHYAD: 0
 Transceiver: internal
 Auto-negotiation: on
 MDI-X: off (auto)
Cannot get wake-on-lan settings: Operation not permitted
 Current message level: 0x00000007 (7)
 drv probe link
 Link detected: yes
$

You can change features such as speed, duplex, and whether or not the network interface
attempts to auto-negotiate features with the switch.

The ifconfig command is a legacy command for configuring network device settings. It
allows you to set the network address and subnet mask for a network interface:

$ sudo ifconfig enp0s3 down 10.0.2.10 netmask 255.255.255.0

You can list all of the network interface settings on your system using the ifconfig
command with no command-line options, as shown in Listing 8.7.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring Network Features 441

listing 8.7: Displaying network interface information

 $ ifconfig
 enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.1.77 netmask 255.255.255.0 broadcast 192.168.1.255
 inet6 2600:1702:1ce0:eeb0:66dc:cedc:10ff:9ee6 prefixlen 64 scopeid 0x0<global>
 inet6 fe80::16d2:b8f:7f78:f3ed prefixlen 64 scopeid 0x20<link>
 inet6 2600:1702:1ce0:eeb0:48e3:1865:5544:8200 prefixlen 64 scopeid 0x0<global>
 ether 08:00:27:2c:35:d2 txqueuelen 1000 (Ethernet)
 RX packets 293593 bytes 431675620 (431.6 MB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 119754 bytes 9135701 (9.1 MB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

 lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
 inet 127.0.0.1 netmask 255.0.0.0
 inet6 ::1 prefixlen 128 scopeid 0x10<host>
 loop txqueuelen 1000 (Local Loopback)
 RX packets 1206 bytes 125586 (125.5 KB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 1206 bytes 125586 (125.5 KB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

 $

 Instead of using the long ifconfig command format to activate or
deactivate a network interface, you can use the simpler ifup or ifdown
command. Just add the interface name with the command to easily
activate or deactivate the interface.

 Before you can use the ifconfig command to assign an address to a wireless interface,
you must assign the wireless SSID and encryption key values using the iwconfig command:

 # iwconfig wlan0 essid "MyNetwork" key s:mypassword

 The essid parameter specifi es the access point SSID name, and the key parameter speci-
fi es the encryption key required to connect to it. Notice that the encryption key is preceded
by an s: . That allows you to specify the encryption key in ASCII text characters; other-
wise, you’ll need to specify the key using hexadecimal values.

 If you don’t know the name of a local wireless connection, you can use the iwlist com-
mand to display all of the wireless signals your wireless card detects. Just specify the name
of the wireless device, and use the scan option:

 $ iwlist wlan0 scan

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

442 Chapter 8 ■ Configuring Basic Networking

To set the default gateway, use the route command:

route add default gw 192.168.1.254

You can also use the route command by itself to view the current default router config-
ured for the system:

$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default 192.168.1.254 0.0.0.0 UG 0 0 0 enp0s3
192.168.1.0 * 255.255.255.0 U 1 0 0 enp0s3
$

In this example, the default router defined for the Linux system is 192.168.1.254 and
is available from the enp0s3 network interface. The output also shows that to get to the
192.168.1.0 network you don’t need a gateway, because that’s the local network the Linux
system is connected to.

If your network is connected to multiple networks via multiple routers, you can manu-
ally create the routing table in the system by using the add or del command-line option for
the route command. The format for that is

route [add] [del] target gw gateway

where target is the target host or network and gateway is the router address.

The iproute2 Package
Most of the legacy command-line network tools have been replaced with the newer
iproute2 package. The main utility in the iproute2 package is the ip command.

The ip command is more robust than the old ifconfig command, and it is becoming
the more popular method for defining network settings from the command line. The ip
utility uses several command options to display the current network settings or define new
network settings. Table 8.3 shows these command options.

ta B le 8 . 3 The ip utility command options

Parameter Description

address Display or set the IPv4 or IPv6 address on the device

addrlabel Define configuration labels

l2tp Tunnel Ethernet over IP

link Define a network device

maddress Define a multicast address for the system to listen to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring Network Features 443

Parameter Description

monitor Watch for netlink messages

mroute Define an entry in the multicast routing cache

mrule Define a rule in the multicast routing policy database

neighbor Manage ARP or NDISC cache entries

netns Manage network namespaces

ntable Manage the neighbor cache operation

route Manage the routing table

rule Manage entries in the routing policy database

tcpmetrics Manage TCP metrics on the interface

token Manage tokenized interface identifiers

tunnel Tunnel over IP

tuntap Manage TUN/TAP devices

xfrm Manage IPSec policies for secure connections

Each command option has parameters that define what to do, such as display network
settings, or that modify existing network settings. Listing 8.8 demonstrates how to display
the current network settings using the show parameter.

listing 8.8: The ip address output

$ ip address show

rich@rich-VirtualBox:~$ ip address show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000

 link/ether 08:00:27:2c:35:d2 brd ff:ff:ff:ff:ff:ff

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

444 Chapter 8 ■ Configuring Basic Networking

 inet 192.168.1.77/24 brd 192.168.1.255 scope global dynamic noprefixroute enp0s3

 valid_lft 84487sec preferred_lft 84487sec

 inet6 2600:1702:1ce0:eeb0::6d0/128 scope global dynamic noprefixroute

 valid_lft 5606sec preferred_lft 5306sec

 inet6 2600:1702:1ce0:eeb0:48e3:1865:5544:8200/64 scope global temporary dynamic

 valid_lft 3305sec preferred_lft 3305sec

 inet6 2600:1702:1ce0:eeb0:66dc:cedc:10ff:9ee6/64 scope global dynamic mngtmpaddr noprefixroute

 valid_lft 3305sec preferred_lft 3305sec

 inet6 fe80::16d2:b8f:7f78:f3ed/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

 $

 This example shows two network interfaces on the Linux system:

 ■ lo : The local loopback interface

 ■ enp0s3 : A wired network interface

 The local loopback interface is a special virtual network interface. Any local program
can use it to communicate with other programs just as if they were across a network. That
can simplify transferring data between programs.

 The enp0s3 network interface is the wired network connection for the Linux system.
The ip command shows the IP address assigned to the interface (there’s both an IP and an
IPv6 link local address assigned), the netmask value, and some basic statistics about the
packets on the interface.

 If the output doesn’t show a network address assigned to the interface, you can use the
ip command to specify the host address and netmask values for the interface:

 # ip address add 192.168.1.77/24 dev enp0s3

 Then use the ip command to set the default router for the network interface:

 # ip route add default via 192.168.1.254 dev enp0s3

 Finally, make the network interface active by using the link option:

 # ip link set enp0s3 up

 Being able to set the IP address, netmask, and default router values all from a single
command is what’s made the iproute2 package so popular.

 You can fine-tune networking parameters for a network interface using the
/etc/sysctl.conf configuration file. This file defines kernel parameters
that the Linux system uses when interacting with the network interface.
This has become a popular method to use for setting advanced security
features, such as to disable responding to ICMP messages by setting the
icmp_echo_ignore_broadcasts value to 1, or if your system has multiple
network interface cards, to disable packet forwarding by setting the
ip_forward value to 0.

listing 8.8: The ip address output (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring Network Features 445

 Getting Network Settings Automatically
 If your network uses DHCP, you’ll need to ensure that a proper DHCP client program is
running on your Linux system. The DHCP client program communicates with the network
DHCP server in the background and assigns the necessary IP address settings as directed by
the DHCP server. Three common DHCP programs are available for Linux systems:

 ■ dhcpcd

 ■ dhclient

 ■ pump

 The dhcpcd program is becoming the most popular of the three, but you’ll still see the
other two used in some Linux distributions.

 When you use your Linux system’s software package manager utility to install the
DHCP client program, it sets the program to automatically launch at boot time and handle
the IP address confi guration needed to interact on the network.

 If you’re working with a Linux server that acts as a DHCP server, the
/etc/dhcpd.conf file contains the IP address settings that the server
offers to DHCP clients. The file contains a section for each subnet the
DHCP server services:

 subnet 10.0.2.0 netmask 255.255.255.0 {
 option routers 192.168.1.254;
 option subnet-mask 255.255.255.0;

 option domain-name "mynetwork.com";
 option domain-name-servers 192.168.1.254;

 option time-offset -18000; # Eastern Standard Time

 range 10.0.2.1 10.0.2.100;
 }

 Bonding Network Cards
 One fi nal network confi guration setting you may run into in Linux distributions has to do
with network interface bonding . Bonding allows you to aggregate multiple interfaces into
one virtual network device.

 You can then tell the Linux system how to treat the virtual network device using three
different basic types:

 ■ Load balancing : Network traffic is shared between two or more network interfaces.

 ■ Aggregation : Two or more network interfaces are combined to create one larger network pipe.

 ■ Active/passive : One network interface is live, and the other is used as a backup for fault
tolerance.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

446 Chapter 8 ■ Configuring Basic Networking

 You can choose from seven different bonding modes, as shown in Table 8.4 .

 ta B le 8 . 4 Network interface bonding modes

Mode Name Description

0 balance-rr Provides load balancing and fault tolerance using interfaces
in a round-robin approach

1 active-backup Provides fault tolerance using one interface as the primary
and the other as a backup

2 balance-xor Provides load balancing and fault tolerance by transmitting
on one interface and receiving on the second

3 broadcast Transmits all packets on all interfaces

4 802.3ad Aggregates the interfaces to create one connection
combining the interface bandwidths

5 balance-tlb Provides load balancing and fault tolerance based on the
current transmit load on each interface

6 balance-alb Provides load balancing and fault tolerance based on the
current receive load on each interface

 To initialize network interface bonding, you must fi rst load the bonding module in the
Linux kernel:

 $ sudo modprobe bonding

 This creates a bond0 network interface, which you can then defi ne using the ip utility:

 $ sudo ip link add bond0 type bond mode 4

 Once you’ve defi ned the bond type, you can add the appropriate network interfaces to
the bond using the ip utility:

 $ sudo ip link set eth0 master bond0
 $ sudo ip link set eth1 master bond0

 The Linux system will then treat the bond0 device as a single network interface utilizing
the load balancing or aggregation method you defi ned.

 If you have multiple network interface cards on your Linux system and
choose to connect them to separate networks, you can configure your Linux
system to act as a bridge between the two networks. The brctl command
allows you to control how the bridging behaves. To do this, though, you
must set the ip_forward kernel parameter in the /etc/sysctl.conf file to
1 to enable bridging.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Basic Network Troubleshooting 447

Basic Network Troubleshooting
Once you have a Linux system running, there are a few things you can do to check that
things are operating properly. This section walks through the commands you should know
to monitor the network activity, including watching what processes are listening on the net-
work and what connections are active from your system.

Sending Test Packets
One way to test network connectivity is to send test packets to known hosts. Linux pro-
vides the ping and ping6 commands to do that. The ping and ping6 commands send
Internet Control Message Protocol (ICMP) packets to remote hosts using either the IP
(ping) or IPv6 (ping6) protocols. ICMP packets work behind the scenes to track connectiv-
ity and provide control messages between systems. If the remote host supports ICMP, it
will send a reply packet back when it receives a ping packet.

The basic format for the ping command is to just specify the IP address of the remote host:

$ ping 10.0.2.2
PING 10.0.2.2 (10.0.2.2) 56(84) bytes of data.
64 bytes from 10.0.2.2: icmp_seq=1 ttl=63 time=14.6 ms
64 bytes from 10.0.2.2: icmp_seq=2 ttl=63 time=3.82 ms
64 bytes from 10.0.2.2: icmp_seq=3 ttl=63 time=2.05 ms
64 bytes from 10.0.2.2: icmp_seq=4 ttl=63 time=0.088 ms
64 bytes from 10.0.2.2: icmp_seq=5 ttl=63 time=3.54 ms
64 bytes from 10.0.2.2: icmp_seq=6 ttl=63 time=3.97 ms
64 bytes from 10.0.2.2: icmp_seq=7 ttl=63 time=0.040 ms
^C
--- 10.0.2.2 ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6020ms
rtt min/avg/max/mdev = 0.040/4.030/14.696/4.620 ms
$

The ping command continues sending packets until you press Ctrl+C. You can also use
the -c command-line option to specify a set number of packets to send, then stop.

For the ping6 command, things get a little more complicated. If you’re using an IPv6
link local address, you also need to tell the command which interface to send the packets
out on:

$ ping6 –c 4 fe80::c418:2ed0:aead:cbce%enp0s3
PING fe80::c418:2ed0:aead:cbce%enp0s3(fe80::c418:2ed0:aead:cbce) 56 data
bytes
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=1 ttl=128 time=1.47 ms
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=2 ttl=128 time=0.478 ms
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=3 ttl=128 time=0.777 ms

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

448 Chapter 8 ■ Configuring Basic Networking

 64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=4 ttl=128 time=0.659 ms

 --- fe80::c418:2ed0:aead:cbce%enp0s3 ping statistics ---
 4 packets transmitted, 4 received, 0% packet loss, time 3003ms
 rtt min/avg/max/mdev = 0.478/0.847/1.475/0.378 ms
 $

 The %enp0s3 part tells the system to send the ping packets out the enp0s3 network
interface for the link local address.

 Unfortunately, these days many hosts don’t support ICMP packets because
they can be used to create a denial-of-service (DOS) attack against the
host. Don’t be surprised if you try to ping a remote host and don’t get any
responses.

 Tracing Routes
 Sending ping packets can be a useful tool, but there’s not much you learn if the ping
test packet doesn’t come back. You have no way of knowing where in the path between
your client and the remote server the network failed. That’s where the traceroute and
tracepath commands come in.

 The traceroute command, and its IPv6 version traceroute6 , shows the steps (called
hops in network terms) taken to get from your local network to the remote host. It
fi nds each router hop along the path by sending ICMP packets with short time-to-live
(TTL) values so that each test packet can survive only one hop further than the previ-
ous packet. This can map all of the routers the test packets traverse getting to the fi nal
destination.

 The tracepath command, and its IPv6 version tracepath6 , also show the steps taken
to get to a remote host but use UDP packets instead of ICMP packets. These have a better
chance of being allowed to pass through routers in the Internet, so the tracepath command
is often successful when the traceroute command fails:

 $ tracepath 192.168.1.254
 1?: [LOCALHOST] pmtu 1500
 1: _gateway 6.218ms reached
 1: homeportal 4.366ms reached
 Resume: pmtu 1500 hops 1 back 1
 $

 Another benefi t of using UDP packets is that you don’t need to be the root super user
to send UDP packets, so any user account on the Linux system can use the tracepath
command.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Basic Network Troubleshooting 449

 A common use for the tracepath command by networking professionals
is in finding MTU mismatches between network hops in a path. The maxi-
mum transmission unit (MTU) is the size of the largest data packet allowed
by a network device. If one device in the path can accept only smaller-sized
packets, other devices in the network path need to break longer packets
into shorter ones, slowing down the transmission.

 Finding Host Information
 Sometimes the problem isn’t with network connectivity but with the DNS host name
system. You can test a host name using the host command:

 $ host www.linux.org
 www.linux.org is an alias for linux.org.
 linux.org has address 107.170.40.56
 linux.org mail is handled by 20 mx.iqemail.net.
 $

 The host command queries the DNS server to determine the IP addresses assigned to the
specifi ed host name. By default, it returns all IP addresses associated with the host name.
Some hosts are supported by multiple servers in a load balancing confi guration. The host
command will show all of the IP addresses associated with those servers:

 $ host www.google.com
 www.google.com has address 74.125.138.104
 www.google.com has address 74.125.138.105
 www.google.com has address 74.125.138.147
 www.google.com has address 74.125.138.99
 www.google.com has address 74.125.138.103
 www.google.com has address 74.125.138.106
 www.google.com has IPv6 address 2607:f8b0:4002:c0c::67
 $

 You can also specify an IP address for the host command and it will attempt to fi nd the
host name associated with it:

 $ host 107.170.40.56
 56.40.170.107.in-addr.arpa domain name pointer iqdig11.iqnection.com.
 $

 Notice, though, that often an IP address will resolve to a generic server host name that
hosts the website and not the website alias, as is the case here with the www.linux.org IP
address.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

450 Chapter 8 ■ Configuring Basic Networking

Another great tool to use is the dig command. The dig command displays all DNS data
records associated with a specific host or network. For example, you can look up the infor-
mation for a specific host name:

$ dig www.linux.org

; <<>> DiG 9.9.4-RedHat-9.9.4-18.el7_1.5 <<>> www.linux.org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 45314
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;www.linux.org. IN A

;; ANSWER SECTION:
www.linux.org. 14400 IN CNAME linux.org.
linux.org. 3600 IN A 107.170.40.56

;; Query time: 75 msec
;; SERVER: 192.168.1.254#53(192.168.1.254)
;; WHEN: Sat Feb 06 17:44:29 EST 2016
;; MSG SIZE rcvd: 72

$

Or you can look up DNS data records associated with a specific network service, such as
a mail server:

$ dig linux.org MX

; <<>> DiG 9.9.5-3ubuntu0.5-Ubuntu <<>> linux.org MX
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16202
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;linux.org. IN MX

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Basic Network Troubleshooting 451

;; ANSWER SECTION:
linux.org. 3600 IN MX 20 mx.iqemail.net.

;; Query time: 75 msec
;; SERVER: 127.0.1.1#53(127.0.1.1)
;; WHEN: Tue Feb 09 12:35:43 EST 2016
;; MSG SIZE rcvd: 68

$

If you need to look up DNS information for multiple servers or domains, the nslookup
command provides an interactive interface where you can enter commands:

$ nslookup
> www.google.com
Server: 192.168.1.254
Address: 192.168.1.254#53

Non-authoritative answer:
Name: www.google.com
Address: 172.217.2.228
> www.wikipedia.org
Server: 192.168.1.254
Address: 192.168.1.254#53

Non-authoritative answer:
Name: www.wikipedia.org
Address: 208.80.153.224
> exit

$

You can also dynamically specify the address of another DNS server to use for the name
lookups, which is a handy way to determine whether your default DNS server is at fault if a
name resolution fails.

One final DNS tool available is the getent command. The getent command is a generic
tool used to look for entries in any type of text database on the Linux system. It’s com-
monly used to look up user entries in the /etc/passwd file:

$ getent passwd rich
rich:x:1000:1000:Rich,,,:/home/rich:/bin/bash
$

but it can also come in handy when looking up hosts.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

452 Chapter 8 ■ Configuring Basic Networking

When using getent to look up a host name, it parses through the host databases as
defined in the /etc/nsswitch.conf configuration file to include the local /etc/hosts
file. Thus, if you have a lot of local network hosts defined in the /etc/hosts file, it’ll
return those host names quicker than using the standard host or dig command. If you
use the command without specifying a host name, it returns all hosts stored in the local
/etc/hosts file:

$ getent hosts
127.0.0.1 localhost
127.0.1.1 rich-VirtualBox
192.168.1.200 mydatabase
192.18.1.201 myserver
127.0.0.1 ip6-localhost ip6-loopback
$

Or you can query for a specific host:

$ getent hosts mydatabase
192.168.1.200 mydatabase
$

That can come in handy when you’re trying to troubleshoot a host connection.

Advanced Network Troubleshooting
Besides the simple network tests shown in the previous section, Linux has some more
advanced programs that can provide more advanced information about the network envi-
ronment. Sometimes it helps to be able to see what network connections are active on a
Linux system. There are two ways to troubleshoot that issue: the netstat command and
the ss command.

The netstat Command
The netstat command can provide a wealth of network information for you. By default, it
lists all open network connections on the system:

netstat
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
Active UNIX domain sockets (w/o servers)
Proto RefCnt Flags Type State I-Node Path
unix 2 [] DGRAM 10825 @/org/freedesktop/systemd1/notify
unix 2 [] DGRAM 10933 /run/systemd/shutdownd

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Advanced Network Troubleshooting 453

unix 6 [] DGRAM 6609 /run/systemd/journal/socket
unix 25 [] DGRAM 6611 /dev/log
unix 3 [] STREAM CONNECTED 25693
unix 3 [] STREAM CONNECTED 20770 /var/run/dbus/system_bus_socket
unix 3 [] STREAM CONNECTED 19556
unix 3 [] STREAM CONNECTED 19511
unix 2 [] DGRAM 24125
unix 3 [] STREAM CONNECTED 19535
unix 3 [] STREAM CONNECTED 18067 /var/run/dbus/system_bus_socket
unix 3 [] STREAM CONNECTED 32358
unix 3 [] STREAM CONNECTED 24818 /var/run/dbus/system_bus_socket
...

The netstat command produces lots of output, since normally lots of programs use net-
work services on Linux systems. You can limit the output to just TCP or UDP connections
by using the –t command-line option for TCP connections or –u for UDP connections:

$ netstat -t
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 1 0 10.0.2.15:58630 productsearch.ubu:https CLOSE_WAIT
tcp6 1 0 ip6-localhost:57782 ip6-localhost:ipp CLOSE_WAIT
$

You can also get a list of what applications are listening on which network ports by
using the –l option:

$ netstat -l
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 ubuntu02:domain *:* LISTEN
tcp 0 0 localhost:ipp *:* LISTEN
tcp6 0 0 ip6-localhost:ipp [::]:* LISTEN
udp 0 0 *:ipp *:*
udp 0 0 *:mdns *:*
udp 0 0 *:36355 *:*
udp 0 0 ubuntu02:domain *:*
udp 0 0 *:bootpc *:*
udp 0 0 *:12461 *:*
udp6 0 0 [::]:64294 [::]:*
udp6 0 0 [::]:60259 [::]:*
udp6 0 0 [::]:mdns [::]:*
...

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

454 Chapter 8 ■ Configuring Basic Networking

As you can see, just a standard Linux workstation still has lots of things happening in
the background, waiting for connections.

Yet another great feature of the netstat command is that the –s option displays statis-
tics for the different types of packets the system has used on the network:

netstat -s
Ip:
 240762 total packets received
 0 forwarded
 0 incoming packets discarded
 240747 incoming packets delivered
 206940 requests sent out
 32 dropped because of missing route
Icmp:
 57 ICMP messages received
 0 input ICMP message failed.
 ICMP input histogram:
 destination unreachable: 12
 timeout in transit: 38
 echo replies: 7
 7 ICMP messages sent
 0 ICMP messages failed
 ICMP output histogram:
 echo request: 7
IcmpMsg:
 InType0: 7
 InType3: 12
 InType11: 38
 OutType8: 7
Tcp:
 286 active connections openings
 0 passive connection openings
 0 failed connection attempts
 0 connection resets received
 0 connections established
 239933 segments received
 206091 segments send out
 0 segments retransmited
 0 bad segments received.
 0 resets sent

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Advanced Network Troubleshooting 455

Udp:
 757 packets received
 0 packets to unknown port received.
 0 packet receive errors
 840 packets sent
 0 receive buffer errors
 0 send buffer errors
UdpLite:
TcpExt:
 219 TCP sockets finished time wait in fast timer
 15 delayed acks sent
 26 delayed acks further delayed because of locked socket
 Quick ack mode was activated 1 times
 229343 packet headers predicted
 289 acknowledgments not containing data payload received
 301 predicted acknowledgments
 TCPRcvCoalesce: 72755
IpExt:
 InNoRoutes: 2
 InMcastPkts: 13
 OutMcastPkts: 15
 InOctets: 410722578
 OutOctets: 8363083
 InMcastOctets: 2746
 OutMcastOctets: 2826
#

The netstat statistics output can give you a rough idea of how busy your Linux system
is on the network, or if a specific issue exists with one of the protocols installed.

Examining Sockets
The netstats tool provides a wealth of network information, but it can often be hard to
determine which program is listening on which open port. The ss command can come to
your rescue for that.

A program connection to a port is called a socket. The ss command can link which sys-
tem processes are using which network sockets that are active:

$ ss -anpt
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 100 127.0.0.1:25 *:*
LISTEN 0 128 *:111 *:*

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

456 Chapter 8 ■ Configuring Basic Networking

LISTEN 0 5 192.168.122.1:53 *:*
LISTEN 0 128 *:22 *:*
LISTEN 0 128 127.0.0.1:631 *:*
LISTEN 0 100 ::1:25 :::*
LISTEN 0 128 :::111 :::*
LISTEN 0 128 :::22 :::*
LISTEN 0 128 ::1:631 :::*
ESTAB 0 0 ::1:22 ::1:40490
ESTAB 0 0 ::1:40490 ::1:22
users:(("ssh",pid=15176,fd=3))
$

The -anpt option displays both listening and established TCP connections, as well as
the process they’re associated with. This output shows that the SSH port (port 22) has an
established connection and is controlled by process ID 15176, the ssh program.

The netcat Utility
One final tool that can come in handy for troubleshooting network issues is the netcat (nc)
utility. The netcat utility can read from and write to any network port, making it a virtual
Swiss army knife for the networking world. You can use netcat to test just about any type
of network situation, including building your very own client/server test tool.

For example, to have netcat listen for incoming client connections on TCP port 2000,
use the -l command option:

$ nc -l 2000

Then, from another Linux system you can use netcat to connect to the listening server:

$ nc 192.168.1.77 2000

When the connection is established, anything you type in either the client or the server
side is sent to the other end of the connection and displayed. For example, when you type
text at the client, like so:

$ nc 192.168.1.77 2000
This is a test

it appears in the output back on the server:

$ nc -l 2000
This is a test

What makes netcat even more versatile is that it accepts input from redirection and
piping, so you can easily use it in scripts to create simple ad hoc servers and clients for just
about any network testing you need to do.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Summary 457

e x e r C i s e 8 .1

Determining the Network environment

This exercise will demonstrate how to quickly assess the network configuration and
programs for your Linux system without having to dig through lots of configuration files.
To document your system network information, follow these steps:

1. Log in as root, or acquire root privileges by using su or sudo with each of the
commands that follow.

2. Type ip address show to display the current network interfaces on your system.
You will most likely see a loopback interface (named l0) and one or more network
interfaces. Write down the IP (called inet) and IPv6 (called inet6) addresses assigned
to each network interface, along with the hardware address and the network mask
address.

3. If your system has a wireless network card, type iwlist wlan0 scan to view the
wireless access points in your area.

4. If your system has a wireless network card, type iwconfig to display the current
wireless settings for your network interface.

5. Type route to display the routes defined on your system. Note the default gateway
address assigned to your system. It should be on the same network as the IP address
assigned to the system.

6. Type cat /etc/resolv.conf to display the DNS settings for your system.

7. Type netstat –l to display the programs listening for incoming network connec-
tions. The entries marked as unix are using the loopback address to communicate
with other programs internally on your system.

8. Type ss -anpt to display the processes that have active network ports open on your
system.

Summary
Connecting Linux systems to networks can be painless if you have the correct tools. To
connect the Linux system you’ll need an IP address, a netmask address, a default router, a
host name, and a DNS server. If you don’t care what IP address is assigned to your Linux
system, you can obtain those values automatically using DHCP. However, if you are run-
ning a Linux server that requires a static IP address, you may need to configure these values
manually.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

458 Chapter 8 ■ Configuring Basic Networking

Linux stores network connection information in configuration files. You can manually
modify the files to store the appropriate network information, or you can use a graphical
or command-line tool to do that. The Network Manager tool is the most popular graphical
tool used by Linux distributions. It allows you to configure both wired and wireless net-
work settings from a graphical window. The Network Manager icon in the desktop panel
area shows network connectivity, as well as basic wireless information for wireless network
cards.

If you must configure your network settings from the command line, there are a few
different tools you’ll need to use. For wireless connections you’ll need to use the iwconfig
command to set the wireless access point and SSID key. For both wireless and wired con-
nections, you need to use the ifconfig or ip command to set the IP address and netmask
values for the interface. You may also need to use the route command to define the default
router for the local network.

To use host names instead of IP addresses, you must define a DNS server for your net-
work. You do that in the /etc/resolv.conf configuration file. You will also need to define
the host name for your Linux system in either the /etc/hostname or the /etc/HOSTNAME
file.

When your network configuration is complete, you may have to do some additional
troubleshooting for network problems. The ping and ping6 commands allow you to send
ICMP packets to remote hosts to test basic connectivity. If you suspect issues with host
names, you can use the host and dig commands to query the DNS server for host names.

For more advanced network troubleshooting, you can use the netstat and ss com-
mands to display what applications are using which network ports on the system.

Exam Essentials
Describe the command-line utilities required to configure and manipulate Ethernet network
interfaces. To set the IP and netmask addresses on an Ethernet interface, you use the
ifconfig or ip command. To set the default router (or gateway) for a network, you use the
router command or the ip route command. Some Linux distributions that have Network
Manager installed can use the nmtui or nmcli command to configure all three values.

Explain how to configure basic access to a wireless network. Linux uses the iwlist
command to list all wireless access points detected by the wireless network card. You can
configure the settings required to connect to a specific wireless network using the iwconfig
command. At a minimum, you’ll need to configure the access point SSID value and most
likely specify the encryption key value to connect to the access point.

Describe how to manipulate the routing table on a Linux system. The route command
displays the existing router table used by the Linux system. You can add a new router by
using the add option or remove an existing router by using the del option. You can specify
the default router (gateway) used by the network by adding the default keyword to the
command.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam Essentials 459

Summarize the tools you would need to analyze the status of network devices. The
ifconfig and ip commands display the current status of all network interfaces on the
system. You can also use the netstat or ss command to display statistics for all listening
network ports.

Describe how Linux initializes the network interfaces. Debian-based Linux systems use
the /etc/network/interfaces file to configure the IP address, netmask, and default router.
Red Hat–based Linux systems use files in the /etc/sysconfig/network-scripts folder.
The ifcfg-emp0s3 file contains the IP address and netmask settings, and the network file
contains the default router settings. These files are examined at boot-up to determine the
network interface configuration. Newer versions of Ubuntu use the Netplan tool, which
stores the network configuration in the /etc/netplan folder.

Explain how to test network connectivity. The ping and ping6 commands allow you to
send ICMP messages to remote hosts and display the response received.

Describe one graphical tool used to configure network settings in Linux. The Network
Manager tool provides a graphical interface for changing settings on the network inter-
faces. The Network Manager appears as an icon in the desktop panel area. If your Linux
system uses a wireless network card, the icon appears as a radio signal, whereas for wired
network connections it appears as a mini-network. When you click the icon, it shows the
current network status and, for wireless interfaces, a list of the access points detected.
When you open the Network Manager interface, it allows you to either set static IP address
information or configure the network to use a DHCP server to dynamically set the network
configuration.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

460 Chapter 8 ■ Configuring Basic Networking

Review Questions
You can find the answers in the appendix.

1. What network layer feature defines the network the system is connected to?

A. IP address

B. Default router

C. Host name

D. Netmask

E. DNS server

2. Newer versions of Ubuntu use which tool to set network address information?

A. netstat

B. Netplan

C. iwconfig

D. route

E. ifconfig

3. Which command displays the duplex settings for an Ethernet card?

A. ethtool

B. netstat

C. iwconfig

D. iwlist

E. route

4. Which command displays what processes are using which ports on a Linux systems?

A. iwconfig

B. ip

C. ping

D. nmtui

E. ss

5. If your Linux server doesn’t have a graphical desktop installed, what two tools could you
use to configure network settings from the command line?

A. nmcli

B. iwconfig

C. ip

D. netstat

E. ping

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 461

6. What network setting defines the network device that routes packets intended for hosts on
remote networks?

A. Default router

B. Netmask

C. Host name

D. IP address

E. DNS server

7. What device setting defines a host that maps a host name to an IP address?

A. Default router

B. Netmask

C. Host name

D. IP address

E. DNS server

8. What is used to automatically assign an IP address to a client?

A. Default router

B. DHCP

C. ARP table

D. netmask

E. ifconfig

9. What type of network address is used so that all devices on a local network don’t need an
Internet IP address but can communicate with one another?

A. Dynamic address

B. Private address

C. Static address

D. Host name

E. MAC address

10. Which command would you use to find the mail server for a domain?

A. dig

B. netstat

C. ping6

D. host

E. ss

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

462 Chapter 8 ■ Configuring Basic Networking

11. What command would you use to find out what application was using a specific TCP port
on the system?

A. ip

B. ss

C. host

D. dig

E. ifconfig

12. What folder does Red Hat–based systems use to store network configuration files?

A. /etc/sysconfig/network-scripts

B. /etc/network

C. /etc/ifcfg-eth0

D. /etc/ifconfig

E. /etc/iwconfig

13. Which configuration line sets a dynamic IP address for a Debian system?

A. iface eth0 inet static

B. iface eth0 inet dhcp

C. auto eth0

D. iface eth0 inet6 auto

E. BOOTPROTO=dynamic

14. Which file contains a list of DNS servers the Linux system can use to resolve host names?

A. /etc/dhcpd.conf

B. /etc/resolv.conf

C. /etc/nsswitch.conf

D. /etc/network/interfaces

E. /etc/sysctl.conf

15. Which ifconfig format correctly assigns an IP address and netmask to the eth0 interface?

A. ifconfig eth0 up 192.168.1.50 netmask 255.255.255.0

B. ifconfig eth0 255.255.255.0 192.168.1.50

C. ifconfig up 192.168.1.50 netmask 255.255.255.0

D. ifconfig up

E. ifconfig down

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 463

16. What command displays all of the available wireless networks in your area?

A. iwlist

B. iwconfig

C. ifconfig

D. ip

E. arp

17. What option sets the wireless access point name in the iwconfig command?

A. key

B. netmask

C. address

D. essid

E. channel

18. What command can you use to both display and set the IP address, netmask, and default
router values?

A. ifconfig

B. iwconfig

C. router

D. ifup

E. ip

19. Which of the following is a correct netmask value?

A. 255.255.255.0

B. 255.255.0.255

C. 192.168.1.0

D. 192.168.0.1

E. 0.255.255.255

20. Which bonding mode would you use to combine two network interfaces to create a single
network interface with double the amount of bandwidth to your Linux server?

A. balance-rr: mode 0

B. aggregation: mode 4

C. active/backup: mode 1

D. balance-tlb: mode 5

E. balance-arb: mode 6

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

By

Chapter

9
Writing Scripts

ObjectiveS

 ✓ 105.2 Customize or write simple scripts

 ✓ 107.2 Automate system administration tasks by
scheduling jobs

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 Linux system administrators often need to perform the same
tasks over and over, such as checking available disk space
on the system or creating user accounts. Instead of entering

multiple commands every time, you can write scripts that run in the shell to do these tasks
automatically for you. This chapter explores how Bash shell scripts work and demonstrates
how you can write your own scripts to automate everyday activities on your Linux system.

 Shell Variables
 Before talking about writing scripts, it’s a good idea to see how the Bash shell stores data
for us to use in our scripts. The Bash shell uses a feature called environment variables to
store information about the shell session and the working environment (thus the name
environment variables). This feature stores the data in memory so that any program or
script running from the shell can easily access it. This is a handy way to store persistent
data that identifi es features of the user account, system, shell, or anything else you need
to store.

 There are two types of environment variables in the Bash shell:

 ■ Global variables

 ■ Local variables

 This section describes each type of environment variable and shows how to use them.

 Even though the Bash shell uses specific environment variables that are
consistent, different Linux distributions often add their own environment
variables. The environment variable examples you see in this chapter may
differ slightly from what’s available in your specific Linux distribution. If
you run into an environment variable not covered here, check the docu-
mentation for your Linux distribution.

 Global Environment Variables
 Global environment variables are visible from the shell session and from any child processes
that the shell spawns. Local variables are available only in the shell that creates them.
This makes global environment variables useful in applications that spawn child processes
requiring information from the parent process.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Shell Variables 467

The Linux system sets several global environment variables when you start your Bash
session (for more details about what variables are started at that time, see the “Locating
System Environment Variables” section later in this chapter). The system environment
variables always use all capital letters to differentiate them from normal user environment
variables.

To view the global environment variables, use the printenv command, as shown in
Listing 9.1.

Listing 9.1: Output from the printenv command

 $ printenv
 HOSTNAME=testbox.localdomain
 TERM=xterm
 SHELL=/bin/bash
 HISTSIZE=1000
 SSH_CLIENT=192.168.1.2 1358 22
 OLDPWD=/home/rich/test/test1
 SSH_TTY=/dev/pts/0
 USER=rich
 LS_COLORS=no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:
 bd=40;33;01:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=00;32:
 .cmd=00;32:.exe=00;32:*.com=00;32:*.btm=00;32:*.bat=00;32:
 .sh=00;32:.csh=00;32:*.tar=00;31:*.tgz=00;31:*.arj=00;31:
 .taz=00;31:.lzh=00;31:*.zip=00;31:*.z=00;31:*.Z=00;31:
 .gz=00;31:.bz2=00;31:*.bz=00;31:*.tz=00;31:*.rpm=00;31:
 .cpio=00;31:.jpg=00;35:*.gif=00;35:*.bmp=00;35:*.xbm=00;35:
 .xpm=00;35:.png=00;35:*.tif=00;35:
 MAIL=/var/spool/mail/rich
 PATH=/usr/kerberos/bin:/usr/lib/ccache:/usr/local/bin:/bin:/usr/bin:
 /home/rich/bin
 INPUTRC=/etc/inputrc
 PWD=/home/rich
 LANG=en_US.UTF-8
 SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
 SHLVL=1
 HOME=/home/rich
 LOGNAME=rich
 CVS_RSH=ssh
 SSH_CONNECTION=192.168.1.2 1358 192.168.1.4 22
 LESSOPEN=|/usr/bin/lesspipe.sh %s G_BROKEN_FILENAMES=1
 _=/usr/bin/printenv
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

468 Chapter 9 ■ Writing Scripts

As you can see, lots of global environment variables get set for the Bash shell. Most of
them are set by the system during the login process.

To display the value of an individual environment variable, use the echo command.
When referencing an environment variable, you must place a dollar sign before the environ-
ment variable name:

 $ echo $HOME
 /home/rich
 $

As mentioned, global environment variables are also available to child processes running
under the current shell session:

 $ bash
 $ echo $HOME
 /home/rich
 $

In this example, after starting a new shell using the bash command, we displayed the
current value of the HOME environment variable, which the system sets when you log into the
main shell. Sure enough, the value is also available from the child shell process.

Local Environment Variables
Local environment variables, as their name implies, can be seen only in the local process
in which they are defined. Don’t get confused, though, about local environment variables;
they are just as important as global environment variables. In fact, the Linux system also
defines standard local environment variables for you by default.

Trying to see the list of local environment variables is a little tricky. Unfortunately, there
isn’t a command that displays only local environment variables. The set command displays
all environment variables set for a specific process. However, this also includes the global
environment variables.

Listing 9.2 shows the output from a sample set command.

Listing 9.2: Output from the set command

 $ set
 BASH=/bin/bash
 BASH_ARGC=()
 BASH_ARGV=()
 BASH_LINENO=()
 BASH_SOURCE=()
 BASH_VERSINFO=([0]="3" [1]="2" [2]="9" [3]="1" [4]="release"
 [5]="i686-redhat-linux-gnu")
 BASH_VERSION='3.2.9(1)-release'
 COLORS=/etc/DIR_COLORS.xterm

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Shell Variables 469

 COLUMNS=80
 CVS_RSH=ssh
 DIRSTACK=()
 EUID=500
 GROUPS=()
 G_BROKEN_FILENAMES=1
 HISTFILE=/home/rich/.bash_history
 HISTFILESIZE=1000
 HISTSIZE=1000
 HOME=/home/rich
 HOSTNAME=testbox.localdomain
 HOSTTYPE=i686
 IFS=$' \t\n'
 INPUTRC=/etc/inputrc
 LANG=en_US.UTF-8
 LESSOPEN='|/usr/bin/lesspipe.sh %s'
 LINES=24
 LOGNAME=rich
 LS_COLORS='no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:bd=40;33;
 01:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:
 .exe=00;32:.com=00;32:*.btm=00;32:*.bat=00;32:*.sh=00;32:
 .csh=00;32:.tar=00;31:*.tgz=00;31:*.arj=00;31:*.taz=00;31:
 .lzh=00;31:.zip=00;31:*.z=00;31:*.Z=00;31:*.gz=00;31:*.bz2=00;31:
 .bz=00;31:.tz=00;31:*.rpm=00;31:*.cpio=00;31:*.jpg=00;35:
 .gif=00;35:.bmp=00;35:*.xbm=00;35:*.xpm=00;35:*.png=00;35:
 *.tif=00;35:'
 MACHTYPE=i686-redhat-linux-gnu
 MAIL=/var/spool/mail/rich
 MAILCHECK=60
 OPTERR=1
 OPTIND=1
 OSTYPE=linux-gnu
 PATH=/usr/kerberos/bin:/usr/lib/ccache:/usr/local/bin:/bin:/usr/bin:
 /home/rich/bin
 PIPESTATUS=([0]="0")
 PPID=3702
 PROMPT_COMMAND='echo -ne
 "\033]0;${USER}@${HOSTNAME%%.*}:${PWD/#$HOME/~}"; echo -ne "\007"'
 PS1='[\u@\h \W]\$ '
 PS2='> '
 PS4='+ '

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

470 Chapter 9 ■ Writing Scripts

 PWD=/home/rich
 SHELL=/bin/bash
 SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:
 interactive-comments:monitor
 SHLVL=2
 SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
 SSH_CLIENT='192.168.1.2 1358 22'
 SSH_CONNECTION='192.168.1.2 1358 192.168.1.4 22'
 SSH_TTY=/dev/pts/0
 TERM=xterm
 UID=500
 USER=rich
 _=-H
 consoletype=pty
 $

You’ll notice that all of the global environment variables seen from the printenv com-
mand appear in the output from the set command. However, quite a few additional envi-
ronment variables now appear—these are the local environment variables.

Setting Local Environment Variables
When you start a Bash shell (or spawn a shell script), you’re allowed to create local vari-
ables that are visible within your shell process. You can assign either a numeric or a string
value to an environment variable by assigning the variable to a value using the equal sign:

 $ test=testing
 $ echo $test
 testing
 $

Any time you need to reference the value of the test environment variable, just reference it
by the name $test.

If you need to assign a string value that contains spaces, you’ll need to use a quotation
mark to delineate the beginning and the end of the string:

$ test=testing a long string
 -bash: a: command not found
 $ test='testing a long string'
 $ echo $test
 testing a long string
 $

Listing 9.2: Output from the set command (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Shell Variables 471

 Without the single quotation marks, the Bash shell assumes that the next character is
another command to process. Notice that for the local environment variable we defi ned, we
used lowercase letters, whereas the system environment variables we’ve seen so far have all
used uppercase letters.

 This is a standard convention in the Bash shell. If you create new environment variables,
it is recommended (but not required) that you use lowercase letters. This helps distinguish
your personal environment variables from the scores of system environment variables.

 It’s extremely important that there are no spaces between the environment
variable name, the equal sign, and the value. If you put any spaces in the
assignment, the Bash shell interprets the value as a separate command:

 $ test2 = test
 -bash: test2: command not found
 $

 After you set a local environment variable, it’s available for use anywhere within your
shell process. However, if you spawn another shell, it’s not available in the child shell:

 $ bash
 $ echo $test

 $ exit
 exit
 $ echo $test
 testing a long string
 $

 In this example we started a child shell and, as you can see, the test environment
variable is not available in the child shell (it contains a blank value). After we exited the
child shell and returned to the original shell, the test local environment variable was still
available.

 Similarly, if you set a local environment variable in a child process, when you leave the
child process, the local environment variable is no longer available:

 $ bash
 $ test=testing
 $ echo $test
 testing
 $ exit
 exit
 $ echo $test

 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

472 Chapter 9 ■ Writing Scripts

 The test environment variable set in the child shell doesn’t exist when we go back to the
parent shell.

 Setting Global Environment Variables
 Global environment variables are visible from any child processes created by the process
that sets the global environment variable. The method used to create a global environment
variable is to create a local environment variable and then export it to the global environ-
ment. This is done by using the export command:

 $ echo $test
 testing a long string
 $ export test
 $ bash
 $ echo $test
 testing a long string
 $

 After exporting the local environment variable test , we started a new shell process and
viewed the value of the test environment variable. This time, the environment variable
kept its value, as the export command made it global.

 Notice that when exporting a local environment variable, you don’t use the
dollar sign to reference the variable’s name.

 Locating System Environment Variables
 The Linux system uses environment variables to identify itself in programs and scripts.
This provides a convenient way to obtain system information for your programs. The trick
is in how these environment variables are set.

 When you start a Bash shell by logging into the Linux system, by default Bash checks
several fi les for commands. These fi les are called startup fi les. The startup fi les Bash pro-
cesses depend on the method you use to start the Bash shell. There are three ways of start-
ing a Bash shell:

 ■ As a default login shell at login time

 ■ As an interactive shell that is not the login shell

 ■ As a noninteractive shell to run a script

 The following sections describe the startup fi les the Bash shell executes in each of these
startup methods.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Shell Variables 473

 Login Shell
 When you log into the Linux system, the Bash shell starts as a login shell. The login shell
looks for four different startup fi les to process commands from. The order in which the
Bash shell processes the fi les is

 1. /etc/profile

 2. $HOME/.bash_profile

 3. $HOME/.bash_login

 4. $HOME/.profile

 The /etc/profile fi le is the main default startup fi le for the Bash shell. Whenever you
log into the Linux system, Bash executes the commands in the /etc/profile startup fi le.
Different Linux distributions place different commands in this fi le.

 Most Linux distributions also check for files in the /etc/profile.d
directory to run at startup. This makes it easier for individual applications
to set environment variables without having to modify the main
/etc/profile file.

 The remaining three startup fi les are all used for the same function—to provide a user-
specifi c startup fi le for defi ning user-specifi c environment variables. Most Linux distribu-
tions use only one of these three startup fi les:

 ■ $HOME/.bash_profile

 ■ $HOME/.bash_login

 ■ $HOME/.profile

 Notice that all three fi les start with a dot, making them hidden fi les (they don’t appear
in a normal ls command listing). Since they are in the user’s HOME directory, each user can
edit the fi les and add their own environment variables that are active for every Bash shell
session they start.

 Though not commonly done, you can also use the $HOME/.bash_logout
file to run scripts when you log out from your Linux session.

 Interactive Shell
 If you start a Bash shell without logging into a system (such as if you just type bash at a
CLI prompt or open a GUI terminal), you start what’s called an interactive shell. The inter-
active shell doesn’t act like the login shell, but it still provides a CLI prompt for you to enter
commands.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

474 Chapter 9 ■ Writing Scripts

If Bash is started as an interactive shell, it doesn’t process the /etc/profile file. Instead,
it checks for the .bashrc file in the user’s HOME directory (often referred to as ~/.bashrc).

The .bashrc file does two things. First, it checks for a common /etc/bash.bashrc file.
The common bash.babshrc file provides a way for you to set scripts and variables used by
all users who start an interactive shell. Second, it provides a place for the user to enter per-
sonal aliases and private script functions.

Noninteractive Shell
Finally, the last type of shell is a noninteractive shell. This is the shell that the system starts
to execute a shell script. This is different in that there isn’t a CLI prompt to worry about.
However, there may still be specific startup commands you want to run each time you start
a script on your system.

To accommodate that situation, the Bash shell provides the BASH_ENV environment vari-
able. When the shell starts a noninteractive shell process, it checks this environment variable
for the name of a startup file to execute. If one is present, the shell executes the commands
in the file. On most Linux distributions, this environment value is not set by default.

Using Command Aliases
Though not environment variables per se, shell command aliases behave in much the same
manner. A command alias allows you to create an alias name for common commands
(along with their parameters) to help keep your typing to a minimum.

Most likely your Linux distribution has already set some common command aliases for
you. To see a list of the active aliases, use the alias command with the -p parameter:

 $ alias -p
 alias l.='ls -d .* --color=tty'
 alias ll='ls -l --color=tty'
 alias ls='ls --color=tty'
 alias vi='vim'
 alias which='alias | /usr/bin/which --tty-only --read-
 alias--show-dot --show-tilde'
 $

Notice that in this example, the Linux distribution uses an alias to override the standard
ls command. It automatically provides the --color parameter, using color to indicate file
and directory objects in the listings.

You can create your own aliases by using the alias command:

$ alias li='ls -il'
$ li
total 52
 4508 drwxr-xr-x 2 rich rich 4096 Jun 12 11:21 Desktop
 4512 drwxr-xr-x 2 rich rich 4096 Jun 12 11:21 Documents
 4509 drwxr-xr-x 2 rich rich 4096 Jun 12 11:21 Downloads

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The Basics of Shell Scripting 475

401354 -rw-r--r-- 1 rich rich 8980 Jun 12 11:06 examples.desktop
388616 -rw-r--r-- 1 rich rich 10 Jul 5 11:41 file1
389657 -rw-r--r-- 1 rich rich 12 Jul 5 11:41 file2
 4513 drwxr-xr-x 2 rich rich 4096 Jun 12 11:21 Music
389659 -rwxr--r-- 1 rich rich 200 Jul 5 11:41 myscript.sh
388895 -rw-r--r-- 1 rich rich 36 Jun 27 14:23 nc
 4514 drwxr-xr-x 2 rich rich 4096 Jun 28 08:47 Pictures
 4511 drwxr-xr-x 2 rich rich 4096 Jun 12 11:21 Public
417850 drwxr-xr-x 3 rich rich 4096 Jun 28 08:46 snap
 4510 drwxr-xr-x 2 rich rich 4096 Jun 12 11:21 Templates
 4515 drwxr-xr-x 2 rich rich 4096 Jun 12 11:21 Videos
$

After you define an alias value, you can use it at any time in your shell, including in shell
scripts.

Command aliases act like local environment variables. They’re valid only for the shell
process in which they’re defined:

 $ alias li='ls -il'
 $ bash
 $ li
 bash: li: command not found
 $

Of course, now you know a way to solve that problem. Since the Bash shell always reads
the $HOME/.bashrc startup file when starting a new interactive shell, just put command
alias statements there, and they will be valid for all shells you start.

The Basics of Shell Scripting
Shell scripting allows you to write small programs that automate activities on your Linux
system. Shell scripts can save you time by giving you the flexibility to quickly process data
and generate reports that would be cumbersome to do by manually entering multiple com-
mands at the command prompt. You can automate just about anything you do at the
command prompt using shell scripts.

This section walks through the basics of what shell scripts are and how to get started
writing them.

Running Multiple Commands
So far in this book we’ve been entering a single command at the command prompt and
viewing the results. One exciting feature of the Linux command line is that you can enter

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

476 Chapter 9 ■ Writing Scripts

multiple commands on the same command line and Linux will process them all. Just place
a semicolon between each command you enter:

$ date ; who
Thu Feb 20 19:20:06 EST 2019
rich :0 2019-02-20 19:15 (:0)
$

The Linux Bash shell runs the first command (date) and displays the output; then it runs
the second command (who) and displays the output from that command, immediately fol-
lowing the output from the first command. Though this may seem trivial, it is the basis of
how shell scripts work.

Redirecting Output
Another building block of shell scripting is the ability to store command output. Often
when you run a command, you’d like to save the output for future reference. To help with
this, the Bash shell provides output redirection.

Output redirection allows us to redirect the output of a command from the monitor to
another device, such as a file. This feature comes in handy when you need to log data from a
shell script that runs after business hours, so you can see what the shell script did when it ran.

To redirect the output from a command, you use the greater-than symbol (>) after the
command and then specify the name of the file that you want to use to capture the redi-
rected output. This is demonstrated in Listing 9.3.

Liting 9.3: Redirecting output to a file

$ date > today.txt
$ cat today.txt
Thu Feb 20 19:21:12 EST 2019
$

The example shown in Listing 9.3 redirects the output of the date command to the file
named today.txt. Notice that when you redirect the output of a command, nothing dis-
plays on the monitor output. All of the text from the output is now in the file, as shown by
using the cat command to display the file contents.

The greater-than output redirection operator automatically creates a new file for the out-
put, even if the file already exists. If you prefer, you can append the output to an existing
file by using the double greater-than symbol (>>), as shown in Listing 9.4.

Listing 9.4: Appending command output to a file

$ who >> today.txt
$ cat today.txt
Thu Feb 20 19:21:12 EST 2019
rich :0 2019-02-20 19:15 (:0)
$

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The Basics of Shell Scripting 477

 The today.txt fi le now contains the output from the original date command in Listing
9.3, and the output from the who command run in Listing 9.4.

 In Linux, everything is a file, including the input and output processes of
a command. Linux identifies files with a file descriptor, which is a non-
negative integer. The Bash shell reserves the first three file descriptors for
input and output. File descriptor 0 is called STDIN and points to the stan-
dard input for the shell, which is normally the keyboard. File descriptor 1 is
called STDOUT, which points to the standard output for the shell, typically
the monitor. This is where the standard output messages go. File descrip-
tor 2 is called STDERR, which is where the shell sends messages identified
as errors. By default, this points to the same device as the STDOUT file
descriptor, the monitor. You can redirect only the errors from your shell
script to a separate file from the normal output by using 2> instead of the
standard > output redirection character. This allows you to specify a sepa-
rate file for monitoring error messages from commands.

 Output redirection is a crucial feature in shell scripts. With it, we can generate log fi les
from our scripts, giving us a chance to keep track of things as the script runs in background
mode on the Linux system.

 Piping Data
 Whereas output redirection allows us to redirect command output to a fi le, piping allows
us to redirect the output to another command. The second command uses the redirected
output from the fi rst command as input data. This feature comes in handy when using com-
mands that process data, such as the sort command.

 The piping symbol is the bar (|) symbol, which usually appears above the backslash key
on U.S. keyboards. Listing 9.5 shows an example of using piping.

Listing 9.5: Piping command output to another command

 $ ls | sort
 Desktop
 Documents
 Downloads
 Music
 Pictures
 Public
 Templates
 test.txt
 today.txt
 Videos
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

478 Chapter 9 ■ Writing Scripts

 The output from the ls command is sent directly to the sort command as input but
behind the scenes. You don’t see the output from the ls command displayed on the moni-
tor; you see only the output from the last command in the pipe line, which in this case
is the sort command. There’s no limit to how many commands you can link together
with piping.

 The >, >>, and | symbols are part of a group of characters often referred to
as metacharacters. Metacharacters are characters that have special mean-
ing when used in the Linux shell. If you need to use a metacharacter as a
standard character (such as using the > character as a greater-than sym-
bol in your output instead of as a redirect symbol), you must identify the
metacharacter by either placing a backslash (\) in front of it or enclosing
the metacharacter in single (') or double quotes ("). This method is called
escaping .

 The Shell Script Format
 Placing multiple commands on a single line, either by using the semicolon or piping, is a
great way to process data, but it can still get rather tedious. Each time you want to run the
set of commands, you need to type them all at the command prompt.

 However, Linux allows us to place multiple commands in a text fi le and then run the
text fi le as a program from the command line. This is called a shell script because we’re
scripting out commands for the Linux shell to run.

 Shell script fi les are plain text fi les. To create a shell script fi le, you just need to use any
text editor that you’re comfortable with. If you’re working from a KDE-based graphical
desktop, you can use the KWrite program, or if you’re working from a GNOME-based
graphical desktop, you can use the GEdit program.

 Shell script files must be text files. If you use a word processing program
to create the file (or even copy and paste text from a word processing doc-
ument into a file), the script will not run correctly in the shell.

 If you’re working directly in a command-line environment, you still have some
options. Many Linux distributions include either the pico or nano editor to provide a
graphical editor environment by using ASCII control characters to create a full-screen
editing window.

 If your Linux distribution doesn’t include either the pico or nano editor, there is
still one last resort: the vi editor. The vi editor is a text-based editor that uses simple
single-letter commands. It’s the oldest text editor in the Linux environment, dating
back to the early days of Unix, which may be one reason why it’s not overly elegant or
user-friendly.

 When you’ve chosen your text editor, you’re ready to create your shell scripts. First, for
your shell script to work you’ll need to follow a specifi c format for the shell script fi le. The

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The Basics of Shell Scripting 479

fi rst line in the fi le must specify the Linux shell required to run the script. This is written in
somewhat of an odd format:

 #!/bin/bash

 The Linux world calls the combination of the pound sign and the exclamation symbol
(#!) the shebang . It signals to the operating system which shell to use to run the shell script.
Most Linux distributions support multiple Linux shells, but the most common is the Bash
shell. You can run shell scripts written for other shells, as long as that shell is installed on
the Linux distribution.

 After you specify the shell, you’re ready to start listing the commands in your script. You
don’t need to enter all of the commands on a single line; Linux allows you to place them
on separate lines. Also, the Linux shell assumes each line is a new command in the shell
script, so you don’t need to use semicolons to separate the commands. Listing 9.6 shows an
example of a simple shell script fi le.

 Listing 9.6: A simple shell script file

 $ cat test1.sh
 #!/bin/bash
 # This script displays the date and who's logged in
 date
 who
 $

 The test1.sh script fi le shown in Listing 9.6 starts out with the shebang line identifying
the Bash shell, the standard shell in Linux. The second line in the code shown in Listing 9.6
demonstrates another feature in shell scripts. Lines that start with a pound sign are called
comment lines . They allow you to embed comments into the shell script program to help
you remember what the code is doing. The shell skips comment lines when processing the
shell script. You can place comment lines anywhere in your shell script fi le after the open-
ing shebang line.

 Notice in Listing 9.6 we used the .sh filename extension on the shell script
file. Although this is not required in Linux, it’s become somewhat of a de
facto standard among programmers. It helps identify that the text file is a
shell script that can be run at the command line.

 Running the Shell Script
 If you just enter a shell script fi le at the command prompt to run it, you may be a bit
disappointed:

 $ test1.sh
 test1.sh: command not found
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

480 Chapter 9 ■ Writing Scripts

 Unfortunately, the shell doesn’t know where to fi nd the test1.sh command in the virtual
directory. The reason for this is the shell uses a special environment variable called PATH
to list directories where it looks for commands. If your local HOME folder is not included in
the PATH environment variable list of directories, you can’t run the shell script fi le directly.
Instead, you must use either a relative or an absolute path name to point to the shell script
fi le. The easiest way to do that is by adding the ./ relative path shortcut to the fi le:

 $./test1.sh
 bash: ./test1.sh: Permission denied
 $

 Now the shell can fi nd the program fi le, but there’s still an error message. This time the
error is telling us that we don’t have permissions to run the shell script fi le. A quick look at the
shell script fi le using the ls command with the -l option shows the permissions set for the fi le:

 $ ls -l test1.sh
 -rw-r--r-- 1 rich rich 73 Feb 20 19:37 test1.sh
 $

 By default, the Linux system didn’t give anyone execute permissions to run the fi le. You can
use the chmod command to add that permission for the fi le owner:

 $ chmod u+x test1.sh
 $ ls -l test1.sh
 -rwxr--r-- 1 rich rich 73 Feb 20 19:37 test1.sh
 $

 The u+x option adds execute privileges to the owner of the fi le. You should now be able to
run the shell script fi le and see the output:

 $./test1.sh
 Thu Feb 20 19:48:27 EST 2019
 rich :0 2019-02-20 19:15 (:0)
 $

 Running the script directly from the command prompt spawns a new
subshell for the script, making any local environment variables in the
shell not available to the script. If you want to make any local environment
variables available for use in the shell script, launch the script using the
 exec command:

 $ exec ./test1.sh
 Thu Feb 20 19:51:27 EST 2019
 rich :0 2019-02-20 19:15 (:0)
 $

 The exec command runs the script in the current shell.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Advanced Shell Scripting 481

Now that you’ve seen the basics for creating and running shell scripts, the next section
dives into some more advanced features you can add to make fancier shell scripts.

Advanced Shell Scripting
The previous section walked through the basics of how to group normal command-line
commands together in a shell script file to run in the Linux shell. This section adds to that
by showing more features available in shell scripts to make them look and act more like real
programs.

Displaying Messages
When you string commands together in a shell script file, the output may be somewhat con-
fusing to look at. It would help to be able to customize the output by separating the output
and adding our own text between the output from the listed commands.

The echo command allows you to display text messages from the command line. When
used at the command line, it’s not too exciting:

$ echo This is a test
This is a test
$

But with echo, you can now insert messages anywhere in the output from the shell script
file. Listing 9.7 demonstrates how this is done.

Listing 9.7: Displaying messages from shell scripts

$ cat test1.sh
#!/bin/bash
This script displays the date and who's logged in
echo The current date and time is:
date
echo
echo "Let's see who's logged into the system:"
who
$./test1.sh
The current date and time is:
Thu Feb 20 19:55:44 EST 2019

Let's see who's logged into the system:
rich :0 2019-02-20 19:15 (:0)
$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

482 Chapter 9 ■ Writing Scripts

The shell script shown in Listing 9.7 adds three echo commands to the test1.sh script.
Notice that the first echo command doesn’t use any quotes, but the third one does. The
reason for that is the text output from the third echo command contains single quotes. The
single quote is also a metacharacter in the shell, which will confuse the echo command,
so you need to place double quotes around the text. Also notice that the second echo com-
mand doesn’t have any text on the line. That outputs a blank line, which is useful when you
want to separate output from multiple commands.

Using Variables in Scripts
Part of programming is the ability to temporarily store data to use later on in the pro-
gram. As mentioned earlier in the “Shell Variables” section, you do that in the Bash shell
by using either global or local variables. This method also works when working with
shell scripts.

Using Global Environment Variables
As discussed earlier in the “Using Variables” section, global environment variables are
often used to track specific system information, such as the name of the system, the name
of the user logged into the shell, the user’s user ID (UID), the default home directory for the
user, and the search path the shell uses to find executable programs. You can tap into these
environment variables from within your scripts by using the environment variable name,
preceded by a dollar sign, as shown in Listing 9.8.

Listing 9.8: The test2.sh shell script file to display environment variables

$ cat test2.sh
#!/bin/bash
display user information from the system.
echo User info for userid: $USER
echo UID: $UID
echo HOME: $HOME
$

The $USER, $UID, and $HOME environment variables are commonly used to display infor-
mation about the logged-in user. If you run the test2.sh shell script shown in Listing 9.8,
the output should look like this:

$ chmod u+x test2.sh
$./test2.sh
User info for userid: rich
UID: 1000
HOME: /home/rich
$

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Advanced Shell Scripting 483

 The values you see should be related to your user account. This allows you to dynami-
cally retrieve information about the user account running your shell script to customize
the output.

 Defining Local Variables
 Most variables used in shell scripts are local variables used for storing your own data
within your shell scripts. You assign values to local variables using the equal sign. Spaces
must not appear between the variable name, the equal sign, and the value. Here are a few
examples:

 var1=10
 var2=23.45
 var3=testing
 var4="Still more testing"

 The shell script automatically determines the data type used for the variable value.
Listing 9.9 shows an example of writing a shell script that uses local variables.

Listing 9.9: Using local variables in a shell script

 $ cat test3.sh
 #!/bin/bash
 # testing variables
 days=10
 guest=Katie
 echo $guest checked in $days days ago
 $

 Running the test3.sh script from Listing 9.9 produces the following output:

 $ chmod u+x test3.sh
 $./test3.sh
 Katie checked in 10 days ago
 $

 After you store the data in a local variable, you can reference it anywhere in your shell
script. However, remember that local variables defi ned within the shell script are accessible
only from within the shell script by default. If you want the variables within a shell script to
be visible from the parent shell that launched the shell script, use the export command.

 Be careful when using variables within the echo statement. Since variable
names are just text values, if you try to append text to a variable name, the
shell will then consider the text as part of the variable name and you won’t
get the results you expected. If you need to do that, you can enclose the
variable name in braces, such as ${guest} . This ensures any text appended
to the end of the variable will be separate from the variable name.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

484 Chapter 9 ■ Writing Scripts

Command-Line Arguments
One of the most versatile features of shell scripts is the ability to pass data into the script
when you run it. This allows you to customize the script with new data each time you run it.

One method of passing data into a shell script is to use command-line arguments.
Command-line arguments are data you include on the command line when you run the
command. Just start listing them after the command, separating each data value with a
space, in this format:

command argument1 argument2 ...

You retrieve the values in your shell script code using special numeric positional vari-
ables. Use the variable $1 to retrieve the first command-line argument, $2 the second argu-
ment, and so on. Listing 9.10 shows how to use positional variables in your shell script.

Listing 9.10: Using command-line arguments in a shell script

$ cat test4.sh
#!/bin/bash
Testing command line arguments
echo $1 checked in $2 days ago
$ chmod u+x test4.sh
$./test4.sh Barbara 4
Barbara checked in 4 days ago
$./test4.sh Jessica 5
Jessica checked in 5 days ago
$

The test4.sh shell script uses two command-line arguments. The $1 variable holds
the name of the person, and the $2 variable holds the number of days ago they checked in.
When you run the test4.sh shell script, be sure to include both data values in the com-
mand line. The shell won’t produce an error message if a positional variable doesn’t exist;
you just won’t get the results you expected:

$./test4.sh rich
rich checked in days ago
$

It’s up to you to check if the positional variable exists within your program code. We’ll
explore how to do that later when we discuss logic statements.

Getting User Input
Providing command-line options and parameters is a great way to get data from your script
users, but sometimes your script needs to be more interactive. There are times when you
have to ask a question while the script is running and wait for a response from the person
running your script. The Bash shell provides the read command just for this purpose.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Advanced Shell Scripting 485

Basic Reading
The read command accepts input from the standard input (the keyboard) or from another
file descriptor. After receiving the input, the read command places the data into a standard
variable. Listing 9.11 shows the read command at its simplest.

Listing 9.11: Accepting user input in your scripts

 $ cat test5.sh
 #!/bin/bash
 # testing the read command

 echo -n "Enter your name: "
 read name
 echo "Hello $name, welcome to my program."
 $./test5.sh
 Enter your name: Rich Blum
 Hello Rich Blum, welcome to my program.
 $

Notice that the echo command that produced the prompt uses the -n option. This sup-
presses the newline character at the end of the string, allowing the script user to enter data
immediately after the string instead of on the next line. This gives your scripts a more
form-like appearance.

In fact, the read command includes the -p option, which allows you to specify a prompt
directly in the read command line. Listing 9.12 demonstrates this feature.

Listing 9.12: Using the read command with the -p option

 $ cat test6.sh
 #!/bin/bash
 # testing the read -p option

 read -p "Please enter your age:" age
 days=$[$age * 365]
 echo "That makes you over $days days old!"
 $./test6.sh
 Please enter your age:10
 That makes you over 3650 days old!
 $

You’ll notice in the Listing 9.11 example, when I typed my name the read command
assigned both my first name and last name to the same variable. The read command
will assign all data entered at the prompt to a single variable, or you can specify mul-
tiple variables. Each data value entered is assigned to the next variable in the list. If the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

486 Chapter 9 ■ Writing Scripts

list of variables runs out before the data does, the remaining data is assigned to the last
variable:

 $ cat test7.sh
 #!/bin/bash
 # entering multiple variables

 read -p "Enter your name: " first last
 echo "Checking data for $last, $first…"
 $./test7.sh
 Enter your name: Rich Blum
 Checking data for Blum, Rich…
 $

You can also specify no variables on the read command line. If you do that, the read
command places any data it receives in the special environment variable REPLY:

 $ cat test8.sh
 #!/bin/bash
 # testing the REPLY environment variable

 read -p "Enter a number: "
 factorial=1
 for ((count=1; count <= $REPLY; count++))
 do
 factorial=$[$factorial * $count]
 done
 echo "The factorial of $REPLY is $factorial"
 $./test8.sh
 Enter a number: 5
 The factorial of 5 is 120
 $

This example uses the for loop, which is explained later on in “Logic Statements,” to
iterate through the numbers from 1 to the entered number. The REPLY environment variable
will contain all of the data entered in the input, and it can be used in the shell script like
any other variable.

Timing Out
There’s a danger when using the read command. It’s quite possible that your script will get
stuck waiting for the script user to enter data. If the script must go on regardless of whether
any data was entered, you can use the -t option specify a timer. The -t option specifies the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Advanced Shell Scripting 487

number of seconds for the read command to wait for input. When the timer expires, the
read command returns a non-zero exit status:

 $ cat test9.sh
 #!/bin/bash
 # timing the data entry

 if read -t 5 -p "Please enter your name: " name
 then
 echo "Hello $name, welcome to my script"
 else
 echo
 echo "Sorry, too slow!"
 fi
 $./test9.sh
 Please enter your name: Rich
 Hello Rich, welcome to my script
 $./test9.sh
 Please enter your name:
 Sorry, too slow!
 $

Since the read command exits with a non-zero exit status if the timer expires, it’s easy
to use the standard structured statements, such as an if statement or a while loop, to track
what happened. In this example, when the timer expires the if statement fails, and the shell
executes the commands in the else section.

Instead of timing the input, you can also set the read command to count the input char-
acters. When a preset number of characters has been entered, it automatically exits, assign-
ing the entered data to the variable. This is shown in Listing 9.13.

Listing 9.13: Counting input characters

 $ cat test10.sh
 #!/bin/bash
 # getting just one character of input

 read -n1 -p "Do you want to continue [Y/N]? " answer
 case $answer in
 Y | y) echo
 echo "fine, continue on…";;
 N | n) echo
 echo OK, goodbye
 exit;;

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

488 Chapter 9 ■ Writing Scripts

 esac
 echo "This is the end of the script"
 $./test10.sh
 Do you want to continue [Y/N]? Y
 fine, continue on…
 This is the end of the script
 $./test10.sh
 Do you want to continue [Y/N]? n
 OK, goodbye
 $

In Listing 9.13 the read command uses the -n option with the value of 1, instructing it
to accept only a single character before exiting. As soon as you press the single character to
answer, the read command accepts the input and passes it to the variable. There’s no need
to press the Enter key.

Silent Reading
There are times when you need input from the script user but you don’t want that input to
display on the monitor. The classic example of this is when entering passwords, but there
are plenty of other types of data that you will need to hide.

The -s option prevents the data entered in the read command from being displayed on
the monitor (actually, the data is displayed, but the read command sets the text color to the
same as the background color). Here’s an example of using the -s option in a script:

 $ cat test11.sh
 #!/bin/bash
 # hiding input data from the monitor

 read -s -p "Enter your password: " pass
 echo
 echo "Is your password really $pass?"
 $./test11.sh
 Enter your password:
 Is your password really T3st1ng?
 $

The data typed at the input prompt doesn’t appear on the monitor but is assigned to the
variable just fine for use in the script.

The Exit Status
When a shell script ends, it returns an exit status back to the parent shell that launched it.
The exit status tells us whether the shell script completed successfully.

Listing 9.13: Counting input characters (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Writing Script Programs 489

Linux provides us with the special $? variable, which holds the exit status value from the
last command that executed. To check the exit status of a command, you must view the $?
variable immediately after the command ends. It changes values according to the exit status
of the last command executed by the shell:

$ who
rich :0 2019-02-20 23:16 (:0)
$ echo $?
0
$

By convention, the exit status of a command that successfully completes is 0. If a com-
mand completes with an error, then a positive integer value appears as the exit status.

You can change the exit status of your shell scripts by using the exit command. Just
specify the exit status value you want in the exit command:

$ /bin/bash
$ exit 120
exit
$ echo $?
120
$

In this example we started a new child shell with the /bin/bash command and then
used the exit command to exit the child shell with an exit status code of 120. Back in the
parent shell, we then displayed the $? variable value to see if it matched what we had set
in the exit command. As you write more complicated scripts, you can indicate errors by
changing the exit status value. That way, by checking the exit status you can easily debug
your shell scripts.

Writing Script Programs
So far we’ve explored how to combine regular command-line commands within a shell
script to automate common tasks that you may perform as the system administrator.
But shell scripts allow us to do much more than just that. The Bash shell provides more
programming-like commands that allow us to write full-fledged programs within our shell
scripts, such as capturing command output, performing mathematical operations, checking
variable and file conditions, and looping through commands. This section walks through
some of the advanced programming features available to us from the Bash shell.

Command Substitution
Quite possibly one of the most useful features of shell scripts is the ability to store and
process data. So far we’ve discussed how to use output redirection to store output from a

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

490 Chapter 9 ■ Writing Scripts

command to a fi le and piping to redirect the output of a command to another command.
There’s another technique, however, that can give you more fl exibility in storing and using
data in your scripts.

Command substitution allows you to assign the output of a command to a user vari-
able in the shell script. After the output is stored in a variable, you can use standard Linux
string manipulation commands (such as sort or grep) to manipulate the data before dis-
playing it.

 To redirect the output of a command to a variable, you need to use one of two command
substitution formats:

 ■ Placing backticks (`) around the command

 ■ Using the command within the $() function

 Both methods produce the same result: redirecting the output from the command into a
user variable. Listing 9.14 demonstrates using both methods.

 Listing 9.14: Demonstrating command substitution

 $ var1=`date`
 $ echo $var1
 Fri Feb 21 18:05:38 EST 2019
 $ var2=$(who)
 $ echo $var2
 rich :0 2019-02-21 17:56 (:0)
 $

 The output from the command substitutions is stored in the appropriate variables. You
can then use those variables anywhere in your script program as a standard string value.

 The backtick character is not the same as a single quote. It’s the charac-
ter usually found on the same key as the tilde character (~) on U.S. key-
boards. Because of the confusion between backticks and single quotes, it’s
become more popular in the Linux world to use the $() function format.

 Performing Math
 Eventually you’ll want to do more than just manipulate text strings in your shell scripts.
The world revolves around numbers, and at some point you’ll probably need to do some
mathematical operations with your data. Unfortunately, this is one place where the Bash
shell shows its age. The mathematical features in the Bash shell aren’t quite as fancy as the
features found in newer shells, such as the Z shell. However, there are a couple of ways to
use simple mathematical functions in Bash shell scripts.

 To include mathematical expressions in your shell scripts, you use a special format. This
format places the equation within the brackets:

 result=$[25 * 5]

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Writing Script Programs 491

You can perform lots of different mathematical operations on data using this method,
but there is a limitation. The $[] format allows you to use integers only; it doesn’t support
floating-point values.

If you need to do floating-point calculations, things get considerably more complicated
in the Bash shell. One solution is to use the bc command-line calculator program. The bc
calculator is a tool in Linux that can perform floating-point arithmetic:

$ bc
bc 1.07.1
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017 Free Software
Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type 'warranty'.
12 * 5.4
64.8
3.156 * (3 + 5)
25.248
quit
$

Unfortunately, the bc calculator has some limitations of its own. The floating-point arithmetic
is controlled by a built-in variable called scale. You must set this variable to the desired number
of decimal places you want in your answers, or you won’t get what you were looking for:

$ bc -q
3.44 / 5
0
scale=4
3.44 / 5
.6880
quit
$

To embed a bc calculation into your script, things get a bit complicated. You must use
command substitution to capture the output of the calculation into a variable, but there’s a
twist. The basic format you need to use is

variable=$(echo "options; expression" | bc)

The first parameter, options, allows us to set the bc variables, such as the scale variable.
The expression parameter defines the mathematical expression to evaluate using bc.
Though this looks pretty odd, it works:

$ var1=$(echo "scale=4; 3.44 / 5" | bc)
$ echo $var1
.6880
$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

492 Chapter 9 ■ Writing Scripts

This is not ideal, but it works for small projects. If you have a larger programming
project that requires lots of calculations, we suggest looking into the Z shell. It supports
lots of advanced mathematical functions and features. For more information on the Z
shell, see our Linux Command Line and Shell Scripting Bible, Edition 3 book from Wiley
Publishing (2015).

Logic Statements
So far all of the shell scripts presented process commands in a linear fashion, one command
after another. However, not all programming is linear. There are times when you’d like
your program to test for certain conditions—such as whether a file exists or if a mathemati-
cal expression is 0—and perform different commands based on the results of the test. For
that, the Bash shell provides logic statements.

Logic statements allow us to test for a specific condition and then branch to different
sections of code based on whether the condition evaluates to a True or False logical value.
There are a couple of different ways to implement logic statements in Bash scripts.

The if Statement
The most basic logic statement is the if condition statement. The format for the if condi-
tion statement is

if [condition]
then
 commands
fi

The square brackets used in the if statement are a shorthand way of using the test
command. The test command evaluates a condition and returns a True logical value if
the test passes or a False logical value if the test fails. If the condition passes, the shell runs
the commands in the then section of code, or if the condition evaluates to a False logical
value, the shell script skips the commands in the then section of code.

The condition test expression has quite a few different formats in the Bash shell pro-
gramming. There are built-in tests for numerical values, string values, and even files and
directories. Table 9.1 lists the different built-in tests that are available.

ta b Le 9 .1 Condition tests

Test Type Description

n1 -eq n2 Numeric Checks if n1 is equal to n2

n1 -ge n2 Numeric Checks if n1 is greater than or equal to n2

n1 -gt n2 Numeric Checks if n1 is greater than n2

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Writing Script Programs 493

Test Type Description

n1 -le n2 Numeric Checks if n1 is less than or equal to n2

n1 -lt n2 Numeric Checks if n1 is less than n2

n1 -ne n2 Numeric Checks if n1 is not equal to n2

str1 = str2 String Checks if str1 is the same as str2

str1 != str2 String Checks if str1 is not the same as str2

str1 < str2 String Checks if str1 is less than str2

str1 > str2 String Checks if str1 is greater than str2

-n str1 String Checks if str1 has a length greater than zero

-z str1 String Checks if str1 has a length of zero

-d file File Check if file exists and is a directory

-e file File Checks if file exists

-f file File Checks if file exists and is a file

-r file File Checks if file exists and is readable

-s file File Checks if file exists and is not empty

-w file File Checks if file exists and is writable

-x file File Checks if file exists and is executable

-O file File Checks if file exists and is owned by the current user

-G file File Checks if file exists and the default group is the
same as the current user

file1 -nt file2 File Checks if file1 is newer than file2

file1 -ot file2 File Checks if file1 is older than file2

Listing 9.15 shows an example of using if condition statements in a shell script.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

494 Chapter 9 ■ Writing Scripts

Listing 9.15: Using if condition statements

 $ cat test12.sh
 #!/bin/bash
 # testing the if condition
 if [$1 -eq $2]
 then
 echo "Both values are equal!"
 exit
 fi

 if [$1 -gt $2]
 then
 echo "The first value is greater than the second"
 exit
 fi

 if [$1 -lt $2]
 then
 echo "The first value is less than the second"
 exit
 fi
 $

 The test12.sh script shown in Listing 9.15 evaluates two values entered as parameters
on the command line:

 $ chmod u+x test12.sh
 $./test12.sh 10 5
 The first value is greater than the second
 $

 Only the command from the if statement that evaluated to a True logical value was pro-
cessed by the shell script.

 You can combine tests by using the Boolean AND (&&) and OR (||)
symbols.

 The case Statement
 Often you’ll fi nd yourself trying to evaluate the value of a variable, looking for a specifi c
value within a set of possible values, similar to what we demonstrated in Listing 9.15.
Instead of having to write multiple if statements testing for all of the possible conditions,
you can use a case statement.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Writing Script Programs 495

The case statement allows you to check multiple values of a single variable in a list-
oriented format:

case variable in
pattern1) commands1;;
pattern2 | pattern3) commands2;;
*) default commands;;
esac

The case statement compares the variable specified against the different patterns. If the
variable matches the pattern, the shell executes the commands specified for the pattern. You
can list more than one pattern on a line, using the bar operator to separate each pattern.
The asterisk symbol is the catchall for values that don’t match any of the listed patterns.
Listing 9.16 shows an example of using the case statement.

Listing 9.16: Using the case statement

$ cat test13.sh
#!/bin/bash
using the case statement

case $USER in
rich | barbara)
 echo "Welcome, $USER"
 echo "Please enjoy your visit";;
testing)
 echo "Special testing account";;
jessica)
 echo "Don't forget to log off when you're done";;
*)
 echo "Sorry, you're not allowed here";;
esac
$ chmod u+x test6.sh
$./test13.sh

Welcome, rich
Please enjoy your visit
$

The case statement provides a much cleaner way of specifying the various options for
each possible variable value.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

496 Chapter 9 ■ Writing Scripts

Loops
When you’re writing scripts, you’ll often find yourself in a situation where it would come in
handy to repeat the same commands multiple times, such as applying a command against
all of the files in a directory. The Bash shell provides some basic looping commands to
accommodate that.

The for Loop
The for statement iterates through every element in a series, such as files in a directory or
lines in a text document. The format of the for command is

for variable in series ; do
 commands
done

The variable becomes a placeholder, taking on the value of each element in the series
in each iteration. The commands can use the variable just like any other variable that you
define in the script. Listing 9.17 shows how to use a for loop to iterate through all of the
files in a directory.

Listing 9.17: Using the for loop

$ cat test14.sh
#!/bin/bash
iterate through the files in the Home folder
for file in $(ls | sort) ; do
 if [-d $file]
 then
 echo "$file is a directory"
 fi
 if [-f $file]
 then
 echo "$file is a file"
 fi
done
$

If you run the test14.sh shell script, you should see a listing of the files and directories
in your Home directory:

$./test14.sh
Desktop is a directory
Documents is a directory
Downloads is a directory
Music is a directory
Pictures is a directory

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Writing Script Programs 497

 Public is a directory
 Templates is a directory
 test1.sh is a file
 test2.sh is a file
 test3.sh is a file
 test4.sh is a file
 test5.sh is a file
 test6.sh is a file
 test7.sh is a file
 today.txt is a file
 Videos is a directory
 $

 That saves a lot of coding from having to check each fi le manually in a bunch of if or
case statements.

 A common use of the for statement is to iterate through a series of num-
bers. Instead of having to list all of the numbers individually, you can use
the seq command. The seq command outputs a series of numbers. Just
specify the start, end, and interval values needed for the series.

 The while Loop
 Another useful loop statement is the while command. This is its format:

 while [condition] ; do
commands

 done

 The while loop keeps looping as long as the condition specifi ed evaluates to a True logi-
cal value. When the condition evaluates to a False logical value, the looping stops. The con-
dition used in the while loop is the same as that for the if-then statement, so you can test
numbers, strings, and fi les. Listing 9.18 demonstrates using the while loop to calculate the
factorial of a number.

Listing 9.18: Calculating the factorial of a number

 $ cat test15.sh
 #!/bin/bash
 number=$1
 factorial=1
 while [$number -gt 0] ; do
 factorial=$[$factorial * $number]
 number=$[$number - 1]
 done
 echo The factorial of $1 is $factorial

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

498 Chapter 9 ■ Writing Scripts

 The shell script retrieves the fi rst parameter passed to the script and uses it in the while
loop. The while loop continues looping as long as the value stored in the $number variable is
greater than 0. In each loop iteration, that value is decreased by 1, so at some point the while
condition becomes False. When that occurs, the $factorial variable contains the fi nal calcu-
lation. When you run the test15.sh program, you should get the following results:

 $./test15.sh 5
 The factorial of 5 is 120
 $./test15.sh 6
 The factorial of 6 is 720
 $

 The while loop took all of the hard work of iterating through the series of numbers. Now
you can plug in any number as the command-line parameter and calculate the factorial value!

 The opposite of the while command is the until command. It iterates
through a block of commands until the test condition evaluates to a True
logical value.

 Functions
 As you start writing more complex shell scripts, you’ll fi nd yourself reusing parts of code
that perform specifi c tasks. Sometimes it’s something simple, such as displaying a text mes-
sage and retrieving an answer from the script users. Other times it’s a complicated calcula-
tion that’s used multiple times in your script as part of a larger process.

 In each of these situations, it can get tiresome writing the same blocks of code over and
over again in your script. It would be nice to write the block of code just once and then be
able to refer to that block of code anywhere in your script without having to rewrite it.

 The Bash shell provides a feature allowing you to do just that. Functions are blocks of
script code that you assign a name to and then reuse anywhere in your code. Any time you
need to use that block of code in your script, all you need to do is use the function name
you assigned it (referred to as calling the function). This section describes how to create and
use functions in your shell scripts.

 There are two formats you can use to create functions in Bash shell scripts. The fi rst for-
mat uses the keyword function, along with the function name you assign to the block of code:

 function name {
commands

 }

 The name attribute defi nes a unique name assigned to the function. Each function you
defi ne in your script must be assigned a unique name.

 The commands are one or more Bash shell commands that make up your function. When
you call the function, the Bash shell executes each of the commands in the order they
appear in the function, just as in a normal script.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Writing Script Programs 499

The second format for defining a function in a Bash shell script more closely follows how
functions are defined in other programming languages:

 name() {
 commands

 }

The empty parentheses after the function name indicate that you’re defining a function.
The same naming rules apply in this format as in the original shell script function format.

To use a function in your script, specify the function name on a line, just as you would
any other shell command. Listing 9.19 demonstrates how to do this.

Listing 9.19: Using a function in a shell script

 $ cat test16.sh
 #!/bin/bash
 # using a function in a script

 function func1 {
 echo "This is an example of a function"
 }

 count=1
 while [$count -le 5]
 do
 func1
 count=$[$count + 1]
 done

 echo "This is the end of the loop"
 func1
 echo "Now this is the end of the script"
 $./test16.sh
 This is an example of a function
 This is an example of a function
 This is an example of a function
 This is an example of a function
 This is an example of a function
 This is the end of the loop
 This is an example of a function
 Now this is the end of the script
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

500 Chapter 9 ■ Writing Scripts

In Listing 9.19, each time the func1 function name is referenced in the code, the
Bash shell returns to the func1 function definition and executes the commands
defined there.

The Bash shell uses the return command to exit a function with a specific exit status.
The return command allows you to specify a single integer value to define the function
exit status, providing an easy way for you to programmatically set the exit status of your
function:

 $ cat test17.sh
 #!/bin/bash
 # using the return command in a function

 function dbl {
 read -p "Enter a value: " value
 echo "doubling the value"
 return $[$value * 2]
 }

 dbl
 echo "The new value is $?"
 $

The dbl function doubles the value contained in the $value variable provided by the
user input. It then returns the result using the return command, which the script displays
using the $? variable.

Just as you can capture the output of a command to a shell variable, you can also capture
the output of a function to a shell variable. You can use this technique to retrieve any type of
output from a function to assign to a variable:

 result=$(dbl)

Running Scripts in Background Mode
There are times when running a shell script directly from the command-line interface is
inconvenient. Some scripts can take a long time to process, and you may not want to tie
up the command-line interface waiting. While the script is running, you can’t do any-
thing else in your terminal session. Fortunately, there’s a simple solution to that problem.
The following sections describe how to run your scripts in background mode on your
Linux system.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Running Scripts in Background Mode 501

Running in the Background
Running a shell script in background mode is a fairly easy thing to do. To run a shell script
in background mode from the command-line interface, just place an ampersand symbol
after the command:

 $./test18.sh &
 [1] 19555
 $ This is test program
 Loop #1
 Loop #2

 $ ls -l
 total 8
 -rwxr--r-- 1 rich rich 219 Feb 26 19:27 test18.sh
* $ Loop #3

When you place the ampersand symbol after a command, it separates the command
from the Bash shell and runs it as a separate background process on the system. The first
thing that displays is the line

 [1] 19555

The number in the square brackets is the job number the shell assigns to the background
process. The shell assigns each process started a unique job number. The next number is the
process ID (PID) the Linux system itself assigns to the process. So every process running
in a shell has a unique job number, and every process running on the Linux system has a
unique PID.

As soon as the system displays these items, a new command-line interface prompt
appears. You are returned to the shell, and the command you executed runs safely in
background mode.

At this point, you can enter new commands at the prompt (as shown in the example).
However, while the background process is still running, it still uses your terminal
monitor for output messages. You’ll notice from the example that the output from the
test1.sh script appears in the output intermixed with any other commands that are run
from the shell.

When the background process finishes, it displays a message on the terminal:

 [1]+ Done ./test18.sh

This shows the job number and the status of the job (Done), along with the command
used to start the job.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

502 Chapter 9 ■ Writing Scripts

Running Multiple Background Jobs
You can start any number of background jobs at the same time from the command-line
prompt:

 $./test18.sh &
 [1] 19582
 $ This is test program
 Loop #1
 $./test18.sh &
 [2] 19597
 $ This is test program
 Loop #1
 $./test18.sh &
 [3] 19612
 $ This is test program
 Loop #1
 Loop #2
 Loop #2
 Loop #2

Each time you start a new job, the shell assigns it a new job number, and the Linux sys-
tem assigns it a new PID. You can see that all of the scripts are running by using the ps
command:
 $ ps au
 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
 rich 19498 0.0 1.2 2688 1628 pts/0 S 11:38 0:00 -bash
 rich 19582 0.0 0.9 2276 1180 pts/0 S 11:55 0:00 /bin/bash ./test18.sh
 rich 9597 0.1 0.9 2276 1180 pts/0 S 11:55 0:00 /bin/bash ./test18.sh
 rich 19612 0.1 0.9 2276 1180 pts/0 S 11:55 0:00 /bin/bash ./test18.sh
 rich 19639 0.0 0.4 1564 552 pts/0 S 11:56 0:00 sleep 10
 rich 19640 0.0 0.4 1564 552 pts/0 S 11:56 0:00 sleep 10
 rich 19641 0.0 0.4 1564 552 pts/0 S 11:56 0:00 sleep 10
 rich 19642 0.0 0.5 2588 744 pts/0 R 11:56 0:00 ps au
$

Each of the background processes you start appears in the ps command output listing
of running processes. If all of the processes display output in your terminal session, things
can get pretty messy pretty quickly. Fortunately, there’s a simple way to solve that problem,
which we’ll discuss in the next section.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Running Scripts Without a Console 503

 You need to be careful when using background processes from a termi-
nal session. Notice in the output from the ps command that each of the
background processes is tied to the terminal session (pts/0) terminal. If
the terminal session exits, the background process also exits. Some ter-
minal emulators warn you if you have any running background processes
associated with the terminal, while others don’t. If you want your script
to continue running in background mode after you’ve logged off the con-
sole, there’s something else you need to do. The next section discusses
that process.

 Running Scripts Without a Console
 There will be times when you want to start a shell script from a terminal session and then
let the script run in background mode until it fi nishes, even if you exit the terminal session.
You can do this by using the nohup command.

 The nohup command runs another command blocking any SIGHUP signals that are sent
to the process. This prevents the process from exiting when you exit your terminal session.

 You can combine the nohup command with the ampersand to run a script in background
and not allow it to be interrupted:

 $ nohup ./test18.sh &
 [1] 19831
 $ nohup: appending output to 'nohup.out'
 $

 Just as with a normal background process, the shell assigns the command a job number,
and the Linux system assigns a PID number. The difference is that when you use the nohup
command, the script ignores any SIGHUP signals sent by the terminal session if you close the
session.

 Because the nohup command disassociates the process from the terminal, the process loses
the output link to your monitor. To accommodate any output generated by the command, the
 nohup command automatically redirects output messages to a fi le, called nohup.out .

 The nohup.out fi le contains all of the output that would normally be sent to the terminal
monitor. After the process fi nishes running, you can view the nohup.out fi le for the output
results:

 $ cat nohup.out
 This is a test program
 Loop #1
 Loop #2
 Loop #3

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

504 Chapter 9 ■ Writing Scripts

 Loop #4
 Loop #5
 Loop #6
 Loop #7
 Loop #8
 Loop #9
 Loop #10
 This is the end of the test program
 $

 The output appears in the nohup.out fi le just as if the process ran on the command line!

 If you run another command using nohup , the output is appended to the
existing nohup.out file. Be careful when running multiple commands from
the same directory, as all of the output will be sent to the same nohup.out
file, which can get confusing.

 Sending Signals
 The Bash shell can send control signals to processes running on the system. This allows you
to stop or interrupt a runaway application process if necessary. There are two basic Linux
signals you can generate using key combinations on the keyboard to interrupt or stop a
foreground process.

 Interrupting a Process
 The Ctrl+C key combination generates a SIGINT signal and sends it to any processes cur-
rently running in the shell. The SIGINT signal interrupts the running process, which for
most processes causes them to stop (it is possible to code a script to ignore interrupt signals,
but this is not common). You can test this by running a command that normally takes a
long time to fi nish and pressing the Ctrl+C key combination:

 $ sleep 100

 $

 The Ctrl+C key combination doesn’t produce any output on the monitor; it just stops the
current process running in the shell.

 Pausing a Process
 Instead of terminating a process, you can pause it in the middle of whatever it’s doing.
Sometimes this can be a dangerous thing (for example, if a script has a fi le lock open on

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Sending Signals 505

a crucial system file), but often it allows you to peek inside what a script is doing without
actually terminating the process.

The Ctrl+Z key combination generates a SIGTSTP signal, stopping any processes running
in the shell. Stopping a process is different than terminating the process, as stopping the pro-
cess leaves the program still in memory and able to continue running from where it left off.
In the next section, “Job Control,” you’ll learn how to restart a process that’s been stopped.

When you use the Ctrl+Z key combination, the shell informs you that the process has
been stopped:

 $ sleep 100

 [1]+ Stopped sleep 100
 $

The number in the square brackets indicates the job number for the process in the shell.
If you have a stopped job assigned to your shell session, Bash will warn you if you try to
exit the shell:

 $ exit
 logout
 There are stopped jobs.
 $

You can view the stopped job by using the ps command:

 $ ps au
 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
 rich 20560 0.0 1.2 2688 1624 pts/0 S 05:15 0:00 -bash
 rich 20605 0.2 0.4 1564 552 pts/0 T 05:22 0:00 sleep 100
 rich 20606 0.0 0.5 2584 740 pts/0 R 05:22 0:00 ps au
 $

The ps command shows the status of the stopped job as T, which indicates the command
is either being traced or is stopped.

If you really want to exit the shell with the stopped job still active, just type the exit
command again. The shell will exit, terminating the stopped job. Alternately, now that you
know the PID of the stopped job, you can use the kill command to send a SIGKILL signal
to terminate it:

 $ kill -9 20605
 $
 [1]+ Killed sleep 100
 $

When you kill the job, initially you won’t get any response. However, the next time you
do something that produces a shell prompt, you’ll see a message indicating that the job was
killed. Each time the shell produces a prompt, it also displays the status of any jobs that
have changed states in the shell.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

506 Chapter 9 ■ Writing Scripts

Job Control
In the previous section, you saw how to use the Ctrl+Z key combination to stop a job run-
ning in the shell. After you stop a job, the Linux system lets you either kill or restart it.
Restarting a stopped process requires sending it a SIGCONT signal.

The function of starting, stopping, killing, and resuming jobs is called job control. With
job control, you have full control over how processes run in your shell environment.

This section describes the commands used to view and control jobs running in your shell.

Viewing Jobs
The key command for job control is the jobs command. The jobs command allows you to
view the current jobs being handled by the shell. Listing 9.20 uses a shell script to demon-
strate viewing a stopped job.

Listing 9.20: Stopping a running job

 $ cat test19.sh
 #!/bin/bash
 # testing job control

 echo "This is a test program $$"
 count=1
 while [$count -le 10] ; do
 echo "Loop #$count"
 sleep 10
 count=$[$count + 1]
 done
 echo "This is the end of the test program"
 $./test19.sh
 This is a test program 29011
 Loop #1

 [1]+ Stopped ./test19.sh
 $./test19.sh > test19.sh.out &
 [2] 28861
 $
 $ jobs
 [1]+ Stopped ./test19.sh
 [2]- Running ./test19.sh >test19.shout &
 $

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Job Control 507

The script shown in Listing 9.20 uses the $$ variable to display the PID that the Linux
system assigns to the script; then it goes into a loop, sleeping for 10 seconds at a time for
each iteration. In the example, we start the first script from the command-line interface
and then stop it using the Ctrl+Z key combination. Next, another job is started as a back-
ground process, using the ampersand symbol. To make life a little easier, we redirected the
output of that script to a file so that it wouldn’t appear on the monitor.

After the two jobs were started, we used the jobs command to view the jobs assigned
to the shell. The jobs command shows both the stopped and the running jobs, along with
their job numbers and the commands used in the jobs.

The jobs command uses a few different command-line parameters, shown in Table 9.2.

ta b Le 9 . 2 The jobs command parameters

Parameter Description

-l List the PID of the process along with the job number.

-n List only jobs that have changed their status since the last notification
from the shell.

-p List only the PIDs of the jobs.

-r List only the running jobs.

-s List only stopped jobs.

You probably noticed the plus and minus signs in the output in Listing 9.20. The job
with the plus sign is considered the default job. It would be the job referenced by any job
control commands if a job number wasn’t specified in the command line. The job with the
minus sign is the job that would become the default job when the current default job fin-
ishes processing. There will only be one job with the plus sign and one job with the minus
sign at any time, no matter how many jobs are running in the shell.

Listing 9.21 shows an example of how the next job in line takes over the default status
when the default job is removed.

Listing 9.21: Demonstrating job control

 $./test19.sh
 This is a test program 29075
 Loop #1

 [1]+ Stopped ./test19.sh
 $./test19.sh

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

508 Chapter 9 ■ Writing Scripts

 This is a test program 29090
 Loop #1

 [2]+ Stopped ./test19.sh
 $./test19.sh

 This is a test program 29105
 Loop #1

 [3]+ Stopped ./test19.sh
 $ jobs -l
 [1] 29075 Stopped ./test19.sh
 [2]- 29090 Stopped ./test19.sh
 [3]+ 29105 Stopped ./test19.sh
 $ kill -9 29105
 $ jobs -l
 [1]- 29075 Stopped ./test19.sh
 [2]+ 29090 Stopped ./test19.sh
 $

In Listing 9.21 we started, then stopped, three separate processes. The jobs command
listing shows the three processes and their status. Note by the PID numbers that the default
process (the one listed with the plus sign) is 29105, the last process started.

We then used the kill command to send a SIGHUP signal to the default process. In the
next jobs listing, the job that previously had the minus sign, 29090, is now the default job.

Restarting Stopped Jobs
Under Bash job control, you can restart any stopped job as either a background process or
a foreground process. A foreground process takes over control of the terminal you’re work-
ing on, so be careful about using that feature.

To restart a job in background mode, use the bg command, along with the job number:

 $ bg 2
 [2]+ ./test20.sh &
 Loop #2
 $ Loop #3
 Loop #4

 $ jobs
 [1]+ Stopped ./test20.sh
 [2]- Running ./test20.sh &

Listing 9.21: Demonstrating job control (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Running Like Clockwork 509

 $ Loop #6
 Loop #7
 Loop #8
 Loop #9
 Loop #10
 This is the end of the test program

 [2]- Done ./test20.sh
 $

Since we restarted the job in background mode, the command-line interface prompt
appears, allowing us to continue with other commands. The output from the jobs com-
mand now shows that the job is indeed running (as you can tell from the output now
appearing on the monitor).

To restart a job in foreground mode, use the fg command, along with the job number:

 $ jobs
 [1]+ Stopped ./test20.sh
 $ fg 1
 ./test20
 Loop #2
 Loop #3

Since the job is running in foreground mode, we don’t get a new command-line interface
prompt until the jobs finishes.

Running Like Clockwork
I’m sure that, as you start working with scripts, there’ll be a situation in which you’ll want
to run a script at a preset time, usually at a time when you’re not there. There are two com-
mon ways of running a script at a preselected time:

 ■ The at command

 ■ The cron table

Each method uses a different technique for scheduling when and how often to run
scripts. The following sections describe each of these methods.

Scheduling a Job Using the at Command
The at command allows you to specify a time when the Linux system will run a script. It
submits a job to a queue with directions on when the shell should run the job. Another
command, atd, runs in the background and checks the job queue for jobs to run. Most
Linux distributions start this automatically at boot time.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

510 Chapter 9 ■ Writing Scripts

The atd command checks a special directory on the system (usually /var/spool/at) for
jobs submitted using the at command. By default, the atd command checks this directory
every 60 seconds. When a job is present, the atd command checks the time the job is set to
be run. If the time matches the current time, the atd command runs the job.

The following sections describe how to use the at command to submit jobs to run and
how to manage jobs.

The at Command Format
The basic at command format is pretty simple:

 at [-f filename] time

By default, the at command submits input from STDIN to the queue. You can specify a
filename used to read commands (your script file) using the -f parameter.

The time parameter specifies when you want the Linux system to run the job. You can
get pretty creative with how you specify the time. The at command recognizes lots of dif-
ferent time formats:

 ■ A standard hour and minute, such as 10:15

 ■ An AM/PM indicator, such as 10:15PM

 ■ A specific named time, such as now, noon, midnight, or teatime (4PM)

If you specify a time that’s already past, the at command runs the job at that time on
the next day.

Besides specifying the time to run the job, you can also include a specific date, using a
few different date formats:

 ■ A standard date format, such as MMDDYY, MM/DD/YY, or DD.MM.YY

 ■ A text date, such as Jul 4 or Dec 25, with or without the year

 ■ You can also specify a time increment:

 ■ Now + 25 minutes

 ■ 10:15PM tomorrow

 ■ 10:15 + 7 days

When you use the at command, the job is submitted into a job queue. The job queue
holds the jobs submitted by the at command for processing. There are 26 different job
queues available for different priority levels. Job queues are referenced using lowercase let-
ters, a through z. By default, all at jobs are submitted to job queue a, the highest-priority
queue. If you want to run a job at a lower priority, you can specify the letter using the -q
parameter.

Retrieving Job Output
When the job runs on the Linux system, there’s no monitor associated with the job. Instead,
the Linux system uses the email address of the user who submitted the job. Any output des-
tined to STDOUT or STDERR is mailed to the user via the mail system.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Running Like Clockwork 511

Listing 9.22 shows a simple example of using the at command to schedule a job to run.

Listing 9.22: Using the at command to start a job

$ date
Thu Feb 28 18:48:20 EST 2019
$ at -f test3.sh 18:49
job 2 at Thu Feb 28 18:49:00 2019
$ mail
Heirloom Mail version 12.5 7/5/10. Type ? for help.
"/var/spool/mail/rich": 1 message 1 new
>N 1 Rich Thu Feb 28 18:49 15/568 "Output from your job "
&
Message 1:
From rich@localhost.localdomain Thu Feb 28 18:49:00 2019
Return-Path: <rich@localhost.localdomain>

X-Original-To: rich
Delivered-To: rich@localhost.localdomain
Subject: Output from your job 2
To: rich@localhost.localdomain
Date: Thu, 28 Feb 2019 18:49:00 -0500 (EST)
From: rich@localhost.localdomain (Rich)
Status: R

"This script ran at 18:49:00"
"This is the end of the script"

&

As seen in Listing 9.22, when we ran the at command, it produced a warning message,
indicating what shell the system uses to run the script (the default shell assigned to /bin/sh,
which for Linux is the Bash shell), along with the job number assigned to the job and the
time the job is scheduled to run.

When the job completes, nothing appears on the monitor, but the system generates an
email message. The email message shows the output generated by the script. If the script
doesn’t produce any output, it won’t generate an email message, by default. You can change
that by using the -m option in the at command. This generates an email message, indicating
the job completed, even if the script doesn’t generate any output.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

512 Chapter 9 ■ Writing Scripts

 Listing Pending Jobs
 The atq command allows you to view what jobs are pending on the system:

 $ at -f test21.sh 19:15
 warning: commands will be executed using /bin/sh
 job 7 at 2007-11-04 10:15
 $ at -f test21.sh 4PM
 warning: commands will be executed using /bin/sh
 job 8 at 2007-11-03 16:00
 $ at -f test21.sh 1PM tomorrow
 warning: commands will be executed using /bin/sh
 job 9 at 2007-11-04 13:00
 $ atq
 7 2007-11-04 10:15 a
 8 2007-11-03 16:00 a
 9 2007-11-04 13:00 a
 $

 The job listing shows the job number, the date and time the system will run the job, and
the job queue the job is stored in.

 Removing Jobs
 When you know the information about what jobs are pending in the job queues, you can
use the atrm command to remove a pending job:

 $ atrm 8
 $ atq
 7 2007-11-04 10:15 a
 9 2007-11-04 13:00 a
 $

 Just specify the job number you want to remove. You can only remove jobs that you sub-
mit for execution. You can’t remove jobs submitted by others.

 If you’re using a Linux distribution that uses the systemd startup method,
you can also use the systemd-run command to schedule a job to run at a
specific time. The systemd-run command uses a somewhat complicated
format, but it allows you to fine-tune exactly when a job should run (down
to the millisecond of time), providing a wealth of options for you. To list
jobs scheduled using the systemd-run command, you’ll need to use the
systemctl command. Consult your Linux system documentation if you’d
like to learn more about the systemd-run statement.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Running Like Clockwork 513

Scheduling Regular Scripts
Using the at command to schedule a script to run at a preset time is great, but what if
you need that script to run at the same time every day or once a week or once a month?
Instead of having to continually submit at jobs, you can use another feature of the Linux
system.

The Linux system uses the cron program to allow you to schedule jobs that need to run
on a regular basis. The cron program runs in the background and checks special tables,
called cron tables (also called crontab for short), for jobs that are scheduled to run.

The cron Table
The cron table uses a special format for allowing you to specify when a job should be run.
The format for the cron table is

 min hour dayofmonth month dayofweek command

The cron table allows you to specify entries as specific values, ranges of values (such as
1–5), or as a wildcard character (the asterisk). For example, if you want to run a command
at 10:15 a.m. every day, you would use the cron table entry of

 15 10 * * * command

The wildcard character used in the dayofmonth, month, and dayofweek fields indicates
that cron will execute the command every day of every month at 10:15 a.m. To specify a
command to run at 4:15 p.m. every Monday, you would use

 15 16 * * 1 command

You can specify the dayofweek entry either as a three-character text value (mon, tue,
wed, thu, fri, sat, sun) or as a numeric value, with 0 being Sunday and 6 being Saturday.

Here’s another example: to execute a command at 12 noon on the first day of every
month, you’d use the format

 00 12 1 * * command

The dayofmonth entry specifies a date value (1–31) for the month.
When specifying the command or shell to run, you must use its full path name. You

can add any command-line parameters or redirection symbols you like, as a regular com-
mand line:

 15 10 * * * /home/rich/test21.sh > test21out

The cron program runs the script using the user account that submitted the job. Thus,
you must have the proper permissions to access the command and output files specified in
the command listing.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

514 Chapter 9 ■ Writing Scripts

Building the cron Table
All system users can have their own cron table (including the root user) for running sched-
uled jobs. Linux provides the crontab command for handling the cron table. To list an
existing cron table, use the -l parameter:

 $ crontab -l
 no crontab for rich
 $

By default, each user’s cron table file doesn’t exist. To add entries to your cron table, use
the -e parameter. When you do that, the crontab command automatically starts the vi edi-
tor with the existing cron table, or an empty file if it doesn’t yet exist.

e x e r c i S e 9 .1

Writing a bash Script to view the Password information for System Users

This exercise walks through how to write a Bash script to view the password information
for all user accounts configured on the Linux system.

1. Log into your Linux graphical desktop and open a command prompt window.

2. At the command prompt, open a text editor of your choice and create the text file
pwinfo.sh by typing nano pwinfo.sh, pico pwinfo.sh, or vi pwinfo.sh.

3. Enter the following code into the new text file:

#!/bin/bash
pwinfo.sh - display password information for all users
list=$(cut -d : -f 1 /etc/passwd)
for user in $list ; do
 echo Password information for $user
 sudo chage -l $user
 echo "----------"
done

4. Save the file using the appropriate save command for your editor.

5. Give yourself execute permissions to the file by typing chmod u+x pwinfo.sh.

6. Run the shell script by typing ./pwinfo.sh.

7. Enter your password at the sudo prompt.

You should see the chage password information listed for all of the user accounts
configured on the system.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Summary 515

Summary
The Bash shell provides both local and global environment variables that you can access
from within your shell scripts. Global environment variables allow you to retrieve infor-
mation about the shell environment your script is running in, such as what user account
started the shell, and information about that user account. Local environment variables
allow you to store and retrieve data from within your script, making it act like a real
program.

With basic shell scripting, you can combine multiple commands together to run them as
a single command. You can use output redirection to redirect the output of a command to a
file that you can read later on, or you can use piping to redirect the output of one command
to use as input data for another command.

When you add multiple commands to a text file to run, you must start the text file with
the shebang (#!) line, which identifies the Linux shell to use. You’ll also need to give your-
self execute permissions to run the file by using the chmod command with the u+x option.
You may also need to either specify the full path to the file when you run it from the com-
mand prompt, or modify the PATH environment variable on your system so that the shell
can find your shell script files.

The Bash shell provides additional features that you can add to your shell script files to
make them look more like real programs. The echo statement allows you to interject text
output between the command outputs in the script to help modify the output your script
produces.

The Bash shell also provides advanced programming features that you can use in your
shell scripts. Command substitution allows you to capture the output from a command into
a variable so that you can extract information from the command output within your shell
script. The Bash shell supports rudimentary integer math operations, but it is not overly
adept at handling floating-point numbers. You’ll need help from other programs such as the
bc calculator to do that.

The Bash shell also supports some standard programming features such as if and case
logic statements, allowing you to test numbers, strings, and files for specific conditions, and
run commands based on the outcome of those conditions. It also supports both for and
while loops, which allow you to iterate through groups of data, processing each element
within a set of commands. These features can help make your Bash shell scripts perform
just like a real program.

By default, when you run a script in a terminal session shell, the interactive shell is sus-
pended until the script completes. You can cause a script or command to run in background
mode by adding an ampersand sign (&) after the command name. When you run a script
or command in background mode, the interactive shell returns, allowing you to continue
entering more commands. Any background processes run using this method are still tied to
the terminal session. If you exit the terminal session, the background processes also exit.

In addition to controlling processes while they’re running, you can determine when a
process starts on the system. Instead of running a script directly from the command-line

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

516 Chapter 9 ■ Writing Scripts

interface prompt, you can schedule the process to run at an alternative time. There are
several different ways to accomplish this. The at command allows you to run a script once
at a preset time. The cron program provides an interface that can run scripts at a regularly
scheduled interval.

Exam Essentials
Explain environment variables and how Linux uses them. Environment variables store
data in memory for shell sessions. Environment variables set within a shell are considered
local variables, accessible by the local shell only. Using the export command allows
an environment variable to be accessed globally by other shell sessions. The system
administrator can set standard environment variables for all users by placing them in the
/etc/profile file, and individual users can set their own environment variables in the
.bash_profile, .profile, or .bashrc file in their HOME directory.

Describe how to link multiple command-line commands together in a shell script. The
Bash shell allows us to place multiple commands sequentially in a file and will then process
each command when you run the file from the command line. The output from each com-
mand will appear in the command-line output.

Explain how you can handle data within a Bash shell script. The Bash shell provides
two ways to handle data within commands. Output redirection allows you to redirect the
output of a command to a text file, which you, or another command, can read later. Piping
allows you to redirect the output of one command to use as the input data for another com-
mand. The output never displays on the monitor when you run the shell script; the data
transfer happens behind the scenes.

Explain the type of data you can access from within a shell script. The Bash shell pro-
vides access to environment variables, which contain information about the shell environ-
ment the script is running in. You can obtain information about the system as well as the
user account that’s running the shell script. The shell script also has access to positional
variables, which allow you to pass data to the shell script from the command line when you
run the shell script.

Describe how you can manipulate output data from a command before you use it in
another command within a shell script. Command substitution allows you to redirect
the output of a command to a user variable in your shell script. You can then use standard
Linux text processing commands to manipulate the data, such as sort it or extract data
records from it, before redirecting the variable data to another command.

Describe how the Bash shell performs mathematical operations. The Bash shell uses the
$[] symbol to define mathematical equations to process. The Bash shell can perform only
integer math, so this capability is somewhat limited.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam Essentials 517

Explain the different methods for implementing logic within a Bash shell script. The Bash
shell supports if statements and the case statement. They both allow you to perform a test
on a numerical value, string value, or a file, and then run a block of commands based on
the outcome of the test.

Describe how to run a shell script in background mode from your console or terminal
session. To run a shell script in background mode, include the ampersand sign (&) after
the shell script command on the command line. The shell will run the script in background
mode and produce another command prompt for you to continue within the shell.

Explain how you can disconnect a shell script from the console or terminal session so that
it can continue running if the session closes. The nohup command disconnects the shell
script from the shell session and runs it as a separate process. If the console or terminal
session exits, the shell script will continue running.

Explain how you can stop or pause a shell script running in the foreground on a console or
terminal session. To stop a shell script running in the foreground of a console or terminal
session, press the Ctrl+C key combination. To pause a running shell script, press the Ctrl+Z
key combination.

Describe how to list shell scripts running in background mode within a console or terminal
session. The jobs command allows you to list the commands that are running within
the console or terminal session. The output from the jobs command displays both the job
number assigned by the shell and the process ID assigned by the Linux system.

Describe how to run a shell script at a specific time. The at command allows you to
schedule a job to run at a specific time. You can specify the time by using an exact value,
such as 10:00PM, or by using common date and time references, such as 10:00AM
tomorrow.

Explain how to run a shell script automatically at a set time every day. The cron process
runs every minute and checks for jobs that are scheduled to run. You must define the jobs
to run in the cron table by using the crontab command.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

518 Chapter 9 ■ Writing Scripts

Review Questions
You can find the answers in the appendix.

1. What character or characters make up the shebang used in Linux to define the shell used
for a shell script?

A. >>

B. #!

C. |

D. >

E. 2>

2. What character or characters do you use to redirect all output from a command to a new
file?

A. >>

B. #!

C. |

D. >

E. 2>

3. What chmod permissions should you assign to a file to run it as a shell script?

A. 644

B. u+r

C. u+x

D. u+w

E. u=wr

4. What environment variable contains the username of the user who started the shell?

A. $USER

B. $UID

C. $HOME

D. $BASH

E. $1

5. How do you assign the numeric value 10 to the variable var1?

A. var1=$(10)

B. var1 = 10

C. var1=10

D. var1="10"

E. var1=`10`

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 519

6. What if condition test should you use to determine whether an object exists and is a file?

A. -e

B. -f

C. -d

D. -x

E. -w

7. What character or combination of characters do you use to redirect the output of one com-
mand to another command?

A. >>

B. #!

C. |

D. >

E. 2>

8. What command do you use to change the exit status returned by the shell script?

A. #!

B. $?

C. $1

D. exit

E. while

9. What command should you use to perform a command substitution to assign the output of
a command to a variable in your shell script?

A. >

B. >>

C. $[]

D. |

E. $()

10. What command should you use to perform a mathematical operation in your shell script?

A. >

B. >>

C. $[]

D. |

E. $()

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

520 Chapter 9 ■ Writing Scripts

11. What command do you use to start a shell script in background mode from your console
session?

A. >

B. &

C. |

D. >>

E. nohup

12. What command do you use to disconnect a shell script from the current console so that it
can continue to run after the console exits?

A. >

B. &

C. |

D. >>

E. nohup

13. How can you get a runaway shell script to stop running in your console session?

A. Start it with the nohup command.

B. Start it with the ampersand (&) command.

C. Press Ctrl+C while the script is running.

D. Redirect the output using the pipe symbol.

E. Use the kill command to stop it.

14. How can you temporarily pause a shell script from running in foreground in a console
 session?

A. Press the Ctrl+Z key combination.

B. Press the Ctrl+C key combination.

C. Start the command with the nohup command.

D. Start the command with the ampersand (&) command.

E. Start the command with the fg command.

15. How do you determine the default job running in a console session?

A. By the PID number

B. By the job number

C. By a plus sign next to the job number in the jobs output

D. By a minus sign next to the job number in the jobs output

E. By using the ps command

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 521

16. What command do you use to retrieve a shell script running in background mode and run it
in foreground mode on the console session?

A. bg

B. fg

C. nohup

D. &

E. at

17. What command allows you to run a shell script at a specific time?

A. nohup

B. &

C. at

D. |

E. >

18. What program runs shell scripts at multiple preset times automatically?

A. at

B. nohup

C. &

D. cron

E. atq

19. When will the cron table entry 10 5 * * * myscript run the specified shell script?

A. At 10:05 a.m. every day

B. On May 10 every year

C. On October 5 every year

D. At 5:10 p.m. every day

E. At 5:10 a.m. every day

20. What command do you use to list the cron table entries for your user account?

A. cron

B. at

C. crontab

D. jobs

E. nohup

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

By

Securing Your System

ObjectiveS

 ✓ 110.1 Perform security administration tasks

 ✓ 110.2 Set up host security

 ✓ 110.3 Securing data with encryption

Chapter

10

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Securing your systems is a crucial task. The variety of com-
puter attacks and security breaches escalates every day. Thus,
the need to improve your servers’ security grows as well.

System administrators must know how to set at least a basic level of host security. This
includes auditing the network services their systems offer, reviewing system configurations
to ensure that local security policies are properly enforced, and employing appropriate tech-
niques to secure both data and communications. We’ll cover those topics and more in this
chapter on system security.

Administering Network Security
Imagine a home with a door to the outside from every room in the house. That would be
a lot of locks to check before leaving the house or going to bed. In the world of network
security, having services on your system that are not used is similar to having unnecessary
doors to the outside. A term used in cybersecurity that applies to this scenario is attack
 surface. An attack surface is all the various points where a malicious person may try to
gain access to something for nefarious reasons.

Continuing the analogy, envision that the multidoor home has a few doors with old
locks that no longer properly work and need to be replaced or repaired. This situation is
similar to older security software on your system that needs to be updated, reconfigured, or
even ousted so that more modern and secure applications can take its place.

In this section, we’ll take a look at auditing your system for unused services in order to
minimize its attack surface. We’ll also look at some older network security technology and
how it should be handled.

Disabling Unused Services
One method for minimizing your system’s attack surface is by disabling unused services
(daemons) on your system. Having less software running lessens the various targets a mali-
cious actor (another name for an attacker) can leverage.

While it is tempting to think you know every service running on your Linux system, to
be sure, it’s always a good idea to run a thorough audit. In this section, we’ll look at vari-
ous examinations you can conduct to see what services your system is offering.

Discovering Open Ports with nmap
The Network Mapper (nmap) utility is often used for penetration testing (the practice of
testing a system, its network, and its apps to find computer security weaknesses that a mali-
cious attacker could exploit). However, it is also very useful for network service auditing.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Network Security 525

 Though it’s typically not installed by default, except on pen testing
distributions such as Kali Linux, most distros have the nmap package in
their standard repositories. See Chapter 2, “Managing Software and
Processes,” for how to install packages.

 The nmap command was specifi cally developed as a network port scanning application. It can
scan multiple remote network servers, documenting all of the ports and protocols that they support.

 Typically, when a network service starts, it opens a network port and listens for incom-
ing connections. The nmap utility performs standard TCP and UDP connection examina-
tions that meet our needs here.

 The snipped example in Listing 10.1 shows using nmap inside the system’s fi rewall by
designating 127.0.0.1 (the local loopback address) as the server to scan. In order to see
which TCP protocol services the IPv4 ports are offering, the -sT options (scan TCP) are
used. You can also add the –p option to specify the port range, if desired.

 Listing 10.1: Viewing TCP ports and services inside the firewall using the nmap utility

 $ nmap -sT 127.0.0.1
 […]
 Nmap scan report for localhost (127.0.0.1)
 Host is up (0.0017s latency).
 Not shown: 996 closed ports
 PORT STATE SERVICE
 22/tcp open ssh
 25/tcp open smtp
 111/tcp open rpcbind
 631/tcp open ipp

 Nmap done: 1 IP address (1 host up) scanned in 0.23 seconds
 $

 Notice that after the fi rst few lines of output from the nmap utility, three columns of data
are displayed: PORT , STATE , SERVICE . The fi rst line of this information in Listing 10.1 is

 22/tcp open ssh

 This information lets us know that port 22 is open and listening for TCP connections for the
OpenSSH (ssh) service. If you don’t recognize a service’s name, you can employ the /etc/services
fi le to assist you (this fi le was covered in Chapter 8, “Confi guring Basic Networking”).

 If you are following along with the commands in the book, be aware that
the services your system offers may not be the same ones offered by our
systems. Thus, some of the command outputs, such as those from the
 nmap utility, may show different results than what you will see on your
system(s).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

526 Chapter 10 ■ Securing Your System

It’s a good idea to see what ports are offering services outside the system’s firewall util-
ity. To do this, use the server’s IP address (as the designated server to scan) with the nmap
utility and the same options. An example is shown snipped in Listing 10.2. This is handy,
because not only can you find out what ports and TCP protocol services are being offered,
you can tell what ports/services the firewall utility is blocking as well.

Listing 10.2: Viewing TCP ports and services outside the firewall using the nmap utility

$ nmap -sT 192.168.0.103
[…]
Nmap scan report for 192.168.0.103
Host is up (0.0015s latency).
Not shown: 998 closed ports
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind

Nmap done: 1 IP address (1 host up) scanned in 0.21 seconds
$

For a proper audit, also scan the ports offering UDP protocol services inside and outside
the system’s firewall. To do this, you’ll need to employ super user privileges and repeat the
same two previous nmap commands but change the -sT option to a -sU:

nmap -sU 127.0.0.1
nmap -sU 192.168.0.103

If your network is running IPv6, to do the nmap scans you’ll need to tack on the -6
option and provide the appropriate IPv6 system address. A snipped example of scanning
inside the firewall for UDP protocol services on a system attached to an IPv6 network is
shown in Listing 10.3.

Listing 10.3: Viewing UDP ports and services inside the firewall using the nmap utility

nmap -sU -6 ::1
[…]
Nmap scan report for localhost (::1)
Host is up (0.000049s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
111/udp open rpcbind

Nmap done: 1 IP address (1 host up) scanned in 0.21 seconds
#

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Network Security 527

 Do not run the network mapper utility outside your home network without
permission. For more information, read the nmap utility’s legal issue guide
at nmap.org/book/legal-issues.html .

 Identifying Open Ports with netstat
 Another tool that is useful for network service auditing is the netstat utility. Be aware
that this program is now deprecated. The term deprecated means that at some time in the
future, this utility will no longer be installed by default or offered in the various distribu-
tions’ repositories. So, though you need to know it for older systems, don’t count on it
being around.

 The primary replacement for the netstat utility is the ss command.

 The netstat command is very versatile, but with versatility comes complexity. Lots of
command-line options are available in netstat that allow you to customize just what infor-
mation it returns. For auditing purposes, display only ports that are listening for incoming
TCP packets by using the -t (or --tcp) option along with the -l (or --listening) switch as
shown in Listing 10.4.

 Listing 10.4: Viewing TCP ports and services using the netstat utility

 $ netstat --tcp --listening
 Active Internet connections (only servers)
 Proto Recv-Q Send-Q Local Address Foreign Address State
 tcp 0 0 0.0.0.0:sunrpc 0.0.0.0:* LISTEN
 tcp 0 0 localhost.locald:domain 0.0.0.0:* LISTEN
 tcp 0 0 0.0.0.0:ssh 0.0.0.0:* LISTEN
 tcp 0 0 localhost:ipp 0.0.0.0:* LISTEN
 tcp 0 0 localhost:smtp 0.0.0.0:* LISTEN
 tcp6 0 0 [::]:sunrpc [::]:* LISTEN
 tcp6 0 0 [::]:ssh [::]:* LISTEN
 tcp6 0 0 localhost:ipp [::]:* LISTEN
 tcp6 0 0 localhost:smtp [::]:* LISTEN
 $

 Notice that it displays information for both IPv4 and IPv6 by default. For auditing UDP
ports and services, replace the -t (or --tcp) option with a -u (or --udp) switch.

 In Listing 10.4, the name after the local address and the colon (:) is the port name as
defi ned in the /etc/services fi le. If the port number isn’t defi ned in the /etc/services
fi le, it appears as a number.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

528 Chapter 10 ■ Securing Your System

 Ports and sockets are important structures in Linux networking.
Understanding the difference between them will help in the auditing
process.

 A port is a number used by protocols, such as TCP and UDP, to identify
which service or application is transmitting data. For example, port 22 is a
well-known port designated for OpenSSH, and DNS listens on port 53. TCP
and UDP packets contain both the packet’s source and destination ports in
their headers.

 A network socket is a single endpoint of a network connection’s two
endpoints. That single endpoint is on the local system and bound to a
particular port. Thus, a network socket uses a combination of an IP address
(the local system) and a port number.

 Surveying Network Sockets via ss and systemd.socket
 The ss command can come to your rescue for replacing the obsolete netstat tool’s net-
work service auditing functionality. The -ltu option displays only listening (-l) TCP (-t)
and UDP (-u) network sockets for both IPv4 and IPv6. A snipped example is shown in
Listing 10.5.

Listing 10.5: Viewing listening TCP/UDP network sockets using the ss utility

 $ ss -ltu
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
[…]
udp UNCONN 0 0 :::sunrpc :::*
udp UNCONN 0 0 :::822 :::*
[…]
tcp LISTEN 0 128 *:ssh *:*
tcp LISTEN 0 128 127.0.0.1:ipp *:*
tcp LISTEN 0 100 127.0.0.1:smtp *:*
[…]
tcp LISTEN 0 128 :::ssh :::*
tcp LISTEN 0 128 ::1:ipp :::*
tcp LISTEN 0 100 ::1:smtp :::*
$

 A relatively newer method for creating network sockets (as well as other socket types)
is via systemd. It uses an activation method that makes it possible to start listening sockets
in parallel outside of their attached services, which speeds up the entire process (called
systemd.sockets in the certifi cation exam objectives). Thus, this provides an additional
arena for network service auditing.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Network Security 529

There are a few methods you can use while auditing systemd managed network sockets,
and the best place to start is via the systemctl utility (first covered in Chapter 5,
“Booting, Initializing, and Virtualizing Linux”). In snipped Listing 10.6, the command
is used along with the list-sockets argument and several options to make the display a
little easier to read.

Listing 10.6: Viewing systemd managed sockets using the systemctl utility

$ systemctl list-sockets --all --no-pager --full
LISTEN UNIT ACTIVATES
[…]
/var/run/cups/cups.sock cups.socket cups.service
[…]
0.0.0.0:111 rpcbind.socket rpcbind.service
0.0.0.0:111 rpcbind.socket rpcbind.service
[…]
[::]:111 rpcbind.socket rpcbind.service
[::]:111 rpcbind.socket rpcbind.service
[::]:22 sshd.socket
[…]
28 sockets listed.
$

You’ve probably already noticed that you will see many more types of sockets besides
just network sockets in this command’s output. The trick is to look for familiar network
service names (example: sshd) and/or port numbers (example: 22) in the output.

To find the potential network socket systemd configuration (unit) files, employ a differ-
ent systemctl command, as shown snipped in Listing 10.7.

Listing 10.7: Viewing systemd managed socket unit files using the systemctl utility

$ systemctl list-unit-files --type=socket --no-pager
UNIT FILE STATE
[…]
cups.socket enabled
[…]
rpcbind.socket enabled
[…]
sshd.socket disabled
[…]

32 unit files listed.
$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

530 Chapter 10 ■ Securing Your System

One handy fact about this systemctl command’s output is that you can quickly deter-
mine whether the network socket is enabled or disabled for systemd. A disabled value
only means systemd does not manage that particular network socket; it does not mean the
service is disabled. In Listing 10.7, the rpcbind socket is enabled, whereas the sshd socket
shows as disabled.

For the enabled sockets, you need to do a little more research before you can call this
part of the audit complete. Take a look at the contents of each enabled network socket’s
unit file. An example of viewing the rpcbind socket unit file is shown in Listing 10.8.

Listing 10.8: Viewing contents of a systemd socket unit file using the systemctl utility

$ systemctl cat rpcbind.socket
/usr/lib/systemd/system/rpcbind.socket
[Unit]
Description=RPCbind Server Activation Socket

[Socket]
ListenStream=/var/run/rpcbind.sock

RPC netconfig can't handle ipv6/ipv4 dual sockets
BindIPv6Only=ipv6-only
ListenStream=0.0.0.0:111
ListenDatagram=0.0.0.0:111
ListenStream=[::]:111
ListenDatagram=[::]:111

[Install]
WantedBy=sockets.target
$

The unit file’s contents will give you more clues as to what port this socket is using
(111 in this case), as well as additional network socket configuration information. If
desired, you can view the various potential settings of these socket unit files by typing
man systemd.socket at the command line.

Auditing Open Files with lsof and fuser
Besides viewing ports and network sockets, you can use open files to trace down offered
network services on your system. The lsof command lists currently open files. Since Linux
treats network connections and sockets as files, they will appear in the lsof output list.

The lsof command produces lots of output, so it’s best to filter it. For example, if you’re
interested in auditing only UDP protocol sockets and connections, use the –iUDP option
as shown snipped in Listing 10.9. Notice you can see both IPv4 and IPv6 along with addi-
tional helpful auditing information.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Network Security 531

Listing 10.9: Displaying UDP open files via the lsof utility

 # lsof -iUDP
 COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
 systemd 1 root 50u IPv4 22181 0t0 UDP *:sunrpc
 systemd 1 root 52u IPv6 22183 0t0 UDP *:sunrpc
 rpcbind 2773 rpc 5u IPv4 22181 0t0 UDP *:sunrpc
 rpcbind 2773 rpc 7u IPv6 22183 0t0 UDP *:sunrpc
 rpcbind 2773 rpc 10u IPv4 22798 0t0 UDP *:822
 rpcbind 2773 rpc 11u IPv6 22799 0t0 UDP *:822
 […]
 #

 You will need to employ super user privileges to have the lsof utility work
correctly. If you receive no output from the lsof program, most likely you
are issuing the command as a standard user.

 In snipped Listing 10.10, the lsof utility’s output is fi ltered to display network sockets in
a state of listening (-sTCP:LISTEN) for only TCP packets (-iTCP).

Listing 10.10: Displaying TCP listening open files via the lsof utility

 # lsof -iTCP -sTCP:LISTEN
 COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
 systemd 1 root 49u IPv4 22180 0t0 TCP *:sunrpc (LISTEN)
 systemd 1 root 51u IPv6 22182 0t0 TCP *:sunrpc (LISTEN)
 rpcbind 2773 rpc 4u IPv4 22180 0t0 TCP *:sunrpc (LISTEN)
 rpcbind 2773 rpc 6u IPv6 22182 0t0 TCP *:sunrpc (LISTEN)
 sshd 3404 root 3u IPv4 29484 0t0 TCP *:ssh (LISTEN)
 sshd 3404 root 4u IPv6 29486 0t0 TCP *:ssh (LISTEN)
 cupsd 3406 root 11u IPv6 30292 0t0 TCP localhost:ipp (LISTEN)
 cupsd 3406 root 12u IPv4 30293 0t0 TCP localhost:ipp (LISTEN)
 master 3653 root 13u IPv4 30584 0t0 TCP localhost:smtp (LISTEN)
 master 3653 root 14u IPv6 30585 0t0 TCP localhost:smtp (LISTEN)
 […]
 #

 You can dig down deeper and see not only more information concerning a particu-
lar port for TCP protocol traffi c, but established connections to that port as well. Just
employ a variation of the -i option that uses an argument of PROTOCOL : PORT as shown in
Listing 10.11.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

532 Chapter 10 ■ Securing Your System

Listing 10.11: Displaying open files for a particular protocol and port via the lsof utility

 # lsof -i tcp:22
 COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
 sshd 3404 root 3u IPv4 29484 0t0 TCP *:ssh (LISTEN)
 sshd 3404 root 4u IPv6 29486 0t0 TCP *:ssh (LISTEN)
 sshd 4501 root 3u IPv4 39036 0t0 TCP localhost.localdomain:
 ssh->192.168.0.101:61500 (ESTABLISHED)
 sshd 4507 Christine 3u IPv4 39036 0t0 TCP localhost.localdomain:
 ssh->192.168.0.101:61500 (ESTABLISHED)
 #

 Another utility that allows further auditing is the fuser command. It will display a pro-
gram or user’s process ID (PID) that is employing the protocol and port. An example of this
is shown in Listing 10.12, where the -v option is used to provide additional details and the
 -n switch is used to specify the protocol followed by the port number.

 Listing 10.12: Displaying the PIDs using TCP and a particular port via the fuser utility

 # fuser -vn tcp 22
 USER PID ACCESS COMMAND
 22/tcp: root 3404 F.... sshd
 root 4501 F.... sshd
 Christine 4507 F.... sshd
 #

 Listing 10.13 shows the same thing, except it pinpoints the UDP protocol. Note that you
must specify both the protocol and the port with the fuser command.

 Listing 10.13: Displaying the PIDs using UDP and a particular port via the fuser utility

 # fuser -vn udp 822
 USER PID ACCESS COMMAND
 822/udp: rpc 2773 F.... rpcbind
 #

 Notice that as with the lsof command, you must employ super user privileges with the
 fuser utility.

 Don’t forget to use your system initialization utilities as part of your service
audit. For systemd systems, type systemctl list-unit-files -t
service | grep enabled to view all the services started (enabled) at
system boot.

 On all SysVinit systems, you can start your auditing process by looking
at the initialization scripts stored in the /etc/init.d/ directory. Each script’s
name is the name of a service SysVinit manages.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Network Security 533

 To continue the audit process on SysVinit systems, for Red Hat–based
distros use super user privileges and type chkconfig --list at the
command line to audit the various services started at the different
run levels. For SysVinit Debian-based distributions, employ the
service --status-all command.

 On rather old SysVinit distribution versions, you may want to review the
/etc/inittab file as well. There may be services started in this file.

 Disabling the Services
 When you have determined via the auditing process what network daemons are running/
enabled on your system, use (or create one) a required network services list. Then methodi-
cally go through and disable the daemons that are not required. The method you employ
depends on the system’s initialization method.

 For systemd systems, it just takes a few steps. First, stop the service, if it is running, and
check that it is stopped via the following commands using super user privileges:

 systemctl stop SERVICE-NAME
 systemctl status SERVICE-NAME

 Of course, you’ll want to substitute the name of the service you want to stop for the
SERVICE-NAME portion of the commands.

 When the service is stopped, be sure to disable it, employing super user privileges, so
that when the system reboots, it won’t start.

 systemctl disable SERVICE-NAME

 After you’ve issued the preceding command, check to ensure that it is truly disabled. You
should receive a disabled message from this command:

 systemctl is-enabled SERVICE-NAME

 If you are using a distribution that employs the now-defunct Upstart
system initialization daemon, you’ll need to use different methods for
disabling the unneeded services than described here. Review your
distro’s Upstart documentation. Start by entering man initctl at the
command line.

 For SysVinit systems, you’ll need to fi rst stop the service, if it is running, and check that
it is stopped via the following commands using super user privileges:

 service SERVICE-NAME stop
 service SERVICE-NAME status

 To disable the service on a Red Hat–based distribution, use super user privileges and the
following command (substituting the name of the service for SERVICE-NAME):

 chkconfig SERVICE-NAME off

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

534 Chapter 10 ■ Securing Your System

 Then check that it is disabled (off) at every runlevel displayed by this command:

 chkconfig --list SERVICE-NAME

 If the network service is not needed, consider going beyond disabling
and uninstall it as well. Removing software packages was covered in
Chapter 2.

 To disable a network service on a Debian-based distro, use super user privileges and the
following command:

 update-rc.d -f SERVICE-NAME remove

 The -f option on the preceding command is needed only if a script exists for the service
(SERVICE-NAME) in the /etc/init.d/ directory.

 Unneeded network services are but one vector in your systems’ attack surfaces. But
with these unnecessary services disabled (or uninstalled), you have one less item to
worry about.

 Using Super Server Restrictions
 Typically, when a network service (daemon) starts, such as chronyd (covered in Chapter 7),
it opens a port. You can think of a port number as an identifi cation number assigned to a
network service. Incoming network packets that contain the network service’s port number
trigger that service into action. While the network service is waiting for packets containing
its port number, it is in a wait state, which is called listening . Often a daemon is said to be
“directly listening on the port” when it is in this state.

 Instead of listening directly on a port, some network services can employ a super server
(also called a super daemon) to act as a guard for them. Instead of the network service, the
super server directly listens for packets containing the designated port number. When such
a packet comes into the system, after initial processing the super server starts the network
service and hands the packet off to it. When concurrent requests come in, the super server
can start additional network service processes as required.

 Using this method systems boot faster, because network services are not started until
needed. Also, you can put additional controls into place. For example, you can set limits on
network service use, and you can fi ne-tune connection logging.

 Configuring xinetd
 The original super server on Linux systems was inetd . It was supplanted by xinetd , which
is called the extended super daemon due to its additional security features.

 The primary confi guration fi le for xinetd is /etc/xinetd.conf . This fi le typically contains
only global default options. A snipped example of this fi le on a CentOS distribution is
shown in Listing 10.14.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Network Security 535

Listing 10.14: Looking at the /etc/xinetd.conf file

$ cat /etc/xinetd.conf
#
[…]
defaults
{
The next two items are intended to be a quick access place to
temporarily enable or disable services.
#
enabled =
disabled =

Define general logging characteristics.
 log_type = SYSLOG daemon info
 log_on_failure = HOST
 log_on_success = PID HOST DURATION EXIT

Define access restriction defaults
#
no_access =
only_from =
max_load = 0
 cps = 50 10
 instances = 50
 per_source = 10

Address and networking defaults
#
bind =
mdns = yes
 v6only = no

setup environmental attributes
#
passenv =
 groups = yes
 umask = 002

[…]
}

includedir /etc/xinetd.d

$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

536 Chapter 10 ■ Securing Your System

 In the /etc/xinetd.conf fi le, any line with a preceding pound sign (#) is a comment line
and thus inactive. Notice at the bottom of the fi le the includedir directive:

 includedir /etc/xinetd.d

 This setting causes individual service confi guration fi les stored in the /etc/xinetd.d/ directory
to be included in the super server’s structure.

 If you cannot find the /etc/xinetd.conf file on your system, most likely
the xinetd package is not installed. See Chapter 2 for how to install this
package on your system if desired.

 The more commonly used xinetd directives are described in Table 10.1 . If you want to
peruse them all, enter man xinetd.conf at the command line.

 ta b Le 10 .1 Commonly used /etc/xinetd.conf directives

Name Description

 cps Specifies the maximum rate of incoming connections to the network
service. The first number sets the maximum rate before the service
pauses, and the second number establishes the number of seconds
to pause.

 instances Sets the maximum number of service processes that can be active at
the same time. Set to UNLIMITED to allow no limits.

logtype Determines where log messages are sent. If set to SYSLOG , log
messages are sent to the syslog protocol application, and the syslog
 facility and severity must be set as well (see Chapter 7). If set to
 FILE , log messages are appended to the filename listed.

 log_on_failure Establishes what additional information, besides the service ID, is
logged when a server process cannot be started. The data that can be
included is HOST , USERID , and ATTEMPT .

 log_on_success Sets what information is logged when a server process is started and
when it exits. The data that can be included is PID , HOST , USERID , EXIT ,
 DURATION , and TRAFFIC .

 max_load Determines the one-minute load average that when reached, the net-
work service stops accepting connections, until the load level drops.

 no_access Establishes remote hosts banned from this network service.

 only_from Sets the remote hosts or subnets which may use this network service.

 per_source Specifies the maximum number of network server processes that can
be started per IP address.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Network Security 537

Configuring xinetd Services
The default options in the /etc/xinetd.conf file can be overridden by settings in a network
service’s configuration file stored in the /etc/xinetd.d/ directory. An example of this type of
configuration file is shown snipped in Listing 10.15. The echo-stream service sends back any
data sent to it, and it is used for measuring packet round-trip times between two systems.

Notice in the file that there are mandatory settings for each service, such as id. Also,
directives are available to override the global settings in the /etc/xinetd.conf file. Inactive
directives are set as inactive via the # mark.

Listing 10.15: Looking at the echo stream’s /etc/xinetd.d/ configuration file

$ cat /etc/xinetd.d/echo-stream
This is the configuration for the tcp/stream echo service.

service echo
{
This is for quick on or off of the service
 disable = yes

The next attributes are mandatory for all services
 id = echo-stream
 type = INTERNAL
 wait = no
 socket_type = stream
protocol = socket type is usually enough
[…]
Logging options
log_type =
log_on_success =
log_on_failure =

[…]
Access restrictions
only_from =
no_access =
access_times =
cps = 50 10
instances = UNLIMITED
per_source = UNLIMITED
max_load = 0
[…]
}

$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

538 Chapter 10 ■ Securing Your System

 An important directive in the individual network service confi guration fi les is the
disable setting. If set to yes , the service is disabled. However, if disable is set to no , the
service is active. It would be wise to peruse the various confi guration fi les to ensure that
the network services your system needs to run are set to disable = no , and vice versa for
those that shouldn’t be running.

 When the xinetd confi guration fi les are properly set, you’ll need to start or restart
xinetd . Use the appropriate method, which depends on your system’s initialization method
(covered in Chapter 5).

 If you’ve done any investigation into systemd.sockets , you may believe
that it makes super servers like xinetd obsolete. At this point in time,
that is not true. The xinetd super server offers more functionality than
systemd.sockets can currently deliver. The website 0pointer.de/blog/
projects/inetd.html provides more insight into this topic, if you are
interested.

 Restricting via TCP Wrappers
TCP Wrappers are an older method for controlling access to network services. If a service
can employ TCP Wrappers, it will have the libwrap library compiled with it. You can check
for support by using the ldd command as shown snipped in Listing 10.16. Notice that TCP
Wrappers can be used by the openSSH service on an Ubuntu system.

 Listing 10.16: Using the ldd command to check for TCP Wrappers support

 $ which sshd
 /usr/sbin/sshd
 $
 $ ldd /usr/sbin/sshd | grep libwrap
 libwrap.so.0 […]
 $

 TCP Wrappers employ two fi les to determine who can access a particular service.
These fi les are /etc/hosts.allow and /etc/hosts.deny . As you can tell by their names, the
hosts.allow fi le typically allows access to the designated service in the form of a whitelist,
whereas the hosts.deny fi le commonly blocks access to all addresses included in a black-
list. These fi les have simple record syntax:

SERVICE : IPADDRESS…

 The search order of these fi les is critical. For an incoming service request, the following
takes place:

 ■ The hosts.allow file is checked for the remote IP address or hostname.

 ■ If found, access is allowed, and no further checks are made.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Local Security 539

 ■ The hosts.deny file is checked for the remote address.

 ■ If found, access is denied.

 ■ If not found, access is allowed.

 Because access is allowed if the remote system’s address is not found in either fi le, it is
best to employ the ALL wildcard in the /etc/hosts.deny fi le:

 ALL: ALL

 This disables all access to all services for any IP address not listed in the /etc/
hosts.allow fi le. Be aware that some distributions use PARANOID instead of ALL for the
address wildcard.

 The record’s IPADDRESS can be either IPv4 or IPv6. To list individual IP addresses in the
hosts.allow fi le, you specify them separated by commas:

 sshd: 172.243.24.15, 172.243.24.16, 172.243.24.17

 Typing in every single IP address that is allowed to access the OpenSSH service is not
necessary. You can specify entire subnets. For example, if you needed to allow all the IPv4
addresses in a Class C network access on a server, you specify only the fi rst three address
octets followed by a trailing dot:

 sshd: 172.243.24.

 TCP Wrappers were created prior to the time administrators used firewalls.
While they are still used by some, their usefulness is limited, and they
are considered deprecated by many distributions. It is best to move this
protection to your firewall.

 Administering Local Security
 Part of securing your system is dealing with local security. This includes understanding
password protections and making sure they are properly enforced. A rather important secu-
rity measure, which sometimes goes unmanaged, is correctly enforcing secure root account
access. These topics, along with setting limits and locating potentially dangerous fi les on
your system, are covered in this section.

 Securing Passwords
 While passwords and their fi les were originally covered in Chapter 7, there are a few addi-
tional items that you need to know in order to properly manage accounts and keep your
servers secure. Understanding the underlying principles in securing passwords will help.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

540 Chapter 10 ■ Securing Your System

 Looking at Password Storage
 Early Linux systems stored their passwords in the /etc/passwd fi le. The passwords were
hashed. A hashed password is created using a one-way cryptographic mathematical algo-
rithm that takes plaintext (text humans can read and understand) and turns it into secure
ciphertext, which is unintelligible to humans and machines. Hashing is one-way, because
you cannot take the ciphertext and use the algorithm to turn it back into plaintext. Linux
adds salt to the password hashing process, which adds additional data to make the hashed
password even more secure.

 However, some clever malicious actors created something called rainbow tables . A
rainbow table is a dictionary of potential plaintext passwords that have been hashed into
ciphertext. Programs that use these rainbow tables allow you to enter a password’s hash
and it displays the password as plaintext:

 Password Hash: $6$6XL3hyx7$NxhJjoLGWSx0KLS/xcbxjADlgIJqXAJoggtCNzFM.1LuWLH
pfOYBInGQYW3P717wtyQjsXhMpcbxJ0pmTDw.I
 Password: 1234

 With attacker tools like rainbow tables, the /etc/passwd fi le permissions make any pass-
words stored in it vulnerable:

 $ ls -l /etc/passwd
 -rw-r--r--. 1 root root 2631 Jun 12 18:04 /etc/passwd

 With these permission settings, everyone who has access to the system can read this fi le
(fi le permissions were covered in Chapter 4, “Managing Files”). Thus, everyone would have
access to the hashed passwords and be able to potentially employ rainbow tables or other
attacker tools to discover the account’s plaintext passwords.

 In order to protect the account passwords, they were moved from the /etc/passwd fi le to
the more locked down /etc/shadow fi le:

 $ ls -l /etc/shadow
 ----------. 1 root root 2143 Jun 12 18:04 /etc/shadow

 These fi le permission settings prevent the world from viewing the password hashes.
(Some distributions have slightly different fi le permissions on the /etc/shadow fi le, but in
essence the effect is the same.)

 Though mentioned in Chapter 7, it’s worthwhile to mention it again. If your Linux
system is still storing passwords in the /etc/passwd fi le, you need to move them to the
/etc/shadow fi le. The pwconv utility can perform this operation for you.

 When you log into your account, the password prompt accepts the
plaintext password you type into the field. To check the password’s
correctness, the system runs the entered plaintext through the hashing
algorithm, adding the salt as it goes, which produces a ciphertext. If the
produced ciphertext matches the password hash stored in the /etc/
shadow file, the system acknowledges the entered password is correct.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Local Security 541

Because the /etc/shadow file only allows the root user (the file’s owner) to write to it,
for a regular user to change their account’s password, they have to temporarily gain the
root user’s permission status. This is done via the SUID permission set on the passwd
program’s file as shown in Listing 10.17.

Listing 10.17: Viewing the passwd utility’s and /etc/shadow file’s permissions

$ ls -l /etc/shadow
-rw-r----- 1 root shadow 1425 Mar 21 17:51 /etc/shadow
$
$ which passwd
/usr/bin/passwd
$
$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 59640 Jan 25 2018 /usr/bin/passwd
$

Thus, while running the passwd program, you temporarily become the root user. After
you are done with the program, you return to your normal self. However, you cannot start
the process of changing another account’s password without employing super user privi-
leges as shown in Listing 10.18.

Listing 10.18: Using the passwd utility’s and super user privileges to change another
account’s password

$ passwd BCrusher
passwd: You may not view or modify password information for BCrusher.
$
$ sudo passwd BCrusher
[sudo] password for Christine:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
$

When typing in the new password for the account, it will not display to the screen. If
you are used to seeing at least asterisks or some other representative characters, having
nothing displayed as you type may seem odd.

Dealing with Password Problems
With proper security, access problems will occur. Being able to quickly resolve password
problems will keep your users happy and more willing to go along with proper security
measures. If a user can reach the system but cannot access their account after entering their
username and password, there are a few troubleshooting items you can explore.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

542 Chapter 10 ■ Securing Your System

 If the account is a newly created account, confi rm that it was properly built. New system
administrators often create user accounts with the useradd command (see Chapter 7)
but forget to add its password with the passwd utility. Use either the grep or getent
command to check the /etc/passwd and /etc/shadow fi le records. An example is shown
in Listing 10.19 for a new user account, JKirk , on an Ubuntu Desktop distribution.

 Listing 10.19: Viewing a user account records with the getent command

 $ sudo getent passwd JKirk
 JKirk:x:1002:1002::/home/JKirk:/bin/bash
 $
 $ sudo getent shadow JKirk
 JKirk:!:17806:0:99999:7:::
 $

 Notice that in the password fi eld for the JKirk shadow record, there is an exclamation
mark (!). This indicates a password was not created for the account.

 Make sure your system users know that usernames are case sensitive on
Linux. Other operating systems, such as Windows, have usernames that
are case insensitive, and this can cause confusion.

 Determine if the account is locked. You can employ the passwd -S or the getent com-
mand to check this, as shown snipped in Listing 10.20.

Listing 10.20: Checking if an account is locked with the passwd and getent commands

 $ sudo passwd -S KJaneway
 KJaneway L 01/02/2019 0 99999 7 -1
 $
 $ sudo getent shadow KJaneway
 KJaneway:!6[…]0:17898:0:99999:7:::
 $

 The L after the user KJaneway account’s name indicates the account is locked. However,
that code is also shown for accounts that have no password set. Thus, the getent command
is also employed. The exclamation point (!) at the front of the account password’s fi eld
verifi es that the account is indeed locked. To unlock the account, if desired, use super user
privileges and the usermod -U or the passwd -u command.

 Check the user’s keyboard. Sometimes incorrect keyboard mappings or
corrupt hardware can cause wrong characters to be sent to authentication
programs.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Local Security 543

 The account may have expired. Account expiration dates are typically set up for tempo-
rary account users, such as contractors or interns. You can view this information using the
chage command, as shown snipped in Listing 10.21.

Listing 10.21: Checking if an account is expired with the chage command

 $ date
 Wed Jan 2 16:17:48 EST 2019
 $
 $ sudo chage -l JArcher
 […]
 Account expires : Jan 01, 2019
 […]

 Notice that this account’s expiration date has passed. Therefore, the JArcher account is
now expired and the user cannot log into it. If this was a mistake or you need to modify it,
use super user privileges and the chage -E command to set a new expiration date for the
account.

 Confi rm the user is using the correct password, and check if the account’s password is
expired. Employ the chage -l command to view this as well.

 It is important to stay up-to-date on current guidelines concerning length
and complexity of passwords. The National Institute of Standards and
Technology (NIST) has a nice guideline at pages.nist.gov/800-63-3/
sp800-63b.html that can help. To implement these recommendations,
you may need to employ pluggable authentication modules (PAM), such
as pam_unix.so , pam_pwhistory.so , and pam_pwquality.so . You can find
more information about PAM at linux-pam.org .

 Limiting root Access
 Appropriate account management enhances a system’s security. The following is a basic list
of what to do in order to properly manage accounts:

 ■ Do not permit logins to the root user account.

 ■ Allow only one user per user account.

 ■ Set expiration dates on temporary user accounts.

 ■ Remove unused user accounts.

 The focus in this section is on the root user account. Overall, it is not a good idea to log
into the root user account even if you are the only one who uses it. There are alternatives
that accommodate various system administrator needs.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

544 Chapter 10 ■ Securing Your System

 Switching the User with su
 With the su utility, you can quickly log into the other account or just issue a few commands.
To log into the root user account, enter su followed by a dash (-). You will need to enter the
 root user’s password to gain access:

 $ su -
 Password:
 # whoami
 root

 You will not be able to use the su - method to log into the root account
on any distribution that blocks the root logins by default, such as Ubuntu.
While you could just enter su and then the correct password to log into
the root user account, this is not wise, because not everything may be set
up correctly to perform tasks that require super user privileges. The dash
(-) after the su command starts a new shell environment and executes the
root’s profile.

 To enter another user’s account, you employ su - again, but follow it with the account’s
username:

 $ su - rich
 Password:
 $ whoami
 rich

 After you have switched to the desired account, you can issue several commands using
that user account’s privileges. When you have completed your tasks, type exit or logout
to leave the account.

 If you need to issue only a single command using super user privileges, you can employ
the su -c command. For example, to change another account’s password you need super
user privileges. As long as you have the root account’s password, you can accomplish this,
as shown snipped in Listing 10.22.

Listing 10.22: Issuing a single command as another user via the su -c command

 $ whoami
 Christine
 $
 $ su -c "passwd rich"
 […]
 passwd: all authentication tokens updated successfully.
 $
 $ whoami
 Christine
 $

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Local Security 545

 The fi rst password prompt in the previous listing is asking for the root user account pass-
word. After that, the passwd rich command is being executed using the root user account’s
privileges. Notice that passwd rich is encapsulated by quotation marks. Whenever you have
a space within the command you are passing to another account, you’ll need to quote it.

 Doing the Job as a Super User with sudo
 While the su command is helpful, it still does not fully meet the security requirement of not
permitting logins to the root user account. Fortunately, the sudo utility can help with this.

 Logging in as the root user can set up what is called a repudiation
environment . A repudiation environment means that a person can deny
actions. Therefore, if a system administrator uses the root account to
perform some illegal or trouble making activity, the admin can legally
deny being responsible for that activity. Systems where every user has
an account and password and no one can log into the root user’s account
sets up a nonrepudiation environment . This means actions are logged
and responsibility for them cannot be easily denied. A nonrepudiation
environment can be created using sudo .

 The sudo utility allows a user to issue a single command with super user privileges. All
use of the sudo command is documented in a log fi le or journal that includes tracking data,
such as who did what and when.

 The primary confi guration fi le for the sudo utility is the /etc/sudoers fi le. A snipped
example of a /etc/sudoers fi le on an Ubuntu distribution system is shown in Listing 10.23.

 Listing 10.23: Viewing the /etc/sudoers configuration file

 $ sudo cat /etc/sudoers
 [sudo] password for Christine:
 #
 # This file MUST be edited with the 'visudo' command as root.
 #
 […]
 # User privilege specification
 root ALL=(ALL:ALL) ALL

 # Members of the admin group may gain root privileges
 %admin ALL=(ALL) ALL

 # Allow members of group sudo to execute any command
 %sudo ALL=(ALL:ALL) ALL

 # See sudoers(5) for more information on "#include" directives:

 #includedir /etc/sudoers.d
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

546 Chapter 10 ■ Securing Your System

 In Listing 10.23, the line starting with root is a typical confi guration that provides full
access to a user. Access for a particular user in the /etc/sudoers is designated using this
format:

USERNAME HOSTNAME-OF-SYSTEM =(USER : GROUP) COMMANDS

 So for the root user record in the /etc/sudoers fi le, the root account can use super user
privileges on the system no matter what its host name (ALL=), run the commands as any
user (ALL:) or as any group member (:ALL), and execute any commands (ALL).

 Never open the sudoers file using a standard editor. If multiple users open
the sudoers file at the same time, odd things can happen and corrupt the
file. The visudo command securely opens the file in an editor so you can
make changes. It operates in the same manner as the vi editor (covered
in Chapter 1).

 To make things easier, many distributions add groups in the /etc/sudoers fi le that pro-
vide full super user privileges, such as sudo or wheel . Group records in the sudoers fi le are
preceded with a percent sign (%). When you need to provide sudo access to a new account,
you add the user account to the group (usermod -aG was covered in Chapter 7), instead of
modifying the /etc/sudoers fi le. Some distributions, such as Ubuntu, automatically add
the primary user account as a sudo group member during installation, as shown snipped
here in Listing 10.24.

Listing 10.24: Viewing a sudo user’s groups on an Ubuntu distribution

 $ whoami
 Christine
 $ groups
 Christine […] sudo […]
 $

 It’s a good idea to include additional users or groups in a confi guration fi le within the
/etc/sudoers.d/ directory, instead of modifying the /etc/sudoers fi le. The #includedir
/etc/sudoers.d line within the primary sudoers fi le will cause the system to read all the
fi les within the /etc/sudoers.d/ directory as part of the sudo confi guration.

 When everything is properly confi gured, a user who has sudo privileges adds the sudo
command prior to every command needing super user privileges and provides the account
password, if asked. A few examples are shown snipped in Listing 10.25.

 Listing 10.25: Using sudo to gain super user privileges

 $ sudo getent shadow BCrusher
 [sudo] password for Christine:
 BCrusher:6[…]Uy.:18060:0:99999:7:::
 $

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Local Security 547

$ sudo chage -l BCrusher
Last password change : Jun 13, 2019
[…]
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
$
$ journalctl -r -n 10 | grep sudo
[…]
Jun 13 15:56:40 Ubuntu1804 sudo[3609]: Christine : TTY=pts/0 ;
PWD=/home/Christine ; USER=root ; COMMAND=/usr/bin/chage -l BCrusher
[…]
Jun 13 15:56:27 Ubuntu1804 sudo[3607]: Christine : TTY=pts/0 ;
PWD=/home/Christine ; USER=root ; COMMAND=/usr/bin/getent shadow BCrusher
$

Notice that the sudo command usage was properly tracked by events issued to the
journal file. Thus, the desired nonrepudiation environment exists, enhancing the system’s
security.

Auditing User Access
Several utilities allow you to audit which users are currently accessing the system as well as
users who have accessed it in the past. You can also review various information concerning
user accounts.

Understanding the who and w Utilities
With the who command, you can view information concerning your own account or look
at every current user on the system. Examples are shown in Listing 10.26.

Listing 10.26: Using the who command

$ who
rich tty2 2019-10-03 13:12
Christine pts/0 2019-10-03 14:10 (192.168.0.102)
$
$ who am i
Christine pts/0 2019-10-03 14:10 (192.168.0.102)
$
$ who mom likes
Christine pts/0 2019-10-03 14:10 (192.168.0.102)
$

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

548 Chapter 10 ■ Securing Your System

Notice in Listing 10.26 that when the who command is used by itself, it shows all the
current system users, the terminal they are using, the date and time they entered the system,
and in cases of remote users, their remote IP address. If you add the arguments am i to the
who utility, it will display information concerning only the current process’s account. The
last command is useful if you need to prove a few things to your siblings.

Though it is a very short command, the w utility provides a great deal of useful informa-
tion. An example is shown in Listing 10.27.

Listing 10.27: Employing the w command

$ w
 09:58:31 up 49 min, 5 users, load average: 0.81, 0.37, 0.27
USER TTY LOGIN@ IDLE JCPU PCPU WHAT
Christin pts/1 09:14 2.00s 0.04s 0.01s w
Rich tty3 09:56 1:35 0.85s 0.81s top
Kevin tty4 09:57 1:03 16.17s 16.14s ls --color=[…]
Tim tty5 09:57 38.00s 0.08s 0.03s nano data42[…]
$

Notice the w command’s verbose output in Listing 10.27. The first displayed line shows
the following information:

 ■ The current time

 ■ How long the system has been up

 ■ How many users are currently accessing the system

 ■ The CPU load averages for the last 1, 5, and 15 minutes

The next several lines concern current system user information. The columns are as
follows:

 ■ USER: The account’s name

 ■ TTY: The account’s currently used terminal

 ■ LOGIN@: When the user logged into the account

 ■ IDLE: How long it has been since the user interacted with the system

 ■ JCPU: How much total CPU time the account has used

 ■ PCPU: How much CPU time the account’s current command (process) has used

 ■ WHAT: What command the account is currently running

The w utility pulls user information from the /var/run/utmp file. It also gathers addi-
tional data for display from the /proc/ directory files.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Local Security 549

 If you have identified a nefarious user currently on your system, you can
lock their account (covered in Chapter 7) and then kill their process ID (PID)
in order to boot them off the system. If you’d like to keep any additional
users from logging into the system, until you get the issue resolved create
the nologin file. Do this by using super user privileges and issuing touch
/etc/nologin at the command line. When this file exists, users will not
be able to log into the system. If desired, you can add a message within the
file to let users attempting to access the system know what’s going on.

 Displaying Access History with the last Utility
 The last command pulls information from the /var/log/wtmp fi le and displays a list of
accounts showing the last time they logged in or out of the system or if they are still logged
on. A snipped example is shown in Listing 10.28.

 Listing 10.28: Using the last command

 $ last
 Tim tty5 Thu Oct 4 09:57 still logged in
 Kevin tty4 Thu Oct 4 09:57 still logged in
 Rich tty3 Thu Oct 4 09:56 still logged in
 Christin pts/1 192.168.0.102 Thu Oct 4 09:14 still logged in
 Christin pts/0 192.168.0.102 Wed Oct 3 14:10 - 15:32 (01:22)
 […]
 wtmp begins Thu Jul 26 16:30:32 2019
 $

 Be aware that the /var/log/wtmp fi le typically gets automatically rotated via the cron
utility, which is covered in Chapter 9. If you need to gather information from old wtmp
fi les, you can employ the -f switch. For example, you could type in last -f /var/log/
wtmp.1 to view data from the /var/log/wtmp.1 fi le.

 The last command and the various other utilities covered in these sections are rather
helpful for auditing current users and discovering when they last logged into the system.
In addition, they are helpful commands even when you are troubleshooting non-security-
related problems.

 Setting Login, Process, and Memory Limits
 The ulimit command allows you to restrict access to system resources for each user
account. This is very helpful to prevent a runaway program from accidentally causing an
outage on your system.

 Listing 10.29 shows the output from running the ulimit command with the -a option,
which displays the settings for the current user account.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

550 Chapter 10 ■ Securing Your System

Listing 10.29: Looking at account limits via the ulimit command

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 19567
max locked memory (kbytes, -l) 16384
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 19567
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
$

As a user account consumes system resources, it places a load on the system, but in CPU
time and memory. If you’re working in a multiuser Linux environment, you may need to
place restrictions on how many resources each user account can consume. This includes the
number of logins, processes, and memory usage per user account.

That’s where the ulimit command comes in. Table 10.2 shows the command-line
options you can use to restrict specific resources for the user account.

ta b Le 10 . 2 The ulimit command options

Option Description

-a List the limits for the current user account

-c Set the maximum core file size

-d Set the maximum data segment size for processes

-e Set the maximum allowed scheduling priority

-f Set the maximum file size allowed to be written

-i Set the maximum number of pending signals

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Administering Local Security 551

Option Description

-k Set the maximum number of kqueues that can be allocated

-l Set the maximum size of memory that can be locked

-m Set the maximum resident set size

-n Set the maximum number of open file descriptors

-p Set the maximum pipe size in 512k blocks

-r Set the maximum real-time scheduling priority value

-s Set the maximum stack size

-t Set the maximum amount of CPU time the user account is allowed

-u Set the maximum number of processes the user can run
simultaneously

-v Set the maximum amount of virtual memory available to the user

-x Set the maximum number of file locks

As you can tell from Table 10.2, with the ulimit command the Linux administrator can
place some pretty severe restrictions on just what an individual user account can do on the
system.

The ulimit command is typically placed in the system’s environment files (covered in
Chapter 9) so that the limits are set when a user logs into the system.

Locating SUID/SGID Files
While the special permissions, SUID and SGID (covered in Chapter 4), are needed by many
utilities on a Linux system, it can also be a way for malicious actors to cause problems.
Recall that the SUID permission causes the user executing the script to obtain the permis-
sions of the file’s owner. Thus, if the file is owned by the root account, the user essentially
becomes root while they are running the script.

It’s a good idea to periodically audit your system to ensure the files that have these two
special permissions are supposed to have them. The utility that helps here is the find com-
mand (covered in Chapter 4).

The exact command to employ with super user privileges is

find / -perm /6000 -type f

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

552 Chapter 10 ■ Securing Your System

 The command can be broken down as follows:

 ■ The / after the find command indicates we want to search through the entire virtual
directory system, starting at the root directory (/).

 ■ The -perm option lets the find utility know we want to locate files based only on their
permissions.

 ■ The -perm option argument used is / 6000 , which will ask the find utility to search for
both SUID (octal code 4) plus SGID (octal code 2), which provides the 6 in 6000 .

 ■ The forward slash (/) in front of the octal code (6000) tells the find utility to ignore
the other file permissions (octal codes 000).

 ■ The -type f option asks find to look at file permissions only and ignore any
 directories.

 On older Linux systems, to enact this search, you would enter +6000 to
designate the permission. The plus sign (+) is now deprecated for this
use and has been replaced by the forward slash (/) symbol for the find
command.

 Thus, this command issued at the command line will fi nd every fi le on your system that
has either SUID or SGID permissions. Because there are a reasonable number of fi les that
validly have these settings, it would be wise to save the output to a text fi le by redirecting
standard output (STDOUT):

 find / -perm /6000 -type f > SUID-SGID_Audit.txt

 After you have this report, review it to ensure that all the fi les listed should have those
permissions. Then you can lock down the audit fi le’s permissions and use the fi le as a base-
line report for later audits. This would be a great shell script (covered in Chapter 9) that
you run periodically as a cron job, alerting you to any changes. An example of the com-
mands is shown snipped in Listing 10.30.

 Listing 10.30: Using find to audit the system for SUID and SGID file permissions

 $ sudo find / -perm /6000 -type f > SUID-SGID_Audit_June-13.txt
 […]
 $
 $ diff SUID-SGID_Audit.txt SUID-SGID_Audit_June-13.txt
 164a165
 > /usr/bin/threat-actor
 $
 $ ls -l /usr/bin/threat-actor
 -rwsrwsrwx 1 root root 0 Jun 13 17:25 /usr/bin/threat-actor
 $

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exploring Cryptography Concepts 553

Notice in Listing 10.30 that a new audit file was created. When it was compared against
the baseline file (SUID-SGID_Audit.txt) with the diff utility, a difference was found. In
other words, a new file on the system has SUID, SGID, or both permissions. Thus, the ls
-l command was employed on the new filename, and sure enough, the new file has both
SUID and SGID permissions set on it.

Implementing a nonrepudiation environment via the sudo utility, auditing file permis-
sions, as well as limiting process resource usage are a few things you can do to strengthen
your system’s local security. While understanding how passwords are secured on a Linux
system also aids in this process, it’s helpful to know some additional cryptographic con-
cepts that we’ll cover next.

Exploring Cryptography Concepts
The primary purpose of cryptography is to encode data in order to hide it or keep it private.
In cryptography, plaintext (text that can be read by humans or machines) is turned into
ciphertext (text that cannot be read by humans or machines) via cryptographic algorithms.
Turning plaintext into ciphertext is called encryption. Converting text from ciphertext
back into plaintext is called decryption.

Cryptographic algorithms use special data called keys for encrypting and decrypting;
they are also called cipher keys. When encrypted data is shared with others, some of these
keys must also be shared.

Discovering Key Concepts
It is critical to understand cipher keys and their role in the encryption/decryption process.
Cipher keys come in two flavors—private and public/private.

Private Keys Symmetric keys, also called private or secret keys, encrypt data using a cryp-
tographic algorithm and a single key. Plaintext is both encrypted and decrypted using the
same key, and it is typically protected by a password called a passphrase. Symmetric key
cryptography is very fast. Unfortunately, if you need others to decrypt the data, you have to
share the private key, which is its primary disadvantage.

Public/Private Key Pairs Asymmetric keys, also called public/private key pairs, encrypt
data using a cryptographic algorithm and two keys. Typically the public key is used to
encrypt the data and the private key decrypts the data. The private key can be protected
with a passphrase and is kept secret. The public key of the pair is meant to be shared.

Asymmetric keys are used by system users as well as many applications, such as SSH.
Figure 10.1 provides a scenario of using a public/private key pair between two people.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

554 Chapter 10 ■ Securing Your System

 F i GU R e 10 .1 Asymmetric encryption example

 Notice in Figure 10.1 that in order for Bob to encrypt data (a message in this case) for
Helen, he must use her public key. Helen in turn uses her private key to decrypt the data.
However, problems occur if Helen is not sure that she is really getting Bob’s unmodifi ed
encrypted fi le. She may be getting an encrypted fi le from a nefarious user named Evelyn and
accidentally decrypt her encrypted message. This is a man-in-the-middle attack. Digital
signatures, which are covered later, help in this situation.

 Securing Data
 An important concept in cryptography, covered briefl y earlier, is hashing. Hashing uses
a one-way mathematical algorithm that turns plaintext into a fi xed-length ciphertext.
Because it is one way, you cannot “de-hash” a hashed ciphertext. The ciphertext created by
hashing is called a message digest , hash, hash value, fi ngerprint, or signature.

 The beauty of a cryptographic message digest is that it can be used in data comparison. For
example, if hashing produces the same message digest for plaintext FileA and for plaintext
FileB , then both fi les contain the same data. This type of hash is often used in cyberforensics.

 Hashing is useful for things like making sure a large downloaded file was
not corrupted when it was being transferred. However, cryptographic hash-
ing must use an algorithm that is collision free. In other words, the hashing
algorithm cannot create the same message digest for two different inputs.
Some older hash algorithms, such as MD5, are not collision free.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at SSH 555

A keyed message digest is created using the plaintext file along with a private key. This
cryptographic hash type is strong against multiple malicious attacks and often employed in
Linux applications, such as OpenSSH.

Signing Transmissions
Another practical implementation of hashing is in digital signatures. A digital signature is
a cryptographic token that provides authentication and data verification. It is simply a mes-
sage digest of the original plaintext data, which is then encrypted with a user’s private key
and sent along with the ciphertext.

The ciphertext receiver decrypts the digital signature with the sender’s public key so that
the original message digest is available. The receiver also decrypts the ciphertext and then
hashes its plaintext data. When the new message digest is created, the data receiver can
compare the new message digest to the sent message digest. If they match, the digital sig-
nature is authenticated, which means the encrypted data did come from the sender. Also, it
indicates the data was not modified in transmission.

Looking at SSH
When you connect over a network to a remote server, if it is not via an encrypted
method, network sniffers can view the data being sent and received. Secure Shell (SSH)
has resolved this problem by providing an encrypted means for communication. It is the
de facto standard software used by those wishing to send data securely to/from remote
systems.

SSH employs public/private key pairs (asymmetric) for its encryption. When an SSH con-
nection is being established between two systems, each sends its public key to the other.

Exploring Basic SSH Concepts
You’ll typically find OpenSSH (www.openSSH.com) installed by default on most distribu-
tions. However, if for some reason you are unable to use basic SSH services, you may want
to check if the needed OpenSSH packages are installed (managing packages was covered
in Chapter 2). The following shows the distributions used by this book and their basic
OpenSSH service package names:

 ■ CentOS: openssh, openssh-clients, openssh-server

 ■ Ubuntu: openssh-server, openssh-client

To create a secure OpenSSH connection between two systems, use the ssh command.
The basic syntax is as follows:

ssh [OPTIONS] USERNAME@HOSTNAME

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

556 Chapter 10 ■ Securing Your System

 If you attempt to use the ssh command and get a no route to host
message, first check whether the sshd daemon is running. On a systemd
system, the command to use with super user privileges is systemctl
status sshd . If the daemon is running, check your firewall settings.

 For a successful encrypted connection, both systems (client and remote) must have the
OpenSSH software installed and the sshd daemon running. A snipped example is shown in
Listing 10.31 connecting from a CentOS system to a remote openSUSE Linux server.

Listing 10.31: Using ssh to connect to a remote system

 $ ssh Christine@192.168.0.105
 The authenticity of host '192.168.0.105 (192.168.0.105)' can't be established.
 ECDSA key fingerprint is SHA256:BnaCbm+ensyrkflKk1rRSVwxHi4NrBWOOSOdU+14m7w.
 ECDSA key fingerprint is MD5:25:36:60:b7:99:44:d7:74:1c:95:d5:84:55:6a:62:3c.
 Are you sure you want to continue connecting (yes/no)? yes
 Warning: Permanently added '192.168.0.105' (ECDSA) to the list of known hosts.
 Password:
 […]
 Have a lot of fun...
 Christine@linux-1yd3:~> ip addr show | grep 192.168.0.105
 inet 192.168.0.105/24 […] dynamic eth1
 Christine@linux-1yd3:~>
 Christine@linux-1yd3:~> exit
 logout
 Connection to 192.168.0.105 closed.
 $
 $ ls .ssh
 known_hosts
 $

 In Listing 10.31, the ssh command uses no options, includes the remote system account user-
name, and uses the remote system’s IPv4 address instead of its hostname. Note that you do not
have to use the remote system account username if the local account name is identical. However, in
this case, you do have to enter the remote account’s password to gain access to the remote system.

 The OpenSSH application keeps track of any previously connected hosts in the ~/.ssh/
known_hosts fi le. This data contains the remote servers’ public keys.

 The ~/ symbol combination represents a user’s home directory. You
may also see in documentation $HOME as the representation. Therefore,
to generically represent any user’s home directory that contains a hid-
den subdirectory .ssh/ and the known_hosts file, it is written as ~/.ssh/
known_hosts or $HOME/.ssh/known_hosts .

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at SSH 557

 If you have not used ssh to log into a particular remote host in the past, you’ll get a
scary-looking message like the one shown in Listing 10.31. The message just lets you know
that this particular remote host is not in the known_hosts fi le. When you type yes at the
message’s prompt, the host is added to the collective.

 If you have previously connected to the remote server and you get a
warning message that says WARNING: REMOTE HOST IDENTIFICATION HAS
CHANGED , pay attention. It’s possible that the remote server’s public key
has changed. However, it may also indicate that the remote system is
being spoofed or has been compromised by a malicious user.

 The cp utility, which was covered back in Chapter 4, allows you to copy fi les on the
same system. Similar to the cp utility, scp lets you copy fi les, but it employs SSH to
copy the fi les to a remote system over an encrypted tunnel. To use the scp command,
add the username@hostname before the destination fi le’s location. An example is shown in
Listing 10.32.

 Listing 10.32: Using scp to securely transfer a file over SSH

 $ ls Project42.txt
 Project42.txt
 $
 $ scp Project42.txt Christine@192.168.0.104:~
 Christine@192.168.0.104's password:
 Project42.txt 100% 0 0.0KB/s 00:00
 $

 In Listing 10.32, the Project42.txt fi le is sent to a remote system using the scp com-
mand. Notice that the remote system’s username and IP address has an added colon (:).
This is to designate that the fi le is being transferred to a remote system. If you did not add
the colon, the scp command would not transfer the fi le. It would simply rename the fi le to a
fi lename with Christine@ and tack on the IP address too.

 After the colon, the fi le’s directory destination is designated. The ~ symbol indicates that
you want to place the fi le in the user’s home directory. You could also give the fi le a new
name, if desired.

 Besides copying fi les, you can use OpenSSH to send commands to a remote system. Just
add the command, between quotation marks, to the ssh command’s end. An example is
shown in Listing 10.33.

 Listing 10.33: Using ssh to send a command to a remote system

 $ ssh Christine@192.168.0.104 "ls Project42.txt"
 Christine@192.168.0.104's password:
 Project42.txt
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

558 Chapter 10 ■ Securing Your System

 In Listing 10.33, the command checks if our fi le was properly copied to the remote system.
The Project42.txt fi le was successfully transferred.

 Over time users tend to ignore the WARNING: REMOTE HOST IDENTIFICATION
HAS CHANGED message. Thus, it’s a good idea to help a user avoid
experiencing this warning when first connecting to a system. To do that,
you’ll need to configure a known_hosts file for all the users on the system.
However, you don’t have to do it for each individual user. Instead, the
 ssh_known_hosts file is used by all users on the system and can contain
the remote server’s public keys for all the systems they will connect to.
You will have to manually create the file, and it typically resides in the
 /etc/ssh/ directory. With the /etc/ssh/ssh_know_hosts file in place, users
will receive the warning message only when something has changed and
should be investigated. This will help in keeping your system more secure.

 Configuring SSH
 It’s a good idea to review the various OpenSSH confi guration fi les and their directives.
Ensuring that your encrypted connection is properly confi gured is critical for securing
remote system communications. Table 10.3 lists the primary OpenSSH confi guration fi les.

 ta b Le 10 . 3 Primary OpenSSH configuration files

Configuration File Description

~/.ssh/config Contains OpenSSH client configurations. May be overridden by
 ssh command options.

/etc/ssh/ssh_config Contains OpenSSH client configurations. May be overridden by
 ssh command options or settings in the ~/.ssh/config file.

 /etc/ssh/sshd_config Contains the OpenSSH daemon (sshd) configurations.

 If you need to make SSH confi guration changes, it is essential to know which confi gura-
tion fi le(s) to modify. The following guidelines can help:

 ■ For an individual user’s connections to a remote system, create and/or modify the client
side’s ~/.ssh/config file.

 ■ For every user’s connection to a remote system, create and modify the client side’s
/etc/ssh/ssh_config file.

 ■ For incoming SSH connection requests, modify the /etc/ssh/sshd_config file on the
server side.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at SSH 559

 Keep in mind that in order for an SSH client connection to be successful,
besides proper authentication, the client and remote server’s SSH
configuration must be compatible.

 There are several OpenSSH confi guration directives. You can peruse them all via the
man pages for the ssh_config and sshd_config fi les. However, there are a few vital direc-
tives for the sshd_config fi le:

 ■ AllowTcpForwarding : Permits SSH port forwarding.

 ■ ForwardX11 : Permits X11 forwarding.

 ■ PermitRootLogin : Permits the root user to log in through an SSH connection. (Default
is yes .) Typically, should be set to no .

 ■ Port : Sets the port number the OpenSSH daemon (sshd) listens on for incoming con-
nection requests. (Default is 22 .)

 An example of why you might change the client’s ssh_config or ~/.ssh/config fi le is
when the remote system’s SSH port is modifi ed in the sshd_config fi le. In this case, if the
client-side confi guration fi les were not changed to match this new port, the remote user
would have to modify their ssh command’s options. An example of this is shown snipped
in Listing 10.34. In this listing, the remote Ubuntu server has OpenSSH listening on port
1138, instead of the default port 22, and the user must use the -p option with the ssh com-
mand to reach the remote server.

Listing 10.34: Using ssh to connect to a nondefault port on a remote system

 $ ssh -p 1138 192.168.0.104
 […]
 Christine@192.168.0.104's password:
 Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-36-generic x86_64)
 […]
 Christine@Ubuntu1804:~$
 Christine@Ubuntu1804:~$ ip addr show | grep 192.168.0.104
 inet 192.168.0.104/24 […]
 Christine@Ubuntu1804:~$
 Christine@Ubuntu1804:~$ exit
 logout
 Connection to 192.168.0.104 closed.
 $

 To relieve the OpenSSH client users of this trouble, create or modify the ~/.ssh/config
fi le for individual users, or for all client users, modify the /etc/ssh/ssh_config fi le. Set
Port to 1138 within the confi guration fi le. This makes it easier on both the remote users
and the system administrator.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

560 Chapter 10 ■ Securing Your System

 Generating SSH Keys
 Typically, OpenSSH will search for its system’s public/private key pairs. If they are not
found, OpenSSH automatically generates them. These key pairs, also called host keys ,
are stored in the /etc/ssh/ directory within fi les. In Listing 10.35, key fi les’ names are
displayed.

Listing 10.35: Looking at OpenSSH key files

 $ ls -1 /etc/ssh/*key*
 /etc/ssh/ssh_host_ecdsa_key
 /etc/ssh/ssh_host_ecdsa_key.pub
 /etc/ssh/ssh_host_ed25519_key
 /etc/ssh/ssh_host_ed25519_key.pub
 /etc/ssh/ssh_host_rsa_key
 /etc/ssh/ssh_host_rsa_key.pub
 $

 In Listing 10.35, both private and public key fi les are shown. The public key fi les end in
the .pub fi lename extension, whereas the private keys have no fi lename extension. The fi le-
names follow this standard:

 ssh_host_ KeyType _key

 The key fi lename’s KeyType corresponds to the digital signature algorithm used in the
key’s creation. The different algorithm types you may see on your system are as follows:

 ■ rsa (Rivest–Shamir–Adleman) is the oldest type, widely used, and highly supported.

 ■ dsa (Digital Signature Algorithm) is a Federal Information Processing Standard for
digital signatures. Deprecated.

 ■ ecdsa (Elliptical Curve Digital Signature Algorithm) is an Elliptic Curve implementation
of DSA.

 ■ ed25519 is a variation of the Edwards-curve Digital Signature Algorithm (EdDSA) that
offers better security than dsa and ecdsa .

 It is critical that the private key files are properly protected. Private key files
should have a 0640 or 0600 (octal) permission setting and be root owned.
However, public key files need to be world readable. File permissions were
covered in Chapter 4.

 There may be times you need to manually generate these keys or create new ones. To do
so, use the ssh-keygen utility. In Listing 10.36, a snipped example of using ssh-keygen is
shown.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at SSH 561

Listing 10.36: Using ssh-keygen to create new public/private key pair

$ sudo ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key
Generating public/private rsa key pair.
/etc/ssh/ssh_host_rsa_key already exists.
Overwrite (y/n)? y
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /etc/ssh/ssh_host_rsa_key.
Your public key has been saved in /etc/ssh/ssh_host_rsa_key.pub.
The key fingerprint is:
[…]
$

The ssh-keygen command has several options. For the commands in Listing 10.36, only
two are employed. The -t option sets the KeyType, which is rsa in this example. The -f
switch designates the private key file to store the key. The public key is stored in a file with
the same name, but the .pub file extension is added. Notice that this command asks for a
passphrase, which is associated with the private key.

Authenticating with SSH Keys
Entering the password for every command employing SSH can be tiresome. However, you
can use keys instead of a password to authenticate. A few steps are needed to set up this
authentication method:

1. Log into the SSH client system.

2. Generate an SSH ID key pair.

3. Securely transfer the public SSH ID key to the SSH server computer.

4. Log into the SSH server system.

5. Add the public SSH ID key to the ~/.ssh/authorized_keys file on the server system.

Let’s look at these steps in a little more detail. First, you should log into the client system
via the account you will be using as the SSH client. On that system, generate the SSH ID
key pair via the ssh-keygen utility. You must designate the correct key pair filename, which
is id_TYPE, where TYPE is dsa, rsa, or ecdsa. An example of creating an SSH ID key pair on
a client system is shown snipped in Listing 10.37.

Listing 10.37: Using ssh-keygen to create an SSH ID key pair

$ ssh-keygen -t rsa -f ~/.ssh/id_rsa
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

562 Chapter 10 ■ Securing Your System

 Enter same passphrase again:
 Your identification has been saved in /home/Christine/.ssh/id_rsa.
 Your public key has been saved in /home/Christine/.ssh/id_rsa.pub.
 […]
 $
 $ ls .ssh/
 id_rsa id_rsa.pub known_hosts
 $

 Notice in Listing 10.37 the key fi le’s name. The ssh-keygen command in this case
generates a private key, stored in the ~/.ssh/id_rsa fi le, and a public key, stored in the
~/.ssh/id_rsa.pub fi le. You may enter a passphrase if desired. In this case, no passphrase
was entered.

 The public and private key filenames depend on the type (-t) that you
choose. If you choose rsa , the files generated are id_rsa and id_rsa
.pub . If you select dsa , the filenames are id_dsa and id_dsa.pub . And if
you choose ecdsa , the files generated are id_ecdsa and id_ecdsa.pub .
However, whatever you select, the files are stored in the ~/.ssh/ directory.

 After these keys are generated on the client system, the public key must be copied to
the server system. Using a secure method is best, and the ssh-copy-id utility allows you to
do this. Not only does it copy over your public key, it also stores it in the server system’s
~/.ssh/authorized_keys fi le for you. In essence, it completes steps 3 through 5 in a single
command. A snipped example of using this utility is shown in Listing 10.38.

Listing 10.38: Using ssh-copy-id to copy the SSH public ID key

 $ ssh-copy-id -n Christine@192.168.0.104
 […]
 Would have added the following key(s):

 ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCsP[…]
 8WJVE5RWAXN[…]
 =-=-=-=-=-=-=-=
 $ ssh-copy-id Christine@192.168.0.104
 […]Source of key(s) to be installed: "/home/Christine/.ssh/id_rsa.pub"
 […]
 Christine@192.168.0.104's password:

 Number of key(s) added: 1
 […]
 $

Listing 10.37: Using ssh-keygen to create an SSH ID key pair (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at SSH 563

 Notice in Listing 10.38 that the ssh-copy-id -n command is employed fi rst. The -n
option allows you to see what keys would be copied and installed on the remote system
without actually doing the work (a dry run).

 The next time the command is issued in Listing 10.38, the -n switch is removed. Thus,
the id_rsa.pub key fi le is securely copied to the server system, and the key is installed in
the ~/.ssh/authorized_keys fi le. Notice that when using the ssh-copy-id command, the
user must enter their password to allow the public ID key to be copied over to the server.

 Now that the public ID key has been copied over to the SSH server system, the ssh com-
mand can be used to connect from the client system to the server system with no need to enter
a password. This is shown along with using the scp command in Listing 10.39. Note that at
the IP address’s end, you must add a colon (:) when using the scp command to copy over fi les.

 Listing 10.39: Testing out password-less SSH connections

 $ ssh Christine@192.168.0.104
 Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-36-generic x86_64)
 […]
 Christine@Ubuntu1804:~$ ls .ssh
 authorized_keys known_hosts
 Christine@Ubuntu1804:~$
 Christine@Ubuntu1804:~$ exit
 logout
 Connection to 192.168.0.104 closed.
 $
 $ scp Project4x.tar Christine@192.168.0.104:~
 Project4x.tar 100% 40KB 6.3MB/s 00:00
 $
 $ ssh Christine@192.168.0.104
 Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-36-generic x86_64)
 […]
 Christine@Ubuntu1804:~$ ls
 Desktop Downloads Music Project4x.tar Templates
 Documents examples.desktop Pictures Public Videos
 Christine@Ubuntu1804:~$ exit
 logout
 Connection to 192.168.0.104 closed.
 $

 If your Linux distribution does not have the ssh-copy-id command, you
can employ the scp command to copy over the public ID key. In this case
you would have to manually add the key to the bottom of the ~/.ssh/
authorized_keys file. To do this, you can use the cat command and the
 >> symbols to redirect and append the public ID key’s standard output to
the authorized keys file.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

564 Chapter 10 ■ Securing Your System

Authenticating with the Authentication Agent
Another method to connect to a remote system with SSH is via the authentication agent.
Using the agent, you only need to enter your password to initiate the connection. After
that, the agent remembers the password during the agent session. A few steps are needed to
set up this authentication method:

1. Log into the SSH client system.

2. Generate an SSH ID key pair and set up a passphrase.

3. Securely transfer the public SSH ID key to the SSH server computer.

4. Log into the SSH server system.

5. Add the public SSH ID key to the ~/.ssh/authorized_keys file on the server system.

6. Start an agent session.

7. Add the SSH ID key to the agent session.

Steps 1 through 5 are nearly the same steps performed for setting up authenticating with
SSH ID keys instead of a password. One exception to note is that a passphrase must be cre-
ated when generating the SSH ID key pair for use with an agent. An example of setting up
an ECDSA key to use with an SSH agent is shown snipped in Listing 10.40.

Listing 10.40: Generating and setting up an ID key to use with the SSH agent

$ ssh-keygen -t ecdsa -f ~/.ssh/id_ecdsa
Generating public/private ecdsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/Christine/.ssh/id_ecdsa.
[…]
$ ssh-copy-id -i ~/.ssh/id_ecdsa Christine@192.168.0.104
[…]
Number of key(s) added: 1
[…]
$

When you have the key pair properly created with a passphrase on the remote system,
securely transmitted, and installed on the server’s authorized key file, you can employ the
ssh-agent utility to start an SSH agent session. After the session is started, add the private
ID key to the session via the ssh-add command. A snipped example of this is shown in
Listing 10.41.

Listing 10.41: Starting an SSH agent session and adding an ID key

$ ssh-agent /bin/bash
 [Christine@localhost ~]$
[Christine@localhost ~]$ ssh-add ~/.ssh/id_ecdsa
Enter passphrase for /home/Christine/.ssh/id_ecdsa:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking at SSH 565

 Identity added: /home/Christine/.ssh/id_ecdsa (/home/Christine/.ssh/id_ecdsa)
 [Christine@localhost ~]$
 [Christine@localhost ~]$ ssh Christine@192.168.0.104
 Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-36-generic x86_64)
 […]
 Christine@Ubuntu1804:~$ exit
 logout
 Connection to 192.168.0.104 closed.
 [Christine@localhost ~]$
 [Christine@localhost ~]$ exit
 exit
 $

 Notice in Listing 10.41 that the ssh-agent command is followed by /bin/bash , which
is the Bash shell. This command starts a new session, an agent session, with the Bash shell
running. After the private SSH ID key is added using the ssh-add command and entering
the private passphrase, you can connect to remote systems without entering a password or
passphrase again. However, if you exit the agent session and start it up again, you must
readd the key and reenter the passphrase.

 The ssh-add command allows you to remove ID within an agent session, if
you want. Include the -d option to do so.

 An SSH agent session allows you to enter the session one time and add the key, and then
connect as often as needed to remote systems via encrypted SSH methods without entering
a password or passphrase over and over again. Not only does this provide security, it also
provides convenience, which is a rare combination.

 Tunneling
 Another way to provide security through OpenSSH is via SSH port forwarding , sometimes
called SSH tunneling . SSH port forwarding allows you to redirect a connection from one
particular network port to port 22, where the SSH service is waiting to receive it. This
allows data traffi c to move back and forth through a secure encrypted tunnel, similar to a
virtual private network.

 If you need to provide remote X11 GUI interactions, you can employ OpenSSH to use a
secure tunnel. This is called X11 forwarding . X11 forwarding lets you interact with various
X11-based graphical utilities on a remote system through an encrypted network connection
(X11 forwarding is covered in Chapter 6).

 First check to see if X11 forwarding is permitted in the openSSH confi guration fi le,
 /etc/ssh/sshd_config . The directive X11Forwarding should be set to yes in the remote
system’s confi guration fi le. If the directive is set to no , then you must modify it to employ
X11 forwarding. In Listing 10.42, a check is performed on the confi guration fi le for this
directive on a CentOS distribution.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

566 Chapter 10 ■ Securing Your System

Listing 10.42: Checking the AllowTCPForwarding directive

 # grep "X11Forwarding yes" /etc/ssh/sshd_config
 X11Forwarding yes
 #

 When you have made any necessary confi guration fi le modifi cations, the command
to use is ssh -X user@remote-host . Similar to earlier ssh command uses, the user is the
user account that resides on the remote-host system. The remote-host has the X11-based
GUI utilities you wish to employ and can be designated via an IP address or a hostname.
Figure 10.2 shows connecting from a remote client to a CentOS server and using a gra-
phical utility on that server.

 F i GU R e 10 . 2 Forwarding X11

 It’s always a good idea to check your IP address to ensure that you have successfully
reached the remote system. In Figure 10.2 , the ip addr show command is employed for this
purpose. After you have completed your work, just type in exit to log out of the X11 for-
warding session.

 You may read about using X11 forwarding via the ssh -Y command, which
is called trusted X11. This does not mean the connection is more secure. In
fact, it is quite the opposite. When employing this command, you are treat-
ing the remote server as a trusted system. This can cause many security
issues and should be avoided.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using GPG 567

 Using SSH Securely
 There are a few things you can do to enhance SSH’s security on your systems:

 ■ Use a different port for SSH than the default port 22.

 ■ Disable root logins via SSH.

 ■ Ensure protocol 2 is in use.

 One item touched upon earlier in this chapter is not using port 22 as the SSH port for
any public-facing systems. You change this by modifying the Port directive in the /etc/
ssh/sshd_config fi le to another port number. Keep in mind that there are advantages
and disadvantages to doing this. It may be a better alternative to beef up your fi rewall as
opposed to changing the default SSH port.

 Another critical item is disabling root login via SSH. By default, any system that allows
the root account to log in and has OpenSSH enabled permits root logins via SSH. Because
root is a standard username, malicious attackers can use it in brute-force attacks. Since
root is a super user account, it needs extra protection.

 To disable root login via SSH, edit the /etc/ssh/sshd_config fi le. Set the
PermitRootLogin directive to no , and either restart the OpenSSH service or reload its con-
fi guration fi le.

 An earlier version of OpenSSH, protocol 1, is considered insecure. Most likely your
system is employing protocol 2, sometimes called OpenSSH 2 . However, it’s a good idea to
ensure this is true. Find the Protocol directive in the /etc/ssh/sshd_config fi le. If it is set
to 1 , then change it to 2 , and restart the OpenSSH service or reload its confi guration fi le.

 OpenSSH allows secure encryption of data traveling back and forth between systems.
However, if you need to encrypt a single fi le, then another utility is the right one to use, and
it is covered next.

 Using GPG
 In cases where you need to employ fi le encryption and transfer the fi le beyond what scp can
handle, GNU Privacy Guard (GPG or GnuPG) can help. Besides encrypting fi les, you can
apply digital signatures to them, providing higher security.

 Because GPG was based on the Pretty Good Privacy product, which is not open source,
you’ll often see it referred to as OpenPGP as well. It is a very popular encryption tool and
often installed by default. However, if you don’t fi nd it on your system, you can install
the gpg or gnupg2 package via your distribution’s package tools (software installation was
covered in Chapter 2).

 The command to use GPG depends on your distribution; it may be gpg
or gpg2 . The function is similar enough, so we’ve used gpg in this topic’s
section, but you may need to replace gpg with gpg2 for your particular
situation.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

568 Chapter 10 ■ Securing Your System

 Generating Keys
 To begin using GPG, you’ll need to generate a public/private key pair. GPG uses the typical
asynchronous keys, where the public key is available publicly but the private key is kept
private. (GPG calls the private key a secret key .) Start the process to generate your key pair
by using the following command:

 gpg --gen-key

 GPG will ask a series of questions, including your full name and email address, as well
as a passphrase. You’ll need to remember the email address and the passphrase because the
address identifi es your public key, whereas the passphrase allows you to use your private
key.

 The key generation command needs a lot of random data in order to
produce strong keys. During this process, you are asked to type on the
keyboard, move the mouse, press function keys, and so on. It takes a long
time to complete. An easier way is to employ the random data tool (rngd).
Install it from the rng-utils or rng-tools package. Before issuing the gpg
--gen-key command, use super user privileges and type rngd -r /dev/
urandom . After you receive the shell prompt back, issue the gpg --gen-key
command. Though it will pause a moment or two at the part where the
program is asking you to type on the keyboard, it will complete fairly
quickly. And it is quicker than you trying to manually add random data.

 After the keys are generated, they are stored in a fi le, which is called your keyring in the
~/.gnupg/ directory.

 For someone to encrypt a fi le for you to decrypt, you’ll need to make a copy of your
public key for them. This is called exporting your key , and it will put the copy of the key
into a fi le. The command to enact this is

 gpg --export EMAIL-ADDRESS > FILENAME .pub

 The EMAIL-ADDRESS identifi es your public key on your keyring, and it was entered
when you generate the key. The FILENAME can be anything. An example of this is shown
in Listing 10.43.

Listing 10.43: Exporting a public key using the gpg --export command

 $ gpg --export cb1234@ivytech.edu > CB_gpg.pub
 $

 After you export (copy) your public key to a fi le, you can give it to the people who want
to encrypt fi les to send to you. There is no reason to keep the public key secret, so you can
email it or, if you have a public web page, place it there.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using GPG 569

 The exported public key is in a binary format. If you are having trouble
emailing it to someone or they cannot download it from a website, regen-
erate the exported public key file adding the --armor option. This will
cause the key file to be in an ASCII format that may be easier to transfer.

 Importing Keys
 When you receive the public key fi le for encrypting fi les to someone else, you’ll need to
add it to your keyring before employing it. This process is called importing , and it uses the
following command:

 gpg --import FILENAME .pub

 Of course, you’ll need to substitute the fi le’s actual name for FILENAME . After you have
their public key added to your keyring, you can begin to encrypt fi les for them.

 After you load a new key onto your keyring, it’s a good idea to check the various keys
residing there. The command to view your keyring is

 gpg --list-keys

 An example of loading a public key onto a keyring and then displaying the keyring’s
contents is shown snipped in Listing 10.44.

Listing 10.44: Importing a public key and displaying the keyring using the gpg utility

 $ gpg --import RB_gpg.pub
 gpg: key 0238[…]: public key "Richard Blum <rb4242@gmail.com>" imported
 gpg: Total number processed: 1
 gpg: imported: 1
 $
 $ gpg --list-keys
 […]

 pub rsa3072 2019-06-14 [SC] [expires: 2021-06-13]
 E4EDDC1C51638290DFDA6B90D0C94AD1415A64DB
 uid [ultimate] Christine Bresnahan <cb1234@ivytech.edu>
 sub rsa3072 2019-06-14 [E] [expires: 2021-06-13]

 pub rsa3072 2019-06-14 [SC] [expires: 2021-06-13]
 167C14E4C66FB0EBFBA5C7C60238B9C4F61CBDF7
 uid [unknown] Richard Blum <rb4242@gmail.com>
 sub rsa3072 2019-06-14 [E] [expires: 2021-06-13]

 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

570 Chapter 10 ■ Securing Your System

 Now that you have another person’s public key on your keyring, you can encrypt a fi le
for them to decrypt.

 Gnu Privacy Guard has a secret agent. Its name is gpg-agent . Its mission is
to manage the secret (private) keys separately from any protocol.

 The gpg-agent is a daemon started automatically on demand by the gpg
utility, so there’s no need to use systemd or SysVinit to manage it. When
GPG needs a private key, it requests it from the agent. The agent keeps any
previously used keys in RAM. If the request key is not in memory, the agent
loads it from your keyring but asks you for the passphrase to access it. The
whole process almost sounds like a spy novel.

 Encrypting and Decrypting Data
 After you load the public key onto your keyring, you can start the encryption process. First
create the fi le through a normal method, such as using a word processor or text editor.
Then encrypt the fi le using their public key via this command:

 gpg --out ENCRYPTED-FILE --recipient EMAIL-ADDRESS --encrypt ORIGINAL-FILE

 Note that the ORIGINAL-FILE is the unencrypted fi le you fi rst created and the ENCRYPTED-
FILE is the ciphertext fi le. The EMAIL-ADDRESS is the email address of the person who will be
receiving this encrypted fi le, and it should be the address used to identify that person’s pub-
lic key on your keyring. An example of this process is shown snipped in Listing 10.45.

Listing 10.45: Encrypting a file using the recipeint’s public key

 $ whoami
 Christine
 $
 $ ls secretfile.txt
 secretfile.txt
 $
 $ gpg --out encryptfile --recipient rb4242@gmail.com --encrypt secretfile.txt
 […]
 sub rsa3072/E3E4D21F82775FA1 2019-06-14 Richard Blum <rb4242@gmail.com>
 […]
 $
 $ ls encryptfile
 encryptfile
 $

 The person who receives your encrypted fi le can then decrypt it using their private
(secret) key. The command to accomplish this is

 gpg --out DECRYPTED-FILE --decrypt ENCRYPTED-FILE

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using GPG 571

 When you issue the preceding command, it will ask for the passphrase that identifi es
your private key. A snipped example of this process is shown in Listing 10.46.

Listing 10.46: Decrypting a file using the recipient’s private (secret) key

 $ ls
 encryptfile examples.desktop
 $
 $ whoami
 rich
 $
 $ gpg --out CBmessage.txt --decrypt encryptfile
 […]
 gpg: encrypted with 3072-bit RSA key, ID E3E4D21F82775FA1, created 2019-06-14
 "Richard Blum <rb4242@gmail.com>"
 $
 $ ls CBmessage.txt
 CBmessage.txt
 $
 $ cat CBmessage.txt
 Rich,
 I am almost done with Chapter 10.
 What shall we write about next?
 The number 1138?
 $

 We find that people who are new to public/private (asymmetric) key
encryption get confused concerning when to use their public key and when
to use their private one. If someone wants to send an encrypted file to you,
think, “It’s all about me.” They will be using your public key to encrypt the
file, and you’ll be using your private key to decrypt it. (Of course, it’s all
about the other person when you want to send them an encrypted file.)

 Signing Messages and Verifying Signatures
 While encrypting helps to protect the privacy of a document, it does not protect the docu-
ment from being modifi ed in transit. Using the example back in Figure 10.1 , if a malicious
actor (Evelyn) gets ahold of Helen’s public key, the threat actor could encrypt a message for
Helen and claim it came from Bob. Or worse, if Bob is sending Helen source code, a threat
actor could modify it in some way before it reaches Helen.

 Fortunately, you can digitally sign gpg encrypted fi les. This process creates a time stamp
and certifi es the fi le. Thus, if the fi le is modifi ed in any way, the gpg utility will alert the
fi le’s receiver when checked.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

572 Chapter 10 ■ Securing Your System

 To sign a fi le, you employ the --sign option, or if you need to send it as ASCII instead,
use the --clearsign switch. The fi le’s digital signature is encryption process is a little dif-
ferent. To encrypt the digital signature, the gpg utility uses your private key and will ask
for the passphrase protecting this key. An example of encrypting and then signing the
encrypted fi le is shown snipped in Listing 10.47.

 Listing 10.47: Encrypting a file and digitally signing the encrypting file

 $ cat newsecret.txt
 Hi Rich,
 This file came from me.
 Signed,
 Christine B
 $
 $ gpg --out tosign --recipient rb4242@gmail.com --encrypt newsecret.txt
 […]
 $
 $ gpg --output signed --sign tosign
 $
 $ ls signed
 signed
 $

 When the recipient receives the encrypted and signed fi le, they can verify it came from
the sender and that no modifi cation occurred in the transfer via the --verify option:

 gpg --verify RECEIVED-SIGNED-FILE

 Because the digital signature is encrypted with the sender’s private key,
the recipient must have the sender’s public key on their keyring. If this is
not true, when the recipient attempts to verify the signature, they’ll receive
a message similar to Can't check signature: No public key .

 Checking the signature and decrypting the original fi le takes two steps. First you must
decrypt and verify the signature. An example of this process is shown snipped in Listing 10.48.

 Listing 10.48: Decrypting and verifying the digital signature using the gpg utility

 $ ls signed
 signed
 $
 $ gpg --out MessageFromCB.gpg --verify signed

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using GPG 573

 gpg: Signature made Mon 17 Jun 2019 09:36:58 AM EDT
 […]
 gpg: Good signature from "Christine Bresnahan <cb1234@ivytech.edu>" […]
 […]
 $

 After the signature is decrypted and verifi ed, the original fi le is decrypted using the
methods described earlier in this section. An example is shown snipped in Listing 10.49.

Listing 10.49: Decrypting the original file using the gpg utility

 $ gpg --out MessageFromCB.txt --decrypt MessageFromCB.gpg
 […]
 $
 $ cat MessageFromCB.txt
 Hi Rich,
 This file came from me.
 Signed,
 Christine B
 $

 If you want to digitally sign a message or file but not encrypt it, you can
employ the --detach-sig option of the gpg utility. After you have created
the signature file, send it along with your message or file.

 Revoking a Key
 If your private key has been compromised or stolen, you need to revoke your public key.
The voiding process consists of the following steps:

 1. Generate a revocation certificate.

 2. Import the revocation certificate into your keyring.

 3. Make available the revocation certificate to those who have your public key.

 To generate the revocation document, you use the gpg utility with the --gen-revoke
or --generate-revocation switch. You’ll be asked a series of questions as to why you are
voiding this particular key, and you’ll be given the opportunity to include additional infor-
mation concerning the issue. A snipped example is shown in Listing 10.50.

 Listing 10.50: Generating a key revocation document using the gpg utility

 $ whoami
 Christine
 $

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

574 Chapter 10 ■ Securing Your System

$ gpg --out key-revocation.asc --gen-revoke cb1234@ivytech.edu
[…]
Create a revocation certificate for this key? (y/N) y
Please select the reason for the revocation:
 0 = No reason specified
 1 = Key has been compromised
 2 = Key is superseded
 3 = Key is no longer used
 Q = Cancel
(Probably you want to select 1 here)
Your decision? 1
[…]
$
$ ls key-revocation.asc
key-revocation.asc
$

After you have the revocation certification, you can import it into your keyring to offi-
cially void your public/private key pair:

gpg --import FILENAME.asc

Next you need to make the revocation certificate available to others who may have
your public key on their keyrings. The method you choose here depends on how you
originally distributed the public key. If you used a GnuPG key server, then send the revo-
cation certificate to it. If a website was used, publish the document to it. The holders of
your public key then import the certificate using the same gpg --import command,
which voids the key.

Summary
In this chapter we took a look at how to set a basic level of host security. This included how
to audit your network services and disable any unneeded ones. We also explored local secu-
rity topics, such as securing account passwords, limiting root account access, and locating
potentially dangerous programs.

To set some foundations, we delved into basic cryptography concepts. Those concepts
were then expanded into practical knowledge on using OpenSSH to secure transmissions,
and GnuPGP to encrypt files.

These skills will assist you in securing your systems. As computer attacks grow, the sys-
tems in your care will be protected.

Listing 10.50: Generating a key revocation document using the gpg utility (continued)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam Essentials 575

Exam Essentials
Describe the tools for auditing network services. The nmap and netstat utilities will
allow you to audit open ports and the services provided at these ports, but keep in mind the
netstat command is deprecated. You can find network sockets using both the ss utility as
well as via the systemctl command to view systemd managed sockets. Since Linux treats
network connections and sockets as files, you may employ both the lsof and fuser utilities
to audit these items as well.

Summarize super servers and TCP Wrappers. A super server directly listens for packets
containing a designated port number, and when such a packet arrives, the server starts the
matching network service. The extended super daemon, xinetd, uses the /etc/xinetd
.conf configuration file for its global directives and specific service configuration files
stored in the /etc/xinetd.d/ directory for its managed network services’ configurations.

TCP Wrappers use the /etc/hosts.allow and /etc/hosts.deny files to determine who
can access a particular system service. The hosts.allow file is checked first, and if a par-
ticular system is listed in that file, then access is allowed, and no further checks are made.
However, if it is not found in that file, the hosts.deny file is checked. Since access is
allowed if the remote system’s address is not found in either file, it is best to employ the ALL
wildcard in the /etc/hosts.deny file, ALL: ALL.

Clarify how Linux secures passwords. Linux used to store account passwords as salted
hashes in /etc/passwd, but because everyone can view the data in that file, they were
moved to the more locked-down /etc/shadow. In order to change your password, you must
employ the passwd utility, which is able to modify the /etc/shadow file contents due to the
utility’s SUID settings.

Explain how to limit root account access. Though with the su utility you can quickly log
into the other account or just issue a few commands, it does not provide a nonrepudiation
environment. Therefore, it’s best to use the sudo command, which allows a user to issue
a single command with super user privileges. The primary configuration file for this com-
mand is the /etc/sudoers file, though modifications are best made to configuration files
stored in the /etc/sudoers.d/ directory for modern distributions.

Outline setting limits on a Linux system. To protect a system from having its resources
consumed by a runaway program or threat actor, it is a good idea to limit resources, such
as the number of logins, processes, or memory usage per user account. The ulimit utility
provides these limits and is typically configured for user account in the environment files.

Define locating SUID/SGID files. Because SUID and SGID permissions set on a program
or script can be a way for a malicious actor to cause problems on the system, it is wise
to audit the files set with these permissions. The best utility to use is the find command.
Search the entire virtual directory structure starting at the root directory (/), with the
-perm /6000 switch and argument to find these files.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

576 Chapter 10 ■ Securing Your System

Summarize using OpenSSH. The OpenSSH utility allows you to log into a remote system
through an encrypted network connection; its primary interface is the ssh command, and
it employs this syntax: ssh [OPTIONS] USERNAME@HOSTNAME. It keeps track of any previously
connected hosts in the ~/.ssh/known_hosts file, which contains the remote servers’ pub-
lic keys. Its configuration files include ~/.ssh/config (client configurations), /etc/ssh/
ssh_config (global client configurations), and /etc/ssh/sshd_config (OpenSSH daemon
configurations).

To manually generate the needed public/private key pair, use the ssh-keygen utility. To
employ OpenSSH to copy the files to a remote system over an encrypted tunnel, use the
scp command. To use password-less access, either copy over your public key to a remote
system’s ~/.ssh/authorized_keys file with the ssh-copy-id utility or authenticate with an
authentication agent via ssh-agent and ssh-add commands. You can also tunnel X11 GUI
interactions via the ssh -X user@remote-host command as long as tunneling is allowed.

Describe GPG concepts. The GPG utility allows you to encrypt and decrypt files using a
public/private key pair. To generate the keys, you need to employ the gpg --gen-key com-
mand, which then stores the keys in a file (also called the keyring) within the ~/.gnupg/
directory. To share your public key, you must first export it from your keyring to a file via
the --export option. The public key recipient then puts the key on their keyring via the
--import switch. You can view the keys on your keyring by using the gpg --list-keys
command. To encrypt a file, use the recipient’s public key and the --encrypt option. When
the encrypted file is received, the recipient decrypts the file with the private key and the
--decrypt switch. There is no need to start a daemon to manage the private keys, because
GPG handles its private keys via the gpg-agent daemon, which is started when needed by
GPG. To protect against man-in-the-middle attacks, you can sign your encrypted files with
the --sign or --clearsign option. The encrypted file recipient can then verify the signa-
ture with the --verify switch. To revoke a public key, create a revocation certificate via the
--gen-revoke, import the certificate onto your keyring, and share the certificate with oth-
ers who need to revoke your public key on their keyring as well.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 577

Review Questions
You can find the answers in the appendix.

1. Which of the following utilities allows you to scan a system’s network ports and see the
services offered for each port, and you don’t have to be logged onto the system you are
scanning?

A. fuser

B. lsof

C. nmap

D. netstat

E. ss

2. Nickie needs to scan his system to see what ports are listening for incoming TCP
connections. He decides to use the netstat utility. What options should he employ?
(Choose all that apply.)

A. -l

B. -u

C. -s

D. -T

E. -t

3. Nickie knows that the netstat utility is deprecated, so he has decided to switch to the
ss utility. He needs to scan his system to see what ports are listening for incoming TCP
connections. What options should he employ? (Choose all that apply.)

A. -l

B. -u

C. -s

D. -T

E. -t

4. Case is trying to lock down an older Linux system. He was surprised to find that it may be
offering FTP services. He discovers in the /etc/services file that these older FTP services
typically run on ports 20 and 21. What lsof command should he run to see if there are
active connections to the FTP services?

A. lsof -i UDP

B. lsof -i 20:TCP

C. lsof -i ftp:TCP

D. lsof -i :ftp

E. lsof -i 20:ftp

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

578 Chapter 10 ■ Securing Your System

5. What is the main difference between using the lsof utility and the fuser utility to audit
network services on your system?

A. The lsof command utility displays open files on the system.

B. The fuser command utility shows the port and protocol in use.

C. The lsof command utility is deprecated.

D. The fuser command utility shows the process PID using the port.

E. The lsof command utility shows the port and protocol in use.

6. Hiro has completed a network service audit of his systemd systems. He now needs to
disable all the unnecessary network services. What command should he use?

A. service

B. systemctl

C. chkconfig

D. update-rc.d

E. init

7. Hiro discovered that the current systemd system he is auditing has a super server on it. He
determines that there a few unneeded network services being managed by xinetd. What
should he do to disable those services? (Choose all that apply.)

A. Use the systemctl command to set the xinetd service to disabled, so it won’t start on
boot.

B. Set the service’s disable directive to yes in the /etc/xinetd.conf file.

C. Use the chkconfig command to disable xinetd on all runlevels so that it won’t start at
boot.

D. Set the service’s disable directive to yes in its /etc/xinetd.d/ directory file.

E. Uninstall the xinetd service.

8. Marcus is administrating a system that employs TCP Wrappers. He determines the TCP
Wrapper access files are not as locked down as they should be. What can he do to improve
their security?

A. Put ALL: ALL in the /etc/hosts.allow file.

B. Put ALL: ALL in the /etc/host.allow file.

C. Put ALL: ALL in the /etc/hosts.deny file.

D. Put ALL: ALL in the /etc/host.deny file.

E. Put ALL: ALL in the /etc/host.deny file and /etc/host.allow files.

9. Which of the following is true concerning passwords on Linux? (Choose all that apply.)

A. Passwords should be stored in the /etc/shadow file.

B. Passwords should be stored in the /etc/passwd file.

C. Passwords are stored as salted hashes.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 579

D. Use the pwconv utility to move passwords to the /etc/shadow file.

E. Use the passwd command to change your password.

10. Yoyo is a new system administrator for Virgin Galactic. She needs to use super user
privileges to perform several of her duties. What should be done?

A. Give Yoyo the root account password shared by the system admin team and have her
log into the root account via the GUI.

B. Give Yoyo the root account password shared by the system admin team and have her
log into the root account via the su - command.

C. Give Yoyo the root account password shared by the system admin team and have her
issue commands that need super user privileges via the su -c command.

D. Set Yoyo up in the /etc/sudoers file and have her issue commands that need super
user privileges via the sudo command.

E. Set Yoyo up in the /etc/sudoers file and have her issue commands that need super
user privileges via the su -c command.

11. Which command provides the most information concerning users who are currently logged
into the system?

A. who

B. w

C. last

D. who am i

E. whoami

12. Wade needs to set the number of processes each virtual reality game player can start on his
gaming server. What ulimit option should he use in their environment files?

A. -a

B. -l

C. -t

D. -u

E. -v

13. The OpenSSH application keeps track of any previously connected hosts and their public
keys in what file?

A. ~/.ssh/known_hosts

B. ~/.ssh/authorized_keys

C. /etc/ssh/known_hosts

D. /etc/ssh/authorized_keys

E. /etc/ssh/ssh_host_rsa_key.pub

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

580 Chapter 10 ■ Securing Your System

14. Which of the following are OpenSSH configuration files? (Choose all that apply.)

A. ~./ssh/config

B. /etc/ssh/ssh_config

C. /etc/ssh/sshd_config

D. /etc/sshd/ssh_config

E. /etc/sshd/sshd_config

15. Which of the following files may be involved in authenticating with SSH keys?

A. /etc/ssh/ssh_host_rsa_key

B. /etc/ssh/ssh_host_rsa_key.pub

C. ~/.ssh/id_rsa_key

D. ~/.ssh/id_rsa_key.pub

E. ~/.ssh/id_rsa

16. Wade’s OpenSSH private key was compromised, so he needs to create himself a new public/
private key pair. Using super user privileges, what command should he use?

A. ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key

B. ssh-keygen -t rsa -f /etc/ssh/ssh_host_ecdsa_key

C. ssh-keygen -t rsa -f ~/.ssh/id_rsa_key

D. ssh-keygen -t rsa -f ~/.ssh/id_ecdsa_key

E. ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key.pub

17. DeAndre wants to use password-less authentication while employing OpenSSH to reach
a remote system. He has generated the needed public/private key pair and is ready to copy
over the public key to store it in the ~/.ssh/authorized_keys file. What is the best utility
he should use to do this securely?

A. scp

B. ssh-keygen

C. scp-id-copy

D. scp-copy-id

E. ssh-copy-id

18. Aleena has generated her public/private key pair and put her public key in the appropriate
places. She now wants to use an OpenSSH agent session so that she does not have to enter
her password multiple times. What is the next command she should enter?

A. gpg-agent

B. ssh-copy-id

C. ssh-add

D. ssh-agent /bin/bash

E. ssh

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review Questions 581

19. A system administrator, Reagan, has recently imported the public key of her friend,
Aleena, using the gpg --import zer0es.pub command. Where is that key now?
(Choose all that apply.)

A. On Reagan’s keyring

B. In the zer0es.pub file

C. In the gpg-agent

D. In the reagan.pub file

E. In a ~/.gnupg/ file

20. Wade wants create a digital signature. Which gpg option could he employ to do this?
(Choose all that apply.)

A. --sign

B. --clearsign

C. --verify

D. --detach-sig

E. --out

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

By

Answers to Review
Questions

Appendix

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

584 Appendix ■ Answers to Review Questions

Chapter 1: Exploring Linux
Command-Line Tools
1. D. The /bin/sh file on Linux now typically points to a shell program, such as /bin/bash.

Therefore, option D is the correct answer. The other options are all shell programs. Thus,
options A, B, C, and E are incorrect choices.

2. C. The uname -r command will display only the current Linux kernel version (revision).
Thus, option C is the correct answer. The uname command will display only the current
operating system name, Linux, and therefore option A is a wrong answer. The echo
$BASH_VERSION command will show the current version of the Bash shell. Thus, option
B is also an incorrect answer. The uname -a command will display the current Linux
kernel version but additional information as well, so option D is a wrong choice. The echo
$SHELL command shows the current shell program being used. Therefore, option E is also
an incorrect choice.

3. D. The echo \^New \^Style command will display ^New ^Style, because the backslash
is a form of shell quoting that protects a single character after it. Thus the caret (̂) symbol
is protected and displays before each word in the output. Therefore, option D is correct.
Options A, B, C, and E are incorrect answers, because these commands will not display
those outputs.

4. A, C, D. The which fortytwo.sh command will search the directories listed in the
$PATH environment variable for the fortytwo.sh program. If it is found, it will display the
program’s absolute directory reference. Thus, option A is a correct answer (and the best
one too). If you already know the directory location of the fortytwo.sh program, then
displaying the directory names stored in the $PATH variable via the echo $PATH command
will work as well. Therefore, option C is also a correct answer. Attempting to run the
program by issuing the fortytwo.sh command will also determine if the program is stored
within a $PATH directory, because if it is, the program will run. On the other hand, if it is
not stored in a $PATH directory, you’ll receive a not found error message. Thus, option D is
a correct answer as well. Displaying the file via the cat fortytwo.sh command will not
help determine if the program is stored in a $PATH directory, and thus option B is a wrong
answer. Attempting to run the program from a directory named /usr/bin/ also will not
help you in this determination, because it is not stated as being located there. Therefore,
option E is an incorrect choice as well.

5. A, C, D, E. The three modes of the vim editor are command (also called normal mode),
insert (also called edit or entry mode), and ex (sometimes called colon commands) mode.
Therefore, options A, C, D, and E are correct answers. The only incorrect choice for this
question is option B.

6. C. The head command can use either the -n 15 switch or the -15 switch to display a
file’s first 15 lines. Therefore, option C is the correct answer. To display all but the last 15
lines of the file, you would need to employ the -n -15 switch, so option A is incorrect. To
display all but the first 15 lines, you need to use the tail command, instead of the head

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 1: Exploring Linux Command-Line Tools 585

command, so option B is a wrong answer. Also, you need to use tail to display the last
15 lines of the file, so option D is also an incorrect answer. Option D is a wrong choice,
because the command will not generate an error message in this case.

7. B. A pager utility allows you to view one text page at a time and move through the text
at your own pace. Therefore, option B is the correct answer. A utility that allows you to
view only the first few lines of a file would not be useful in this case, and these utilities are
not called pagers. Therefore, option A is a wrong answer. While the less utility is a pager
and will allow you to search through the text file, the co-worker mentioned pagers, which
includes the more utility. With the more utility you cannot search through text, so option C
is an incorrect choice. You do not need to filter out text in the file, and filter utilities are not
called pagers, so option D is a wrong answer. A utility that allows you to view only the last
few lines of a file would not be useful in this case, and these utilities are not called pagers.
Therefore, option E is an incorrect choice.

8. E. You need to use the q key to exit from the less pager utility; therefore, only option E
does not describe less and is the correct answer. Option A is a wrong answer, but less
does not read the entire file prior to displaying the file’s first page. You can also employ
the up and down arrow keys to traverse the file, as well as the spacebar to move forward a
page and the Esc+V key combination to move backward a page, so options B, C, and D are
incorrect answers.

9. C. A text file record is considered to be a single file line that ends in a newline linefeed that
is the ASCII character LF. You can see if your text file uses this end-of-line character via the
cat -E command. Therefore, option C is the correct answer. The text file may have been
corrupted, but this command does not indicate it, so option A is an incorrect choice. The
text file records end in the ASCII character LF, and not NUL or $. Therefore, options B and
D are incorrect. The text file records may very well contain a $ at their end, but you cannot
tell via the situation description, so option E is a wrong answer.

10. E. To properly use some of the cut command options, fields must exist within each
text file record. These fields are data that is separated by a delimiter that is one or more
characters that create a boundary between different data items within a record. Therefore,
option E best describes a delimiter and is the correct answer. Option A is made up and is a
wrong answer. Option B describes an end-of-line character, such as the ASCII LF. Option
C is made up and is a wrong answer. While a single space and a colon can be used as a
delimiter, option D is not the best answer and is therefore a wrong choice.

11. C, D. Recall that many utilities that process text do not change the text within a file unless
redirection is employed to do so. The only utilities in this list that will allow you to modify
text include the text editors, vim and nano. Therefore, options C and D are the correct
answers. The cut, sort, and sed utilities gather the data from a designated text file(s),
modify it according to the options used, and display the modified text to standard output.
The text in the file is not modified. Therefore, options A, B, and E are incorrect choices.

12. A, C. The first item output by the wc utility is the number of lines within a designated text
file. Therefore, option A is correct. Option C is also correct, because the second item output
by the wc utility is the number of words within a designated text file. Option B is a wrong
answer, because the file contains 2,020 lines and not characters. Option D is an incorrect

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

586 Appendix ■ Answers to Review Questions

choice, because you do not know whether or not the Unicode subset of ASCII is used for
the text file’s encoding. You should always assume the last number is the number of bytes
within the file. Use the -m or --chars switch on the wc command to get a character count.
Therefore, the file could have 11,328 bytes in it instead of characters. Option E is also a
wrong choice, because the file has 2,020 lines in it.

13. D. Option D is the best answer because a regular expression is a pattern template you
define for a utility, such as grep, which uses the pattern to filter text. While you may
use a series of characters in a grep PATTERN, they are not called regular expressions, so
option A is a wrong answer. Option B is describing end-of-line characters and not regular
expression characters, so it also is an incorrect answer. While the ? is used in basic
regular expressions, the * is not (however, .* is used). Therefore, option C is a wrong
choice. Quotation marks may be employed around a PATTERN, but they are not considered
regular expression characters, and therefore Option E is an incorrect answer.

14. A, B, C, E. A BRE is a basic regular expression that describes certain patterns you can use
with the grep command. An ERE is an extended regular expression, and it requires the use
of grep -e or the egrep command. Options A, B, C, and E are all BRE patterns that can
be used with the grep command, so they are correct choices. The only ERE is in option D,
and therefore it is an incorrect choice.

15. E. To meet the search requirements, option E is the ERE to use with the egrep
command. Therefore, option E is the correct answer. Option A will return either a record
that ends with Luke or a record that ends with Laura. Thus, option A is the wrong answer.
Option B is an incorrect choice, because it will return either a record that begins with
Luke or a record that begins with Laura and has one character between Laura and the
"Father is" phrase. Option C has the Luke and Laura portion of the ERE correct, but
it allows only one character between the names and the "Father is" phrase, which will
not meet the search requirements. Thus, option C is a wrong choice. Option D tries to
return either a record that ends with Luke or a record that ends with Laura and ends in
the "Father is" phrase, so the egrep command will display nothing. Thus, option D is
an incorrect choice.

16. B. A file descriptor is a number that represents a process’s open files. Therefore, option
B is the correct answer. An environment variable is a variable that affects the user’s
environment, such as the shell prompt ($PS1). Therefore, option A is a wrong answer.
Option C is also wrong, because it is a made-up answer. Option D is incorrect, because it
describes only STDOUT, which has a file descriptor number of 1, and is only one of several
file descriptors. A file indicator code is a symbol that indicates the file’s classification, and it
is generated by the ls -F command. Therefore, option E is also a wrong choice.

17. A, B. To sort the data.txt file numerically and save its output to the new file, newdata
.txt, you can either use the -o switch to save the file or employ standard output redirec-
tion via the > symbol. In both cases, however, you need to use the -n switch to properly
enact a numerical sort. Therefore, both options A and B are correct. Option C is a
wrong answer, because the command has the newdata.txt and data.txt flipped in the
command’s syntax. Options D and E do not employ the -n switch, so they are incorrect
answers as well.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 2: Managing Software and Processes 587

18. D. By default, STDOUT goes to your current terminal, which is represented by the /dev/
tty file. Therefore, option D is the correct answer. The /dev/ttyn file, such as /dev/tty2,
may be your current terminal at a particular point in time, but /dev/tty always represents
your current terminal, so option A is a wrong answer. Option C is incorrect, because it is
the symbol used at the command line to redirect STDOUT away from its default behavior.
The pwd command displays your present working directory, so option E is a wrong choice.

19. A. The command in option A will both display the SpaceOpera.txt file to output as well
as save a copy of it to the SciFi.txt file. Therefore, Option A is the correct answer. Option
B is a wrong answer, because it will only put a copy of SpaceOpera.txt into the SciFi
.txt file. Option C is an incorrect choice, because this will display the SpaceOpera.txt file
to output, and put any error messages into the SciFi.txt file. The cat command in option
D will display only one text file after another. It will not save a copy of the original file,
so option D is a wrong answer. Option E is a wrong choice, because it will put a copy of
SpaceOpera.txt into the SciFi.txt file and include any error messages that are generated.

20. D. The /dev/null file is also called the black hole, because anything you put into it cannot
be retrieved. If you do not wish to see any error messages while issuing a command, you
can redirect STDERR into it. Thus, option D is the correct answer. Options A through C
are wrong answers because they perform redirection to a file called BlackHole, instead of
/dev/null. Option E is also incorrect, because it redirects STDOUT to the /dev/null file,
and any error messages will be displayed.

Chapter 2: Managing Software
and Processes
1. A, B, D, and E. A systems package manager database typically contains information on

application files as well as their directory locations, software versions, and any library
dependencies. Thus, options A, B, D, and E are all correct answers. The database does not
track which username installed the software. Therefore, option C is an incorrect choice.

2. E. The CentOS Linux distribution uses the Red Hat package management system, which
uses .rpm files, so option E is correct. The .deb filename extension is used to identify
Debian-based package management files, so option A is a wrong answer. ZYpp is a package
manager but not a file extension. Therefore, option B is also an incorrect answer. dpkg is
a command-line utility for installing and managing .deb package files, so option C is a
wrong choice. And yum is a utility for installing RPM packages from a Red Hat repository.
Thus, option D is also an incorrect choice.

3. C, E. The yum and dnf programs are used to install .rpm packages from Red Hat–based
repositories, so options C and E are correct answers. The dpkg and apt-get programs are
used for installing .deb files on Debian-based package management systems, so options A
and D are incorrect. The zypper program is used to install .rpm packages from openSUSE
repositories. Therefore, option B is an incorrect choice.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

588 Appendix ■ Answers to Review Questions

4. A. Red Hat–based package management systems use the yum program to retrieve
packages from repositories, so Scott needs to add the third-party URL configuration to the
/etc/yum.repos.d/ directory, making option A correct. The /etc/apt/sources.list file
is used by Debian-based package management systems to define repository locations, not
Red Hat–based systems, so option B is incorrect. The /usr/lib/ folder is used for storing
shared library files on a Linux system, so option C is incorrect, whereas the /bin/ directory
is used for storing binary application files, so option D is also incorrect. While the /etc/
folder is typically used to store configuration files, it is not used to configure repository
locations, so option E is incorrect.

5. C, D. Both the rpm2cpio and cpio utilities are needed to extract the files from an .rpm
package file. Therefore, options C and D are the correct answers. The cpio2rpm command
is made up, and thus option A is a wrong answer. The rpm and yum commands are not
involved in this process. Therefore, options B and E are incorrect choices.

6. D. The dpkg program is used to install .deb package files on Debian-based systems, so
option D is correct. The rpm, yum, dnf, and zypper programs are all tools used for Red
Hat–based package management systems, not Debian-based systems, so options A, B, C,
and E are all incorrect.

7. A. To list currently installed packages with missing dependencies, Tony should issue the
apt-cache unmet command. Therefore, option A is the correct answer. The apt-cache
stats command will display package statistics, so option B is a wrong answer. The
apt-cache showpkg command lists information about a package passed to it as an
argument, so option C is also an incorrect answer. The apt-cache search command
displays packages that match the specified argument. Thus, option D is a wrong choice.
The apt-cache depends will display dependencies required for a package but not
whether or not they are unmet. Therefore, option E is an incorrect choice.

8. C. You can go through the configuration process again via the dpkg-reconfigure utility
and fix your mistakes. Thus, option C is the correct answer. While you could purge or
uninstall the package and then reinstall it, those are not the best choices. Therefore,
options A and B are incorrect answers. The debconf-show utility allows you to view a
package’s configuration but not change it. Thus, option D is an incorrect answer. You
cannot reconfigure the package via the dpkg or apt-get utilities, so option E is a wrong
answer as well.

9. B. Steve should use the ldconfig command to update the system’s library cache. Thus,
option B is the correct answer. The ldd utility will display any libraries used by the
program name passed to it as an argument, but it does not update the cache. Therefore,
option A is a wrong answer. The ldcache utility is made up. Thus, option C is also an
incorrect answer. The ld.so and ld-linux-x86-64.so.2 are both dynamic linker/loaders,
but they do not update the library cache. Therefore, options D and E are both incorrect
choices.

10. C, D, E. The /etc/ld.so.conf.d/ directory, LD_LIBRARY_PATH environment variable,
and the /lib* and /usr/lib*/ folders are all potential locations where library file
locations may be stored. Thus, options C, D, and E are correct answers. The /usr/bin*/
directories do not hold library file locations. Therefore, option A is a wrong answer. The

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 2: Managing Software and Processes 589

/ld.so.conf file does not exist, though the /etc/ld.so.conf file does and it also holds
library file locations. Because the wrong directory name was used for the file, option B is an
incorrect choice.

11. A, C, D. The GNU ps command in Linux supports parameters that were supported by the
legacy BSD and Unix ps command, along with new options created by GNU, so options
A, C, and D are correct. There are no Linux style options used by the ps command, so
option B is incorrect. The ps command doesn’t support numeric options, so option E is also
incorrect.

12. D. With no command-line options, the GNU ps command displays only processes
run by the current shell, so option D is correct. To display all processes running on a
specific terminal, you need to add the -t option, so option A is incorrect. To display all
active processes, you must add the -A option, so option B is incorrect. To display the
sleeping processes, you need to use the -ef option, so option C is incorrect. To display all
processes run by the current user account, you need to add the -x option, so option E is
incorrect.

13. A. The top command displays the currently running processes on the system and updates
every 3 seconds, so option A is correct. The ps command displays currently running
processes but doesn’t update in real time, so option B is incorrect. The lsof command
displays files currently opened by processes but not the processes themselves, so option C
is incorrect. The free utility only shows memory statistics. Therefore, option D is a wrong
answer. The uptime command shows system load but not CPU utilization. Thus, option E
is an incorrect answer as well.

14. E. The S command displays the processes based on the cumulative CPU time for each
process, so option E is correct. The l command displays the processes based on the load
average, so option A is incorrect. The F command allows you to select the field used to sort
the display, so option B is incorrect. The r command reverses the sort order of the display,
so option C is a wrong choice. The y command highlights running tasks, so option D is an
incorrect answer as well.

15. D. The GNU Screen utility employs the screen commands, and the screen -ls command
will display any detached windows belonging to Natasha along with their window IDs.
Therefore, option D is the correct answer. The screen command by itself creates a new
screen window, so option A is a wrong answer. The tmux ls command is associated with
tmux windows and not GNU Screen windows, so option C is also an incorrect answer. The
Ctrl+A key combination followed by the D key will detach you from a screen window you
are currently using. Therefore, option E is an incorrect choice as well.

16. B. The ampersand character (&) tells the shell to start the command in background mode
from the console session, so Option B is correct. The greater-than sign (>) redirects the
output from the command to a file, so option A is incorrect. The pipe symbol (|) redirects
the output from the command to another command, so option C is incorrect. The double
greater-than sign (>>) appends the output from the command to a file, so option D is
incorrect. The percentage sign (%) is used for identifying background jobs by their number.
Therefore, option E is incorrect.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

590 Appendix ■ Answers to Review Questions

17. A. The Ctrl+Z key combination pauses the job currently running in foreground mode
on the console session, so option A is correct. The Ctrl+C key combination stops the
job currently running in foreground in the console session, not pause it, so option B is
incorrect. The nohup command disconnects a job from the console session, but doesn’t
pause the job, so option D is incorrect. The ampersand sign (&) runs a job in background
mode in the console session, so option D is incorrect. The fg command resumes a stopped
job in foreground mode, so option E is incorrect.

18. B. Scott should first employ the jobs -l command to see all his current background
jobs. Therefore, option B is the correct answer. The ps -ef command will show him
his background processes, but it will show all the other processes on the system as well
and make it more difficult than necessary to find the information he needs to stop his
background job. Thus, option A is a wrong answer. The kill %1 command should not be
issued until Scott confirms that the program is indeed running with the job ID of 1. Thus,
option C is also an incorrect answer. The kill commands in options D and E would not
kill Scott’s job, because they are not using a percent sign, which tells the system to attempt
to stop the process with the PID of 1 (and, if successful, this would be a bad thing). Thus,
options D and E are incorrect choices.

19. C. The nice command allows you to specify the niceness level for an application, which
modifies its priority, so option B is correct. The renice command allows you to change
the niceness level of an application that’s already running, but not one that hasn’t started
yet, so option A is a wrong answer. The bash utility is not for changing niceness levels, so
option B is a wrong choice as well. The nohup command prevents a job from processing
the hang-up signal but has nothing to do with niceness levels, so option D is an incorrect
answer. The lower command is made up, so option E is an incorrect choice as well.

20. D. The kill command allows you to stop an application that’s already running by
specifying its process ID, so option D is correct. The killall command allows you send
a signal to all the processes you own running a particular utility, so option A is a wrong
answer. The pkill command allows you to stop an application, but not by specifying its
process ID, so option B is an incorrect choice. TERM is a signal that is sent by default by
these utilities and not a command. Therefore, option C is a wrong answer. The pgrep
command allows you to display running applications based on a search term for the
application name but not stop them, so option E is an incorrect choice.

Chapter 3: Configuring Hardware
1. A. The workstation firmware looks for the boot loader program to load an operating

system. The fsck program (option B) is used to check and repair damage to hard drives,
so it isn’t useful until after the Linux system has started. The Windows operating system
only starts after a Windows boot loader program can run, so option C is incorrect. The
mount program is a Linux tool for attaching a partition to the virtual directory, which isn’t
available until after the Linux system starts, so option D is also incorrect. The mkinitrd
program is used to create an initrd RAM disk used for booting, but it isn’t run when the
workstation starts up, so option E is incorrect.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 3: Configuring Hardware 591

2. B. The workstation firmware looks at the first sector of the first hard drive to load the
boot loader program. This is called the MBR, so option B is correct. The boot loader
program itself can use the chainloader feature to look for another boot loader in a boot
partition, but the firmware can’t do that, so option D is incorrect. Option A specifies the
configuration directory used to store the GRUB configuration file and the kernel image
file, but the actual GRUB boot loader program can’t be stored there. Option C specifies the
common log file directory, but that doesn’t contain the GRUB boot loader program. Option
E also specifies a common Linux configuration file directory, but it’s not used to store the
GRUB boot loader program that the firmware can access.

3. A, B, C, D, and E. The BIOS firmware can look in multiple locations for a boot loader
program. Most commonly it looks at the internal hard drive installed on the system;
however, if none is found, it can search other places. Most workstations allow you to boot
from an external hard drive or from a DVD drive. Modern workstations now also provide
the option to boot from a USB memory stick inserted into a USB port on the workstation.
Finally, many workstations provide the PXE boot option, which allows the workstation to
boot remotely from a network server.

4. A. The master boot record (MBR) is located in only one place: on the first sector of the first
hard drive on the workstation; thus option A is the only correct answer. The boot partition
in any hard drive may contain a boot loader, but it is not the MBR, which is run first by
the firmware; thus option B is incorrect. The other locations are not valid locations for the
MBR, so options C, D, and E are all incorrect.

5. D. The ESP is stored in the /boot/efi directory on Linux systems. The UEFI firmware
always looks for the /boot/efi directory for boot loader programs, so option D is correct.
The /etc directory is used to store application and system configuration files, not boot
loader programs, so option B is incorrect. The /var directory is used to store variable files
such as log files, not bootable files, so option C is incorrect. Option E, the /boot/grub file,
is used in GRUB Legacy and GRUB2 to store the boot loader configuration files, as well as
the kernel image files. However, it is not used to store the boot loader files themselves, so
option E is incorrect.

6. B. The UEFI firmware method has replaced the BIOS in most IBM-compatible computers,
so option B is correct. FTP, PXE, NFS, and HTTPS are not firmware methods but methods
for loading the Linux boot loader, so options A, C, D, and E are all incorrect.

7. A. The solid-state drive (SSD) storage device uses an integrated circuit to store data, so
option A is correct. SATA, SCSI, and PATA are drive connection types and not storage
device types, so options B, C, and E are all incorrect. The hard disk drive (HDD) storage
devices use disk platters and a read/write head to store data, not an integrated circuit, so
option D is incorrect.

8. B. Linux creates files named sdx in the /dev directory for SCSI devices. For the second
SCSI device, Linux would create the file /dev/sdb, so option B is correct. The /dev/hdb file
would represent the second HDD drive connected to the system, so option A is incorrect,
and /dev/sda would represent the first SCSI device connected to the system, so option E
is incorrect. Options C and D both represent partitions and not entire drives, so they are
both incorrect.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

592 Appendix ■ Answers to Review Questions

9. C. The lvcreate program creates a logical volume from multiple partitions that you can
use as a single logical device to build a file system and mount it to the virtual directory, so
option C is correct. The mkfs program creates a filesystem on a partition but doesn’t create
a logical volume, so option A is incorrect. The pvcreate program identifies a physical
volume from a partition but doesn’t create the logical volume, so option B is incorrect. The
fdisk program creates and modifies physical partitions, not logical volumes, so option D is
incorrect. The vgcreate program creates a volume group for grouping physical partitions
but doesn’t create the logical volume, so option E is incorrect.

10. B, C, D, and E. RAID 4, RAID 5, and RAID 10 all use disk striping with parity, allowing
them to recover from a single disk failure, whereas RAID 1 utilizes disk mirroring to
recover from a single disk failure, so options B, C, D, and E are all correct. RAID 0 utilizes
disk striping across multiple disks for increased performance but can’t recover if one of
those drives fails, so option A is the only incorrect answer.

11. B. The GNU gparted program provides a graphical window for managing device
partitions, so option B is correct. The gdisk, fdisk, and parted programs are all
command-line partitioning tools, so options A, C, and D are all incorrect. The fsck
program is a tool to repair filesystems, not create or modify partitions, so option E is
incorrect.

12. D. The p command displays the current partition table for the hard drive, so option D is
correct. The v command verifies the partition table but doesn’t display it, so option A is
incorrect. The n command creates a new partition; it doesn’t display the current partition
table, so option B is incorrect. The m command displays the help menu; it doesn’t display
the current partition table, so option C is incorrect. The d command deletes an existing
partition; it doesn’t display the current partition table, so option E is incorrect.

13. A. Linux uses mount points to insert a filesystem on a storage device to the virtual
directory, so option A is correct. Unlike Windows, Linux doesn’t assign drive letters to
storage devices, so option B is incorrect. The /dev files are used as raw devices for storage
devices; they don’t access the filesystem, so option C is incorrect. The /proc and /sys
directories are used by the kernel to display and change storage device information, not to
add the filesystem to the virtual directory, so option E is incorrect.

14. D. The ext filesystem was the original filesystem used in Linux, and ext4 is the latest
version of it, so option D is correct. This makes option C incorrect. The reiserFS and
btrFS filesystems are specialty filesystems created separate from the ext filesystem, so
options A and B are also incorrect. The nfs filesystem was created to allow sharing files
and directories across networks and wasn’t the original Linux filesystem, so option E is
incorrect.

15. B. The mkfs program allows you to create a new filesystem on a partition, so option B is
correct. The fdisk, gdisk, and parted programs are used to create or modify partitions,
not to work with the filesystem installed on them, so options A, D, and E are all incorrect.
The fsck program repairs filesystems but can’t create them, so option C is incorrect.

16. C. The swap filesystem type creates a virtual memory swap area for the Linux kernel to use
to create virtual memory, which augments the physical memory on the system, so option

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 4: Managing Files 593

C is correct. The ext3, btrfs, and ext4 filesystems are all Linux storage filesystems, not
memory filesystems, so options A, B, and D are all incorrect. The NTFS filesystem is used
for Windows compatibility, not memory storage, so option E is incorrect.

17. B. The mount program allows you to insert the filesystem on a partition into the virtual
directory, so option B is correct. The fsck program repairs filesystems but doesn’t insert
them into the virtual directory, so option A is incorrect. The umount program removes
filesystems from the virtual directory and does not insert them, so option C is incorrect.
The fdisk program partitions devices but doesn’t create filesystems or insert them into the
virtual directory, so option D is incorrect. The mkfs program creates filesystems but doesn’t
insert them into the virtual directory, so option E is also incorrect.

18. B. The umount command allows you to specify either the partition or the location in the
virtual directory to remove from the virtual directory, so option B is correct. The mount
command is used to add a new mounted partition, not to remove an existing one, so option
A is incorrect. Option C, the fsck command, is used to fix a hard drive that is corrupted
and can’t be mounted; it doesn’t actually mount the drive itself. The dmesg command in
option D is used to view boot messages for the system, which may tell you where a hard
drive is appended to the virtual directory, but it doesn’t actually do the appending. Option
E, the mkinitramfs command, creates an initrd RAM disk and doesn’t directly handle
mounting hard drives to the virtual directory.

19. A. The fsck program repairs corrupted filesystems, so option A is correct. The mount
program inserts filesystems into the virtual directory, but it can’t repair them, so option
B is incorrect. The umount program removes filesystems from the virtual directory but
can’t repair them, so option C is also incorrect. The fdisk program creates and modifies
partitions, but it doesn’t work with filesystems, so option D is incorrect. The mkfs program
creates filesystems but doesn’t repair them, so option E is incorrect.

20. C. The du command displays the disk usage by directory, allowing you to easily check the
HOME directories of all user accounts and determine which user has the most disk space, so
option C is correct. The df command displays total disk usage by partition, not directory,
so it wouldn’t work for singling out a specific user, making option A incorrect. The iostat,
lsblk, and blkid commands display disk information based on partitions and blocks, not
users, so options B, D, and E are all incorrect.

Chapter 4: Managing Files
1. A, B, and D. When choosing a filename to create on a Linux system, shell metacharacters

such as an asterisk (*) and an ampersand (&), as well as spaces, should be avoided. Thus,
options A, B, and D are correct choices. You can employ without worry a dash (-) or an
underscore (_), so options C and E are incorrect choices.

2. E. Due to wildcard expansion, the ls *data*.txt command will list all the filenames that
contain the word data and have the .txt file extension in the present working directory.
Thus, option E is the correct answer. The ls data*.txt and ls data?.txt commands

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

594 Appendix ■ Answers to Review Questions

will list only filenames that start with the word data and have the .txt file extension in the
present working directory. Therefore, options A and B are wrong answers. The ls *data
.txt command will list only filenames that end with the word data and have the .txt
file extension in the present working directory. Thus, option C is a wrong choice. The ls
?data?.txt command will list only filenames that have one alphanumeric character before
the word data and one after (as well as have the .txt file extension in the present working
directory). Therefore, option D is an incorrect choice as well.

3. C. Using a bracketed wildcard, the ls File[0-9] command will list all the filenames that
start with the word File, end with a single number, and have no file extension. Therefore,
option C is the correct answer. The ls File? command will list all the filenames that
start with the word File, end with a single number or letter, and have no file extension.
Thus, option A is a wrong answer. The ls File* command will list all the filenames that
start with the word File and end with anything. Therefore, option B is also an incorrect
answer. The ls File[^0-9] command uses the caret symbol ()̂, which negates the bracket
wildcard, and thus will find the files that start with the word File but end with anything
but a single number. Thus, option C is a wrong choice. The ls File[a-z] command will
find the files that start with the word File but end with a letter. Therefore, option E is also
an incorrect choice.

4. C. Option C will append an indicator code of / to every directory name, and therefore it
is the best choice. The mkdir -v command creates a directory and lets you know whether
or not it was successful, but it does not indicate directories, so option A is a wrong answer.
The ls command only displays file and directory names, so option B is also a wrong
answer. The ls -i command will display filenames along with their inode number, but it
does not indicate directories, so option D is incorrect. While option E will work on some
distributions to produce a long listing that can indicate directories, this command is not
aliased to ls -l on every distribution, and therefore it is not the best command to use.

5. B. The -d switch on the ls command will allow you to view a directory file’s metadata
instead of seeing metadata for the files that exist within that directory. Therefore, option
B is the correct choice. Option A is a wrong answer because the -a switch forces the ls
command to display hidden files, which are files starting with a dot (.). The -F switch will
append an indicator code to each file but not allow you to view a directory’s metadata,
so option C is a wrong choice. The -l option is already being employed because you are
viewing metadata, so it does not need to be added. Therefore, option D is an incorrect
answer. The -R switch allows you to view file information recursively through a directory
tree, and thus option E is also a wrong choice.

6. A. The mkdir -v command creates a directory and lets you know whether or not it was
successful, so option A is the correct answer. The touch command creates blank and empty
files, so option B is incorrect. The cp -R command will recursively copy an entire directory
full of files to another directory. Since you do not know if the directory TheDir is empty
or not, you most likely did not use this command. Option C is a wrong answer. The mv -r
command will rename a directory to a new directory name. Again, you do not know if
the directory TheDir is empty or not, so you most likely did not use this command, and
thus, option D is also a wrong answer. Option E is an incorrect answer because the rmdir
command deletes empty directions.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 4: Managing Files 595

7. E. The rm -rI command will recursively delete the files in the /home/Zoe directory tree,
and it will ask before it starts, so you know you are deleting the correct tree. Therefore,
option E is the best answer. Option A is incorrect because the cp command simply copies
files. It does not remove them. Option B is incorrect because not only is part of the
directory name using the wrong case, but there is no verification the correct directory is
being moved to the black hole device, /dev/null/. The rm -Rf command would work,
but it is not the best command to use because it does not ask before it starts, so you do not
know if you are deleting the correct tree. In fact, the -f option suppresses error messages,
so option C is wrong. Option D would also work, but it is not the best answer because it
employs the -i option. If Zoe has years of files in her home directory, you may be sitting
there for a long time deleting files due to the fact that you must confirm each file before it is
deleted. Therefore, option D is an incorrect answer.

8. E. The tar options -cJvf will create a tarball using the highest compression utility, xz,
and allow the administrator to view the files via the verbose option while they are being
copied into the compressed archive. Thus, option E is the correct answer. The switches in
options A and B perform extracts (-x) and do not create, so they are wrong answers. The
only thing wrong with option C is that it employs gzip compression via the -z switch, so
it is an incorrect choice. Option D leaves out the verbose switch, so it too is an incorrect
choice.

9. A. The dd command in option A will accomplish the job correctly. Therefore, it is the
correct answer. The dd commands in options B through D have the input and output files
flip-flopped, so they would destroy the data on the /dev/sdc drive. Therefore, options B,
C, and D are wrong answers. The dd command in option E would wipe the /dev/sdc drive
using zeros. Therefore, option E is also an incorrect choice.

10. B, C, E. The zip, tar, and dd utilities all can be used to create data backups. Therefore,
options B, C, and E are correct answers. The gzip utility can be used after a backup is
created or employed through tar options to compress a backup, so option A is a wrong
answer. The bzcat utility allows you to temporarily decompress a file that had been
compressed with the bzip2 command and display the file’s contents to STDOUT. Thus,
option D is also an incorrect choice.

11. B. Option B is the correct answer because the hard links will prevent the three other
command-line interface users from accidentally deleting the data. If they delete their link’s
name, they will not delete the data. Option A is an incorrect choice because hard-linked
files must reside on the same filesystem together. Option C is also an incorrect choice
because if you do not provide the symbolic links to the other three data users, they will
have to access the data file directly and could delete it. While creating symbolic links will
protect the data by letting it reside on a different filesystem, if it is mission-critical data the
filesystem employed should be rigorous enough to protect the data, and therefore your only
threat would be human. Thus, option D is an incorrect answer. Symbolic linked files do not
share an inode number. Therefore, option E is an incorrect choice.

12. B. The chown command allows you to set both the owner and group assigned to a file, so
option B is correct. The chmod command allows you to change the permissions for the file
but not the owner of the file, so option A is incorrect. The ln command creates hard links
(soft links if you add the -s option) but not owners of files, so option C is incorrect. owner

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

596 Appendix ■ Answers to Review Questions

is a category of permissions (also called world) but not a command. Therefore, option D is
incorrect. The chgrp command allows you to change the group assigned to a file but not
the owner, so option E is also incorrect.

13. C, D. Notice that the only permission to remove is in the owner (u) permissions and it is
the execute (x) permission. To achieve the desired permission string, you could employ octal
mode (554) or symbolic mode (u-x or u=rw). The chmod u-x endgame.txt and chmod 554
endgame.txt commands will set the endgame.txt file’s permission string from rwxrw-r--
to rw-rw-r-- Thus, options C and D are the correct answers. The umask command deals
with a file’s permissions before it is created, so option A is a wrong answer. The chmod
o-x endgame.txt command is using symbol mode and it would take away the execute
permission from the other permissions, not the owner permissions. Thus, option B is an
incorrect answer. The chmod o=rw endgame.txt command would have the exact same
effect as the command in option B, so option E is an incorrect choice as well.

14. B. By default, directories are created with octal mode 777, which gives them a permission
string of rwxrwxrwx. The umask setting takes away permissions. Its first number is for
special permissions (SUID, SGID, and sticky bit). Its next three numbers correspond to the
standard permission categories—owner, group, and other. Thus, to end up with a directory
that has a permission string of rwxrwxrw (776), umask needs to be set to 0001. Thus,
option B is the correct answer. The 0007 setting would end up with a permission string
of ---------. Thus, option A is a wrong answer. The 0776 setting would result in a
permission string for directories of --------x. Thus, option C is a wrong choice. The
7770 umask setting would end up with a ------rwx permission string, so option D is also
an incorrect answer. The 1000 setting would result in an rwxrwxrwx permission string for
created directories. Therefore, option E is also an incorrect choice.

15. B. The Set User ID bit (SUID) allows all users to run applications as the root user account,
so option B is correct. The sticky bit doesn’t allow users to run the file with root privileges,
so option A is incorrect. The SGID bit doesn’t allow users to run files as the root user
account, so option C is incorrect. The Execute and Write bits set those permissions for the
standard category of users, groups, or others. They don’t allow users to run files as the root
user account, so both options D and E are incorrect.

16. C. The sticky bit assigned to a directory restricts all of the files in that directory so that
only the file owner can delete the file, even if a user account is in the group that has
write permissions, so option C is correct. The SUID bit allows a standard user to run an
application with the file owner permissions but doesn’t block users from deleting shared
files, so option A is incorrect. The SGID bit is used on a directory to ensure all files created
in the directory have the same group as the directory, but it doesn’t prevent users in that
group from deleting files, so option B is incorrect. The Read and Write standard permission
bits control access to read to a file or write to a file, but they don’t block users from deleting
a file, so options D and E are both incorrect.

17. E. By default, the locate command uses file globbing, which adds wildcards to the pattern
you enter. Thus, conf is turned into *conf*. Therefore, option E best explains the results
and is the correct answer. The locate command will search for both file and directory
names for specified patterns unless options are provided to modify this behavior. Therefore,
option A is an incorrect answer. The locate command does not use the -d skip switch
(the grep command does use it, though), and thus option B is a wrong answer. Because the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 5: Booting, Initializing, and Virtualizing Linux 597

command operated normally, there is not a problem with the locate database, so option
C is an incorrect choice. Also, a regular expression switch was not used in the locate
command, so option D is also a wrong choice.

18. D. When using the locate command, the path argument is listed first, which is a starting
point directory. The find utility will search through that directory and all its subdirectories
(recursively) for the file or files you seek. Also, the -name switch allows you to search for
a file by name, so option D is the correct answer. Option A is incorrect because there is
no -r switch, and no need for one. Option B is not the best command to use in this case
because the starting directory is /, which is the root of the virtual directory structure. It is
much better to start at the /etc directory, since the file is most likely located somewhere in
that directory tree. Using the -maxdepth switch may hamper the search because it sets the
subdirectory level to stop the search. Therefore, option C is a wrong answer. Option E is
an incorrect choice, because the path and file name are flip-flopped and the -name switch
is missing.

19. E. The find / -nouser command will search through the entire virtual directory
structure looking for any files that do not have a username associated with them. Since
Michael’s account and home directory were deleted, any files he owned out in the virtual
directory structure will not have a username associated with them—only a user ID (UID).
Thus, option E is the best answer. Option A is incorrect because the -name switch is for
filenames, not usernames. Option B is also an incorrect answer, because the -user switch is
used to search for files owned by a particular account. Since Michael’s account was deleted,
his username would no longer be associated with any files. Option C is a wrong answer
because you do not know when his files may have experienced data changes, as indicated
by the -mmin switch, and thus this is a bad method for trying to identify them. Option D is
an incorrect choice because the find command is starting the search process in the user’s
home directory instead of the root (/) of the virtual directory structure.

20. B. The whereis command displays a command’s program binaries, manual pages, as well
as source code files. Therefore, option B is the correct answer. The which command will
display only a command’s program location, so option A is a wrong answer. The locate
command will search based on a pattern, but if the command’s source code file doesn’t
contain the command’s name, then it will not work. Thus, option C is also an incorrect
answer. Depending on the search metadata you employ with the find command, you may
or may not find the command’s source code files. The whereis command is much faster for
this search. Therefore, option D is a wrong choice. The type utility can show how the shell
will interpret the stonetracker command but not find its source code files. Thus, option E
is also an incorrect choice.

Chapter 5: Booting, Initializing,
and Virtualizing Linux
1. E. The kernel ring buffer is an area in memory reserved for storing output messages as

the Linux system boots, so option E is correct. BIOS is firmware, not an area in system
memory. Therefore, option A is a wrong answer. The GRUB boot loader is a program, not

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

598 Appendix ■ Answers to Review Questions

a memory area. Thus, option B is a wrong choice. The MBR is a location on a hard drive,
so option C is incorrect. The initrd RAM disk is an area in memory, but it doesn’t store the
boot messages as the system starts. Therefore, option D is also an incorrect answer.

2. B, C, D, E. Typically Debian-based systems store the boot messages in the /var/log/boot
file, whereas Red Hat–based systems store them in the /var/log/boot.log file. Therefore,
options B and C are correct answers. The kernel ring buffer, which you can view shortly
after boot time via the dmesg command, contains boot messages from the kernel. Thus,
option D is also a correct answer. The jounrnalctl utility, if available on your system,
will display boot messages as well. Therefore, option E is an additional correct answer. The
/var/log/kernel.log is a made-up filename, so option A is the only wrong choice.

3. A. A system’s firmware looks for the boot loader program in order to load an operating
system. Thus, option A is the correct answer. BIOS is firmware (and it may be the firmware
looking for the boot loader program), so option B is a wrong answer. UEFI is a firmware
interface (and it also may be the one looking for the boot loader program), so option C is
also an incorrect answer. There is no command named POST, though you may be thinking
of the Power-On Self-Test that the firmware conducts prior to searching for a boot loader.
Thus, option D is a wrong choice. The init program is run by the loaded Linux kernel, so
the system firmware, so option E is also an incorrect choice.

4. B. The BIOS firmware looks at the first sector of the first hard drive to load the boot loader
program. This is called the master boot record, so option B is correct. The /boot/grub/
directory is the configuration folder used to store the GRUB (or GRUB2) configuration file
and the kernel image file, so option A is a wrong answer. The /var/log/ directory is the
common log file folder, but that doesn’t contain the GRUB boot loader program. Thus,
option C is also a wrong choice. The boot loader program itself can use the chainloader
feature to look for another boot loader in a boot partition, but the firmware can’t do that,
so option D is incorrect. The /etc/ directory is a common Linux configuration file folder,
but it’s not used to store the GRUB boot loader program that the firmware can access.
Thus, option E is also an incorrect choice.

5. D. The ESP is stored in the /boot/efi/ directory on Linux systems, so option D is
correct. The /boot/grub/ directory is used by GRUB Legacy and GRUB2 to store the
boot loader configuration files, as well as the kernel image files. Thus, option B is a wrong
answer. The /boot/grub2/ directory is sometimes used by GRUB2 to store the boot loader
configuration files and kernel image files. Therefore, option C is a wrong answer as well.
The /boot/esp/ directory is made up, and thus option E is also an incorrect choice.

6. E. The UEFI specification doesn’t require a specific extension for UEFI bootloader files.
However, it has become somewhat common in Linux to use the .efi file extension to
identify them. Thus, option E is the correct answer. Option A and option D specify file
extensions used to identify GRUB2 (option A) and GRUB Legacy (option D) configuration
files, not UEFI boot loader files, so they are both incorrect. Option C specifies the .lst file
extension, which is also used for GRUB Legacy configuration files, so it too is incorrect.
The .uefi file extension is not used in Linux, so option B is incorrect.

7. A. The GRUB Legacy configuration files are stored in the /boot/grub directory, so option
A is correct. The /boot/grub2 directory is sometimes employed by GRUB2, if GRUB

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 5: Booting, Initializing, and Virtualizing Linux 599

Legacy is also installed on the system. However, the system admin would not find her
GRUB Legacy configuration files in that directory, so option B is incorrect. Option C, the
/boot/efi directory, is used to store UEFI bootloader programs, not GRUB configuration
files, so it is incorrect. Even though configuration files are often stored in the /etc directory
tree, boot loader configuration files do not reside there. Therefore, options D and E are
incorrect choices.

8. C. For GRUB Legacy the configuration line he should change will start with the title
word. This line sets the boot menu choice displayed, so option C is the correct answer.
The hiddenmenu is a global GRUB Legacy directive that prevents the menu choices from
displaying. Thus, option A is the wrong answer. The line starting with kernel defines the
kernel image to load in GRUB Legacy file, so option B is also an incorrect answer. While
the line starting with menuentry does set the boot menu choice displayed, it is used in a
GRUB2 configuration file. Therefore, option D is also a wrong choice. The rootnoverify
is used in a GRUB Legacy configuration file, but it is used to define non-Linux boot
partitions. Thus, option E is an incorrect choice.

9. D. The grub-install command installs GRUB Legacy into MBR, so option D is correct.
The grub-mkconfig and grub2-mkconfig commands are used in GRUB2 systems to
create an updated configuration file, but not in GRUB Legacy systems, so options A and B
are incorrect. The update-grub utility is used to call grub-mkconfig on Ubuntu distros.
Therefore, option C is also a wrong choice. After making changes to the GRUB Legacy
configuration file, you don’t need to reinstall GRUB Legacy in the MBR, because it reads
the configuration file each time it runs. However, initially GRUB Legacy must be installed,
so option E is an incorrect answer.

10. B. The set root=(hd1,2) line properly specifies in a GRUB2 configuration that the root
partition, the /boot directory, is on /dev/sdb2. Therefore, option B is the correct answer.
The root line is used in a GRUB Legacy configuration file, so options A and D are wrong
answers. The root partition is the location of the /boot directory and not the location of
the root of the filesystem (/), so option C is a wrong choice. The set root=(hd1,1) line
would indicate that the /boot directory was on /dev/sda2 and not /dev/sdb2, so option E
is also an incorrect choice.

11. C. To enable kernel debugging, after Rey reaches the GRUB2 boot menu, she should edit
the appropriate boot menu entry, find the line starting with linux*, go to the end of the
line, add a space, and then type debug to pass the kernel parameter, which will start
debugging mode. Finally, she needs to press Ctrl+X to start booting the system with the
modified entry. Therefore, option C is the correct answer. Option A has everything correct,
except for pressing Ctrl+C, which would put Rey into the GRUB2 command line, so option
A is a wrong answer. Option B uses a science fiction ability, instead of a real set of Linux
steps, so it is also a wrong choice. Options D and E are incorrect, because the kernel line is
in GRUB Legacy configurations and not in GRUB2 menu entries. Thus, they are incorrect
choices as well.

12. A, B, C, D, E. This is a tricky question, because all of these statements are true concerning
systemd service units. Therefore, options A, B, C, D, and E are correct choices. It makes
you realize that systemd managed systems are very flexible.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

600 Appendix ■ Answers to Review Questions

13. A. There is no runlevel7.target. The legitimate systemd targets, which provide
backward SysVinit compatibility, go from runlevel0.target through runlevel6.target.
Therefore, option A is the correct answer. The emergency.target is a special systemd
target unit used to enter emergency mode. When your system goes into emergency mode,
the system only mounts the root filesystem and mounts it as read-only. Therefore, option
B is a systemd target unit and not a correct answer. The graphical.target is a legitimate
systemd target, which provides multiple users with access to the system, via local terminals
and/or through the network and offers a GUI. Thus, option C is an incorrect choice. The
multi-user.target is also a legitimate systemd target, just like the graphical.target,
except it does not offer a GUI. Therefore, option D is also a wrong answer. The rescue
.target is like emergency.target; however, it mounts the root filesystem for reading and
writing. Therefore, option E is an incorrect choice.

14. C. Any modified systemd service unit configuration file should be stored in the /etc/
systemd/system/ directory. This will prevent any package upgrades from overwriting it
and keep the directory precedence from using the unmodified service unit copy, which may
reside in the /usr/lib/systemd/system/ directory. Therefore, option C is the correct
answer. The directories in options A and B are made up, and therefore those options are
wrong answers. The /usr/lib/systemd/system/ directory should store only unmodified
unit files, which are provided by default, and thus option D is an incorrect answer. The
/run/system/systemd/ directory is made up, and therefore option E is also an incorrect
choice.

15. A. The best command to make the modified file take immediate effect for the openSSH
service is systemctl reload. This command will load the service configuration file of
the running designated service without stopping the service. Therefore, option A is the
best answer. A daemon-reload command will load the unit configuration file and not
the service configuration file. Thus, option B is a wrong answer. The restart command
will stop and immediately restart the service. Although this will load the modified service
configuration file, it will also disrupt the service for current service users. Therefore, option
C is not the best answer and a wrong one. The mask command prevents a particular service
from starting. Thus, option D is a wrong choice. The unmask command undoes the mask
command’s effects, and thus option E is also an incorrect answer.

16. B. To change the system’s default target, you need to employ the systemctl set-default
command, passing the target name as an argument and using super user privileges.
Therefore, option B is the correct answer. The get-default command will show you the
system’s current default target. Thus, option A is a wrong answer. The isolate command
is used to jump to new targets and not set default targets. Thus, option C is an incorrect
choice. The is-enabled command displays enabled for any service that is configured to
start at system boot and disabled for any service that is not configured to start at system
boot. It deals only with services, and therefore option D is a wrong choice. The is-active
command also deals only with services, and therefore option E is also an incorrect answer.

17. C, E. Debian-based Linux distributions that use SysVinit use only runlevels from 0 through
2. The runlevel command shows the previous runlevel, or N for newly booted. Therefore,
the only options that this runlevel command would show on an older Debian-based Linux
distribution system, which uses SysVinit, are options C and E. Therefore, those options are

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 6: Configuring the GUI, Localization, and Printing 601

correct. Option A is incorrect, because it shows 5 as the current runlevel, and Debian-based
distros don’t use that runlevel. Option B is also incorrect, because it shows 5 as the current
runlevel. Option D is incorrect because it shows 3 as the current runlevel, and the Debian-
based distros do not use that runlevel either.

18. A. For SysVinit systems, the default runlevel is stored within the /etc/inittab file
within the initdefault record. Therefore, option A is the correct answer. /etc/rc.d is a
directory and not a file. Thus, option B is a wrong answer. The rc file is a script that can
reside in either the /etc/init.d/ or the /etc/rc.d/ directory. It runs the scripts that
start the various system services when jumping runlevels or booting the system. However,
this script does not contain any information concerning the default runlevel. Therefore,
options C and D are incorrect choices. The /etc/rc.local file allows you to issue certain
commands or run any scripts as soon as system initialization is completed. However, this
script also does not contain any information concerning the default runlevel. Thus, option
E is an incorrect answer.

19. D. The wall command will only send a message to users who are currently logged into
the system, using a tty terminal or terminal emulator, and have their message status set
to “yes.” The who -T command fits the need, because it will display all the currently
logged-in users and their terminal ID as well as provide a + by their username if their
message status is set to yes. Thus, option D is the correct answer. The systemctl reboot
command will reboot the system, not demonstrate who will receive a wall message, so
option A is a wrong answer. The shutdown command will override the message status
of users, so it is not a good choice for determining who receives wall communications.
Therefore, option B is also an incorrect answer. The reboot command also reboots the
system, but it does not demonstrate who will receive a wall message, so option C is a
wrong choice. The mesg command allows you to view and/or set your message status.
While it does help to determine whether individual users can receive wall messages, it is
not as efficient as the who -T command. Thus, option E is an incorrect answer.

20. A, C, E. The new cloned VMs should have their NIC MAC address, host name, and
machine ID check and modified if necessary, in order for them to be able to run together
on the same local network segment. Thus, options A, C, and E are correct answers. A VM
template is similar to a VM clone (except you cannot boot it), and its primary purpose is to
guide the creation of VMs. Thus, option B is a wrong answer. CPU extensions are related to
physical hosts of the VMs and not the VMs themselves. Thus, option D is also an incorrect
choice.

Chapter 6: Configuring the GUI,
Localization, and Printing
1. C. A desktop environment is a series of components that work together to provide the

graphical setting for the user interface. Therefore, option C is the correct answer. A
graphical user interface (GUI) is a set of programs that allow a user to interact with the
system via icons, windows, and various other visual elements. Thus, option A is a wrong

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

602 Appendix ■ Answers to Review Questions

answer. A display manager operates the screen where you choose a username and enter a
password to gain system access. Therefore, option B is an incorrect choice. A file manager is
the program that allows you to perform file maintenance activities graphically. Thus, option
D is also a wrong choice. A windows manager is a set of programs that determine how the
windows are presented on the desktop. Therefore, option E is also an incorrect choice.

2. A, B, C, E. A favorites bar, file manager, icons, and a system tray are all part of a graphical
UI. Therefore, options A, B, C, and E are correct choices. A command line is a location to
enter text-based commands, and though you can reach it from the GUI using a terminal
emulator, it is not considered part of the graphical UI. Therefore, option D is the only
incorrect choice.

3. A. KDM is the default display manager for the KDE Plasma desktop environment.
Therefore, option A is the correct answer. Files, also called GNOME Files, is the file
manager within the GNOME Shell desktop environment. Therefore, option B is a wrong
answer. Mutter is the GNOME shell windows manager, and thus option C is an incorrect
answer. GDM stand for the GNOME Display Manager. Therefore, option D is a wrong
choice. Doc is another name for the GNOME Shell Dash, which is the favorites bar within
GNOME Shell. Thus, option E is also an incorrect choice.

4. C. The KDE Plasma’s file manager is named Dolphin. Therefore, option C is the correct
answer. Nautilus is the file manager on the Unity desktop environment, making option A
an incorrect answer. Plasmoid is another name for a KDE Plasma widget. Thus, option B is
an incorrect answer. Kwin is the KDE Plasma’s windows manager, and therefore option D
is a wrong choice. Nemo is the default file manager on the Cinnamon desktop environment.
Thus, option E is an incorrect choice.

5. A. The sounds keys accessibility setting provides beeps whenever Caps Lock or Num Lock
key is turned on or off. Therefore, option A is the correct answer. A program that reads the
GUI aloud, such as Orca, is a screen reader, making option B a wrong answer. The cursor
blinking setting modifies the cursor blink rate to make it easier to locate the cursor on the
screen. Therefore, option C is also an incorrect answer. Output to a refreshable braille
display is provided by the Orca screen reader. Thus, option D is a wrong choice. Zoom
settings allow the screen or a screen portion to be amplified to different magnification
levels. Therefore, option E is also an incorrect choice.

6. D. The braille display device would be using the brltty service. The proper systemctl
command to restart the services is in option D. Therefore, option D is the correct answer.
Options A, B, and C all use incorrect names for the braille service and are wrong answers.
The command in option E would reload any modified brltty configuration files but not
restart the service. Therefore, option E is also an incorrect choice.

7. A. Slow keys are a keyboard option that modifies the how long a key must be pressed
down to acknowledge the key. Therefore, option A is the correct answer. Sticky keys are a
keyboard option that sets keyboard modifier keys, such as Ctrl and Shift, to maintain their
pressed status until a subsequent key is pressed. Thus, option B is a wrong answer. Repeat
keys are a keyboard option that modifies how long a key must be pressed down as well as a
delay to acknowledge the key repeat. Therefore, option C is also a wrong choice. Simulated
secondary click is actually a mouse option, and it sets a primary key to be pressed along

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 6: Configuring the GUI, Localization, and Printing 603

with a mouse click to emulate secondary mouse clicks. Thus, option D is an incorrect
answer. A screen keyboard is a keyboard option that displays a visual keyboard on the
UI that can be manipulated by a mouse or other pointing device to emulate keystrokes.
Therefore, option E is also an incorrect choice.

8. E. The display server uses a communication protocol to transmit the desires of the UI to
the operating system, and vice versa. Therefore, option E is the correct answer. A window
manager is a program that communicates with the display server on behalf of the UI. Thus,
option A is a wrong answer. A display manager controls the desktop environment’s login
screen where you choose a username and enter a password to gain system access. Therefore,
option B is also a wrong choice. A windows server is another name for a window manager,
and thus, option D is also an incorrect answer.

9. B, D. Wayland does use the $WAYLAND_DISPLAY environment variable, so option B is a
correct answer. Also, X11Wayland supports legacy X11 programs. Therefore, option D is
an additional correct answer. Wayland is a replacement for the X11 display server, and it
is designed to be more secure. Thus, option A is a wrong answer. Wayland’s compositor is
swappable, and there are several other compositors, besides Weston, available for use with
Wayland. Therefore, option C is wrong choice. In order to disable Wayland in GNOME
Shell, you edit the /etc/gdm3/custom.conf file and set WaylandEnable to false. Thus,
option E is also an incorrect answer.

10. C. The loginctl command will help you determine your current GUI session number.
You can then employ the loginctl command again along with your session number to
determine if your GUI session is Wayland or X11. Thus, option C is the correct answer.
While you can issue the command echo $WAYLAND_DISPLAY to help determine if your GUI
session is Wayland or X11, $WAYLAND_DISPLAY by itself does nothing. Therefore, option A
is a wrong answer. AccessX is a program that originally provided many universal access
settings. There is no environment variable used by Wayland or X11 called $AccessX,
and thus, option B is an incorrect answer. The $X11 environment variable is made up, so
option C is a wrong choice. The runlevel command allows you to determine your system’s
current runlevel and is not used in determining display servers. Therefore, option E is also
an incorrect choice.

11. B, C, E. The X.Org Foundation does develop an X server, called X11. Thus, option B is
a correct answer. The X server is being replaced by Wayland, so option C is also a right
choice. X is short for X Window System, which is a display server, so option E is another
correct answer. XFree86 was the dominant server implementing X until 2004. Now the
dominant server is the X.Org Foundation’s X11 server, so option A is a wrong answer.
The X.Org’s server implements the X Window System version 11, and that is why it is
sometimes called X11. It is not due to the number of graphical sessions a particular use can
have. Therefore, option D is also an incorrect choice.

12. A, D. The xwininfo and xdpyinfo commands provide information about the X server,
including the different screen types available, the default communicate parameter values,
protocol extension information, and individual window information. These two utilities
would be the best ones to start diagnosing the problem. Therefore, options A and D are
correct answers. The Xorg -configure command creates a new X11 configuration file for
your perusal, which may be useful later in the troubleshooting process. However, this is not

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

604 Appendix ■ Answers to Review Questions

the best command to start diagnosis. Therefore, option B is a wrong answer. The xcpyinfo
command is made up. Therefore, option C is also an incorrect answer. The loginctl
command can help you determine whether the user is using X11 or Wayland, but since
you already know that the X display server is running, this command will not help. Thus,
option E is an incorrect answer as well.

13. A, B, C, D. Spice (sometimes written as SPICE), NX, Xrdp, and VNC are all remote
desktops. Therefore, options A, B, C, and D are correct answers. Caja is the file manager
in the MATE desktop environment and not a remote desktop. Thus, option E is the only
incorrect answer.

14. A, D. Spice and VNC are the remote desktops typically used with virtual machines. By
default, VNC is used with KVM virtual machines. However, you can replace VNC with
Spice. Thus, options A and D are the correct answers. NX and Xrdp are not typically used
with virtual machines, and thus, neither options B, C, or E is correct.

15. E. The Xrdp remote desktop software uses the Remote Desktop Protocol (RDP). Thus,
option E is the correct answer. The Remote Frame Buffer (RFB) protocol is used by VNC.
Thus, option A is a wrong answer. The Wayland protocol is used by the Wayland display
server. Therefore, option B is also a wrong choice. Option C is also an incorrect answer,
because the NX technology protocol is used by the NX remote desktop. The Simple
Protocol for Independent Computing Environments (SPICE) is used by the Spice remote
desktop. Thus, option D is also an incorrect choice.

16. B. You need to employ X11 forwarding. To properly and securely access the remote Linux
system and run an X11-based application, using the -X command is the best choice. Thus,
option B is the right answer. The command in option A uses the trusted X11 via the -Y
switch, which is not secure. Therefore, option A is a wrong answer. The command in
option C also uses the -Y switch, so option C is also an incorrect answer. Option D uses the
correct command switch but sends the connection to the laptop instead of the rack-mounted
Linux server. Thus, option D is a wrong answer. The option E command is using the -L
switch, which is for local SSH port forwarding, uses the wrong syntax for that switch, and
attempts to send the connection to the laptop. Thus, option E is an incorrect answer.

17. E. The Unicode character set uses 3 bytes to store characters, which provides enough space
to represent all of the characters in the known world languages, so option E is correct. The
ASCII character set supports only English language characters, so option A is incorrect.
The LC_ALL environment variable defines a character set to use for the Linux system but
isn’t a character set in itself, so option B is incorrect. Both the UTF-8 and UTF-16 character
sets are a subset of the Unicode character set, so they can’t represent all of the language
characters in use in the world, so options C and D are incorrect.

18. E. The locale command displays all of the LC_ environment variables and their values, so
option E is correct. The date command displays only the time and date, not the localization
information, so option A is incorrect. The time command displays the amount of time an
application uses on the system, not the localization information, so option B is incorrect.
The hwclock command displays the hardware clock time, not the localization information,
so option C is incorrect. The LANG environment variable allows you to set all of the LC_
environment variables in one place, but it doesn’t display all of their settings, so option D
is incorrect.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 7: Administering the System 605

19. C and E. The LANG and LC_ALL environment variables control all of the localization envi-
ronment variable settings, so options C and E are correct. The LC_MONETARY, LC_NUMERIC,
and LC_CTYPE environment variables each control a single category of localization environ-
ment variables, but not all of the localization environment variables, so options A, B, and D
are all incorrect.

20. D. The cupsreject command rejects the queuing of print requests to a specific print
queue, so option D is correct. The cancel command cancels just an individual print
request, but it does not block other print jobs from going to the print queue, so option A is
incorrect. The cupsaccept command enables sending print jobs to the queue, not blocking
them, so option B is incorrect. The cupsenable command enables a specific printer to
process queue jobs, but it does not block jobs from entering the queue, so option C is
incorrect. The lpq command is a legacy BSD command for displaying the status of a
print queue, but it does not allow you to block jobs from entering the queue, so option E
is incorrect.

Chapter 7: Administering the System
1. A, B, E. The user account’s username, password (though it typically only contains an x),

and UID are all legitimate fields within a /etc/passwd file record. Therefore, options A, B,
and E are correct answers. The password change date and special flag are fields within the
/etc/shadow file. Thus, options C and D are incorrect choices.

2. A, B, C. The maximum password age, account expiration date, and password are all
legitimate fields within an /etc/shadow file record. Therefore, options A, B, and C are
correct answers. The comment and default shell are fields within the /etc/passwd file.
Thus, options D and E are incorrect choices.

3. B, D, E. Though not very efficient, the cat /etc/passwd command would allow you to
view the NUhura account’s record within the /etc/passwd file. The grep NUhura /etc/
passwd and getent passwd NUhura commands also would allow you to see the NUhura
record. So options B, D, and E are correct choices. The getent command in option A has
got the username and file name flip-flopped, so it is an incorrect choice. Also, the passwd
NUhura attempts to change the account’s password instead of display its file record, so
option C is also an incorrect answer.

4. C. If the CREATE_HOME directive is not set or it is set to no, then when a user account is
created, no home directory will be created by default. Most likely this caused the problem,
so option C is the correct answer. The HOME directive determines what base directory name
is used when creating home directories for new accounts, so option A is a wrong answer.
If you did not employ super user privileges, you would not have been able to even create
the account, so option B is a wrong choice. The INACTIVE directive pertains to when an
account will be considered inactive, so option D is also an incorrect answer. The EXPIRE
directive is involved with account expiration and not home directory creation. Therefore,
option E is also an incorrect choice.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

606 Appendix ■ Answers to Review Questions

5. B. The newgrp command will let you switch temporarily from your account’s default group
to another group with whom you have membership. Therefore, option B is the correct
answer. The usermod command could make that switch, but it is not best for temporary
situations, so it is an incorrect choice. The groups command allows you to display group
information but not change groups, so it also is a wrong answer. The groupadd and
groupmod commands deal with group management but not with temporarily switching an
account’s default group. Therefore, options D and E are also incorrect choices.

6. C. The usermod -aG NCC-1701 JKirk command would add JKirk to the NCC-1701 group
as a member and not remove any of the account’s previous group memberships. Therefore,
option C is the correct answer. The usermod -g NCC-1701 JKirk command would change
the JKirk account’s primary group membership, so option A is a wrong answer. The
command in option B would add the JKirk account as a member to the NCC-1701 group,
but it would remove any of the account’s previous group memberships. Thus, option B is an
incorrect answer. The groupadd NCC-1701 command would only add the NCC-1701 group.
Therefore, option D is a wrong answer as well. The groupmod command is for modifying
groups, and so the command in option E would have undesirable results. Thus, option E is
an incorrect choice.

7. B, D. The getent group NCC-1701 and grep NCC-1701 /etc/group commands would
both allow you to see the various NCC-1701 group members. Therefore, options B and
D are correct answers. The groups command is for viewing an account’s various group
memberships. Therefore, option A is a wrong answer. It is always tempting to add an s to
the /etc/group filename because of the groups command. However, it is the group file
and not the groups file. Thus, options C and E are incorrect choices.

8. B, D. To view your mail queue, you use either the sendmail -bp or the mailq command,
so options B and D are the correct answers. The systemctl sendmail status is a systemd
service unit status command and does not show mail queues, so option A is incorrect.
Option C is close, but the correct command is sendmail -bp not -bq. Therefore, option C
is also a wrong answer. Option E will show you the various directories within /var/spool,
not the email queue, so it is an incorrect choice as well.

9. E. When aliases are properly configured, any email addresses sent to the email with an
alias is received by the alias account. Therefore, option E, wesley, is the correct answer.
support would not receive the email, because the alias is set to wesley, and so option A is
a wrong answer. None in option B is an incorrect choice, because the wesley account will
receive the email. The ~/.forward file is associated with email forwarding, not aliases.
Therefore, option C is a wrong choice. There is no reason for root to receive this email, so
option D is also an incorrect choice.

10. A. The cron application schedules jobs on Linux systems, so the cron facility keyword
 represents event messages received from the job scheduler, so option A is the right answer.
The user keyword represents events received from users, so option B is a wrong answer.
The kern keyword represents events received from the kernel, so option C is incorrect. The
 console keyword represents events received from a console on the system, so option D is
incorrect. The auth keyword represents security or authentication events, not job scheduling,
so option E is also an incorrect choice.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 7: Administering the System 607

11. C. The emerg severity level has a priority of 0, the highest level in syslog, so option C is
correct. The crit severity level is at level 2, so it’s not the highest level, making option A
incorrect. The alert keyword is assigned level 1, but it’s not the highest level, so option B
is incorrect. The notice keyword is assigned level 5, and that is not the highest level, so
option D is incorrect. The err keyword is assigned level 3, and that is not the highest level,
so option E is incorrect as well.

12. A. The rsyslogd application uses the rsyslog.conf configuration file by default, so
option A is correct. Options B and C are configuration files for other logging applications,
not rsyslogd, so they are incorrect. Option D, rsyslog.d, is commonly used as a folder
for storing additional rsyslogd configuration files, but that isn’t the default configuration
filename, so it is incorrect. Option E is not a valid logging application configuration
filename, so it too is an incorrect choice.

13. C. The -r option displays the journal entries in reverse order, so the most recent entry will
appear first. Thus, option C is correct. The -a option displays all of the data fields but in
the normal order, so option A is incorrect. The -l option displays all printable data fields
but in the normal order, so option B is incorrect. The -e option jumps to the end of the
journal file but displays the remaining entries in normal order instead of reverse order, so
option D is incorrect. The -n option displays a specified number of entries but in normal
order, so option E is incorrect.

14. C. The systemd-cat command will allow you to manually add an entry to the system’s
active journal, so option C is the correct answer. The journalctl utility does not allow
the addition of journal entries, so option A is a wrong answer. The journalctl-cat and
journalctl -logger are made-up commands, so options B and E are wrong choices.
The systemd-journal is a group to which an account may belong in order to view all the
journal entries. However, it does not allow manual journal entries to be added, so option D
is an incorrect choice.

15. A, B, C, E. A hardware clock (also called a real-time clock) and a software clock (also
called system time) can be viewed or modified on a Linux system. Therefore, options A,
B, C, and E are correct. An atomic clock is a very accurate type of hardware clock often
employed in the NTP clock stratum at level 0. However, it cannot be typically viewed or
modified on a Linux system, so option D is the only incorrect choice.

16. A. The hwclock utility will allow you to change the Linux system’s hardware clock, so
option A is the correct answer. The date command displays or allows you to modify the
software clock. Therefore, option B is a wrong answer. The timedatectl command will
allow you to change whether the hardware clock is using the localtime or UTC standard
but not the time, so option C is an incorrect choice. The ntpdate command can change
the system time if the ntpd service is being used but not the hardware clock’s time. Thus,
option D is a wrong choice. rtsync is a directive you can use with chronyd to change the
hardware clock’s time automatically, but it is not a utility, so option E is an incorrect choice
as well.

17. C. The timedatectl command will display your system’s time in both its current time
zone as well as UTC, so option C is the correct answer. The hwclock -r command displays
the hardware clock’s time. Thus, option B is an incorrect choice. The date command will

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

608 Appendix ■ Answers to Review Questions

display your system’s time only in its current time zone format. Therefore, option B is a
wrong answer. The ntpq -p and chronyc sources are commands used with the NTP
daemons (ntpd and chronyd) to view the system’s time sources. Thus, options D and E are
incorrect choices as well.

18. D. This is a tricky question, because only one option is correct. The server 0.pool.ntp.org
iburst line is a correct configuration line in the /etc/ntp.conf file for the ntpd service,
assuming you will be using the pool.ntp.org time servers. Thus, option D is the correct
answer. Option A is incorrect, because the preceding 0 is missing on the pool.ntp.org
designation. Option B is incorrect, because it uses the pool directive (used for chronyd;
not ntpd). Options C and D are wrong, because it uses service instead of server.

19. B. The ntpstat command is the best command to use in this case, because Geordi will
be provided a quick status on whether his software clock is synchronized as well as how
often polling is taking place. Therefore, option B is the correct answer. The ntpdate utility
allows you to manually set the software clock, but not see if the time is synchronized, so
option A is a wrong answer. The ntpq -p command will let you see the servers that ntpd
is polling and when the last synchronization took place, but it provides a great deal more
information than is needed, so option C is not the best answer. The date command will
show Geordi only the current system time and not whether the software clock is now
synchronized. Thus, option D is a wrong choice. Finally, the hwclock -w command will
set the hardware clock to the system time stored in the software clock, but it will not show
whether the software clock is now synchronized. Therefore, option E is an incorrect choice
as well.

20. D, E. The chrony.conf file is the chrony configuration file, and it may reside in the /etc/
or /etc/chrony/ directory, depending on the distribution Miles is using. Therefore,
options D and E are the correct answer. The other filenames are made up, so options A, B,
and C are all incorrect choices.

Chapter 8: Configuring Basic Networking
1. D. The netmask value determines the network portion of the IP address, which identifies

what network the system is connected to. Thus, option D is correct. The default router
is another IP address on the network, but it doesn’t indicate the network portion of the
address and so can’t be used to determine the network address, making option B incorrect.
The IP address by itself doesn’t define the network address without the netmask, so option
A is incorrect. The host name doesn’t indicate the network address, so option C is incorrect.
The DNS server maps host names to IP addresses, but if you only know the IP address you
still won’t know the network portion of the address, so option E is incorrect.

2. B. Starting with version 17.04, Ubuntu has switched to using the Netplan tool to set
network address information, so option B is the correct answer. The netstat command
doesn’t set network information, but instead displays active network connections, so option
A is incorrect. The iwconfig command sets wireless network parameters, but not network
address information, so option C is incorrect. The route command sets default router

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 8: Configuring Basic Networking 609

information, but not network address information, so option D is incorrect. The ifconfig
command does set network address information, but it isn’t used by the newer versions of
Ubuntu, so option E is incorrect.

3. A. The ethtool command displays features and parameters for network cards, so option A
is the correct answer. The netstat command displays network statistics and connections,
so option B is incorrect. The iwconfig and iwlist commands are used to set wireless
network parameters and not Ethernet card settings, so options C and D are incorrect. The
route command sets or displays routing information and not Ethernet card settings, so
option E is incorrect.

4. E. The ss command displays a list of the open ports on a Linux system, along with the
processes associated with each port, so option E is correct. The iwconfig command sets
wireless network information, not open ports, so option A is incorrect. The ip command
displays or sets network information on a network interface but doesn’t display open ports,
so option B is incorrect. The ping command sends ICMP messages to a remote host, but it
doesn’t display any open ports, so option C is incorrect. The nmtui command allows you to
configure network parameters for a network interface but doesn’t display the open ports on
the system, so option D is incorrect.

5. A and C. The nmcli and the ip commands both allow you to set and change network
settings from the command line, so options A and C are correct. The iwconfig command
only sets wireless network information, so option B is incorrect. The netstat command
displays open ports and doesn’t change any network settings, so option D is incorrect. The
ping command sends ICMP packets to remote hosts for testing and also doesn’t set any
network settings, so option E is incorrect.

6. A. The default router is used to send packets from the local network to remote networks,
so to communicate with a remote host you need to define the default router address,
making option A correct. The netmask defines only the local network and doesn’t define
what to do with packets for remote hosts, so option B is incorrect. The host name and IP
address define features of the local host only, so options C and D are incorrect, whereas the
DNS server defines how to retrieve the IP address of a host based on its domain name, so
option E is incorrect.

7. E. The DNS server maps the host name to an IP address, so you must have a DNS server
defined in your network configuration to be able to use host names in your applications.
Thus, option E is correct. The default router defines how to send packets to remote hosts
only and doesn’t map the host name to the IP address, so option A is incorrect. The
netmask value defines the local network but not how to map host names to IP addresses,
so option B is incorrect. The host name and IP address define features of the local host, so
options C and D are incorrect.

8. B. The Dynamic Host Configuration Protocol (DHCP) is used to assign dynamic IP
addresses to client workstations on a network, so option B is correct. The default router
can’t assign addresses to devices, so option B is incorrect. The ARP table maps the
hardware address of the network card to IP addresses, but it doesn’t assign the IP addresses,
so option C is incorrect. The netmask value determines the network address but not the IP
address of the host, so option D is incorrect. The ifconfig command can set the static IP
address of the host but doesn’t automatically assign the IP address, so option E is incorrect.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

610 Appendix ■ Answers to Review Questions

9. B. The private address is a special network address range assigned to the local networks
outside of the Internet so that devices can communicate with one another on a local
network, making option B the correct answer. Dynamic and static IP addresses are assigned
to network interfaces but can be either public or private addresses, so options A and C
are incorrect. The host name identifies the local host for remote connections, not for
local applications, so option D is incorrect. The MAC address identifies the network card
hardware address, but it isn’t used by local applications, so option E is incorrect.

10. A. The dig command can display individual host records for a domain, which you can
use to find the MX mail host for the domain, so option A is correct. The host command
displays host IP address information only and can’t determine the server type from the DNS
records, so option D is incorrect. The netstat and ss commands display active network
connections, but not the remote host types, so options B and E are both incorrect. The
ping6 command sends IPv6 ICMP packets to test remote hosts but can’t tell if the remote
host is a mail server, so option C is incorrect.

11. B. The ss command can display both open ports and the applications that own them, so
option B is correct. The ip and ifconfig commands just display or set network settings, so
options A and E are incorrect. The host and dig commands display host name information
only, so options C and D are also incorrect.

12. A. Red Hat–based systems use separate files to store the IP address and router information.
Those files are stored in the /etc/sysconfig/network-scripts folder, making option A
correct. Option B is where Debian-based systems store the interfaces file, which contains
the network configuration settings. The ifcfg-eth0 is a file used to store the configuration,
not a folder, so option C is incorrect. The ifconfig and iwconfig are commands and not
folders, so options D and E are incorrect.

13. B. Option B is the correct format to set a dynamic IP address for the interface. The Debian
system uses the iface setting to set features for an interface, so options C and E are
incorrect. Option A sets a static IP address for the interface and not a dynamic address, so
it’s incorrect. Option D sets a link local IPv6 address and not a dynamic IP address, so it’s
incorrect.

14. B. The DNS servers are listed in the /etc/resolv.conf configuration file using the
nameserver setting, so option B is correct. The /etc/dhcpd.conf file defines configuration
settings for a DHCP server, so option A is incorrect. The /etc/nsswitch.conf file defines
the order in which the system searches for a host name, not the list of DNS servers used, so
option C is incorrect. The /etc/network/interfaces file defines the network interfaces
for a Debian-based system, not the list of DNS servers, so option D is also incorrect. The
/etc/sysctl.conf file defines kernel network parameters and not a list of DNS servers, so
option E is incorrect.

15. A. Option A is the only option that uses the correct values in the correct order. The
ifconfig command must specify the network interface, the IP address, and then the
netmask option before the netmask address. You can use the up or down option to place
the network card in an active or inactive state by default, but it’s not required. Option C is
close but fails to specify the network interface. Option B is not in the correct format, and
options D and E fail to list the necessary configuration settings.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 9: Writing Scripts 611

16. A. The iwlist command displays the available wireless network access points detected by
the wireless network card, so option A is correct. The iwconfig command configures the
network card to connect to a specific access point but doesn’t list all of the detected access
points, making option B incorrect. Option C specifies the ifconfig command, which is
used to assign an IP address to a wireless network card but doesn’t list the access points.
The ip command specified in option D likewise can be used to set the IP address of the card
but doesn’t list the access points. Option E, the arp command, maps hardware addresses to
IP addresses so that you can find duplicate IP addresses on your network, but it doesn’t list
the wireless access points.

17. D. The SSID value defines the access point name, and it is set using the essid option in the
iwconfig command, making option D the correct answer. The key specifies the encryption
key required to connect to the access point but not the access point name, making option A
incorrect. The netmask and address values aren’t set by the iwconfig command, so options
B and C are incorrect. The channel defines the radio frequency the access point uses, not
the access point name, so option E is also incorrect.

18. E . The ip command allows you to both display and set the IP address, netmask, and
default router values for a network interface, so option E is correct. The ifconfig
command can set the IP address and netmask values but not the default router. The
iwconfig command is used to set the wireless access point settings, and the router
command is used to set the default router but not the IP address or netmask values. The
ifup command only activates the network interface—it can’t set the address values.

19. A. The netmask value sets the network portion of the IP address to 1s and the host portion
of the IP address to 0s. Thus, the netmask value must have consecutive 1s in the address
at the start of the value. Option A, 255.255.255.0, indicates that the first 24 bits of the
address are 1s, so it represents a proper netmask value and is the correct option. In option
B the 1s values arent consecutive, so it is not a proper netmask value and is thus incorrect.
Option C shows a network address but not the netmask address, and option D shows a
host address but not the netmask address, so they are both incorrect. Option E shows an
address that uses consecutive 1s values, but they are at the end of the address and not at the
beginning, so it is incorrect.

20. B. The aggregation, or mode 0 method of bonding, combines the network interfaces to
create a single, larger network pipe, so option B is correct. The active/backup, or mode 1,
method keeps one interface in passive background mode, so it doesn’t increase the network
bandwidth of the server, making option C incorrect. All of the load balancing methods,
modes 0, 5, and 6, divide traffic between separate network interfaces, so they don’t create a
single interface. Thus options A, D, and E are all incorrect.

Chapter 9: Writing Scripts
1. B. The #! character combination defines the shebang, which tells the Linux shell what shell

to use to run the shell script code, so option B is correct. The >> character combination
appends the output of a command to a file, so option A is incorrect. The | character pipes

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

612 Appendix ■ Answers to Review Questions

the output of a command to another command, so option C is incorrect. The > character
redirects the output of a command to a new file, so option D is incorrect. The 2> character
combination redirects error messages from a command to a file, so option E is incorrect.

2. D. The > character redirects all of the output from a command to a new file, so option D
is correct. The >> character combination appends all of the output from a command to an
existing file, so option A is incorrect. The #! Character combination defines the shell to
use, so option B is incorrect. The | character pipes output from one command to another
command, so option C is incorrect. The 2> character combination redirects only error
messages from a command to a new file, not all of the output, so option E is incorrect.

3. C. The u+x chmod permissions assigns execute permissions to the file owner so that
you can run the file at the command prompt, which makes option C correct. The 644
octal permissions assigns only read and write permissions to the file owner, not execute
permissions, so option A is incorrect. The u+r permission assigns read permissions, so
option B is incorrect. The u+w permission assigns only write permissions, so option D is
incorrect. The u=wr permission assigns both read and write permissions but not execute
permissions to the file owner, so option E is incorrect.

4. A. The $USER environment variable contains the text username of the user account that
started the shell, so option A is correct. The $UID environment variable contains the
numeric user ID, not the text username, so option B is incorrect. The $HOME environment
variable contains the home directory location of the user account, so option C is incorrect.
The $BASH environment variable contains the location of the Bash shell executable file, so
option D is incorrect. The $1 variable is a positional variable, not an environment variable.
It’s used to retrieve data from the command-line command that launched the shell, not to
identify the user who started the shell, so option E is incorrect.

5. C. To assign a value to a variable, you use the equal sign, but no spaces must be used
between the variable name, the equal sign, and the value, so option C is correct. Option A
uses the command substitution format, which assigns a value to the output of a command,
so option A is incorrect. Option B places spaces between the variable name, equal sign,
and the value, so option B is incorrect. Option D places quotes around the value, making
it a string value and not a numeric value, so option D is incorrect. Option E uses backtick
characters around the value, which attempts to run it using command substitution, which is
incorrect.

6. B. The -f file test checks if the specified object exists and if it’s a file, so option B is
correct. The -e file test only checks if the object exists, not the object type, so option A is
incorrect. The -d file test checks if the object exists but is a directory, not a file, so option C
is incorrect. The -x file test checks if the current user account has execute permissions for
the file, so option D is incorrect. The -w file test checks if the current user account has write
permissions for the file, so option E is incorrect.

7. C. The bar character (|) pipes the output of one command to the input of another
command, so option C is correct. The >> character combination appends the output of
a command to an existing file, not to another command, so option A is incorrect. The
shebang (#!) identifies the shell to use to run the script, so option B is incorrect. The >
character redirects the output of a command to a new file, not to another command, so
option D is incorrect. The 2> character combination redirects the error messages from a
command to a new file, so option E is incorrect.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 9: Writing Scripts 613

8. D. The exit command allows you to return a specific error status when the shell script
exits, so option D is correct. The #! shebang defines the shell to use to run the shell script,
not the exit status, so option A is incorrect. The $? character combination displays the
exit status from the last command—it doesn’t return a specific exit status—so option B is
incorrect. The $1 variable contains the first command-line parameter used when the shell
script is launched from the command line, so option C is incorrect. The while command
allows you to iterate through a set of commands until a specific condition is met, so option
E is incorrect.

9. E. The $() command assigns the output of a command to a specified variable in the shell
script, so option E is correct. The > character redirects the output of a command to a file,
not to a variable, so option A is incorrect. The >> character combination appends the
output of a command to an existing file, not to a variable, so option B is incorrect. The
#[] command performs integer mathematical operations in the Bash shell, so option C is
incorrect. The | character redirects the output of a command to another command, not to a
variable, so option D is incorrect.

10. C. The $[] command performs simple integer mathematical operations in the Bash shell,
so option C is correct. The > character redirects the output of a command to a new file, so
option A is incorrect. The >> character combination appends the output of a command to
an existing file, so option B is incorrect. The | character redirects the output of a command
to another command, so option D is incorrect. The #() command redirects the output of a
command to a variable in the shell script, so option E is incorrect.

11. B. The ampersand character (&) tells the shell to start the command in background mode
from the console session, so option B is correct. The greater-than sign (>) redirects the
output from the command to a file but doesn’t run the command in background mode,
so option A is incorrect. The pipe symbol (|) redirects the output from the command to
another command, so option C is incorrect. The double greater-than sign (>>) appends
the output from the command to a file, so option D is incorrect. The nohup command
disconnects the session from the console session, so option E is incorrect.

12. E. The nohup command disconnects the shell script from the current console session, so
option E is correct. The greater-than sign (>) redirects the output from the command to a
file, so option A is incorrect. The ampersand sign (&) runs the shell script in background
mode, so option B is incorrect. The pipe symbol (|) redirects the output from the command
to another command, so option C is incorrect. The double greater-than symbol (>>)
appends the output from the command to a file, so option D is incorrect.

13. C. The Ctrl+C key combination stops the job currently running in foreground mode on
the console session, so option C is correct. Starting a command with the nohup command
disconnects the job from the console session, so you can’t stop it from the console with a
key command, making option A incorrect. Starting a job with the ampersand (&) command
places the job in background mode, so option B is incorrect. The pipe symbol redirects
the output from a shell script to another command, so option D is incorrect. The kill
command will stop a running shell script, but if the shell script is running in your console
session you won’t be able to submit the kill command from the command prompt, so
option E is incorrect.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

614 Appendix ■ Answers to Review Questions

14. A. The Ctrl+Z key combination pauses the job currently running in foreground mode on
the console session, so option A is correct. The Ctrl+C key combination stops rather than
pauses the job currently running in foreground mode in the console session, so option B
is incorrect. The nohup command disconnects a job from the console session but doesn’t
pause the job, so option D is incorrect. The ampersand sign (&) runs a job in background
mode in the console session but doesn’t pause it, so option D is incorrect. The fg command
resumes a stopped job in foreground mode but doesn’t pause the job, so option E is
incorrect.

15. C. When you list the current jobs using the jobs command, there will be a plus sign next
to the default job number, so option C is correct. The minus sign next to a job number
indicates the job that is next in line to become the default job, so option D is incorrect.
Neither the PID nor job number indicate the default job, so options A and B are both
incorrect. The ps command lists the running jobs but doesn’t indicate the default job in a
console session, so option E is incorrect.

16. B. The fg command allows you to change a currently running or stopped job to run in
foreground mode on the current console session, so option B is correct. The bg command
changes a currently running or stopped job to run in background mode, not foreground
mode, so option A is incorrect. The nohup command disconnects a job from the console
session, so option C is incorrect. The ampersand sign (&) places a job in background mode,
not foreground mode, so option D is incorrect. The at command runs a job in background
mode at a specific time but doesn’t place the job in foreground mode, so option E is
incorrect.

17. C. The at command allows you to schedule a job to run at a specific time, so option C is
correct. The nohup command disconnects a job from the console session, so option A is
incorrect. The ampersand sign (&) runs a job in background mode, so option B is incorrect.
The pipe symbol (|) and the greater-than symbol redirect the job output to either a
command or a file, so options D and E are both incorrect.

18. D. The cron program checks the cron tables for each user account and runs any scheduled
jobs automatically, so option D is correct. The at command runs a specified command
only once at a scheduled time, not for multiple times, so option A is incorrect. The nohup
and ampersand (&) commands do not schedule jobs to run, so both options B and C are
incorrect. The atq command displays the jobs already scheduled to run from the at
command but doesn’t run the commands multiple times, so option E is incorrect.

19. E. The time specified in the cron table is listed in minute, hour, day of month, month, and
day of week order. The hour is in 24-hour format, so the specified entry would run the job
at 5:10 a.m. every day, making option E correct. Options A, B, C, and D are all incorrect
times based on the specified entry.

20. C. The crontab command allows you to list or edit the cron table for your own user
account, so option C is correct. The cron command is what reads the cron tables for each
user account and runs the specified jobs—it doesn’t list the jobs—so option A is incorrect.
The at command allows you to schedule a job to run at a specific time, so option B is
incorrect. The jobs command allows you to view the currently running or stopped jobs
in your console session, so option D is incorrect. The nohup command disconnects the job
from the console session, so option E is incorrect.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 10: Securing Your System 615

Chapter 10: Securing Your System
1. C. The nmap utility allows you to scan a system a system’s ports and see what services are

offered for each port, and you don’t have to be currently logged onto the system (in fact,
you can scan entire subnets of systems). Therefore, option C is the correct answer. The
fuser, lsof, netstat, and ss utilities all can be used to audit a system’s offered network
services, but you must be logged into the system you are auditing. Thus, options A, B, D,
and E are incorrect choices.

2. A, E. In order for the netstat utility to display what ports are listening for incoming
TCP connections, Nickie should use the -lt options. (He could also use --listening and
--tcp, if desired.) Therefore, options A and E are the correct answers. The -u switch listens
for UDP and not TCP connections, so option B is a wrong answer. The -s switch shows
statistics, but this is not what Nickie desires, so option C is an incorrect answer. The -T
switch keeps long addresses from being trimmed instead of displaying TCP connections.
Therefore, option E is an incorrect choice as well.

3. A, E. Just like the netstat utility, for ss to display what ports are listening for incoming
TCP connections, Nickie should use the -lt options. Therefore, options A and E are the
correct answers. The -u switch listens for UDP and not TCP connections, so option B is a
wrong answer. The -s switch shows summary statistics, but this is not what Nickie desires,
so option C is an incorrect answer. The ss utility does not have a -T switch. Therefore,
option E is an incorrect choice as well.

4. D. Case can use the command in option D to see all active FTP service connections (ftp
represents both ports 20 and 21). Therefore, option D is the correct answer. The lsof -i
UDP command will only show UDP connections (and FTP is a TCP connection), so option
A is a wrong answer. The commands in options B and C have their ports and protocols flip-
flopped, so they are incorrect choices as well. The command in option E puts a port number
instead of nothing or TCP, so it is an incorrect choice too.

5. D. The main difference between using the lsof utility and the fuser utility to audit
network services on your system is that the fuser utility will display the process PID using
the protocol and port on your system (if you use the right switches). Therefore option
D is the correct answer. The statements in options A, B, and E are true for both utilities
(depending on what switches you employ), so they are wrong answers. Neither fuser nor
lsof is deprecated, so option C is an incorrect choice as well.

6. B. The systemctl command will allow Hiro to disable any of the network services that
are not needed on his system (for example, systemctl disable SnowCrash). Thus, option
B is the correct answer. The rest of the options contain SysVinit commands, so they are
incorrect choices.

7. B, D. Because services that are managed by xinetd may have their configurations within
the /etc/xinetd.conf file or within their own file in the /etc/xinetd.d/ directory,
and because you need to set their disable directive to yes (disable = yes) in order to
disable them, options B and D are the correct answers. You do not want to disable xinetd
entirely, because only a few services being managed by the super server are unneeded. Thus,
options A and E are wrong answers. In addition, since the system is a systemd system, the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

616 Appendix ■ Answers to Review Questions

chkconfig command would not disable xinetd (and you don’t want to do that anyway), so
option C is also an incorrect choice.

8. C. TCP Wrappers use the /etc/hosts.allow and /etc/hosts.deny files to control access
to services that employ TCP Wrappers. Because /etc/hosts.allow is checked first, if
an incoming packet’s source address and destination service matches a record in that file
the /etc/hosts.deny file is skipped. However, if a record does not match an incoming
packet’s information, the /etc/hosts.deny file is checked and if a matching record is not
found in it, access is allowed. Therefore, it is best to put the ALL: ALL record in the /etc/
hosts.deny file to improve security so that all packets with unmatched records in the
/etc/hosts.allow file are denied. Thus, option C is the correct answer. Option A would
make security worse, because it would give anyone from anywhere access to all the system’s
services. Thus, option A is a wrong answer. Options B, D, and E all have the wrong
filenames, so they are incorrect choices as well.

9. A, C, D, and E. All the statements in options A, C, D, and E are true, so they are correct
answers. Passwords should not be stored in the /etc/passwd file due to its file permissions,
which allow anyone to read the file. Even though the passwords are salted hashes, rainbow
tables could be employed to determine the plaintext passwords. Thus, option B is a really
wrong answer.

10. D. The best answer is in option D—set Yoyo up in the /etc/sudoers file, and have her
issue commands that need super user privileges via the sudo command. The root account
password should not be shared among multiple people (and many distributions are not
disabling the root account), because it sets up a repudiation environment, which is not
secure. Therefore, options A, B, and C are wrong answers. If Yoyo is set up in the /etc/
sudoers file, she should be using the sudo command, not the su -c command, so option E
is an incorrect choice.

11. B. The w command provides the most information concerning users who are currently
logged into the system, so option B is the correct answer. The who command provides
almost as much information as the w command, but its data does not surpass the w utility’s
output. Therefore, option A is a wrong answer. The last command is primarily for
displaying the last time a particular user logged into the system as well as if that user is
currently on the system, and while useful, it also does not provide as much information as
the w command, so option C is a wrong choice. The who am i and whoami commands show
information about the current user only, so options D and E are incorrect choices as well.

12. D. For Wade to set the number of processes each virtual reality game player can start on
his gaming server, the ulimit option he should use is -u. Therefore, option D is the correct
answer. The -a switch shows the current user’s settings, so option A is a wrong answer. The
-l switch sets the maximum amount of memory that can be locked by the user, so option B
is a wrong choice. The -t switch sets the maximum amount of CPU time the user account
is allowed, so option C is a wrong answer. The -v switch sets the maximum amount of
virtual memory that can be allocated by the user, so option E is an incorrect choice as well.

13. A. The OpenSSH application keeps track of any previously connected hosts and their
public keys in each user’s ~/.ssh/known_hosts file. Therefore, option A is the correct
answer. The ~/.ssh/authorized_keys file is used on an SSH server to keep track of
authorized public keys used for password-less authentication. Therefore, option B is a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 10: Securing Your System 617

wrong answer. Options C and D are made up and therefore incorrect choices. Option E is
an RSA public key that could be created by the ssh-keygen utility, so it is a wrong choice
as well.

14. A, B, C. The ~./ssh/config, /etc/ssh/ssh_config, and /etc/ssh/sshd_config files
are all OpenSSH configuration files. Therefore, options A, B, and C are correct choices.
The files listed in options D and E are made up and therefore incorrect answers.

15. E. The only correct answer is option E. These identity keys are created with the filenames
of id_type for the private key and id_type.pub for the public key. The key in option E
is a private key using the RSA algorithm. Option A’s key is an RSA private key used in
establishing a password authenticated SSH connection, so it is a wrong answer. The key
listed in option B is a public version of option A’s key, so it too is a wrong choice. The keys
listed in options C and D are made up, and thus they are wrong choices as well.

16. A. The command in option A is the correct answer. The ssh-keygen -t rsa -f /etc/
ssh/ssh_host_ecdsa_key command designates the key pair type to be rsa and designates
the wrong filename for -t rsa, so option B is a wrong answer. Options C, D, and E also
use the wrong filenames, so they are incorrect as well.

17. E. The ssh-copy-id command will not only copy over DeAndre’s public key to the remote
system, but it will also add it to his account’s ~/.ssh/authorized_keys file on the remote
system. Therefore, option E is the correct answer. The scp command will work, but it
does not store the key in the ~/.ssh/authorized_keys file and should only be used if the
scp-copy-id utility is not available. Therefore, option A is a wrong answer. The ssh-keygen
command is for generating keys, not copying them to remote systems, so option B is also a
wrong choice. The scp-id-copy and scp-copy-id commands are made up; thus, options
C and D are also incorrect choices.

18. D. Aleena should enter the ssh-agent /bin/bash command to start the agent session, so
option D is the correct answer. The gpg-agent command is used with GPG file encryption,
so option A is the wrong choice. Aleena probably used ssh-copy-id to put her key in the
appropriate places, but since she already accomplished that task, option B is the wrong
answer. After an agent session is open, then the ssh-add command adds the key to the
session, but since Aleena has not opened a session, option C is also an incorrect answer.
The ssh command is used to make the connection to a remote system, not to start an
OpenSSH agent session, so option E is also an incorrect choice.

19. A, B, E. The gpg --import zer0es.pub command will import the public key stored in
the zer0es.pub file and store it on the user’s keyring, which is actually a file within the
~/.gnupg/ directory. It does not remove the public key from the zer0es.pub file.
Therefore, options A, B, and E are all correct answers. The gpg-agent daemon is involved
only with private keys, not public keys, so option C is a wrong answer. Reagan could
export the public key to a reagan.pub file but has not done so; thus, option D is also an
incorrect choice.

20. A, B, D. The --sign, --clearsign, and --detach-sig switches will all create digital
signatures. Therefore, options A, B, and D are correct. The --detach-sig switch is used
to verify a digital signature, not to create one, so option C is a wrong answer. The --out
switch is used in various gpg commands, but not necessarily one that creates digital
signatures. Thus, option E is also an incorrect choice.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

By

^ (caret), 50
| (pipe), 50, 55–56

Numbers and Symbols
> (redirection) operator), 51–52

A
absolute directory references, 9–10
accessibility, 346

desktop environment, 323–324
finger impairment, 324–325
hand impairment, 324–325
visual impairment, 324

AccessX, 325
aggregation, networking, 445
aliases, 185, 474–475

email, 381–382
anchor characters, BREs, 47
answers to review questions

boot process, 597–601
command-line tools, 584–587
file management, 593–597
GUI (graphical user interface), 601–605
hardware configuration, 590–593
initialization process, 597–601
localization, 601–605
network configuration, 608–611
printing, 601–605
process management, 587–590
scripts, 611–614
security, 615–617
software management, 587–590
system administration, 605–608
virtualization, 597–601

application containers, 292
application files, packages and, 67
application layer (OSI model)

client/server paradigm, 431
well-known ports, 431–432

application versions, packages, 68
apropos command, 17
Apt (Debian package management), 67

archiving files, 239
cpio, 202–205
dd, 211–213
tar, 205–211

ASCII (American Standard Code for
Information Interchange), 333

asymmetric encryption, 553–554
attack surfaces, 524
attacks, man-in-the-middle attacks, 554
audio cards, 137
authentication, 354

B
background mode

jobs, stopping, 118–119
running programs, 118
sending jobs to, 116–117

Bash shell, 5. See also scripts; shell
environment variables, 466
General Commands Manual page, 17
metacharacters, 8

BASH_VERSION environment variable, 6, 12
binary packages, 70
/bin/mail, 377
/bin/sh file, shells, 6
BIOS (Basic Input/Output System), 134, 175,

249–250
boot loader, 135, 249
MBR (master boot record), 135
startup, 134–135

block device files, 139
Bluetooth devices, 137
bonding network cards, 445–446
boot kernel, 246

kernel ring buffer, 247
boot loaders, 135, 246, 249

alternatives, 260–261
chainloading, 135
EXTLINUX, 260
GRUB (GRand Unified Bootloader), 251
GRUB Legacy

global commands, 252
grub-install, 254
installation, 254
menu commands, 251–252

Index

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

620 boot process – cryptography

GRUB2, 251
configuration, 255–256
installation, 257
interactions, 257–259

ISOLINUX, 260
MEMDISK, 260
PXELINUX, 260
SYSLINUX, 260
U-Boot, 260

boot process
answers to review questions, 597–601
EFI (Extensible Firmware Interface), 135,

250
ESP (EFI System partition), 136, 250
information, extracting, 247–248
kernel, parameters, 259–260
MBR (master boot record), 135, 249
steps, 246–247
UEFI (Unified Extensible Firmware

Interface), 250
bracket expressions, 47–49
bracketed wildcards, 187–189
braille display, 324
BREs (basic regular expressions), 47–49
brltty package, 324
btrfs filesystem, 167
build number, RPM, 69
built-in commands, 11

C
case statement, 494–495
cat command, 28–29

nonprintable characters, 30
options, 29

cd, 9
CentOS

/bin/sh, 6
network, configuration files, 435–436
passwd, 366–367
software, installation, 78–83
user accounts

creating, 363
directives, 362–363

central logging host, 389
chainloading, 135
character classes, 48–49
character device files, 139

character sets, 333–334
chgrp command, 220–221
chown, 219–220
CIDR (Classless Inter-Domain Routing), 428
CIFS (Common Internet Filesystem), 168
Cinnamon, 317–319
clock stratum scheme, 408
cloud-init service, 295
command aliases, 474–475
command line, 4

generating, 60
syntax structure, 183

command not found, 13
command-line

answers to review questions, 584–587
arguments, shell scripting, 484
history, 18–19

commands. See also specific commands
aliases, 185
built-in, 11
external, 11
internal, 11
re-executing, 19
references, 14
switches, 7

compositor, 307
compressing files, 239

bzip2, 199
gzip, 199
xcat, 201
xz, 199
xzcat, 202
zip, 200

computer networking. See networking
containers, 291–292, 291–293

application containers, 292
operating system containers, 292

cp, 190, 557
options, 191–192
recursive copy, 192–193

cpio utility
archive creation, 202–204
listing archives, 204
restoring files, 204–205

cryptography
asymmetric keys, 553
cipher keys, 553
ciphertext, 553
decryption, 553

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CSP (cloud service provider) – device mappers 621

digital signatures, 555
encryption, 553
hashing, 554–555
plaintext, 553
private keys, 553
public/private key pairs, 553
secret keys, 553
securing data, 554–555
symmetric keys, 553

CSP (cloud service provider), 293
CUPS (Common Unix Printing System), 343–345

D
DAC (discretionary access control), 354
Dash shell, 5
date. See also time and date
date utility, 405–406
dd utility, 211

disk copy, 212–213
operands, 212
zeroing disk, 213

Debian, 86
APT (Advanced Package Tool) suite, 92–96

apt-cache, 93–94
apt-get, 94–96

Dash (Debian Almquist shell), 5
dpkg, command set, 87–92
network, configuration files, 434
package files, conventions, 87
packages

dpkg-reconfigure tool, 97–98
installed
displaying, 91
purging, 92
reconfiguring, 97–98
status, 90
uninstalled, status, 91

reconfiguring, 97–98
default router, 429
default text editors, 21
desktop environment, 311–312

accessibility, 323–324
braille display, 324
finger impairment, 324–325
hand impairment, 324–325
visual impairment, 324

Cinnamon, 317–319, 345

Display Manager, 312
Favorites Bar, 312
File Manager, 312
GNOME, 314–316, 345
icons, 312
KDE (Kool Desktop Environment),

316–317, 345
KDE (Kool Desktop Environment)

Plasma, 316–317
Launch, 312
MATE, 319–321, 345
Menus, 312
panels, 312
remote, 347

NX, 332
SPICE, 333
VNC (virtual network computing),

328–330
X11, 325–328
Xrdp, 330–332

settings, 312
system tray, 312
widgets, 312
Windows Manager, 312
Xfce, 321–322, 345

/dev directory, 138–139
device files

block, 139
character, 139
/dev directory, 138–139
device mappers, 139
DMA (direct memory access), 142–143
/proc directory, 139–140

I/O ports, 141–142
IRQs (interrupt requests), 140–141

/sys directory, 143
device interfaces

GPIO, 138
PCI (Peripheral Component Interconnect)

boards, 136
audio cards, 137
Bluetooth devices, 137
external hard drives and, 137
internal hard drives and, 136
network interface cards, 137
video accelerators, 137
wireless cards, 137

USB, 137–138
device mappers, 139

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

622 devices – environment variables

devices
raw devices, 155
storage

drive detection, 155–156
drive types, 154–155
partitions, 155

DHCP (Dynamic Host Configuration
Protocol), 430, 445

dig, 450
digital signatures, 555
directories, 239

copying, 190–193
creating, 189–190
home, 9
permissions, 222–223
present working directory, 183–184
root, 9
skeleton, 358–359
virtual, 9, 182
working directory, current, 9

directory references
absolute, 9–10
relative, 9–10

disks
fdisk utility, 158–160
gdisk utility, 161–162
HDD (hard disk drive), 154
journal log usage, 401–402
RAID (Redundant Array of Inexpensive

Disks), 158, 167
UDF (Universal Disk Format) filesystem,

169
display server, 307
distros, 4
DLLs (dynamic linked libraries), 98
DMA (direct memory access), 142–143
dmesg command, 247
dm-multipath, 156
DMTF (Distributed Management Task

Force), 289–290
dnf (dandified yum), 81
DNS (Domain Name System), 429–430
domain names, 430
dpkg-reconfigure tool, 97–98
drive storage

automatic detection, 155–156
partitions, 155

GPT (GUID Partition Table) method, 155
MBR (master boot record), 155
primary, 155

PATA (Parallel Advanced Technology
Attachment) connection, 154

raw devices, 155
SATA (Serial Advanced Technology

Attachment) connection, 154
SCSI (Small Computer System Interface)

connection, 154
dynamic libraries, 98

E
echo command, 6

STDOUT and, 51
syntax, 7

ecryptfs (Enterprise Cryptographic
Filesystem) filesystem, 167

EDITOR environment variable, 12, 21
efficient hypervisors, 292
EFI (Extensible Firmware Interface),

135, 250
EiB (exbibytes), 167
emacs text editor, 21–22
email, 375

aliases, 381–382
forwarding messages, 382–384
MDA (mail delivery agent), 376
modular environment, 376
MTA (mail transfer agent), 376

Exim, 377
Postfix, 377
Sendmail, 376–377, 384

MUA (mail user agent), 376
queue, checking, 380–381
reading, 379
receiving, 377–380
redirecting, 381–384
sending, 377–380

empty files, 185–186
encryption. See also cryptography

asymmetric, 553–554
symmetric, 553–554

environment variables, 11–12, 334–335,
466. See also command aliases

BASH_VERSION, 6, 12
changing manually, 336–337
EDITOR, 12
global, 466–468

setting, 472
shell scripting and, 482–483

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

EREs (extended regular expressions) – file management 623

GROUPS, 12
HISTFILE, 12
HISTSIZE, 12
HOME, 12
HOSTNAME, 12
LANG, 12
LC_*, 12
LC_ALL, 12
LD_LIBRARY_PATH, 12
local, 468–470, 483

setting, 470–472
modifying, 14–15
PATH, 12, 13
PS1, 12
PS2, 12
PWD, 12
SHLVL, 12
system, locating, 472–474
TZ, 12
UID, 12
VISUAL, 12

EREs (extended regular expressions), 50
error messages, command not found, 13
ESP (EFI System partition), 136, 250
/etc/default/useradd,

357–358
/etc/fstab file, 172
/etc/gshadow, 373–374
/etc/login.defs, 355–356, 356–357
/etc/passwd, 359–360
/etc/shadow, 360–362
/etc/skel/ directory, 358–359
Ethernet cables, 425
ethtool, 439–440
exbibytes (EiB), 167
execute permission, 222
exFAT (Extended File Allocation Table)

filesystem, 168
Exim, 377
exit status, scripts, 488–489
export command, 15–16
expressions. See also regular expressions

bracket expressions, 47
ext3 filesystem, 167
ext4 filesystem, 168
extensions, 290–291
external commands, 11
external hard drives

Fibre Channel, 137
HBA (host bus adapter) standard, 137

F
FAT (File Allocation Table) filesystem, 136
fdisk utility, 158–160
FHS (filesystem hierarchy standard), 165, 229

folders, 230
fiber-optic network cables, 425
Fibre Channel, 137
file command, 186
file descriptors, 51
file globbing, 186–187
file management, 182

answers to review questions, 593–597
compression, 199–202, 239
creating files, 185–186
directories

copying, 190–193
creating, 189–190
deleting, 195–199

empty files, 185–186
files

archiving, 202–213
copying, 190–193
deleting, 195–199
moving, 193–195
renaming, 193–195

FSH (filesystem hierarchy standard), 229
folders, 230

groups, 220–221
links

hard, 213
soft, 213

listing files, ls command, 182–185
locating files, 229–230

find, 235–238
locate, 232–235
type, 238
whereis, 232
which, 231–232

modes
chmod, 223–226
default, setting, 226–227
GSUID and, 228–229
octal, 225–226
special access, 228–229
sticky bit, 229
SUID and, 228
symbolic, 223–225
umask, 226–227

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

624 files – firmware

naming files, 185–186
ownership, 218

assigning, 219
changing owners, 219–220
chown, 219–220
groups, 220–221

permissions, 221–222
directories, 222–223
files, 222–223

root directory, 182
wildcards

bracketed, 187–189
expansion, 186–187

files, 239
application files, packages and, 67
combining, 28–31
concatenation, 28–30

side-by-side, 30–31
copying, 190–193
formatting

nl command, 35–36
sort utility, 33–35

library
locating, 99–100
naming conventions, 98

listing, ls command, 182–185
locating

find, 235–238
locate, 232–235
type, 238
whereis, 232
which, 231–232

md5sum utility, 43–44
numbered lines, 35–36
open, 530–533
password, grep, 48
permissions, 222–223
repeated lines, 43
SHA (Secure Hash Algorithms),

44–45
summarizing

cut command, 41–42
wc utility, 40–41

transforming, 31–33
type codes, 222

viewing
head utility, 37–38
less utility, 36–37
more utility, 36–37
pagers, 36
tail utility, 38–40

word count, 40–41
filesystems

absolute path, 166–167
creating, 169–170
FHS (filesystem hierarchy standard), 165,

229–230
formatting, 167–170
journaling, 168
Linux

btrfs, 167
ecryptfs, 167
ext3, 167
ext4, 168
reiserFS, 168
swap, 168

mounting
automatic, 172
manual, 170–171

non-Linux
CIFS, 168
exFAT, 168
HFS, 168
ISO-9660, 168
NFS, 168
NTFS, 168
SMB, 169
UDF, 169
VFAT, 169
XFS, 169
ZFS, 169

relative path, 167
statistics, 173
tools, 173–174
virtual directory structure

mount points, 165
root directory, 164–166

find command, 235–238
finger impairment accessibility, 324–325
firmware, 134

BIOS (Basic Input/Output System), 134,
249–250

startup, 134–135

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

folders – hardware 625

UEFI (Unified Extensible Firmware
Interface), 134

startup, 135–136
folders, FHS (filesystem hierarchy standard),

229–230
for loop, 496–497
foreground mode, bringing jobs to, 117
functions, 98

calling, 498
library files, 98
parentheses, 499

fuser utility, 530–533

G
gdisk utility, 161–162
getent utility, 365–366, 451, 542
GID (group ID), 371
global environment variables, 466–468

setting, 472
shell scripting and, 482–483

GNOME, 314–316
universal access, 323

GNOME Partition Editor, 163–164
GNU, Bash (Bourne Again shell), 5
GNU Screen, 110
gparted, 163–164
GPG (GNU Privacy Guard), 567

certification, 571–573
decryption, 570–571
encryption, 570–571
keys

generation, 568–569
importing, 569–570
revoking, 573–574

signatures, 571–573
time stamps, 571

gpg utility, 572–573
GPIO (General Purpose Input/Output)

interface, 138
GPT (GUID Partition Table) method, 155
grep, 45–46

BRE patterns, 47
character classes, 49

groupadd utility, 372–373
groupdel utility, 374–375
groupmod, 374

groups, 354
creating, 372–373
deleting, 374–375
files, 220–221
GID (group ID), 371
membership, viewing, 372
modifying, 374
passwords, 373–374

GROUPS environment variable, 12
GRUB (GRand Unified Bootloader),

251–252
GRUB Legacy, 251

configuring, 251–254
global commands, 252
grub-install, 254
installation, 254
interactions, 254
menu commands, 251–252

GRUB2
entry editor keystrokes, 259
grub.cfg, 255
Initrd, 256
Initrdefi, 256
installation, 257
interactions, 257–259
linux, 256
linux16, 256
Linuxefi, 256
menuentry, 256
set root, 256

grub-install, 254
GUI (graphical user interface), 5, 306, 346.

See also desktop environment
answers to review questions,

601–605

H
hand impairment accessibility, 324–325
hard drives, 154–156
hard links, 213

ln command, 214–217
hardware

answers to review questions, 590–593
device files

block, 139
character, 139

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

626 hashing – IRQs (interrupt requests)

/dev directory, 138–139
device mappers, 139
direct memory access, 142–143
DMA (direct memory access), 142–143
/proc directory, 139–142
/sys directory, 143

device interfaces, 136–137
GPIO, 138
GPIO interface, 138
PCI (Peripheral Component

Interconnect) boards, 136–137
USB interface, 137–138
USB interfaces, 137–138

devices, 144–146
finding, 144–146
lsblk, 145–146
lsdev, 144–145
PCI cards, 146–147
storage, 154–156
USB, 147–148

modules, 148–149
information gathering, 150–151
installation, 151–153
listing, 149–150
removing, 153–154

PCI cards, 146–147
settings, 175
storage, drive types, 154–155
USB devices, 147–148

hashing, 554–555
digital signatures, 555
message digests, 554–555

HBA (host bus adapter) standard, 137
HDD (hard disk drive), 154
HFS (Hierarchical Filesystem), 168
HISTFILE environment variable, 12
history command, 18
HISTSIZE environment variable, 12
home directory, 9
HOME environment variable, 12
host, 449
host address, 427
host names

DNS (Domain Name System), 429–430
domain names, 430

HOSTNAME environment variable, 12
hwclock utility, 404–405

hypervisor, 287
efficient, 292
Hyper-V, 288
Type 1, 288
Type 2, 287

I
IaaS (Infrastructure as a Service), 293–295

block storage, 294
computing instances, 293
CSP (cloud service provider), 293
elasticity, 294
load balancing, 294
management console/portal, 294
object storage, 294
remote instance access, 294

IANA (Internet Assigned Numbers
Authority), 428–429

ICMP (Internet Control Message
Protocol), 447

IEC (International Electrotechnical
Commission), 334

if statement, 492–494
ifconfig, 440–442
init, 102–103, 261–262
initialization process, 246

answers to review questions, 597–601
init, 261–262
systemd, 262

units, 263–269
insmod, 151–152
internal commands, 11
internal hard drives

SATA interface, 136
SCSI interface, 136

I/O ports, 141–142
IP address

host address, 427
network address, 427

IPP (Internet Printing Protocol), 343
iproute2, 442–444
IPv6 (IP Version 6), 427–428, 447

link local address, 428
assigning, 434–435

IRQs (interrupt requests), 140–141

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ISO (International Organization for Standardization) – links 627

ISO (International Organization for
Standardization), 334

ISO-8859, 334
ISO-9660, filesystems, 168

J
jobs, 116–117, 506–508
journalctl utility, 248, 398–400
journald.conf file directives,

394–395
journaling

disk usage, 401–402
entries

creating, 402–403
viewing, 398–400

files, viewing, 402
filesystems, 168
journal client method, 397
journal files, 396–397
journalctl utility, 398–400
persistence, 397–398
systemd-journald

configuration, 394–396
disk usage, 401–402
entries
making, 402–403
viewing, 398–400
files, viewing, 402
journal files, 396–397
layering, 397
persistence, 397–398

K
KDE (Kool Desktop Environment),

316–317, 345
KDE (Kool Desktop Environment) Plasma,

316–317
kernel, 246

parameters, 259–260
revision, 7
version, current, 7

kernel ring buffer, 247
key bindings, 115

keyed message digest, 554–555
keywords, searching for, 17
kill command, 118–119, 122–124
killall command, 124–125
Korn, David, 5
KornShell, 5
kpartx, 156

L
LANG environment variable, 12
LANs (local area networks), 137
last utility, 549
LC_* environment variable, 12
LC_ALL environment variable, 12
ldconfig, 101
ldd utility, 102
LD_LIBRARY_PATH environment variable, 12
less pager utility, 17
libraries, 98

cache, 101
dependencies, 102
developing, 101
dynamic, 98
dynamic linker/loader, 100
files

locating, 99–100
naming conventions, 98

functions, 98
ldconfig, 101
ldd utility, 102
Linux

dynamic, 98
loading a library, 98
shared, 98
statically linked, 98

loading a library, 98
management, commands, 100–102
shared, 98
statically linked, 98

link local address, 428
assigning, 434–435

links
backups, 218
command substitution, 218
hard, 213

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

628 Linux – mount points

soft, 213
uses, 217–218
version links, 217

Linux, libraries
dynamic, 98
loading a library, 98
shared, 98
statically linked, 98

listing files, ls command, 182–185
lists, process lists, 102
load balancing, network devices, 445
local environment variables, 468–470, 483

setting, 470–472
local loopback interface, 444
locale environment variables, 334
localectl, 337–338
localization, 333

answers to review questions, 601–605
character sets, 333–334
environment variables, 334–335
locale

changing, 336–338
installation and, 335–336

localectl, 337–338
localtime, 403–404
locate command, 232–235
locating files

find, 235–238
locate, 232–235
type, 238
whereis, 232
which, 231–232

log files, 384
logger, 393
logging, 384

central logging host, 389
client, 389
event messages, 394
Linux history, 387
logrotate utility, 390–393
messages to server, 389
rsyslogd

configuring, 387–389
entries, 393
event messages, 394
file rotation, 390–393
messages, 389–390

syslog protocol, 385–387

logic statements
case, 494–495
if, 492–494

logout, running jobs, 119
logrotate utility, 390–393
loops

for, 496–497
while, 497–498

ls command, 182–185
lsblk, 145–146
lsdev, 144–145
lsmod, 149–150
lsof utility, 530–533
LVM (Local Volume Manager),

157–158, 167

M
mail, 377
man -k command, 17
man pages, 17–20
man-in-the-middle attacks, 554
MATE, 319–321
mathematical expressions, scripts,

490–492
MBR (master boot record), 135, 155, 249
MDA (mail delivery agent), 376
mdadm utility, 158
mesg, 285
message digests, 554–555
metacharacters, 8

shell quoting, 8–9
mkdir command, 189–190
modinfo, 150–151
modprobe, 151–153
modules, 148–149

information gathering, 150–151
insmod, 151–152
installation, 151–153
listing, 149–150
lsmod, 149–150
modinfo, 150–151
modprobe, 151–153
removing, 153–154
rmmod, 153–154

mount, 170–171
mount points, 165

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

mounting filesystems – NTP (Network Time Protocol) 629

mounting filesystems
automatic, 172
manual, 170–171

MTA (mail transfer agent), 376
Exim, 377
Postfix, 377
Sendmail, 376–377, 384

MUA (mail user agent), 376
multipath, 156
multipathd, 156
multipathing, 156–157
multiplexing, 109–110

detached window, 111
screen utility, 110–113
tmux utility, 113–115

N
naming, files, 185–186
nano text editor, 20–21
NAT (network address translation), 429
netmask address, 428

CIDR (Classless Inter-Domain Routing), 428
IANA (Internet Assigned Numbers

Authority), 428–429
netstat utility, 527–528
net-tools package, 439
network cards, bonding, 445–446
network layer (OSI model), 426–427

default router, 429
DHCP, 430
host names, 429–430
IP (Internet Protocol), 426
IP address

dotted-decimal notation, 427
host address, 427
network address, 427

IPv6 (IP Version 6), 427–428
link local address, 428

netmask address, 428–429
Network Manager, 436–438

command-line tools, 438–439
network sockets, 528–530
networking, 423

active/passive, 445
Apple, 426
command-line tools, 438–439

configuration, answers to review
questions, 608–611

configuration files, 433–436
environment, 457
Ethernet cables, 425
fiber-optic cables, 425
graphical tools, 436–438
iproute2, 442–444
legacy tools, 439–442
network access point, 425
network address, 427
Network Manager, 436–438
OSI model, 424

application layer, 431–433
network layer, 426–430
physical layer, 424–426
transport layer, 430–431

routers, default, 429
settings, automatic, 445
SSID (service set identifier), 426
troubleshooting

advanced, 452–457
host information, 449–452
netcat, 456
netstat, 452–455
sockets, 455–456
ss, 455–456
test packets, 447–448
traceroute, 448–449

virtual devices, 445–446
wired network connections, 425
wireless, 425

WEP (Wired Equivalent Privacy), 426
WPA (Wi-Fi Protected Access), 426
WPA2 (Wi-Fi Protected Access

version 2), 426
NFS (Network Filesystem), 168
nice command, 120
nmcli, 439
nmtui, 438
nohup utility, 119
NTFS (New Technology Filesystem), 168
NTP (Network Time Protocol), 408–409

daemon, 411–413
Google Time Servers and Smear, 410
leap-smearing, 410
ntpd, 411–412
ntpq, 412–413

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

630 NX – PCIe (PCI Express)

pool.ntp.org, 409–410
server lists, 410
service, 412–413

NX, 332

O
octal file mode, 225–226
od utility, 31–32
OpenSSH, 555

configuration, 558–560
key generation, 560–561
keys, authentication and, 561–563
ssh, 555–558
SSH tunneling, 565–567
X11 forwarding, 565–567

operating system containers, 292
OSI (Open Systems Interconnection) model, 424

application layer, 431–433
network layer, 426–427

default router, 429
DHCP, 430
host names, 429–430
IP address, 427–428
netmask address, 428–429

physical layer, 424–426
transport layer, 430–431

OVA (Open Virtualization Archive), 290
OVF (Open Virtualization Format), 289–290

P
P2V (physical-to-virtual), 290
packages, 67

application files, 67
application versions, 68
binary, 70
Debian, 86

APT (Advanced Package Tool) suite,
92–96

dpkg command set, 87–92
file conventions, 87
reconfiguring, 97–98

installation, 71–72
library dependencies, 68

repository, 78
RPM (Red Hat package management), 67

conventions, 69–70
data extraction, 77
distributions, 69–70
rpm command set, 71–76
YUM, 78–83
ZYpp, 83–86

source, 70
updates, 71–72

parted, 162–163
partitions, 155

fdisk, 159–160
gdisk, 161–162
gparted, 163–164
GPT (GUID Partition Table) method, 155
MBR (master boot record), 155
parted (GNU), 162–163
primary, 155

passwd utility, 366–368, 541
passwords, 539

files, grep, 48
getent, 542
groups, checking for, 373–374
rainbow tables, 540
root access, 543
shadow password suite, 355
storage, 540–541
su utility, 544
super user, 545–547
troubleshooting, 541–543
users, switching, 544–545

paste command, 30–31
PATH environment variable, 12, 13, 14
PCI (Peripheral Component Interconnect)

boards, 136
audio cards, 137
Bluetooth devices, 137
external hard drives and, 137
internal hard drives and

SATA, 136
SCSI, 136

network interface cards, 137
PnP (Plug-and-Play), 137
video accelerators, 137
wireless cards, 137

PCIe (PCI Express), 136

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

permissions – renice command 631

permissions
directories, 222–223
files, 222–223
SGID (Set Group ID), 551–553
SUID (Set User ID), 551–553

persistent drive files, 156
persistent storage, 154–156
PID (process ID), 102
ping, 447
piping (|), 50, 55–56
pkill command, 125–126
PnP (Plug-and-Play), 137
positional variables, 484
POSIX (Portable Operating System

Interface), 167
POST (Power-On Self-Test), 246
Postfix, 377
present working directory, 183–184
primary partitions, 155
printenv, 467
printing

answers to review questions, 601–605
CUPS (Common Unix Printing System),

343–345
IPP (Internet Printing Protocol), 343
print queue, 343

/proc directory, 139–140
I/O ports, 141–142
IRQs (interrupt requests), 140–141

processes
answers to review questions, 587–590
background

sending jobs to, 116–117
stopping, 118–119

foreground, bring jobs to, 117
init, 102–103
interruptible sleep mode, 104
interrupting, 504
lists, 102–103
nice command, 120
niceness level, 120
pausing, 504–505
PID (process ID), 102
priority management, 120–121
ps, 103–104
renice command, 120
running after logout, 119

selecting, 104–105
signals, 121–122

kill, 122–124
killall, 124–125
pkill, 125–126

states, 104
top, 106–109
uninterruptible sleep mode, 104
viewing, 103–104, 106–109
zombies, 104

ps command, 103–104, 262
PS1 environment variable, 12, 14–15
PS2 environment variable, 12
pseudo-terminal, 111
pwd, 9, 183–184
PWD environment variable, 12

R
RAID (Redundant Array of Inexpensive

Disks), 158, 167
rainbow tables, 540
raw devices, 155
RDP (Remote Desktop Protocol), 330
read permission, 222
real-time clock, 404
redirection

operators, 51–52, 54
STDERR (standard error), 52–53
STDIN (standard input), 53–54
STDOUT (standard output), 51–52

re-executing commands, 19
regular expressions, 45

BREs (basic regular expressions), 47–49
EREs (extended regular expressions), 50

reiserFS filesystem, 168
relative directory references, 9–10
remote access, X11, 325
remote desktop, 347

NX, 332
SPICE (Simple Protocol for Independent

Computing Environments), 332–333
VNC (virtual network computing),

328–330
Xrdp, 330–332

renice command, 120

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

632 repositories – scripts. See also shell scripting

repositories, 78
rm command, 195–197
rmdir command, 198–199
rmmod, 153–154
root, access limits, 543
root directory, 9, 164–166, 182
routers, default, 429
RPM (Red Hat package management), 67

build number, 69
conventions, 69–70
data extraction, 77
distributions, 69–70
package files, 69–70
packages

binary, 70
installation, 71–72
querying, 72–75
removing, 76
source, 70
updates, 71–72
verification, 75–76

rpm command set, 71–76
YUM, 78–83
ZYpp, 83–86

rpm packages
installation, 71–72
updates, 71–72

rpm2cpio utility, 77
rsyslog, 387
rsyslogd

configuring, 387–389
entries, 393
event messages, 394
file rotation, 390–393
messages, 389–390

S
SATA (Serial Advanced Technology

Attachment) interface, 136
screen utility, 110–113
screens. See also multiplexing

detached window, 111
focus, 111
pseudo-terminal, 111

scripts. See also shell scripting
answers to review questions,

611–614
background mode, 500–501

multiple jobs, 502–503
command-line arguments, 484
commands

multiple, 475–476
substitution, 489–490

comment lines, 479
escaping, 478
exit status, 488–489
format, 478–479
functions, 498–500
jobs

at, 509–510
listing pending, 512
output retrieval, 510–511
removing, 512
restarting, 508–509
scheduling, 509–511
viewing, 506–508

logic statements
case statement, 494–495
if statement, 492–494

loops
for loop, 496–497
while loop, 497–498

mathematical expressions, 490–492
messages, displaying, 481–482
output redirection, 476–477
piping, 477–478
running scripts, 479–481

no console, 503–504
scheduling, 513

cron table, 513–514
text editors, 478–479
user input, 484

reading, 485–486
silent, 488
time outs, 486–488

variables
global environment variables, 482–483
local, defining, 483

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

SCSI (Small Computer System Interface) interface – STDOUT 633

SCSI (Small Computer System Interface)
interface, 136

security
access history, 549
access limits

root, 543
super user, 545–547
w utility, 547–549
who utility, 547–549

answers to review questions, 615–617
attack surfaces, 524
man-in-the-middle attacks, 554
network sockets, 528–530
passwords, 539

root access, 543
storage, 540–541
super user, 545–547
troubleshooting, 541–543
users, switching, 544–545

sed (stream editor), 56–59
Sendmail, 376–377

emulating commands, 384
services

disabling, 533–534
nmap, 524–527

files, open, 530–533
netstat, 527–528
ports, open, 527–528
TCP Wrappers, 538–539

set command, 12
SGID (Set Group ID), 228–229

location, 551–553
shadow password suite, 355
shared libraries, 98
shebang, 479
shell

accessing, 5
Bash, 5
/bin/sh file, 6
commands

external, 11
internal, 11

current, Ubuntu, 7
Dash, 5

echo, 7
KornShell, 5
metacharacters, 8
processes

interrupting, 504
pausing, 504–505

programs, running, 7–11
quoting, 8–9
signals, 504–505
subshells, 15
tcsh, 5
Z shell, 5

SHLVL environment variable, 12
shortcut commands, key bindings, 115
skeleton directory, 358–359
sleep mode, 104
SMB (Server Message Block) filesystem, 169
SNTP (Simple Network Time Protocol),

405, 409
sockets, 528–530

systemd.sockets, 528–530
soft links, 213

creating, 215–217
software clock, 404
software management, 587–590
source packages, 70
SPICE, 333
split command, 32–33
ss utility, 528–530
SSD (solid-state drive), 154
ssh, 555–558
SSH (Secure Shell), 555

authentication agent, 564–565
OpenSSH, 555–558
security, 567
tunneling, 565–567
X11 forwarding, 565–567

ssh-agent utility, 564–565
SSID (service set identifier), 426
standard editors, 21
statically linked libraries, 98
STDERR, 52–53
STDIN, 53–54
STDOUT, 51

echo command and, 51

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

634 storage – tar utility

storage
devices

drive detection, 155–156
drive types, 154–155
partitions, 155

LVM (Logical Volume Manager), 157–158
multipathing, 156–157
partitioning

fdisk, 158–160
gdisk, 161–162
parted (GNU), 162–163

partitions, gparted, 163–164
persistent, 154–156
RAID (Redundant Array of Inexpensive

Disks), 158
stream editor, 56–59
streams, 50
su utility, 544
subshells, 15
sudo utility, 545–547
SUID (Set User ID), 228

location, 551–553
super servers, xinetd, 534–537

services, configuring, 537–538
super user, 545–547
swap filesystem, 168
switches, 7
symbolic file mode, 223–225
symbolic links

/bin/sh, 6
creating, 216–217

symmetric encryption, 553–554
syntax, command-line commands, 183
/sys directory, 143
sysklogd, 387
syslog protocol, 385–387
syslogd-ng, 387
system, stopping, 283–284
system accounts, 356
system environment variables, locating,

472
interactive shell, 473–474
login shell, 473
noninteractive shell, 474

system time, 404
systemctl, 263, 264, 270, 529–530

service management commands,
271–272

service status commands, 272–273

systemd
configuration files, 269–270
emergency targets, 275
operational status, 273–274
rescue targets, 275
services, 264

disabled, 268
enabled, 268

special commands, 273–276
units, 263–264

enablement state, 265
jumping to, 274–275
service unit files, 265–268
target unit files, 264
target units, 268–269

systemd-journald, 387
configuration, 394–396
disk usage, 401–402
entries

making, 402–403
viewing, 398–400

files, viewing, 402
journal files, 396–397
journald.conf file directives,

394–395
layering, 397
persistence, 397–398

systemd-networkd daemon, 433–434
systemd.sockets, 528–530
SysVinit, 276–277

commands, 280–281
service utility, 281–283

runlevels
Debian-based, 277–278
Red Hat-based, 277
subdirectories, 279

runlevels, 278

T
tar utility, 205–206

archive creation, 206
backup creation, 207–208

incremental backup, 208–209
verifying, 210

file restore, 210–211
tarball contents, 209
tarball creation, 207

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

TCP (Transmission Control Protocol) – user accounts 635

TCP (Transmission Control Protocol), 431
well-known ports, 431–432

TCP Wrappers, 538–539
tcsh shell, 5
TENEX C shell, 5
terminal emulator, 5
text editors, 20–21

appending text, 52
default, 21
emacs, 21–22
nano, 20–21
procedures, 24–27
sed (stream editor), 56–59
shell scripting, 478–479
vi, 21, 22
vim, 22, 23–24

TiB (tebibytes), 167, 168
TigerVNC, 330
time and date

chronyd, 413
configuring, 413–414
service, 414–416

clock stratum scheme, 408
date utility, 405–406
hardware clock, 404
hwclock utility, 404–405
localtime, 403–404
NTP (Network Time Protocol),

408–411
real-time clock, 404
setting

date command, 339
hwclock command, 339
timedatectl command, 342–343

software clock, 404
system time, 404
timedatectl utility, 406–408
UTC (Coordinated Universal Time), 404
wall clock time, 403–404

time zones, 338–339
timedatectl utility, 406–408
tmux utility, 113–115
top command, 106–109
touch command, 185–186
traceroute, 448–449
transport layer (OSI model)

ports, 430
TCP (Transmission Control Protocol), 431
UDP (User Datagram Protocol), 431

tunneling
SSH (Secure Shell), 565–567
X11, 326–328

type, 11
Type 1 hypervisor, 288
Type 2 hypervisor, 287
type command, 238
TZ environment variable, 12

U
udev, 155–156
UDF (Universal Disk Format) filesystem, 169
UDP (User Datagram Protocol), 431

well-known ports, 431–432
UEFI (Unified Extensible Firmware

Interface), 134, 175, 249, 250–251
ESP (EFI System partition), 136
FAT and, 136
startup, 135–136

UID environment variable, 12
UIDs (user IDs), 356
ulimit, 549–551
umask command, 226–227
uname utility, 6
Unicode, 334
UNIX, CDE (Common Desktop

Environment), 321
unset command, 16
USB (Universal Serial Bus) interfaces,

137–138
user accounts

access audits
history, 549
last utility, 549
w utility, 547–549
who utility, 547–549

configuration, 354
/etc/default/useradd, 357–358
/etc/login.defs, 355–357
/etc/password, 359–360
/etc/shadow, 360–362
/etc/skel, 358–359

creating
CentOS, 363
directives, 362–363
Ubuntu, 363–365

deleting, 370–371

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

636 useradd – VMM (virtual machine manager)

locking, 369
modifying, 368–370
passwords, 366–368
super user, 545–547
system accounts, 356
UIDs (user IDs), 356
ulimit, 549–551
useradd, 355

useradd, 355, 364
userdel utility, 370–371
usermod utility, 368–370, 374
users, 354
UTC (Coordinated Universal Time), 338, 404
UTF (Unicode Transformation Format), 334
utilities

cp, 557
date, 405–406
fdisk, 158–160
fuser, 530–533
gdisk, 161–162
getent, 365–366
gpg, 572–573
groupadd, 372–373
groupdel, 374–375
hwclock, 404–405
journalctl, 398–400
last, 549
ldd, 102
less pager utility, 17
logrotate, 390–393
lsof, 530–533
mdadm, 158
netstat, 527–528
nohup, 119
od, 31–32
passwd, 366–368, 541
rpm, 71–72
rpm2cpio, 77
screen, 110–113
ss, 528–530
ssh-agent, 564–565
su, 544
sudo, 545–547
systemctl, 529–530
timedatectl, 406–408
tmux, 113–115
uname, 6

userdel, 370–371
usermod, 368–370, 374
w, 547–549
which, 14
who, 547–549
xargs, 60
yumdownloader, 70

UUID (Universally Unique Identifier), 172

V
variables. See also environment variables

environment, 334–335, 466
changing manually, 336–337
global, 466–468, 472, 482–483
local, 468–472, 483
system, locating, 472–474

positional variables, 484
VFAT (Virtual File Allocation Table)

filesystem, 169
vi text editor, 21, 22
video accelerators, 137
vim text editor, 22, 23–24

Command mode, 24
commands, moving commands,

24–25
editing commands, 26
Ex mode, 24, 26–27
Insert mode, 24
saving changes, 27–28

virtual directory, 9, 182
mount points, 165
root directory, 164–166

virtualization, 286
answers to review questions, 597–601
containers, 291–293
extensions, 290–291
IaaS (Infrastructure as a Service),

293–295
OVA (Open Virtualization Archive), 290
VMs (virtual machines), 287–288

creating, 288–290
templates, 290

VISUAL environment variable, 12, 21
visual impairment, accessibility and, 324
VMM (virtual machine manager), 287

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

VMs (virtual machines) – zypper 637

VMs (virtual machines), 287–288
clones, 289
creating, 288–290
hypervisor, 287
OVA (Open Virtualization Archive), 290
OVF (Open Virtualization Format), 289–290
P2V (physical-to-virtual), 290
templates, 290
VMM (virtual machine manager), 287

VNC (virtual network computing), 328–330

W
w utility, 547–549
wall, 285
wall clock time, 403–404
Wayland, 308

Weston, 310
well-known ports, 431–432
WEP (Wired Equivalent Privacy), 426
whereis command, 232
which command, 23, 231–232
which utility, 14
while loop, 497–498
who utility, 547–549
wildcards

bracketed, 187–189
expansion, 186–187

windows. See also multiplexing
detached window, 111, 114
focus, 111
panes, 115
pseudo-terminal, 111

windows manager, 306
wired network connections, 425
wireless cards, 137
wireless networking, 425

WEP (Wired Equivalent Privacy), 426
WPA (Wi-Fi Protected Access), 426
WPA2 (Wi-Fi Protected Access version 2),

426
working directory

current, 9
present working directory, 183–184

WPA (Wi-Fi Protected Access), 426
WPA2 (Wi-Fi Protected Access version 2),

426
write permission, 222

X
X Window System, 307

login
XDM (X Display Manager),

313–314
XDMCP, 313

Wayland, 308, 309–311
XFree 86, 308

X11, 325
forwarding, 326–328, 565–567
tunneling, 326–328

xargs utility, 60
XDM (X Display Manager), 313–314
XDMCP (X Display Manager Control

Protocol), 313–314
Xfce, 321–322
XFree 86, 308
XFS (X Filesystem), 169
xinetd, 534–537

services, configuring, 537–538
X.Org, 308–309
Xrdp, 330–332

Y
YUM (YellowDog Update Manager), 78

dnf (dandified yum), 81
yumdownloader utility, 70

Z
Z shell, 5
ZFS (Zettabyte Filesystem), 169
zombie processes, 104
ZYpp, 83–86
zypper, 83–86

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

